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Non-technical summary

Research Question

Linear Gaussian state space models are embedded in many modern time series models.
Model estimation with Bayesian methods typically requires sampling from the state space
and can be computationally demanding. Recent advances in theory and computational
routines for handling large matrices have led to more efficient routines that operate on
the so-called precision matrix. However, Bayesian updating of the precision matrix is ill-
defined when the observables are modeled as a linear combination of the states without
measurement error.

Contribution

We extend precision-based sampling to include the case when observables are modeled as a
linear combination of the states. Relevant applications include trend-cycle decompositions
with persistent cycles and (mixed-frequency) VARs with missing variables.

Results

The proposed sampler is considerably faster than conventional routines based on Kalman
filtering and smoothing. For typical model sizes, the execution time for state space sam-
pling is reduced by two thirds and more. Illustrated with an application to extract a
measure of trend inflation from about a dozen of input variables, model estimation takes
just about 2 instead of 13 hours.



Nichttechnische Zusammenfassung

Fragestellung

Lineare Zustandsraummodelle mit normalverteilten Schocks sind Bestandteil vieler empi-
rischer Zeitreihenmodelle. Die Modellschätzung erfolgt häufig mit bayesianischen Metho-
den, welche die Simulation des Zustandsraummodells erfordern, was rechentechnisch auf-
wendig sein kann. Effiziente Rechenroutinen nutzen oft die sogenannte Präzisionsmatrix,
um die Schätzung anspruchsvoller Modelle meistern zu können. Wenn die beobachteten
Zeitreihenwerte als lineare Kombinationen der Zustände ohne Messfehler modelliert wer-
den, ist eine bayesianische Verarbeitung der Präzisionsmatrix allerdings nicht vollständig
definiert.

Beitrag

Wir erweitern die Anwendbarkeit von Methoden, die auf der Präzisionsmatrix basieren,
auf den Fall, in dem die beobachteten Zeitreihenwerte als lineare Kombinationen der
Zustände ohne Messfehler modelliert werden. Zu den relevanten Anwendungen gehören
Trend-Zyklus Modelle und Vektorautoregressionen mit fehlenden Datenpunkten.

Ergebnisse

Die hier entwickelte Methode reduziert deutlich die erforderlichen Rechenzeiten im Ver-
gleich zu üblichen Verfahren, welche auf dem Kalman Filter basieren. Für gängige Mo-
dellgrößen verringert sich die Verarbeitungszeitung um zwei Drittel und mehr. Bei einer
Schätzung des Inflationstrends anhand eines guten Dutzends von Indikatoren benötigt die
Schätzung mit der neuen Methode 2 Stunden, während das übliche Verfahren 13 Stunden
benötigen würde.
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Abstract

This article presents a computationally efficient approach to sample from Gaussian
state space models. The method is an instance of precision-based sampling methods
that operate on the inverse variance-covariance matrix of the states (also known
as precision). The novelty is to handle cases where the observables are modeled
as a linear combination of the states without measurement error. In this case,
the posterior variance of the states is singular and precision is ill-defined. As in
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1 Introduction
Many modern time-series models feature non-linear dynamics and departures from nor-
mally distributed shocks. Nevertheless, often these models have a hierarchical structure
build around a state space that is conditionally linear and Gaussian (conditional on param-
eters that may be stochastic and time-varying).1 When estimation is done via Bayesian
MCMC methods, the need arises to efficiently sample the states.

A well-known approach to sample from a linear Gaussian state space is to perform
Kalman filtering and smoothing recursions. However, for larger models these recursions
come with non-negligible computational cost. Building on work by Chib and Jeliazkov
(2006) and advances in processing sparse and banded matrices, Chan and Jeliazkov (2009)
proposed “precision-based sampling” algorithms that solve the same problem as Kalman-
based routines but with higher computational efficiency. Because of their computational
advantages, precision-based sampling methods have increased in popularity, including
the applications in Eckert, Kronenberg, Mikosch, and Neuwirth (2020), Antolín-Díaz,
Drechsel, and Petrella (2021), Zaman (2021) and Carriero, et al. (2022), with extensions
in Hauber and Schumacher (2021) and Chan, Poon, and Zhu (2023). The computational
benefits of precision-based samplers have also been reviewed by McCausland, Miller, and
Pelletier (2011).

Precision-based sampling is typically built around the fact that the updating equa-
tion for the posterior precision is linear in the prior precision, which neatly facilitates
the computation. But, for this linear updating to hold, the state space needs to be
formulated such that each observable variable is a linear combination of states plus an
independent measurement error. Many applications fall into this class of models (for ex-
ample factor models), but other applications feature measurement vectors that are exact
linear combination of the states (and have no measurement error). This paper presents a
precision-based sampling algorithm applicable to those cases, which include:

• Trend-cycle decompositions with persistent cycles, as in Mertens (2016b), and Del Ne-
gro, Giannone, Giannoni, and Tambalotti (2017; 2019).2

• VARs with missing values, for example due to mixed-frequencies, as in Schorfheide
and Song (2015), and Chan, Poon, and Zhu (2023).

• Linearized DSGE models (Smets and Wouters, 2007), possibly with stochastic
volatility (Diebold, Schorfheide, and Shin, 2017) and fait-tailed shocks (Cúrdia,
Del Negro, and Greenwald, 2014).3

The precision matrix is the inverse of the variance-covariance matrix of the model’s
state variables. However, absent measurement errors, a linear combination of the states
is exactly pinned down by the problem’s measurement vector, which leads to a posterior

1See, for example, Primiceri (2005), Carriero, Clark, Marcellino, and Mertens (2022) and references
therein.

2When the “cycle” term of a trend model is white noise, it is straightforward to treat as measurement
error.

3Of course, researchers may also prefer to allow for measurement error in the estimation of DSGE
model as discussed by Canova (2014) and Herbst and Schorfheide (2014). Section 3.3 provides further
discussion.
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variance-covariance matrix of the state vector that is singular, and an ill-defined posterior
precision matrix. As a result, conventional approaches to precision-based sampling do not
apply, when the measurement equation has no error term. The approach proposed here
decomposes the state vector into the part that is exactly described by the measurement
vector and its counterpart, for which strictly positive-definite uncertainty remains. The
sampler then applies otherwise standard steps to efficiently sample from the latter part
of the state vector. The decomposition is based on a QR factorization of the matrix of
measurement loadings that exploits its banded and sparse structure.4

A closely related approach is described by Chan, Poon, and Zhu (2023) who consider
the missing data problem of mixed frequency VARs. Their application of precision-based
sampling also rests on separating observed from unobserved state variables, but is spe-
cialized to the missing-value structure of the mixed-frequency case, which provides a
direct partitioning of the VAR vector into observed and unobserved states. The approach
presented here provides a generic way to handle measurement vectors as arbitrary lin-
ear combination of the states. In a similar vein, Grant and Chan (2017a,b) provide a
precision-based sampler for trend extraction from a univariate series, when the cycle fol-
lows an AR(2). This paper presents a generalization to the multivariate case with VAR(p)
dynamics for the cycle, and nests it into a more general sampling approach.

The remainder of this paper describes the standard case of precision-based sampling
in Gaussian state space models with measurement error (Section 2), and provides a set
of example models with and without measurement error (Section 3), before turning to
precision-based samppling without measurement error (Section 4). These sampling meth-
ods are evaluated in Section 5 with a simulation study, and illustrated in Section 6 with
an application to estimate a common inflation trend from measures of realized and ex-
pected inflation based on Mertens (2016b). Section 7 concludes. Additional results
and codes are provided in a supplementary online appendix and a GitHub repository
at https://github.com/elmarmertens/ABCprecisionsampler.

2 Precision-based sampling in the standard case

2.1 State space setup
Consider a linear state space model with Nx dimensional state vector xt, Ny dimensional
measurement vector yt, as well as Gaussian disturbances to states and measurements, et
and εt, respectively:

xt = At xt−1 +Bt εt , εt ∼ N(0, I) , x0 ∼ N(µ0,Σ0) . (1)
yt = Ctxt +Dt et , et ∼ N(0, I) (2)

For sake of generality, the state-space matrices {At}Tt=1, {Bt}Tt=1, {Ct}Tt=1 and {Dt}Tt=1 can
be time-varying but are treated as known for the purpose of sampling the states.5 Hence,

4A related, but different, use of reduced-rank methods in precision-based sampling is considered
by Chan, Eisenstat, and Strachan (2020) in their study of large time-varying parameter models where
parameter drift has a factor structure.

5Time variation in measurement loadings can also capture a time-varying length of the measure-
ment vector, yt, which might arise, for example, in missing-data problems as illustrated by some of our
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for ease of exposition, we largely focus on the case of time-invariant parameters, At = A,
Bt = B, and Dt = D, except for the case of time-varying measurement loadings, which
naturally arises in applications with missing data. Moreover, we denote a factorization
(such as the Choleski decomposition) of the prior variance of x0 as Σ0 = B0B

′
0.

We consider the problem of drawing from the posterior for {xt}Tt=0 given a sequence
of observations {yt}Tt=1 conditional on a prior x0 ∼ N(µ0,Σ0) with |Σ0| 6= 0, and refer
to this problem as “sampling from the state space.” A classic approach to state space
sampling are Kalman filtering and smoothing, which iterate recursively over the obser-
vations {yt}Tt=0 (once forward and once backward), with details described in Anderson
and Moore (1979), Kailath, Sayed, and Hassibi (2000) or Durbin and Koopman (2012).
Alternatively, following Chan and Jeliazkov (2009) and Durbin and Koopman (2012), the
system can be vectorized and cast into the form of a static signal-extraction problem:

AX = X0 +B ε , ε ∼ (0, I) , (3)
Y = CX +De , e ∼ (0, I) , (4)

where X, X0 and ε are N̄x ≡ Nx · (T + 1) dimensional column vectors, and Y and e are
N̄y ≡ Ny · T vectors, that are constructed as follows:6

X =


x0

x1
...
xT

 , X0 =


µ0

0
...
0

 , ε =


ε0
ε1
...
εT

 , Y =


y1
y2
...
yT

 , e =


e1
e2
...
eT

 , (5)

A =


I 0 . . . . . . 0

−A1 I 0 . . .
...

0 −A2 I . . .
...

... . . . . . . . . . ...
0 . . . 0 −AT I

 , B =


B0 0 . . . . . . 0

0 B1 0 . . .
...

0 . . . B1 . . .
...

... . . . . . .
. . . ...

0 . . . . . . 0 BT

 , (6)

and C =


C1 0 . . . 0

0 C2
. . . ...

... . . .
. . . ...

0 . . . 0 CT

 , D =


D1 0 . . . 0

0 D2
. . . ...

... . . .
. . . ...

0 . . . 0 DT

 . (7)

Precision-based sampling solves the problem of drawing from X|Y ∼ N(µ,P−1)
given the prior X ∼ N(µ0,P

−1
0 ) where µ0 = A−1X0 and P 0 = A′(BB′)−1A denote

prior mean and prior precision, respectively. By design, sampling from X|Y is equiva-
lent to generating draws from a Kalman smoothing sampler. But, instead of breaking the
sampling problem down into forward and backward sequences of recursive steps, precision-

applications below. For brevity, we refer to the length of yt, however, as a constant, Ny.
6When the initial states are known — for example, in case of a VAR conditioned on the initial lags

of the data — X, X0, and ε are to be shortened, to satisfy Assumption 1 and ensure a non-degenerate
distribution for ε, by dropping x0, µ0 and ε0, and setting the first element of the shortened version of
X0 equal to A1x0.
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based sampling seeks to solve the static problem directly. While the resulting matrices
are large, their banded structure allows precision-based sampling to utilize sparse matrix
routines that are easily available, for example, in MATLAB, and provide more efficient
implementations than the recursions of Kalman filtering and smoothing (Chan and Jeli-
azkov, 2009; McCausland, Miller, and Pelletier, 2011).

2.2 Assumptions on rank of variance-covariance matrices
So far, a critical assumption for the applicability of precision-based sampling has been
that each observation must be afflicted by a non-degenerate measurement error while e
and ε are independent. In addition, Σ needs to be non-singular. Here we state these
assumptions formally:

ASSUMPTION 1 (Full-rank disturbances to the state vector) The variance co-
variance matrix of disturbances to the state vector, Σ = BB′ is strictly positive definite
and has full rank, and thus non-singular: |Σ| 6= 0.

ASSUMPTION 2 (Non-zero measurement error) The measurement error, e, is
independent from disturbances to the state vector X, E(eε′) = 0. Moreover, the variance-
covariance matrix of the measurement errors, Ω = DD′ is strictly positive definite, so
that |Ω| 6= 0.

At first glance, Assumption 1 may appear restrictive; however, it can typically be
satisfied by some rewriting of the state space.7 In contrast, Assumption 2, rules out
applicability of (conventional) precision-based sampling to a number of models. Hence-
forth, when Assumptions 1 and 2 are satisfied, we refer to a state space system as given
by (3) and (4) (in recursive form) or (3) and (4) (in static form) as a “state space with
measurement error.” Finally, it is convenient to assume B and D are square so that
Assumptions 1 and 2 amount |B| 6= 0 and |D| 6= 0:

ASSUMPTION 3 (Square shock loadings) The shock loadings B and D are square
matrices.

Assumption 3 can be made without loss of generality, since the only alternative is a model
being written with B and D having more columns than rows, which can be rewritten
with the Choleski factorizations of BB′ and DD′ in lieu of the original versions of B
and D.

2.3 Precision-based sampling for measurement-error systems
Provided Assumptions 1 and 2 hold, standard signal extraction implies a linear updating
equation for the precision matrix. This linear updating equation is an application of the

7For example, |Σ| = 0 arises when the state equation reflects the companion form of a VAR(p) with
p > 1. The supplementary online appendix illustrates how to construct a static system for this case that
satisfies Assumption 1.
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Woodbury matrix identity, and hinges on the invertibility of D. The posterior moments
of the state vector can then be obtained as follows:

P = P 0 +C ′(DD′)−1C = A∗′A∗ +C∗′C∗ , (8)
Pµ = P 0 µ0 +C ′(DD′)−1Y = A∗′X∗

0 +C∗′Y ∗ (9)

with A∗ ≡ B−1A, X∗
0 ≡ B−1X0, C∗ ≡ D−1C, and Y ∗ ≡ D−1Y .8

ALGORITHM 1 (Precision-based sampling for the case with measurement error)

1. Compute the Choleski factorization P 1/2 of P using sparse matrix routines that
exploit the banded structure inherited by P from P 0, D, and C.

2. Solve P 1/2m = A∗′X∗
0 +C∗′Y ∗ for m, which is efficiently be done by backwards

substitution, since P 1/2 is lower triangular. The result leads to m =
(
P 1/2

)′
µ.

3. Generate a draw from an N̄x-dimensional multivariate standard-normal z ∼ N(0, I).

4. Solve
(
P 1/2

)′
X = m+ z for X, to obtain the desired draw from p(X|Y ).

We refer to applications of Algorithm 1 as “conventional precision-based samplers.”

2.4 State space models without measurement error
This paper is concerned with models that have no measurement error. While retaining
the state equation (3), let the measurement equation be as in (4), but with e = 0

Y = CX , (10)

To ensure a meaningful signal extraction problem, we assume N̄y < N̄x and that C
has full rank. The system satisfies Assumption 1 but not Assumption 2 since there is
no measurement error. In the case without measurement error, Y represents an exact
linear combination of X, so that the posterior variance-covariance matrix of the states is
singular:

C Var (X|Y ) = 0 =⇒
∣∣Var (X|Y )

∣∣ = 0.

It follows that the posterior precision, the inverse of Var (X|Y ), is ill-defined and the
conventional precisions-based sampling approach described above does not apply. The
next section describes some example models with and without measurement error, before
Section 4 turns to a description of a sampler for the no-measurement error case, which
we call the “precision-based ABC sampler.”

8Following a recurring theme in this paper, construction of A∗, C∗, X∗
0, and Y ∗ can be performed

efficiently by exploiting sparsity in B and D. Invertibility of B and D is assured by Assumptions 1 and
2.
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3 Some example models
This section describes a few examples of state space systems with or without measurement
error. First, we describe (multivariate) trend-cycle decompositions, then VARs with miss-
ing data as in the mixed-frequency case, and finally generic state space models without
measurement as they arise in linearized DSGE models.

3.1 Trend-cycle decomposition
Consider the following trend-cycle decomposition for a vector of Ny variables, yt:

yt = Λ ȳt + ỹt , ȳt = ȳt−1 + B̄ ε̄t , ỹt = Ã ỹt−1 + B̃ ε̃t (11)

and ε̄t ∼ N(0, I), ε̃t ∼ N(0, I). The vector ỹt consists of Ny cyclical components, and ȳt
is a vector of Nȳ trend components. The matrix Λ can be rank deficient or not, depending
on whether the model embeds cointegrating relationships or not. For concreteness, we
consider the cases of no cointegration with Λ = I, henceforth called the “multivariate trend
model,” and the cointegrated case of a single common trend with Λ = 1 (the unit vector),
henceforth called “common trend model.” We refer to the entire model class described
by (11) as “trend-cycle” models. Such trend-cycle models have been used, for example,
by Stock and Watson (2007, 2016), Mertens (2016b), Johannsen and Mertens (2021) and
Del Negro, et al. (2017; 2019). For ease of exposition, parameters are treated as constants
and persistence in ỹt is modeled as a VAR with no more than one lag. Critically, for now,
we assume shocks to trend and cycle, ε̄t and ε̃t to be mutually uncorrelated, and will
return to this assumption further below.

A popular application of the trend-cycle decomposition are local-level models where
the cycle is serially uncorrelated, as in Stock and Watson (2007, 2016); in our context that
means Ã = 0 and we let Λ = I to obtain yt = ȳt+ ε̃t. Such models directly map into state
spaces with measurement error, by treating the serially uncorrelated cycle as equivalent
to measurement noise. However, when the cycle is persistent (Ã 6= 0), the trend-cycle
model does not directly map into a state space model with measurement error, at least
not in the recursive form of (1) and (2).

To find a suitable representation for the trend-cycle model of (11) in the static form
of a state space model with measurement error as in (3) and (4), recall the critical role
of Assumption 2. Assumption 2 requires shocks to the state equation, e in (3), to be
independent from the measurement error, ε in (4), but it does not require the elements
of e to be mutually independent, which allows us to stack the serially correlated elements
of {ỹt}Tt=1 into e, and {ȳt}Tt=1 into X, so that ε consists of {ε̄t}Tt=1.9 Specifically, a static
representation of the trend-cycle model can be written as follows:

Y = C Ȳ + Ỹ , Ā Ȳ = Ȳ0 + B̄ ε̄ , Ã Ỹ = B̃ ε̃, (12)

and ε̄ ∼ N(0, I), ε̃ ∼ N(0, I), and assuming a prior mean of zero for the cycle. Ā,
Ã, B̄, and B̃ are defined analogously to A and B in (6), but filled with Ā, Ã, B̄

9In other words, to satisfy Assumption 2, D does not have to be a diagonal matrix, just square and
with full rank.
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and B̃ instead of At and Bt, respectively. Likewise, C is as defined in (7), filled with
Ct = Λ. In the case of a serially correlated gap, Var (Ỹ ) is not anymore diagonal, but its
inverse retains a banded structure, which enables the use of efficient routines for matrix
computations: Var (Ỹ )

−1 ≡ P̃0 = Ã
′
(B̃B̃′)−1Ã, with Ã and B̃ defined analogously to

A and B in (6). The updating equations of a precision-based sampler for this case can
compactly be written as follows:

P̄ = P̄0 + C ′ P̃0C (13)
P̄ µ̄ = P̄0 µ̄ + C ′ P̃0 Y (14)

with P̄0 and P̄ , as well as µ̄0 and µ̄ denoting prior and posterior precisions and means
of Ȳ , respectively. In case of a multivariate trend model with C = I, the posterior
precision of the trend simplifies even further to the sum of prior precisions of trend and
cycle: P̄ = P̄0 + P̃0.

A precision-based sampler based on (13) and (14) for the trend-cycle model in (12)
is henceforth called “trend-cycle sampler.” Grant and Chan (2017a,b) study trend-cycle
decompositions for univariate data with AR(2) dynamics in the cycle.10 The trend-cycle
sampler extends their application to the multivariate (and possibly cointegrated) case.
This trend-cycle sampler is, however, not equipped to handle missing values or mixed-
frequency data, to which we turn next.11

3.2 VAR with missing observations and mixed-frequency data
Another example is a VAR(p) model with missing values. This kind of application may
arise for various reasons, like the exclusion of extreme values, as in Carriero, et al. (2022),
or in case of mixed-frequency data as in Schorfheide and Song (2015), and Chan, Poon,
and Zhu (2023), or more generally when using of data series with different start (or end)
dates for their availability. For ease of exposition, we omit intercepts and consider the
case of a VAR(1), which is identical to our prototypical state equation in (1). When
only some elements of the VAR vector, xt, are observed at a given point in time t, the
measurement equation becomes

yt = Ct xt (15)

In the simple case where some observations of xt are observed whereas others are not, Ct

is just a matrix of zeros and ones that selects the elements of xt for which observations
at time t are available. Mixed-frequency applications can also lead to richer cases, where,
for example, every few periods a moving average of current and lagged values of xt gets
observed as an element of yt, so that the relevant entries of Ct reflect the weights of the

10In their univariate setup, Grant and Chan (2017a) also allow for shocks to trend and cycle to be
correlated, and we discuss such an extension for the general multivariate case further below.

11As further potential limitation, the trend-cycle sampler does not draw initial values for the cycle
prior to t = 1, which may be of interest for a researcher seeking to estimate the autoregressive parameters
in Ã. In this context, Grant and Chan (2017a) write that initial lags of ỹt (here: ỹ0, or, more generally,
values for t = 0,−1, . . . ,−p + 1) are to be used, which can, of course be obtained by an additional
backwards simulation step. In contrast, the sampler proposed below allows to directly draw initial values
as part of its state space sampling.
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moving average.12 In either case, the number of elements of the measurement vector, yt,
becomes time-varying.13 Critically, the measurement equation in (15) for the missing-
value VAR lacks an error term, and the standard precision-based sampler does not apply.
Of course, together with the state equation (1), the measurement equation in (15) is
straightforward to rewrite as yt = CtAxt−1 +Ct εt, which features a serially uncorrelated
shock term. However, the shock term is not uncorrelated with all leads and lags of xt,
which violates Assumption 2 and thus invalidates application of Algorithm 1.

To apply precision-based sampling to this case, a separate approach is needed, and
it is provided by Chan, Poon, and Zhu (2023). Here we restate main elements of their
approach in our context and notation. For ease of exposition, consider the case where
some elements of X are observed and others are not. As discussed in Section 2.1, the
multivariate distribution of X is straightforward to derive as X ∼ N(µ0,P

−1
0 ). Denote

the unobserved elements by X̃2, so that X consists of all elements of X̃2 and Y (albeit
not typically in that order); in any case, it is straightforward to derive the conditional
distribution of X̃2|Y based on the multivariate normal for X. The details get a little
richer when the mixed-frequency case involves observations that are linear combinations
of current and lagged elements of the VAR vector, as described by Chan, Poon, and Zhu
(2023), but the general principle remains to partition X into linear combinations inside
and outside the span of Y . The sampler proposed in Section 4 generalizes this principle
in a setup that comprises the missing-value and mixed-frequency cases discussed here, the
trend-cycle application described above (also when trend and cycle are correlated) as well
as more general (but linear) mappings from state to measurement vector discussed in the
remainder of this section.

3.3 “ABC” vs “ABCD” models, including DSGE models
The missing-value case of a VAR, with state equation as in (1) and error-free measurement
equation as in (15) also represents a more generic “ABC” form of models, as they arise, for
example, as solution to linearized DSGE models based on methods known from Blanchard
and Kahn (1980), King and Watson (1998), or Klein (2000).14 Likewise, the trend-cycle
model of equation (11) can be cast in ABC form with

xt =

[
I 0

0 Ã

]
︸ ︷︷ ︸

=A

xt−1 +

[
B̄ 0

B∗ B̃

]
︸ ︷︷ ︸

=B

[
ε̄t
ε̃t

]
︸︷︷︸
=εt

, yt =
[
Λ I

]︸ ︷︷ ︸
=C

[
ȳt
ỹt

]
︸︷︷︸
=xt

, (16)

12In this case, a recursive representation in companion form requires to track the relevant lags of xt

as part of an augmented state vector. However, for the purpose of representing this richer version of a
mixed frequency example in static form, we can also think of a measurement equation that includes the
relevant k lags of xt, yt =

∑k
i=0 Ci,txt−k and fill rows of C associated with yt with the corresponding

loadings Ci,t ∀i ≤ k.
13Alternatively, one could let Ny = Nx and encode rows of Ct and corresponding elements of yt

associated with missing observations as zeros. However, such an approach would lead to a rank-deficient
loading matrix Ct.

14Solutions to linearized DSGE models typically generate state space models with time-invariant state
space matrices At = A, Bt = B, and Ct = C.
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where in (11) we had B∗ = 0, which is straightforward to relax in this ABC form to
accomodate correlation between shocks to trends and cycles.15

Models cast in ABC form do not satisfy Assumption 2 and Algorithm 1 does not apply.
Of course, such an ABC state space model can always be rewritten to show an innovation
term as in the “ABCD form” known from Fernández-Villaverde, Rubio-Ramírez, Sargent,
and Watson (2007): xt = Axt−1 + Bwt and yt = Cxt−1 +Dwt with wt ∼ N(0, I), A = A,
B = B, C = C A, D = C B.16 However, since BD′ 6= 0, this ABCD form cannot simply
be cast into (4) and (5) by letting εt = Bwt and et = Dwt without violating the required
independence between ε and e.17

In the case of the trend-cycle model (when trend and cycle are uncorrelated) it is
straightforward to identify the cycle as a component orthogonal to the trend and cast
the model in form of a state space with measurement error in static form. When trend
and cycle are correlated, such an orthogonal component could be derived, but may not
be readily obvious from mere inspection of the model, while the sampler presented in the
next section handles a general B matrix in (16).18

In case of a missing-value VAR, it is straightforward to separate observed from unob-
served states and derive a precision-based sampler for that case as shown by Chan, Poon,
and Zhu (2023). To handle this and other cases, the generic solution proposed in this
paper operates directly on the ABC form of the state space; this makes it straightforward
to blend a trend-cycle model with a missing-value problem as illustrated in Section 6.

As noted before, the ABC form also corresponds to common solutions for linearized
DSGE models. Of course, researchers may also prefer to allow for measurement error in the
estimation of a DSGE model as discussed by Canova (2014) and Herbst and Schorfheide
(2014). The addition of measurement error could, for example, be viewed as desirable in
order to capture factors that are present in the data but are otherwise not modeled. In this
spirit, Chari, Kehoe, and McGrattan (2007), Den Haan and Drechsel (2021), and Inoue,
Kuo, and Rossi (2020) add non-structural driving processes, sometimes called “wedges,”
into model equations that are akin to measurement errors. Importantly, these approaches
motivate seeing those “measurement errors” or “wedges” as being serially correlated. As
discussed before, it may or may not be obvious to map the case of correlated measurement
errors into a conventional state space sampler (at least not in the original form presented
in Chan and Jeliazkov (2009)), and the solution is cleanly embedded in the framework
offered below.19

15For ease of exposition, in equation (16), B has been written in block-triangular form. The block-
triangular need only represent a reduced-form factorization of the variance-covariance matrix of distur-
bances to the shock vector xt, without implying a causal link between shocks to trends and cycle.

16Compared to (1) and (2), there is a subtle difference in timing of state and noise terms in the
measurement equation of the ABCD setup in Fernández-Villaverde, et al. (2007), which can be ignored
for the purpose of our discussion.

17The solution approach to linearized DSGE models of Sims (2002) leads to such ABCD systems, but
can also be reduced to an ABC form, when the model is amenable to the methods of Klein (2000) as
shown by Mertens (2016a).

18For the sampler propose below to apply, the matrix B does not even have to be block-triangular.
In the block-triangular case, a multivariate extension of the univariate model with correlated shocks to
trend and cycle by Grant and Chan (2017a,b), could also be obtained as follows: Let Y = C Ȳ + Y ∗

with C = Λ
(
I + Ã−1B∗B̄−1Ā

)
, where Λ is block diagonal with each diagonal block filled with Λ, and

ÃY ∗ = B̃ ε̃. Since Cov (Ȳ ,Y ∗) = 0, this fits the trend-cycle setup of (12) with Y ∗ in lieu of Ỹ .
19Having said that, the specific implementations of Smets and Wouters (2007), Inoue, Kuo, and Rossi
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4 Precision-based sampling w/o measurement error
This section presents a new precision-based sampler that applies to the case when the
measurement vector is an exact linear combination of the states, as in (10), so that
Assumption 2 does not hold. The solution proposed here is to decompose the state vector
into the sum of two components: one perfectly explained by the measurement vector, and
the other being the stochastically non-degenerate component of X|Y . To do so, we apply
a QR decomposition to the (transpose of the) measurement loadings, C, and obtain

C = RQ =
[
R1 0

] [Q1

Q2

]
= R1Q1 , (17)

where R1 is a N̄y×N̄y, lower-triangular matrix that has full rank, and Q is an orthonormal
matrix, QQ′ = I, with conformable partitions Q1 and Q2 of dimensions N̄y × N̄x and
(N̄x − N̄y)× N̄x, respectively. To derive an efficient sampler for X|Y , we work with the
rotated state vector X̃ ≡ QX which can be partitioned into X̃1 ≡ Q1X and X̃2 ≡ Q2X.
Since X is multivariate normal, so is X̃:

X̃ ∼ N
(
µ̃0, P̃

−1
)

with µ̃0 = Qµ0 , and P̃ = QP 0Q
′ =

[
P̃ 11 P̃ 12

P̃ 12 P̃ 22

]
(18)

where µ0 and P 0 (prior mean and precision for X), are the same as in Section 2, and the
partitions P̃ 11, P̃ 12, P̃ 21, and P̃ 12 conform with X̃1 and X̃2. With X = Q′

1X̃1+Q′
2X̃2,

we construct posterior draws of X|Y from X̃1|Y and X̃2|Y . The posterior density of
X̃1|Y is a point mass:

Y = CX = R1X̃1 ⇔ X̃1 = R−1
1 Y .

The posterior X̃2|Y can be deduced from the joint distribution of X̃1 and X̃2 in (18) by
constructing the conditional X̃2|X̃1 and evaluating it at X̃1 = R−1

1 Y . Since X̃1 and X̃2

are jointly multivariate normal, so is also the conditional X̃2|X̃1, which has the following
moments:

E(X̃2|X̃1) = E(X̃2) + Cov (X̃2, X̃1)Var (X̃1)
−1

(
X̃1 − E(X̃1)

)
= Q2µ̃0 − P̃

−1

22 P̃ 21(X̃1 −Q1µ̃0) , (19)

and Var (X̃2|X̃1) = Var (X̃2)− Cov (X̃2, X̃1)Var (X̃1)
−1

Cov (X̃2, X̃1)
′

= P̃
−1

22 , (20)

(2020), and Den Haan and Drechsel (2021) merely use likelihood evaluations of the state spaces in their
models (be it for maximum-likelihood evaluations or as part of a Metropolis-Hastings step), without need
for sampling unobserved states (including “wedges” and the like). In contrast, the examples of Cúrdia,
Del Negro, and Greenwald (2014) and Diebold, Schorfheide, and Shin (2017), cited in the introduction,
embed state-space sampling as part of their empirical approaches.
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Putting all together, we obtain:20

E(X|Y ) = µ0 +
(
Q′

1 −Q′
2P̃

−1

22 P̃ 21

)
R−1

1 (Y −Cµ0) , and Var (X|Y ) = Q′
2P̃

−1

22 Q2 .

(21)
Similar to the case with measurement error, described in Section 2, the posterior for
X can be cast around an inverse variance, specifically the precision for X̃2|X̃1. More
importantly, the posterior precision for X̃2|X̃1 can directly be read off from the joint prior
precision for X̃1 and X̃2, which is akin to the linear updating in (8) for the measurement-
error case.21 Draws of X|Y can then be obtained from

X = µ0 +Q′
1x̃1 −Q′

2

(
P̃

−1/2

22

)′ (
P̃

−1/2

22 P̃ 21x̃1 + z2

)
, (22)

with x̃1 = R−1
1 (Y −Cµ0) and z2 ∼ N(0, I2) an (N̄x − N̄y) dimensional multivariate

normal distribution. An efficient algorithm to construct these draws is as follows:

ALGORITHM 2 (Precision-based ABC sampling)

1. Compute a (sparse) QR decomposition of C ′ and collect R1, Q1 and Q2 as defined
in equation (17).

2. Solve R1x̃1 = Y −Cµ0 for x̃1 (via backwards substitution).

3. Collect the partitions P̃ 21 and P̃ 22 of P̃ by computing P̃ 2· = Q2A
∗′A∗Q′ =[

P̃ 21 P̃ 22

]
, with A∗ ≡ Σ−1/2A.

4. Compute the (sparse) Choleski decomposition P̃
1/2

22 of P̃ 22.

5. Solve
(
P̃

1/2

22

)′
m2 = −P̃ 21x̃1 for m2 (via backwards substitution).

6. Draw z2 ∼ N(0, I2) from an (N̄x − N̄y) dimensional multivariate normal distribu-
tion.

7. Solve
(
P̃

1/2

22

)′
x̃2 = m2 + z2 for x̃2 (again, via backwards substitution).

8. Let X = µ0 +Q′
1x̃1 +Q′

2x̃2.

In a typical application, the state space matrices depend on parameters that are esti-
mated as part of a Markov chain Monte Carlo (MCMC) sampler that needs to draw many
samples from the state space, each time evaluated at different parameter draws. For some
models, the measurement matrix C reflects definitional equations that are independent
of estimated parameter values, which allows to enhance computational efficiency even

20The derivation utilizes X = Q′
1X̃1 + Q′

2X̃2 so that E(X|Y ) = Q′
1X̃1 + Q′

2E(X̃2|Y ) and
Var (X|Y ) = Q′

2 Var (X̃2|Y )Q2 since X̃1 = R−1
1 Y leads to E(X̃1|Y ) = X̃1, Var (X̃1|Y ) = 0 and

Cov (X̃1, X̃2|Y ) = 0.
21The result in (20) is also embedded in the array algorithms for state space filtering described in

Kailath, Sayed, and Hassibi (2000) and reflects a special case of results in McCausland, Miller, and
Pelletier (2011).
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further. In those cases, the QR factorization of C needs to be done only once, and values
for R1, Q1, and Q2 can be stored for repeated use in subsequent simulations.

The QR factorization of C offers a generic way to separate linear combinations X
that are exactly pinned down by the measurement vector Y from those that are not. In
Section 3, we reviewed a few examples were that mapping could easily identified from
inspection of the state space, and it may be instructive to relate those examples to the
QR factorization employed here. For example, in the trend-cycle application discussed in
Section 3.1, consider its ABC representation in (16) and let Λ = I so that C =

[
I I

]
.

In that case, the QR decomposition of C yields R =
√
2 · I, Q1 = 1/

√
2 ·

[
I I

]
and

Q2 = 1/
√
2 ·
[
I −I

]
so that X̃1 =

√
2 ·Y and X̃2 = (Ȳ − Ỹ )/

√
2. Thus, when the ABC

sampler constructs the posterior of X̃2|X̃1, it closely corresponds to sampling Ȳ |Y as
done by the precision-based sampler specialized to the trend-cycle case as in equation (13)
and (14). In the missing-value example of Section 3.2, when Ct consists of selected rows
of the identity matrix, the QR approach leads directly to X̃1 = Y and X̃2 corresponding
to the unobserved data points of the VAR. The appeal of the generic ABC approach is
that it easily handles also richer examples, like a combination of the trend-cycle case with
missing observations, as considered in Section 6. Moreover, in the missing-observations
case, the measurement loadings need not be rows of the identity matrix, but can also
encode cases where, for example, quarterly observables represent a moving average of
current and lagged values of a monthly variable that remains latent.

5 Simulation study
To illustrate the computational benefits of the proposed sampler, we conduct a simulation
study that compares the precision-based sampler described in Section 4, and some of
its variants against the disturbance smoothing sampler of Durbin and Koopman (2002),
henceforth “DK.”22 The results in this section consider samplers applied to simulated data,
and with known parameters. The next section provides an application in the context of
an estimated model where the sampler is embedded into an MCMC procedure.

For our simulation study, we present here results for a common trend model as de-
scribed in Section 3.1, but with general a VAR(p) process for the cycle as used also by
Mertens (2016b), and similar to Del Negro, et al. (2017; 2019). We consider different
sizes of the number of elements of yt, Ny, the number of lags, p, and observations, T .
The supplementary online appendix provides additional simulation results for sampling
from a multivariate trend model and a VAR with missing values, as described in Sec-
tions 3.1 and 3.2. Throughout, all computations are implemented in MATLAB and the
results presented here were generated in multi-threaded mode on a 2.1 GHz Intel Xeon
machine with 32 cores in Windows . In addition, the supplementary online appendix con-
siders some variations in computational platforms, and finds broadly similar performance
gains as reported here.23 For each application, the simulations begin by drawing a set

22In contrast to the original state smoothing sampler of Carter and Kohn (1994), the disturbance
smoothing sampler of Durbin and Koopman (2002) operates on the measurement (instead of the state)
vector’s variance-covariance matrix, which is easier to invert in our case of Ny < Nx. Our implementation
of the DK sampler builds on Jarocinski (2015).

23The supplementary online appendix also discusses some notable distinctions in using single- vs
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of VAR parameters for coefficients and variance-covariances as well as a shock vector ε.
For simplicity, parameter values are assumed to be identical for all t. To reliably measure
execution times of the different samplers, the MATLAB function timeit is used.24

Panels A through D of Table 1 report the execution times of variants of the precision-
based sampler relative to the DK sampler, and Panel E provides absolute times for the
DK sampler. Panels A and B consider the ABC sampler, both inclusive and exclusive
of the time spent on the QR step and other one-off computations.25 The distinction is
made, since typical applications require to evaluate the QR decomposition of C only
once so that Panel A, which reports times excluding the QR calculations, should be most
relevant for gauging performance in an MCMC application such as the trend-inflation
example discussed in Section 6 below. Panel C reports times for a precision-based sampler
specialized to the trend-cycle case that builds on equations (13) and (14) above.

As further alternative to the ABC sampler, Panel D considers the application of a
conventional precision-based sampler, described in Algorithm 1, that assumes the mea-
surement equation has a noise term, as in (2); for brevity called “noise-augmented ABC
sampler.” The sampler is applied to the same data as before, but after augmenting the
ABC model with a measurement error term, whose variances are set to a minimal value
of 1e-10.26 Formally, the noise-augmented ABC sampler delivers only an approximate
solution to the true sampling problem (by assuming measurement error when there is
truly none), but could be viewed as an appealing choice for researchers in possession of
an implementation of Algorithm 1 while facing an ABC problem without noise.27

Table 1 documents that the precision-based sampler provides considerable benefits over
the application of DK, which are boosted further when a previously prepared factorization
of C can be used. Unsurprisingly, execution times of the DK sampler increase with Ny, p,
and T . However, while the absolute execution times of the DK sampler materially rise in
those directions, the relative benefits of using a precision-based sampler increase as well,
so that the absolute benefits of using the ABC sampler become even more tangible (be it
inclusive or exclusive of the QR factorization of C). For example, in the common trend
model of Table 1, with 20 to 25 variables, 12 lags and 800 observations, the execution
time of the precision-based sampler is about one third of the DK sampler, and with use
of previously prepared QR results falls to well under a tenth. Since a single draw from
the DK sampler takes multiple seconds in those cases, the absolute benefits of an ABC

multithreaded computations that can lead to some variations the relative strength of specific samplers
depending on computational setup. Overall, the proposed precision-based sampling routines outperform
the DK sampler across these settings.

24The timeit function measures a median execution time after conducting multiple calls de-
signed to average out factors such as varying CPU loads or overhead due to just-in-time
compilation. For further details, see https://www.mathworks.com/help/matlab/matlab_prog/
measure-performance-of-your-program.html.

25The results reported for the case exclusive of QR computations also exclude time spent on the
preparation of index vectors used to generate sparse matrices. These index vectors store the location of
non-zero matrix elements of A, B and C, and can be recycled for subsequent draws as well. The results
inclusive of QR computations reported in Panel B of the table include repeated creation of those index
vectors as well.

26We would like to thank an anonymous reviewer for suggesting this exercise.
27With our choice of a low value for the volatility of measurement noise of 1e − 10, we found draws

from the “noise-augmented” precision-based sampler to be similar in distribution compared to those from
the ABC sampler that samples from the correct distribution in this Monte Carlo experiment.
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sampler are particularly tangible as well. For MCMC applications that require, say, 20’000
MCMC draws, gaining a single second translates to a total time saving of about 5.5 hours,
as Section 6 illustrates.

Panel B and Panel C report quite similar benefits of using either the precision-based
sampler for the generic ABC form as in Algorithm (2) or a version specialized to the trend-
cycle case with uncorrelated trend and cycle as in equations (13) and (14). Of course,
the specialized sampler ekes out some slight gains over the ABC sampler, in particular
when p is small; however, in all cases the execution times differ by less than a tenth of a
second.28 The added versatility and generic applicability of the ABC sampler comes at
no particular cost in execution times, when a one-off calculation of the QR step can be
used.29 Moreover, standardized code for the ABC case can be levered to cover a large
class of state space models — including the trend-cycle case, but also VARs with missing
values, and other examples as discussed in Section 3.

Finally, Panel D considers the noise-augmented ABC sampler; its performance is un-
derwhelming. The noise-augmented sampler always underperforms the other precision-
based alternatives reported in Panels A through C, and often by a wide margin. To
understand the sources of inefficiencies in this setup, recall that the ABC setup has a
state vector X with Nx × T elements (ignoring initial values). The measurement equa-
tion, Y = CX, pins down Ny×T linear combinations of X so that the ABC sampler (or
the trend-cycle sampler reported in Panel C) has to sample only (Nx −Ny)× T elements
of X (or linear combinations thereof), which were denoted X̃2 in our formal derivation
of the ABC sampler in Section 4. In contrast, the noise-augmented ABC sampler at-
taches noise to each of the Ny × T measurement observations and has to sample from
a non-degenerate distribution of X of dimension Nx × T . In both cases, a Choleski de-
composition has to be performed for a precision matrix and a vector of random variables
has to be drawn, but in the ABC case the relevant dimension for both operations is of
length (Nx − Ny) × T , whereas it is Nx × T in the noise-augmented case. While the
noise-augmented sampler may seem to offer a practical short-cut for sampling from an
ABC setup, it does unnecessarily increase the scale and computational demands of the
problem.

28Moreover, the implementation of the ABC sampler also delivers draws of all states, including ỹt,
for initial values t = 0,−1, . . . ,−p + 1, which is factored into the resuls shown in Panels A and B. As
discussed in Section 3, the trend-cycle sampler of equations (13) and (14) does not generate those draws,
and their computations are ignored in Panel D.

29Having said, depending on computational constraints, use of the more specialized routines may still
be attractive for particularly time-critical application.
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Table 1: Execution times for sampling states from common trend model

Ny

T = 200 T = 800

p 5 10 15 20 25 5 10 15 20 25

PANEL A: ABC-PS (excl. QR) as percentage of DK

4 14 10 35 20 27 12 30 31 25 24
8 7 14 14 13 13 14 15 12 12 13

12 10 10 11 10 11 13 8 9 9 8
24 6 6 7 3 3 5 5 5 2 2

PANEL B: ABC-PS (incl. QR) as percentage of DK

4 29 26 70 44 62 30 70 70 69 61
8 25 31 31 30 34 37 33 28 28 28

12 21 24 24 21 23 30 19 22 20 20
24 11 12 13 6 6 10 11 11 5 6

PANEL C: Trend-Cycle PS as percentage of DK

4 12 9 27 16 21 13 26 27 24 21
8 9 13 12 13 12 15 13 12 12 11

12 7 9 9 9 8 10 7 9 10 8
24 4 5 5 2 2 4 5 5 2 2

PANEL D: standard PS w/noise as percentage of DK

4 26 43 96 54 66 47 72 75 65 55
8 18 43 40 38 42 42 38 32 34 40

12 31 29 29 31 29 36 21 25 27 27
24 16 17 17 8 10 14 15 16 8 11

PANEL E: DK in seconds

4 0.02 0.05 0.06 0.16 0.20 0.05 0.13 0.23 0.44 0.78
8 0.04 0.11 0.27 0.42 0.61 0.12 0.42 1.02 1.57 2.35

12 0.06 0.27 0.49 0.76 1.18 0.22 1.00 1.77 2.95 4.50
24 0.27 0.78 1.57 5.84 7.68 1.00 2.82 5.99 22.36 30.71

Notes: Based on simulated data. Panels A through D report execution times of precision-
based samplers (PS) as percentage of the execution time of the Durbin-Koopmann’s disturbance
smoothing sampler (DK). Execution times (in seconds) of the DK sampler are reported in
Panel E. Panels A and B report execution times for the generic ABC precision-based sampler,
with Panel B reflecting the use of prepared one-off computations. Panel C provides results for
a PS specicalized to the trend-cycle case (and prepared one-off computations). Panel D reflects
calls to a standard precision-based sampler, when called with a minimal noise term added to
the measurement equation. All times were measured in MATLAB (R2021b) with the timeit
function on an Intel(R) Xeon(R) Gold 6320 CPU @ 2.1 GHz (Windows) in multi-threaded mode
(for matrix operations) using 32 threads.
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6 Application: common trend inflation
The previous section characterized the performance benefits of precision-based samplers
when considered in isolation, and assuming parameter values are known. However, these
samplers are typically not applied on a standalone basis, but embedded in broader MCMC
estimation schemes that also provide inference on model parameters feeding into some of
the space matrices. This section illustrates the use of two state space samplers when
embedded into an MCMC estimation of a common trend model. Specifically, we consider
the trend inflation model of Mertens (2016b) and compare the use of a conventional DK
sampler against the ABC version of a precision-based sampler developed in this paper.

The trend inflation model of Mertens (2016b) extracts a common trend from mixed-
frequency data comprising measures of realized inflation and survey forecasts. In addition
to survey data, the model combines headline measures of inflation, for both PCE and CPI,
with various other inflation measures intended to strip out short-run fluctuations, such
as core and trimmed metrics.30 In total, the data set comprises thirteen variables, and
all data has been obtained from the St. Louis Fed’s FRED database. As far as available,
the data set uses monthly readings from January 1960 through April 2023. However,
data availability varies markedly across the different series. Sticky inflation measures are
available back to 1967, whereas readings for trimmed inflation do not begin before 1978.
SPF forecasts are collected at a quarterly frequency (typically in the 2nd month of each
quarter), and also with varying availability for different inflation measures and forecast
horizons, with forecasts for the GDP deflator dating back the farthest (until 1968). SPF
forecasts come at a quarterly frequency, whereas most measures for realized inflation
are produced at a monthly frequency (except for the GDP deflator). There are missing
observations in the data due limited availability of a given series over the sample, and due
to some series having observations only once per quarter. A detailed list of all variables
and their availability is provided in Table 2.

The model is a common trend model with missing observations, combining elements
of each example discussed in Section 3.31 The data is modeled as a linear combination of
a single common trend and variable-specific cyclical components. The trend is assumed to
follow a random walk, whereas the cyclical components are jointly modeled as a VAR(p)
process, with p set 12. The data vector, yt, consists of all variables listed in Table 2, for
which a data point is available at time t. Due to the missing observations, the trend-
cycle representation of Section 3.1 does not directly apply. There, we assumed data on
yt was continuously available, which allowed us to separate the cyclical component from
the “state” vector, even when the cycle is persistent. Here, we need to track the cyclical
component again as part of a state vector, Xt, that is related to yt via a measurement
equation with time-varying loadings, Ct, that reflect the time-varying availability of data,

30Compared to Mertens (2016b), the data set used here has been slightly revised, on account of public
availability of data and newly constructed measures, such as the sticky CPI data from the Atlanta Fed.

31As discussed by Mertens (2016b), the common trend assumption is grounded in assuming that
inflation rates in broad-based baskets as those considered here do not permanently diverge (whereas there
can be permanent shifts in their price levels). Moreover, survey expectations are assumed to be weakly
rational in the sense of not permanently diverging from underlying data, which allows for persistent (but
not permanent) survey errors arising from a wide class of imperfect information models as documented
by Coibion and Gorodnichenko (2015).
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Table 2: Data on realized and expected measures of inflation

Variable Frequency Avail. since Number of obs.

headline PCE monthly 1960 Jan 759
core PCE monthly 1960 Jan 759
headline PCE monthly 1960 Jan 760
GDP deflator quarterly 1960 Mar 253
trimmed PCE (Dallas Fed) monthly 1978 Jan 543
trimmed CPI (Cleveland Fed) monthly 1983 Jan 484
median CPI (Cleveland Fed) monthly 1983 Jan 484
sticky CPI (headline, Atlanta Fed) monthly 1967 Jan 676
sticky CPI (core, Atlanta Fed) monthly 1967 Dec 665
10-year expected CPI (SPF) quarterly 1991 Nov 126
SPF: CPI change over next four quarters quarterly 1981 Aug 167
SPF: PCE change over next four quarters quarterly 1981 Aug 167
SPF: GDP deflator over next four quarters quarterly 1968 Nov 213

Notes: All data has been obtained from the St. Louis Fed’s FRED database per May 9 2023.
(For realized inflation measures, seasonally adjusted series have been obtained.) Unless otherwise
noted, headline, core, sticky, trimmed and median inflation are measured as monthly changes.
GDP deflator inflation as quarterly change. Trimmed PCE inflation and sticky core inflation
measures reflect 12-month changes. Each measure is expressed as a continuously compounded,
annualized rate of inflation.

as in Section 3.2. Formally, the model is the following:

yt = Ctxt + y0 , xt =

[
ȳt
ỹt

]
, ȳt = ȳt−1 + ε̄t , ỹt =

p∑
k=1

Ãkỹt−k + ε̃t (23)

Ct =
[
1 I

]
ε̄t ∼ N(0, σ̄2

t ) , ε̃t ∼ N(0, Σ̃) (24)

where ȳt is a scalar, ỹt is a Ny × 1 column vector, and the VAR for ỹt is assumed stable
eigenvalues of its companion form matrix are inside the unit circle), and we have Ny=13
variables. The constant y0 is a Ny×1 vector of intercepts that captures constant differences
in inflation rates from different price baskets, or constant biases in survey expectations.
The specification for Ct in (24) assumes all Ny variables are observable at time t; in case
of missing data for a given t, the corresponding rows are to be omitted from Ct.32 As in
the baseline version of the model in Mertens (2016b), shocks to the trend are assumed to
be affected by a scalar stochastic volatility (SV) process:

log σ̄2
t = log σ̄2

t−1 + ηt , ηt = N(0, σ2
η) . (25)

Estimation can be performed with an MCMC-Gibbs sampler. The model consists
of a set of model parameters and two sets of latent variables: the state vector of the

32For the purpose of extracting a common trend, it is sufficient for Ct to have unit loadings on quarterly
variables, like the change in GDP prices, for reasons discussed in Mertens (2016b).
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linear state space, Xt, as well as the stochastic volatility of trend shocks, σ̄t. We collect
all model parameters into the vector θ, and the paths for linear states and SV into
X and σ̄; all observed data points are collected into Y . We use conjugate priors for
all parameters (Minnesota-style normals for the VAR coefficients, and inverse-Wishart
and inverse-gamma for Σ̃ and ση, etc.), with details provided the supplementary online
appendix. The MCMC sampler iterates over the following blocks:

1. Draw linear states from p(X|θ, σ̄,Y ) which can be done with the precision-based
ABC sampler or the DK sampler.

2. Draw model parameters p(θ|X, σ̄,Y ).

3. Draw the SV path p(σ̄|X,θ,Y ).

Blocks 2 and 3 of this algorithm are standard, with further details provided in the sup-
plementary online appendix.

Importantly, when using the precision-based ABC sampler in step 1, the QR decom-
position of the measurement loadings C, which is a block-diagonal matrix consisting of
{Ct}Tt=1 as in (7), needs to be performed only once, since Ct is independent of parameter
and SV estimates. The relevant performance metrics from Table 1 for our application are
thus those from Panel B of the table. Nevertheless, when measuring the execution times
of the MCMC sampler reported below, we include the time spent on the one-off call to
the QR decomposition (as well as other one-off preparations for constructing the sparse
matrices needed for the sampler).

Panel (a) of Figure 1 compares the total execution time for the MCMC sampler under
different scenarios: First, when using the precision-based ABC sampler in step 1. Second,
when using the DK sampler. For both cases, computations were performed in multi-
threaded mode on an Intel(R) Xeon(R) Gold 6320 CPU @ 2.1 GHz (Windows) with
32 cores.33 In each case, 20’000 MCMC draws (thereof 10’000 burnin) were generated,
and the time spent on executing the entire MCMC scheme was recorded. The results
are staggering: When using the precision-based sampler, it takes just about 2 hours to
generates all draws, whereas the execution time rises to 13.5 hours when using the DK
sampler instead.

Subsequent panels of Figure 1 shows the estimated inflation trend and selected input
series. By conditioning the trend estimates on various readings, including trimmed mea-
sures and SPF forecasts, the recent surge in realized measures of inflation is attributed
largely to cyclical movements, with only a mild uptick in trend estimates for the last year.
The long-run forecast for a given inflation measure is the sum of the common trend level
and the variable-specific intercept Etyt+∞ = ȳt + y0, and is estimated to be about 2.1%
for the PCE inflation rate per April 2023.

33Times are measured by calling the functions tic and toc before and after the MCMC sequence,
respectively.
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Figure 1: Inflation trend estimates
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Note: Panel (a) reports execution times for MCMC estimation of the common trend model,
conditioned on all variables listed in Table 2, with 20’000 MCMC draws (thereof 10’000 burnin
draws). “DK” refers to use of a Durbin-Koopman sampler whereas “PS” refers to a precision-
based ABC sampler. All times were measured in MATLAB (R2021b) on an Intel(R) Xeon(R)
Gold 6320 CPU @ 2.1 GHz (Windows) with 32 cores. Panels (b) – (d) show selected input series
and the trend estimate (posterior mean, level adjusted for each series) with 68% uncertainty
bands. Grey shaded areas depict the 68% uncertainty bands for missing data points of the
quarterly GDP deflator and SPF forecasts in Panels (c) and (d).
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7 Conclusion
Pioneered by Chib and Jeliazkov (2006) and Chan and Jeliazkov (2009), precision-based
sampling has become an increasingly popular choice for drawing states from a Gaussian
state space. Compared to earlier methods, such as those of Carter and Kohn (1994)
or Durbin and Koopman (2002), precision-based sampling offers considerable benefits in
computation.

The novelty of the proposed approach is to handle cases when the model’s measurement
equation comes without a term for measurement errors so that the vector of observables is
an exact linear combination of the states. In that case, the posterior variance of the states
is singular and only the prior precision is well defined, but not its posterior. Similar to
other applications of precision-based sampling, the computational gains are substantial.
Relevant applications include trend-cycle decompositions, linearized DSGE models, or
(mixed-frequency) VARs with missing variables.

References
Anderson, Brian D. O., and John B. Moore (1979), Optimal Filtering, Information and

System Sciences Series, Englewood Cliffs, New Jersey: Prentice-Hall Inc.

Antolín-Díaz, Juan, Thomas Drechsel, and Ivan Petrella (2021), “Advances in nowcasting
economic activity: Secular trends, large shocks and new data,” Discussion Paper 15926,
CEPR.

Blanchard, Oliver Jean, and Charles M. Kahn (1980), “The solution of linear difference
models under rational expectations,” Econometrica, 48, 1305–1312.

Canova, Fabio (2014), “Bridging DSGE models and the raw data,” Journal of Monetary
Economics, 67, 1–15, https://doi.org/10.1016/j.jmoneco.2014.06.003.

Carriero, Andrea, Todd E. Clark, Massimiliano Marcellino, and Elmar Mertens (2022),
“Addressing COVID-19 outliers in BVARs with stochastic volatility,” Review of Eco-
nomics and Statistics, forthcoming, https://doi.org/10.1162/rest_a_01213.

Carter, C. K., and R. Kohn (1994), “On Gibbs sampling for state space models,”
Biometrika, 81, 541–553, https://doi.org/10.1093/biomet/81.3.541.

Chan, Joshua C. C., Eric Eisenstat, and Rodney W. Strachan (2020), “Reducing the
state space dimension in a large TVP-VAR,” Journal of Econometrics, 218, 105–118,
https://doi.org/10.1016/j.jeconom.2019.11.006.

Chan, Joshua C. C., and Ivan Jeliazkov (2009), “Efficient simulation and integrated like-
lihood estimation in state space models,” International Journal of Mathematical Mod-
elling and Numerical Optimization, 1, 101–120, https://doi.org/10.1504/IJMMNO.
2009.03009.

Chan, Joshua C. C., Aubrey Poon, and Dan Zhu (2023), “High-dimensional conditionally
gaussian state space models with missing data,” Journal of Econometrics, 236, p. Article
105468, https://doi.org/10.1016/j.jeconom.2023.05.005.

20

https://doi.org/10.1016/j.jmoneco.2014.06.003
https://doi.org/10.1162/rest_a_01213
https://doi.org/10.1093/biomet/81.3.541
https://doi.org/10.1016/j.jeconom.2019.11.006
https://doi.org/10.1504/IJMMNO.2009.03009
https://doi.org/10.1504/IJMMNO.2009.03009
https://doi.org/10.1016/j.jeconom.2023.05.005


Chari, V. V., Patrick J. Kehoe, and Ellen R. McGrattan (2007), “Business cycle
accounting,” Econometrica, 75, 781–836, https://doi.org/10.1111/j.1468-0262.
2007.00768.x.

Chib, Siddhartha, and Ivan Jeliazkov (2006), “Inference in semiparametric dynamic mod-
els for binary longitudinal data,” Journal of the American Statistical Association, 101,
685–700, https://doi.org/10.1198/016214505000000871.

Coibion, Olivier, and Yuriy Gorodnichenko (2015), “Information rigidity and the expec-
tations formation process: A simple framework and new facts,” American Economic
Review, 105, 2644–78, https://doi.org/10.1257/aer.20110306.

Cúrdia, Vasco, Marco Del Negro, and Daniel L. Greenwald (2014), “Rare shocks, great
recessions,” Journal of Applied Econometrics, 29, 1031–1052, https://doi.org/10.
1002/jae.2395.

Del Negro, Marco, Domenico Giannone, Marc P. Giannoni, and Andrea Tambalotti
(2017), “Safety, liquidity, and the natural rate of interest,” Brookings Papers on Eco-
nomic Activity, 48, 235–316, https://doi.org/10.1353/eca.2017.0003.

Del Negro, Marco, Domenico Giannone, Marc P. Giannoni, and Andrea Tambalotti
(2019), “Global trends in interest rates,” Journal of International Economics, 118,
248–262, https://doi.org/10.1016/j.jinteco.2019.01.

Den Haan, Wouter J., and Thomas Drechsel (2021), “Agnostic structural disturbances
(ASDs): Detecting and reducing misspecification in empirical macroeconomic mod-
els,” Journal of Monetary Economics, 117, 258–277, https://doi.org/10.1016/j.
jmoneco.2020.01.

Diebold, Francis X., Frank Schorfheide, and Minchul Shin (2017), “Real-time forecast
evaluation of dsge models with stochastic volatility,” Journal of Econometrics, 201,
322–332, https://doi.org/10.1016/j.jeconom.2017.08.011.

Durbin, J., and S. J. Koopman (2012), Time Series Analysis by State Space Methods,
Oxford Statistical Science Series: Oxford University Press, 2nd edition.

Durbin, J., and S.J. Koopman (2002), “A simple and efficient simulation smoother for
state space time series analysis,” Biometrika, 89, 603–615, https://doi.org/10.1093/
biomet/89.3.603.

Eckert, Florian, Philipp Kronenberg, Heiner Mikosch, and Stefan Neuwirth (2020),
“Tracking economic activity with alternative high-frequency data,” KOF Working pa-
pers 20-488, KOF Swiss Economic Institute, ETH Zurich, https://doi.org/10.3929/
ethz-b-000458723.

Fernández-Villaverde, Jesús, Juan F. Rubio-Ramírez, Thomas J. Sargent, and Mark W.
Watson (2007), “ABCs (and Ds) of understanding VARs,” American Economic Review,
97, 1021–1026, https://doi.org/10.1257/aer.97.3.1021.

21

https://doi.org/10.1111/j.1468-0262.2007.00768.x
https://doi.org/10.1111/j.1468-0262.2007.00768.x
https://doi.org/10.1198/016214505000000871
https://doi.org/10.1257/aer.20110306
https://doi.org/10.1002/jae.2395
https://doi.org/10.1002/jae.2395
https://doi.org/10.1353/eca.2017.0003
https://doi.org/10.1016/j.jinteco.2019.01
https://doi.org/10.1016/j.jmoneco.2020.01
https://doi.org/10.1016/j.jmoneco.2020.01
https://doi.org/10.1016/j.jeconom.2017.08.011
https://doi.org/10.1093/biomet/89.3.603
https://doi.org/10.1093/biomet/89.3.603
https://doi.org/10.3929/ethz-b-000458723
https://doi.org/10.3929/ethz-b-000458723
https://doi.org/10.1257/aer.97.3.1021


Grant, Angelia L., and Joshua C. C. Chan (2017a), “A Bayesian model comparison for
trend-cycle decompositions of output,” Journal of Money, Credit and Banking, 49,
525–552, https://doi.org/10.1111/jmcb.12388.

(2017b), “Reconciling output gaps: Unobserved components model and Hodrick-
Prescott filter,” Journal of Economic Dynamics and Control, 75, 114–121, https:
//doi.org/10.1016/j.jedc.2016.12.00.

Hauber, Philipp, and Christian Schumacher (2021), “Precision-based sampling with miss-
ing observations: A factor model application,” Discussion Papers 11/2021, Deutsche
Bundesbank.

Herbst, Edward, and Frank Schorfheide (2014), “Bayesian inference for DSGE models,”
mimeo Board of Governors of the Federal Reserve System.

Inoue, Atsushi, Chun-Hung Kuo, and Barbara Rossi (2020), “Identifying the sources of
model misspecification,” Journal of Monetary Economics, 110, 1–18, https://doi.
org/10.1016/j.jmoneco.2019.01.

Jarocinski, Marek (2015), “A note on implementing the Durbin and Koopman simulation
smoother,” Computational Statistics & Data Analysis, 91, 1–3, https://doi.org/10.
1016/j.csda.2015.05.001.

Johannsen, Benjamin K., and Elmar Mertens (2021), “A time series model of interest rates
with the effective lower bound,” Journal of Money, Credit and Banking, 53, 1005–1046,
https://doi.org/10.1111/jmcb.12771.

Kailath, Thomas, Ali H. Sayed, and Babak Hassibi (2000), Linear Estimation, Prentice
Hall Information and System Sciences Series: Pearson Publishing.

King, Robert G., and Mark W. Watson (1998), “The solution of singular linear difference
systems under rational expectations,” Internatinal Economic Review, 39, 1015–1026.

Klein, Paul (2000), “Using the generalized Schur form to solve a multivariate linear ratio-
nal expectations model,” Journal of Economic Dynamics and Control, 24, 1405–1423.

McCausland, William J., Shirley Miller, and Denis Pelletier (2011), “Simulation smooth-
ing for state-space models: A computational efficiency analysis,” Computational Statis-
tics & Data Analysis, 55, 199–212, https://doi.org/10.1016/j.csda.2010.07.009.

Mertens, Elmar (2016a), “Linear RE models: Klein vs. Sims for Linear RE Systems,”
mimeo.

(2016b), “Measuring the level and uncertainty of trend inflation,” The Review of
Economics and Statistics, 98, 950–967, https://doi.org/10.1162/REST_a_00549.

Primiceri, Giorgio E. (2005), “Time varying structural vector autoregressions and mon-
etary policy,” Review of Economic Studies, 72, 821–852, https://doi.org/10.1111/
j.1467-937X.2005.00353.x.

22

https://doi.org/10.1111/jmcb.12388
https://doi.org/10.1016/j.jedc.2016.12.00
https://doi.org/10.1016/j.jedc.2016.12.00
https://doi.org/10.1016/j.jmoneco.2019.01
https://doi.org/10.1016/j.jmoneco.2019.01
https://doi.org/10.1016/j.csda.2015.05.001
https://doi.org/10.1016/j.csda.2015.05.001
https://doi.org/10.1111/jmcb.12771
https://doi.org/10.1016/j.csda.2010.07.009
https://doi.org/10.1162/REST_a_00549
https://doi.org/10.1111/j.1467-937X.2005.00353.x
https://doi.org/10.1111/j.1467-937X.2005.00353.x


Schorfheide, Frank, and Dongho Song (2015), “Real-time forecasting with a mixed-
frequency VAR,” Journal of Business & Economic Statistics, 33, 366–380, https:
//doi.org/10.1080/07350015.2014.954707.

Sims, Christopher A (2002), “Solving linear rational expectations models,” Computational
Economics, 20, 1–20.

Smets, Frank, and Rafael Wouters (2007), “Shocks and frictions in U.S. business cycles:
A Bayesian DSGE approach,” The American Economic Review, 97, 586–606, https:
//doi.org/10.1257/aer.97.3.586.

Stock, James H., and Mark W. Watson (2007), “Why has U.S. inflation become harder
to forecast?” Journal of Money, Credit and Banking, 39, 3–33, https://doi.org/10.
1111/j.1538-4616.2007.00014.x.

(2016), “Core inflation and trend inflation,” The Review of Economics and Statis-
tics, 98, 770–784, https://doi.org/10.1162/REST_a_00608.

Zaman, Saeed (2021), “A unified framework to estimate macroeconomic stars,” Work-
ing Papers 21-23R, Federal Reserve Bank of Cleveland, https://doi.org/10.26509/
frbc-wp-202123r.

23

https://doi.org/10.1080/07350015.2014.954707
https://doi.org/10.1080/07350015.2014.954707
https://doi.org/10.1257/aer.97.3.586
https://doi.org/10.1257/aer.97.3.586
https://doi.org/10.1111/j.1538-4616.2007.00014.x
https://doi.org/10.1111/j.1538-4616.2007.00014.x
https://doi.org/10.1162/REST_a_00608
https://doi.org/10.26509/frbc-wp-202123r
https://doi.org/10.26509/frbc-wp-202123r

	Non-technical summary
	Nichttechnische Zusammenfassung
	1 Introduction
	2 Precision-based sampling in the standard case
	2.1 State space setup
	2.2 Assumptions on rank of variance-covariance matrices
	2.3 Precision-based sampling for measurement-error systems
	2.4 State space models without measurement error

	3 Some example models
	3.1 Trend-cycle decomposition
	3.2 VAR with missing observations and mixed-frequency data
	3.3 ``ABC'' vs ``ABCD'' models, including DSGE models

	4 Precision-based sampling w/o measurement error
	5 Simulation study
	6 Application: common trend inflation
	7 Conclusion



