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A B S T R A C T   

Individual perception about climate risks is critical for adopting mitigation and adaptation 
measures, yet international experience shows that individual perception might fundamentally 
deviate from objective changes. So far, little attention has been paid in the literature to under-
standing the role of ICTs in improving the accuracy of farmers’ perceptions of actual drought 
occurrence. Therefore, this study aims to fill this gap by analyzing the discrepancy between 
farmers’ subjective perceptions and actual drought occurrence. Furthermore, the study in-
vestigates the role of smartphone-based weather information on accurate perception of drought. 

Subjective drought assessment was obtained by a cross-sectional dataset of 2830 farm-level 
observations collected in Kyrgyzstan, Mongolia and Uzbekistan in 2021. For measuring objec-
tive meteorological drought occurrence, this study employs a standardized precipitation evapo-
transpiration index (SPEI) based on satellite imagery. The role of smartphone-based weather 
information acquisition on drought perception accuracy was measured by Propensity score 
matching. The comparison of objective and subjective assessment showed that 67 percent of 
farmers in Kyrgyzstan, 32 percent in Mongolia and 46 percent in Uzbekistan perceived meteo-
rological drought inaccurately. The PSM estimates indicate that smartphone-based weather in-
formation acquisition significantly influences accurate meteorological drought perception. With 
these results, we advocate for higher attention to improving internet speed in rural areas and 
providing online weather information also to farmers with low digital literacy and low incomes.   

1. Introduction 

Drought is one of the major natural hazards causing significant damage to agriculture, the economy and the environment (Mishra 
and Singh, 2010; Wilhite, 1993). As climate change due to human activities and environmental changes accelerates, both the intensity 
and frequency of droughts are increasing (Trenberth et al., 2014; Dai, 2013). Droughts are classified as meteorological, agricultural, 
hydrological, and socioeconomic (Mishra and Singh, 2010). Among them, meteorological drought resulting from a deficiency in 
precipitation over an area for some particular period of time (Palmer, 1965; WMO, 2016) is the most important form of drought that 
has a devastating impact on the agricultural sector in dryland areas. Central Asia and Mongolia, due to their geographic location and 
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topography, are highly sensitive and vulnerable to drought (de Beurs et al., 2018; Parry et al., 2007). This region has experienced 
complex changes in precipitation and temperature as a result of climate change associated with greenhouse gas emissions, hydrological 
fluctuations and land use/cover changes (de Beurs et al., 2018; Lioubimtseva, 2015). It has been proven that in recent decades there 
has been a significant increase in temperature and a slight decrease in precipitation in Central Asia (Bobojonov et al., 2016; Xu et al., 
2016; Hu et al., 2014; Lioubimtseva and Henebry, 2009). As a result, the frequency and severity of droughts has intensified in the 
region. Drought has been linked to the decline in biomass and agricultural productivity in the last few decades (Ray et al., 2019; Xu 
et al., 2018); for example, severe drought events between 2003 and 2015 (Guo et al., 2018) have had a significant impact on croplands 
in Central Asia. Agriculture remains an economically important and main source of livelihood in rural Kyrgyzstan, Mongolia and 
Uzbekistan. 

Worldwide, climate risk perception is a precondition for adaptation measures. Howden et al. (2007) emphasize that farmers are 
unlikely to take adaptation measures if they do not perceive climate risks. In effect, systematic misperception or under-estimation of 
flood risks are considered to be the primary reason for not taking out insurance (Kunreuther, 2006). Mase et al. (2017) found that 
farmers’ climate risk perception significantly influences new technology adoption and in-field conservation adoption strategies in 
Uganda. So far, rarely any study has looked into the perception of meteorological drought and compared it with actual occurrence. 
Access to reliable, timely and relevant information can help to reduce farmers’ risk and uncertainty (Mittal and Mehar, 2012), but can 
also help bridge the gap between subjective risk perception and objective risk, as found for consumers in a food safety risk study 
(Santeramo and Lamonaca, 2021). For several decades, traditional channels like television, radio, newspapers, other farmers or 
extension services have been important sources for information on climate risk. The rapid growth of the Internet and ICT-based 
technologies could provide farmers with faster and more region-specific information (Mittal and Mehar, 2012; Sørensen and Boch-
tis, 2010). As the diffusion of mobile ICTs continues, their importance for agricultural and rural development is receiving increasing 
attention by researchers. A growing body of literature has been analyzing the impacts of information acquisition/access via the 
Internet, computers, mobile phones, and smartphones on smallholder farm performance worldwide (Min et al., 2020; Ogutu et al., 
2014; Aker, 2011). Several studies also show that ICT-based climate information and agro-advisory services can help farmers make 
better decisions concerning seasonal crop management, choice of technologies, and marketing strategies (Gangopadhyay et al., 2019; 
Mittal and Hariharan, 2018). However, empirical evidence on the role of smartphone-based weather information on accurate climate 
risk perception is lacking. The existing literature on determinants of farmers’ climate risk perception focuses on a variety of socio-
economic, individual and risk characteristics (Finger and Möhring, 2022; Gebrehiwot and van der Veen, 2021; Madhuri and Sharma, 
2020; Meraner and Finger, 2019; Cullen and Anderson, 2017; Bahta et al., 2016; Duinen et al., 2015;). While many studies have 
scrutinized determinants of climate change and risk perceptions of farmers in particular (Gebrehiwot and van der Veen, 2021; Madhuri 
and Sharma, 2020; Cullen and Anderson, 2017; Bahta et al., 2016; Duinen et al., 2015), the communication of climate data among 
farmers has so far not found special attention. Therefore, the first objective of this study is to check the consistency of farmers’ 
perception of meteorological drought with actual drought events. Second, we analyze the role of smartphone-based weather infor-
mation explaining perception accuracy, also considering the determinants of smartphone - based weather information acquisition. 
With this study, we go beyond general climate change recognition and instead provide new evidence on discrepancies between 
perception and reality of local meteorological drought risk, based on a combination of farm-level and satellite data. The contributions 
of this study are: (a) linking the accuracy of farmers perceptions with smartphone-based weather information, whereas previous 
literature has been limited to individual determinants of climate risk perception accuracy. This is of high practical implication too, as 
interventions in this direction might be of critical influence; (b) providing practical suggestions for app developers and policymakers, 
explaining how smartphone applications could improve the preparedness of farmers for natural hazards, in particular drought events. 
This study has the following research questions: (1) Is the perception of farmers of meteorological drought in Central Asia in line with 
actual drought? (2) What is the role of smartphone-based weather information access in drought perception? 

The remainder of this manuscript is structured as follows: Section 2 presents a review of the literature. Sections 3 and 4 describe the 
data, descriptive statistics, and the econometric approach. Discrepancy results and empirical results are presented in section 5. Dis-
cussion and conclusions are presented in section 6. 

2. Literature review 

2.1. Risk perception 

The term “probability” refers to how often the given outcome is likely to occur, while impact refers to the size of the potential loss 
(Hardaker and Lien, 2010). Based on probability assessment, risk can be viewed from two perspectives (Hardaker and Lien, 2010): 
objective risk, also called the degree of risk, refers to the relative deviation of actual losses from expected losses. Subjective risk, called 
perceived risk, refers to the personal expectation of loss (Rejda and McNamara, 2014). Expected utility (EU) theory (Von Neumann and 
Morgenstern, 1947) assumes that the decision maker has complete information about the likelihood of risk and damage, meaning that 
their perception of risk is identical to the actual risk. Subjective expected theory (Savage, 1954), on the other hand, assumes that the 
decision maker makes statements based on personal judgments, a theory which allows for deviation between objective and subjective 
risk perception. This theory purports that an individual’s optimal decision in a risky setting is determined by their subjective belief 
regarding the probability of an uncertain outcome occurring. Hardaker et al., 2015 suggests that SEU-based decision theory is equally 
applicable explaining people’s behaviour and advising how people should make choices. Therefore, subjective risk perception can be a 
good reflection of an individual’s overall perception of risk, which will be influenced by different components of risk. Such kind of risk 
perception influenced by diverse factors, such as characteristics of risk (Slovic et al., 1979), personal variables, and cultural and 
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socioeconomic background (Douglas and Wildavsky, 1983). 
Following the political instrumentalization of climate change and increasing societal disagreement over its existence and extent, 

numerous studies on subjective climate risk perception have emerged in comparison to actual climate risk. For instance, Hasan and 
Kumar (2019) have found that household level perception about drought and flood did not match well with meteorological data. A 
correlation with climate accuracy of climate perception was found for income, indicating the need for targeted weather information. 
Falaki et al. (2013) assessed farmers’ perception of temperature and rainfall with meteorological records and found that the majority of 
farmers’ perception corroborated with meteorological changes. Similarly, Roco et al. (2015) assessed subjective and objective climate 
change trends in Chile over 24 years and found that the majority of respondents recognize climate change. Access to meteorological 
weather information through the media (press, radio, television and the Internet) correlates with perceptions of climate change. This 
indicates that weather information is an important tool for raising awareness among farmers. Simelton et al. (2013) studied the 
variability in precipitation perception using meteorological data; they found a discrepancy between farmers’ perceptions of changes in 
rainfall and meteorological data, with farmers reporting earlier on a change of rainfall than meteorological data suggest. Khan et al. 
(2020) have stated that farmers perceive weather hazards differently at farm households in different regions, with several factors age, 
education, and income influencing perceptions. Furthermore, Van der Linden (2015) argues that risk perception is shaped by a variety 
of personal and social, cultural and socio-demographic factors. Deressa et al. (2011) have determined that age, wealth, knowledge of 
climate change, social capital, and agroecological conditions influence risk perception. 

However, the majority of these studies are focusing mainly on meteorological risks that can occur repeatedly rather than the 
perception of local climate events like catastrophic risk or the occurrence of catastrophic risks, which are very much subject to regional 
or even farm-level variations: a catastrophic risk can be defined as event with low probability of occurrence leading to large and 
usually irreversible losses (Chichilnisky, 2000). Thus, studying subjective risk assessment requires an a-priori assessment of objective 
risks in order to determine the accuracy of subjective assessment. 

In particular for drought, awareness is typically low and delayed among the public, due to its slow onset, spatiotemporal variation 
and delayed impact on harvests (Shao et al., 2022; Wens et al., 2019). Until now, much effort has been made to understand the physical 
characteristics and the mechanism of drought (Hoerling et al., 2013). Thus, understanding farmers’ perceptions of drought and its 
actual changes, together with the factors influencing those perceptions, is important for developing adequate policies. Moreover, in 
order to influence public knowledge, there is a need to understand individual perceptions of drought. Several studies have investigated 
the determinants of farmers’ perception of drought risk in developing countries and highlight the significance of personal, socio-
demographic, and economic factors. van Duinen et al. (2015) have studied subjective and objective variables that can influence 
farmers’ perceptions of drought risk in the Netherlands. Their results show that the occurrence of salinity, the cultivation of drought or 
salt-sensitive crops, farm incomes, and experience of droughts were important factors in farmers’ perceptions of drought risk. Hughes 
et al. (2022) found that the main drivers of drought risk perception were regional differences, cultural factors, higher off-farm incomes, 
age, and education. Akerlof et al. (2013) state that perceived personal experience of global warming appears to reinforce people’s 
perceptions of risk, likely through some combination of direct experience, indirect experience such as media reports, and social 
interaction. Bloodhart et al. (2015) note that attention to television weather forecasts is associated with a belief that extreme weather 
events are becoming more frequent, which in turn is associated with stronger beliefs and fears about climate change. These findings 
suggest that information communication technologies can affect farmers’ perception of drought. Gamble et al. (2010) have found that 
Jamaican farmers’ perceptions of worsening drought conditions have been confirmed by satellite assessments indicating that severe 
droughts are becoming more frequent. In addition, farmers’ perception was determined by the magnitude and frequency of dry 
months, and the difference between growing seasons. Salam et al. (2021) have found that expert views on drought risk were similar to 
the individual household level perceived risk. These results indicate that information on individual farmers’ perceptions of drought 
with actual changes is still limited and therefore needs to be studied more thoroughly. 

2.2. Determinants of ICT use 

Various case studies have suggested that information and communication technology (ICT) could play an important role in agri-
cultural development. Qiang et al. (2012) pointed out that the application of ICTs in agriculture can stimulate the rapid development of 
the agricultural sector and rural areas, primarily because ICTs can provide millions of farmers with access to information, markets and 
services. Several studies have found that the adoption of ICT has a significant positive impact on agricultural productivity (Issahaku 
et al. 2018; Ma et al. 2018; Lio and Liu, 2006), increase of income (Min et al. 2020), and climate-sensitive decision-making (Kumar 
et al., 2021). The most fundamental theory behind technology adoption in agriculture is the diffusion of innovation theory by Rogers 
et al. (2008). According to this theory, socio-economic characteristics and farm characteristic could influence ICT adoption. Empirical 
studies provide insight into the factors that determine the use of ICTs. ICT tools are often influenced by socio-economic factors such as 
educational background, age, gender, income, farm experience (Giua et al., 2022; Michels, et al., 2020; Michels et al., 2019; Mittal and 
Mehar, 2016; Meso et al., 2005). Older farmers are less likely to use modern information technology because they trust their own 
experience and skills much more (Tamirat et al., 2018; Tiffin and Balcombe, 2011). The younger generation, on the other hand, is more 
interested in using ICT tools and receiving updates. Gender plays an important role in the decision process in ICT use (Venkatesh and 
Morris, 2000). A study of Australian graziers found women livestock producers were more likely to use most ICT components than man 
(Hay and Pearce, 2014). Education allows farmers to better understand the benefits of obtaining information and to use modern in-
formation technologies without hindrance (Krell et al., 2021; Rose et al., 2016). Higher education helps farmers with the analytical 
skills they need to access agricultural data using ICTs (Paustian and Theuvsen, 2017), and to make better decisions (Carrer et al., 
2017). For instance, Mwombe et al., 2014, found that a low level of education and distance to internet services were found to be the 
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most constraining to the use of ICT tools, including luck of finance to buy internet services. Farm economic dimensions like income 
have a positive influence on ICT adoption (Kolady et al., 2021). Income, for once, is one of the main determining factors for Internet 
access at home, smartphone ownership, and access to ICT-based information (Gutiérrez and Gamboa, 2010). For instance, farmers in 
Ghana indicated network failure and the high price of mobile phones were the largest hindrances to mobile phone use (Folitse et al., 
2019). The location of a farm also plays an important role in ICT usage due to differences in climatic, soil and topographic conditions 
(Michels et al., 2019; Paxton et al., 2011), and due to digital infrastructure (Srinuan et al., 2012). Extension services are assumed to 
influence the digital agricultural tools adoption with different types of innovation (Caffaro et al., 2020; Fecke et al., 2018); farmers 
during such events may get suggestions on usage of smartphone-based applications. Farmer’s attitudes towards the information are 
assumed to influence digital technology adoption. Koshy and Kumar (2016) state that farmers’ attitudes to information will reflect 
their positive or negative feelings about mobile-based advisory services. Moreover, trust in the usefulness of the provided information 
via smartphones determines the usage of ICT tools. For instance, Bonke et al. (2018) have shown that German farmers are more likely 
to have a general willingness-to-pay for crop protection smartphone apps if they perceive them as useful for reducing externalities in 
crop protection and for decreasing production costs. Also in other studies, ICT usefulness and usability and trustfulness were the key 
indicators for adoption of climate sensitive decision-making ICT tools (Kumar et al., 2021). 

With these literature findings in mind, we propose following hypotheses: 
H1: Farmers’ subjective perceptions deviate from the actual drought occurrence. 
H2: Smartphone-based weather information access improves the accurate perception of meteorological drought. 
H3: Farmers’ higher reliance on smartphone applications influence weather information access. 

3. Data and measures 

3.1. Farm level data and sampling 

This study is based on a cross-sectional dataset of 2830 grain farmers in Kyrgyzstan, Uzbekistan and Mongolia. The data was 
collected in a CAPI survey (Survey Solutions Platform1.) within the scope of the project KlimALEZ. The questionnaire was developed in 
English, then translated into four languages and tested with random farmers in three countries. Due to travel restrictions during the 
period, the data collections were implemented by local universities or companies, all of which were trained on data collection and the 
usage of the Survey Solution application. 

The target population of the study were grain farming households in Central Asia (see Fig. 1). The survey regions were selected 
following a multi-stage cluster sampling procedure. First, study provinces in each country were selected based on their characteristics 
as the largest grain producers in the respective country. After that, districts were selected based on the same criterion. Within districts, 
samples were obtained from a sampling frame provided by the local state administrations using a simple random sampling approach. 
This produced a total sample size of 1200 in Kyrgyzstan, 1088 in Uzbekistan and 542 in Mongolia. The reason for the smaller sample 
size in Mongolia is that Covid-19 travel restrictions applied within the country at the time of data collection. According to power 
calculations suggested by (Israel, 1992), the minimum sample size for our study was 385 observations per country with a 95 percent 
confidence interval and a 5 percent error margin. Our sample size is therefore considered sufficiently large for our research question. In 
addition, the representativeness of the sample was cross-checked with the statistics of the National Statistics Committee in terms of 
average grain yield per hectare in each country. Based on the sampling procedure and comparison of key production statistics, the 
sample can be considered representative for each of the study countries in terms of production of grain crops. 

Kyrgyzstan is located in eastern Central Asia and covers 199, 951 km2. The country is highly mountainous and lies at on average 
2750 m above sea level. The total agricultural area of the country is 1.4 million ha, of which approximately 870 thousand ha is irrigated 
NSC, 2021. The average annual precipitation is approximately 533 mm, and most of it is concentrated during the winter season 
(between October and April) (Frenken, 2013). The absolute temperature greatly varies (from − 18 to − 28 ◦C in winter to 43 ◦C in 
summer) depending on the location. For this study, the regions Chui, Issyk-Kul, Osh, Batken, and Jalal-Abad were purposely selected 
based on cereal and grain growing areas (NSC, 2021). Agro-ecologically, these regions are located in sub-humid and semiarid zones 
(Bobojonov and Aw-Hassan, 2014). Kyrgyzstan belongs to the countries in the world which are strongly affected by climate change 
(Fay et al., 2010) and may worsen further in the future. According to the World Bank Group and Bank, (2021a) the ensemble predicts 
5.6 ◦C of warming by the 2090 s at the highest emission path (RCP 8.5), well above the expected global average increase of 3.7 ◦C. 

Mongolia is located between Russia to the north and China to the south and lies at an average of 1580 m above sea level. Almost 113 
million ha is pasture and less than 651 thousand ha is considered arable land (WBG and ADB, 2021b). About 1.3 million ha of total land 
is suitable for agricultural production. The climate in Mongolia is characterized by long and cold winters with − 52.9 ◦C in January and 
hot, dry and short summers that can reach 43.1 ◦C in July (Batima and Dagvadorj, 2000). Annual precipitation is about 227 mm, and 
about two-thirds of its annual precipitation falls between June and August (WBG and ADB, 2021b). Eleven main grain-producing 
regions, namely Arkhangay, Bulgan, Darkhan-Uul, Dornod, Khentii, Kuvsgul, Orkhon, Selenge, Tuv, Uvurkhangay and Zavkhan, 
were selected. These regions are located in semi-arid and arid agro-ecological zones (Fischer et al., 2021). Similar to Kyrgyzstan, 
Mongolia also faces rates of warming far higher than the global average. On the highest future emissions pathway (RCP 8.5) average 
warming would exceed 5 ◦C by the end of the century (WBG and ADB, 2021b). 

1 Survey Solution. 
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Uzbekistan is bordered by Kazakhstan in the west and north, Afghanistan and Turkmenistan in the south, Kyrgyzstan and Tajikistan 
in the east. Uzbekistan lies at an average of 450 m above sea level. It covers an area of 44.8 million ha, of which 4.5 million ha is 
irrigated arable land, and almost 80 percent of the total irrigated area is occupied by winter wheat and cotton (Nurbekov et al., 2006). 
The average annual precipitation is approximately 200 mm and the average annual temperature varies from 29 − 42 ◦C. 

Four main grain-producing regions, Jizzakh, Samarkand, Khorezm and Andijan, were selected. These regions are located in semi- 
arid and arid agro-ecological zones (Bobojonov and Aw-Hassan, 2014). Similar to Kyrgyzstan, Uzbekistan is also suffering from climate 
change, and a temperature increase of 4.8 ◦C is expected by the end of this century under the highest emission pathway (RCP 8.5). 

3.2. Subjective weather risk perception 

As we are assuming that farmers are not in full knowledge of risks and probabilities of climatic events, our study rests on subjective 
utility theory. To elicit subjective probability there are direct and indirect methods. Direct techniques involve the direct questioning of 
assessors regarding their perceptions of the probability of an event or outcome. Indirect methods involve individual techniques, and 
probabilities are inferred from preferences or choices between possible bets, decisions, or alternatives (Norris and Kramer, 1990). In 
our study we used direct techniques to elucidate climate risk perception. 

To elucidate farmers’ main concern about climate related risks, the following multiple-choice question was asked: “Which of these 
events did you experience at least once in the last 10 years?” The responses contained seven weather risks such as high summer 
temperature, lack of rainfall during vegetation period, seasonal heavy rainfall, very cold winters, mudslide, strong winds drying out 
soil and intensification of meteorological drought. Responses were collected by providing binary “yes” or “no” answer options to 
clearly distinguish between farmers who had a clear recall perception of particular climate risk in the list and those who did not. There 
might be some recall errors but since the farmers had to recall “any” event in ten years and not the number of extend the events, we 
assume that potential recall errors are minimal. 

3.3. Meteorological data 

Ground-based weather stations are sparse and unevenly distributed in CA and Mongolia (Eltazarov et al., 2021; Hu et al., 2014). 
Furthermore, many of them are outdated and have limited observation data. Therefore, this study uses meteorological data from 
CHIRPS and GLDAS, which covers each study district from 2010 to 2020 at a weekly frequency. In detail, the study uses daily 

Fig. 1. Physical map of the study area: Kyrgyzstan, Uzbekistan and Mongolia.  
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precipitation (CHIRPS), and maximum and minimum air temperature (GLDAS). The CHIRPS rainfall dataset generates gridded rainfall 
time series data using three different sources of information: 1) global precipitation climatology, 2) 0.5-degree resolution satellite 
imagery, and 3) in-situ station observation. The CHIRPS precipitation dataset combines more station data than other products and uses 
high-resolution background climatology to provide more accurate estimates of mean and variation in precipitation, resulting in a 
better hydrological status (Shukla et al., 2014). The GLDAS is a global offline terrestrial modelling system (Rodell et al., 2004), 
developed jointly by the National Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC) and the Na-
tional Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP). GLDAS-2.1 has a 
spatial resolution of 0.25 arc degrees, which corresponds to approximately 28 × 24 km at the latitude of the study area. We used 
temperature data from the Global Land Data Assimilation System version 2.1 (GLDAS-2.1). The accuracy of these dataset was tested in 
the past by Eltazarov et al. (2021) and found suitable for conditions in Central Asia. 

3.4. SPEI index 

A variety of indices are available to identify meteorological drought, for instance Evaporative Demand Drought Index (EDDI) 
(Hobbins et al., 2016), Evaporative Stress Index (ESI) (Anderson et al., 2016), Standardized Precipitation Evaporation Index (SPEI) 
(Vicente-Serrano et al., 2010), and Standardized Precipitation Index (SPI) (McKee et al., 1993). In our study we focus on the inten-
sification of drought events using the SPEI index at a weekly frequency over the past 11 years, between 2010 and 2020. The SPEI index 
has been used in a large number of drought monitoring studies in many countries, including Central Asia and Mongolia (Pyarali et al., 
2022; Xu et al., 2016). In comparison to SPI and PDSI, SPEI has a very good performance in drought monitoring in the context of global 
warming (Vicente-Serrano et al., 2010). The SPEI can apply different time scales, such as weekly, 1-, 3-, 6-, and 12- month scales, and it 
is capable of analyzing both short term and long-term drought. The drought at these time scales is relevant for agriculture (1, 3, and 6 
months), hydrology (12 months), and socioeconomic impact (24 months). We calculated drought occurrence on the basis of frequency 
distribution of the SPEI values from − 1 to − 1.49 (moderate dryness), − 1.5 to − 1.99 (severe dryness) and < − 2 (extreme dryness) on a 
weekly scale from 2010 to 2020 (see Table 1). For this study, we compared severe and extreme dryness events during vegetation season 
with subjective drought perception due to its high impact on crop production as compared to moderate dryness. The dates for 
calculating the index were chosen based on a crop growing calendar suggested by the FAO, 2018 (see Table A1 in the Appendix A). 

4. Estimation strategy 

4.1. Dependent variable 

The motivation behind comparing subjective meteorological drought perception and objective meteorological changes in this study 
originates from studies that have compared subjective and objective rainfall changes, e.g. Kosmowski et al., 2016; Simelton et al., 
2013. These studies have focused on average rainfall changes and farmers’ perception of rainfall changes. We follow this approach, 
only slightly adjusting the measures. As described above, objective drought is defined as severe dryness measured along a SPEI index, 
while subjective perception was measured directly by a binary variable on drought experience in the last ten years. Based on this 
information, we divided farmers into a binary variable of accurate drought risk perception. Farmers were labelled “false perceivers” 
when their statement about meteorological severe drought was not in line with the SPEI values, and “accurate perceivers” when their 
perceptions coincided with the SPEI values. 

4.2. Propensity score matching (PSM) 

To estimate the effect of smartphone-based weather information acquisition on accurate drought risk perception, we must consider 
endogeneity issues. Farmers who own smartphones and choose to use them to check weather information may systematically differ 
from other farmers, also influencing their subjective drought perception. To control for possible latent selection bias, most empirical 
studies use a two-stage Heckman estimation method and Instrumental variable (IV) methods. The advantage of Heckman models is 
that they can model differences in both observed and unobserved characteristics between treatment and control groups by including 
the inverse Mills coefficient as an additional explanatory variable in the outcome model. However, Heckman selection estimators are 
based on strong assumptions that unobserved variables are normally distributed, and their robustness has been questioned in a 
growing literature using both simulated and actual data (Kiiza and Pederson, 2012). The instrumental variable (IV) method reduces the 
causal estimates and introduces new uncertainty due to its reliance on additional untestable assumptions (Kiiza and Pederson, 2012; 
DiPrete and Gangl, 2004). Moreover, finding valid instruments is a challenge for many empirical studies (Angrist and Krueger, 2001). 

Table 1 
Classification of Standardized Precipitation Evapotranspiration Index (SPEI).  

SPEI value Class Possible impacts 

− 1 to − 1.49 Moderate dryness Some damage to crops (Venkatappa et al., 2021; Wang et al., 2020) 
− 1.5 to − 1.99 Severe dryness Major reduction in yields (Madadgar et al., 2017) 
< − 2 Extreme dryness Exceptional and widespread crop yield loss; severe water crisis (Yu et al., 2018; Zhang et al., 2018). 

Source: McKee et al., 1993. 
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In contrast to the Heckman and IV methods, matching models assume that conditioning on observable variables eliminates sample 
selection bias (Heckman and Navarro-Lozano, 2004). The PSM technique (Rosenbaum and Rubin, 1983) provides unbiased estimation 
of treatment effects and can be used to draw causal-effect inference in non-experimental settings. It does this in our study by con-
structing a counterfactual of the outcome of the farmers who obtain smartphone-based weather information conditional on non- 
obtained ones (Ogutu et al., 2014). This method also allows to properly control for differences between farmers who obtain and 
don’t obtain weather information using a smartphone, which is the average treatment effect on the treated (ATT) after controlling for 
differences among them (Mendola, 2007; Rosenbaum and Rubin, 1983). Our analysis is based on the idea that farmers who obtain 
smartphone-based weather information represent the treatment group, while the non-obtained group represent the counterfactual 
group (control group). 

The average treatment effect on the treated (ATT) can be calculated as follows: 

ATT(x) = E[Y1|D = 1,X = x] − E[Y0|D = 0,X = x] (1) 

Where x is set of relevant confounding characteristics, E[Y1 | D = 1, X  = x] is the expected outcome for the units that received 
treatment, and E[Y0 | D = 0, X  = x] is the expected outcome for the treated units’ best matches. For the purpose of comparison, PSM 
uses balancing scores to extract the observed mean outcome of the non-obtained farmers who are the most similar in observed 
characteristics to the obtained ones. In order for the true parameter to be estimated, it requires that: 

E(D = 1,X = x) − E(D = 0,X = x) = 0 (2) 

which ensures that the ATT is free from self-selection bias. 
There are different approaches to implementing PSM, including Nearest neighbor matching (NNM), Caliper or Radius matching, 

Stratification or Interval matching, and Kernel and Local Linear matching (Smith and Todd, 2005; Heckman et al., 1998). In this study, 
Nearest neighbor matching (NNM) and Kernel matching (KM) estimates were used. NNM matches each farmer from the obtained 
weather-information with the farmers from the control group having the closest propensity score. In case of large distance to the 
nearest neighbors, NNM might however yield imprecise results. Kernel matching uses a weighted average of all farmers in the adopted 
group to construct a counterfactual. The reason behind using these two approaches is to be sure of the robustness of the model. 

Propensity score method relies on two assumptions often made in estimating treatment effects, first the conditional independence 
assumption (the independent and identically distributed observations), and second overlap assumptions (Rosenbaum and Rubin, 
1983). Conditional independence assumption states that no unobservable variable affects both the likelihood of treatment and the 
outcome of interest after conditioning covariates. The overlap assumption in our case requires that each farmer has a strictly positive 
probability of obtaining weather information via smartphones after conditioning on a set of covariates. 

The main purpose of the propensity score estimation is to balance the observed distribution of covariates across the two groups 
(Lee, 2013). The balance test is usually required after matching to establish whether differences in covariates between the two groups 
in the matched sample have been eliminated, in which case the matched comparison group can be considered a plausible counter-
factual (Kassie et al., 2011). According to Caliendo and Kopeinig, (2008), a standardized bias of less than 5 percent is considered 
acceptable. If there are unobserved covariates that simultaneously influence the smartphone-based weather information and outcome 
variable, then there is a possibility of a hidden bias to which matching estimators may not be robust (Becker and Caliendo, 2007; 
Rosenbaum, 2002). This study used the Rosenbaum bounding approach to determine the extent of the influence of unobserved factors 
and their implications on our matching analysis; in particular, we used Mantel and Haenszel test statistics (1959). 

4.3. Demographic and farm characteristics of study participants 

The average age of respondents was 47 years in three countries. The share of female farm heads and respondents was higher in the 
overall sample (30 percent) then in Uzbekistan (only 5 percent), which can be explained by regional differences in culture and labor 
migration. The number of farmers with agricultural education was higher in Uzbekistan and Mongolia (46.3 percent and 34.1 percent 
respectively), while in Kyrgyzstan, only 9.7 percent of farmers had an agricultural education. Farmer attendance to extension services 
was also low in Kyrgyzstan, at 16.2 percent, compared to Mongolia (56.8 percent) and Uzbekistan (50.7 percent). The average annual 
income of farmers was lower in Kyrgyzstan (2.3) compared to Mongolia (4.0) and Uzbekistan (5.6) (see footnote 2 for details). Also, the 
distribution of farmers across agro-ecological zones differed considerably across countries: while Kyrgyz farmers were mostly located 
in the semi-humid zones, farmers in Uzbekistan were rather located in arid zones, and Mongolian farmers nearly completely in arid 
zones. The perceived reliability of online weather information on a five-point Likert scale was highest among Kyrgyz famers (3.4). 
Smartphone adoption was high in Mongolia (96.9 percent) and Uzbekistan (93.6 percent), and a bit lower in Kyrgyzstan (87.6 
percent). Similarly, smartphone access to weather information was high in Mongolia and Uzbekistan (81.5 percent and 79.2 percent, 
respectively), but significantly lower in Kyrgyzstan (33.2) (see Table 2). 

4.4. Factors affecting smartphone-based weather information acquisition 

The PSM estimator for ATT is based on a logit model presented in Table 3. Results show that age of household, education in 

2 Farm survey, 2021: e.g. irrigated land accounted for 12.36%, and rain fed land for 98.71%. 
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agriculture, annual farm income, agro-ecological zones, attitude to online weather information reliability, smartphone ownership 
variables have a significant influence on smartphone-based weather information acquisition. Household age was found to be a 
determinant of smartphone-based weather information access. The younger the head of the household, the more likely it is that they 
obtain smartphone-based weather information. A unit increase in education in agriculture will increase obtaining weather information 
via smartphone by 18 percent. The results imply that when it comes to smartphone-based weather information acquisition, people with 
an education in agriculture tend to obtain weather information on their smartphones. A unit increase in farm annual income will 
increase the access to weather information via smartphone by 5.6 percent. Farmers in semi-arid and arid regions are likely to obtain 
weather information on their smartphones. The results also suggest that farmers’ attitude to the reliability of the weather information 
significantly promote smartphone weather information acquisition; farmers who rely on online weather information are likely to 
acquire smartphone-based weather information. Gender, attendance in extension services and country variables did not significantly 
influence smartphone-based weather information access. 

5. Results 

5.1. Farmers subjective climate risk perception 

Fig. 2 indicates major extreme phenomena that respondents perceived in the last 10 years. The major climate risk in three countries 
was meteorological drought. 34 percent of study participants in Kyrgyzstan perceived meteorological drought as a major risk source; 
68 percent in Mongolia and 55 percent in Uzbekistan, respectively. Following this, high summer temperatures and a lack of rainfall 
were the second and third major extreme phenomena in all study areas. 

5.2. Actual meteorological drought occurrence calculated from climate data 

Table 4 shows the total average extreme, severe and moderate drought events that occurred in all study countries during the crop 
growing season per year. Over the past 10 years, there have been 12 incidences of severe and extreme droughts in all studied districts in 
Kyrgyzstan during the crop growing season, while the maximum severe and extreme droughts have occurred 27 times. Mongolia 
experienced an average of 27 incidences of severe and extreme drought and a maximum of 95 incidences in all study districts. At the 
same time, there have been on average 12 incidences of severe and extreme droughts in all study districts in Uzbekistan, and they have 
reached up to 51. In contrast, there were 47 incidences of moderate drought in Kyrgyz districts, 113 in Mongolian districts and 66 in 
Uzbek districts per crop growing season. 

Table 2 
Summary statistics of household characteristics and outcome variable.    

Kyrgyzstan Mongolia Uzbekistan 

Variables Value Mean Std. Dev; 
Percentage 

Mean Std. Dev; 
Percentage 

Mean Std. Dev; 
Percentage   

(N = 1200) (N = 542) (N = 1088) 
Age of head of household Mean (years) 48.57 (13.28) 47.94 (11.19) 45.55 (8.89) 
Gender Male 73.33 70.11 94.94  

Female 26.67 29.89 5.06 
Education in agriculture Yes 9.67 34.13 46.32  

No 90.33 65.87 53.68 
Farmers extension service attendance Yes 16.17 56.83 50.74  

No 83.83 43.17 49.26 
Annual farm income in US dollar Mean (1–6) 2.33 (0.90) 4.03 (1.66) 5.55 (0.88) 
Farm location3 Sub -humid 68.75 – –  

Semi – arid 31.25 8.67 32.08  
Arid – 91.33 67.92 

Attitude to the online weather information 
reliability 

(1 strongly agree – 5 strongly 
disagree) 

3.34 (0.99) 1.75 (0.67) 2.18 (0.65) 

Smartphone adoption Yes 87.58 96.86 93.57  
No 12.42 3.14 6.43 

Outcome variable     
Accurate drought perception Yes 33.92 68.27 54.96  

No 66.08 31.73 45.04 
Dependent/Treatment variable     
Smartphone - weather access Yes 33.17 81.55 79.23  

No 66.83 18.45 20.77 

3Annual farm income categories in US dollar: 1 = KG < 707; MN < 1753; UZ < 467. 
2 = KG 707.1 – 1769; MN 1753.1 – 8772; UZ 467.1 – 2341. 
3 = KG 1769.1 – 2948; MN 8772.1 – 17545; UZ 2341.1 – 4680. 
4 = KG 2948.1 – 4717; MN 17545.1–26316; UZ 4680.1 – 7017. 
5 = KG 4717.1 – 7076; MN 26316.1–35088; UZ 7017.1–9.357. 
6 = KG $ >7076.1; MN $ > 35088.1; UZ $ > 9.357.1. 
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Fig. 3 shows that the number of incidences of severe drought, calculated from climate data, shows an increase in Kyrgyzstan, while 
in Mongolia and Uzbekistan a decreasing trend can be observed. It can be seen that the incidences of severe drought have increased in 
Kyrgyzstan (see Table A2 in the Appendix). 

Table 3 
Determinants of smartphone-based weather information acquisition: logit model estimates.  

Variable Logit Marginal effect 

Age of the head of household − 0.009 (0.00) *** − 0.002 (0.00) *** 
Gender of the head of household − 0.057 (0.12) 0.014 (0.02) 
Education in agriculture 0.791 (0.12) *** 0.188 (0.02) *** 
Attendance in extension services 0.089 (0.10) 0.021 (0.03) 
Annual farm income 0.235 (0.04) *** 0.056 (0.01) *** 
Agroecological zones 0.340 (0.07) *** 0.081 (0.02) *** 
Attitude to online weather information reliability − 0.311 (0.05) *** − 0.068 (0.01) *** 
Smartphone ownership 3.214 (0.28) *** 0.765 (0.1) *** 
Country − 0.060 (0.08) − 0.014 (0.02) 
constant − 2.959 (0.48)  
Number of observations 2830  
Pseudo R2 0.2271  

Standard errors in parentheses. 
* p < 0.10, ** p < 0.05, *** p < 0.01. 

Fig. 2. Direct personal experience of extreme weather events in Kyrgyzstan, Mongolia and Uzbekistan.  

Table 4 
Total average extreme, severe and moderate drought events calculated from climate data within 10 years.  

Country Types of drought incidences Mean Min Max 

Kyrgyzstan Severe and extreme 11.82 (8.98) 0 27  
Moderate 47.82 (11.32) 36 72 

Mongolia Severe and extreme 27.64 (28.01) 0 95  
Moderate 112.09 (66.76) 14 222 

Uzbekistan Severe and extreme 11.18 (14.89) 0 51  
Moderate 66.45 (12.70) 45 85  
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5.3. Discrepancies between subjective and objective drought changes 

The average SPEI values during vegetation crop season and the percentage of accurate meteorological drought occurrence per-
ceivers show discrepancies after comparison with the SPEI values in a given district. According to the calculation, 33 percent farmers in 
Kyrgyzstan perceived meteorological drought accurately, compared with around 54 percent farmers in Uzbekistan and 68 percent in 
Mongolia (also see in Table 2). 

5.4. Impact of smartphone-based weather information acquisition on accurate drought perception 

To analyze the impact of smartphone-based weather information acquisition on accurate meteorological drought perception, we 
first generated the density distribution of propensity score for the treated (farmers who obtained smartphone-based weather 

Fig. 3. Total severe and extreme drought events in study districts during the growing season calculated from climate data.  

Fig. 4. Household propensity score distribution for treated and control households with an area of common support.  
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information) and non-treated (non-obtained) households. Meanwhile, differences in the distribution of treated and control households 
confirmed the use of the PSM method to ensure comparability. Therefore, only treated households and control households with the 
same propensity scores were included in the analysis. Fig. 4 shows, before matching and after matching, the density distribution of 
propensity scores for the treated overlap that of the non-treated; therefore, the common support criterion of the propensity score 
matching technique has been met (see country specific results in the Appendix). 

The validity of the use of propensity score matching requires that the treated (farmers who obtained smartphone-based weather 
information) and control (non-obtained) groups have either the same or similar characteristics. Therefore, we also check for balancing 
tests before matching and after matching, as can be seen in Table 5. From Table 5, differences between weather information-obtained 
farmers and non-obtained farmers are found to be insignificant regarding age, education in agriculture, annual farm income, agro-
ecological zones, attitude to online weather information reliability, smartphone ownership and country after matching. 

Table 6 lists values of indicators before and after matching. Rosenbaum and Rubin (1985) recommended standardized bias (SB) to 
check the matching quality. Before matching, the average standardized bias was 50.2 percent; after matching, the standardized mean 
difference of covariates reduced to 3.7 percent using for Nearest neighbor matching (NNM) and 5.1 for Kernel matching. This gives a 
total bias reduction of about 16.3 and 19.6 percent of both matching algorithms. The Pseudo R2 is considerably reduced after matching. 
The decreasing trend indicates that the matching procedures produce a better balance. 

The impact of smartphone-based weather information acquisition on accurate agricultural drought risk perception is reported in 
Table 7. This was estimated using nearest neighbor matching (NNM) and kernel matching (KM) algorithms used in propensity score 
matching. The NNM and Kernel matching results revealed that smartphone-based weather information acquisition significantly affects 
accurate meteorological drought risk perception 8–7 percent, respectively. 

5.5. Country-specific results 

The country-specific results of NNM and Kernel matching in Table 8 show that farmers who check weather information via 
smartphone exhibit a higher accuracy of meteorological drought perception in Kyrgyzstan (15 and 14 percent for Nearest neighbor and 
Kernel matching). In the Mongolian sample, farmers who access smartphone-based weather information have higher accurate 
meteorological drought perception by 16 and 17 percent, respectively. Only in the Uzbek sub-sample, access to smartphone-based 
weather information did not significantly influence meteorological drought perception. 

5.6. Sensitivity of ATT to hidden biases 

To check whether the PSM results are sensitive to hidden bias as a result of unobserved factors, we applied the bounding approach 
proposed by Rosenbaum (2002), which determines how strongly an unobserved factor may influence the selection process in order to 
invalidate the results of PSM analysis. Such an analysis is carried out by calculating upper and lower bounds for different values of 
unobserved selection bias for the test-statistics under the null hypothesis of no training effect. The Mantel and Haenszel test statistics 
shows that the causal effects of the smartphone-based weather information acquisition on accurate meteorological drought perception 
in the study area would change at the bound statistics, Г = 1.5 (i.e., the upper critical gamma cut-off value). This indicates that, for two 
farmers of the same characteristics, the probability of receiving the treatment can differ by up to 7 percent without altering the 
inference of the treatment effects (see Table A3 in the Appendix). Following Kiiza and Pederson (2012), who applied the same test 
statistic when studying the ICT-based market information on intensity of adoption of improved seed, we hence conclude that our 
estimates indicate relative robustness to hidden bias. 

6. Discussion 

This article aimed at assessing the impact of smartphone weather information on climate risk perception accuracy of farmers in our 
sample regions. To measure climate risk perception accuracy, we compare an objective measure for meteorological drought (SPEI 
index) with subjective perception of drought incidence. In a sample of 2830 grain farmers in Kyrgyzstan, Uzbekistan and Mongolia, 
overall accuracy of perception was only 48 percent. Furthermore, our sample countries exhibited distinct differences in the accuracy of 
meteorological drought perception, namely 33 percent in the Kyrgyz sample, 68 percent in Mongolia and 54 percent in Uzbekistan. 

Considering the progressive development and spreading of information and communication technology (ICT), our study reveals 
that farmers’ smartphone-based weather information acquisition have a substantial effect on accurate meteorological drought risk 
perception in general. Herein, we confirm previous studies that link the use of ICT-based information services to a stronger perception 
of climate hazards (Hasibuan et al., 2020). However, country-specific results showed that smartphone-based weather information 
acquisition positively influenced accurate meteorological drought risk perception in the Kyrgyz and Mongolian sample, but was 
insignificant in the Uzbek sample. The reason for the lacking association in the Uzbek sample could be that, even though the mobile 
Internet coverage is high among sample farmers (90 percent according to our survey), mobile internet traffic is relatively slow (13.67 
Mbps) compared to Kyrgyzstan (23.68 Mbps) and Mongolia (16.53 Mbps) (Digital, 2022). 

Our findings on the impact of online weather information on risk perception accuracy have some important implications for a more 
efficient distribution of climate and weather information. As indicated above, slow internet speed may have hindered people effec-
tively using smartphones for weather information. Therefore, policy makers need to pay special attention to enable good internet 
speed also in rural areas, considering its potential usage for climate risk adaptation measures. A growing of multifunctional mobile 
apps are available also for agricultural producers, most of them certain requirements of internet connectivity and speed. For example, 
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the Android app FarmPulse, which was introduced in the scope of the KlimALEZ project, provides weather information, opportunities 
for financial risk management and satellite-based plant growth data for crop monitoring. Like similar software, this app relies on real 
time satellite data and requires a stable and fast internet connection. Our findings also have implications on design of potential 
agricultural software and mobile applications: (a) the important role of farmers’ age and higher education suggest that smartphone 
applications should be simple and easily accessible for older farmers and farmers with low digital literacy in general; (b) the important 
role of income means that the services need to be free of charge to give access also to low-income farms, who also tend to be the most 
vulnerable to drought risk. 

Beyond internet speed, also other geospatial differences in risk proximity and reliance on rainfall for agriculture may have 
influenced our results. For instance, this concerns the spatial heterogeneity of the farms in the three countries (Bobojonov and Aw- 
Hassan, 2014), socio-economic attributes of farmers (Hughes et al., 2022) and hazard proximity (Lujala et al., 2015). In terms of 
geographical context, some regions of Kyrgyzstan and most regions of Uzbekistan are heavily dependent on irrigation and not direct 
precipitation. In contrast, Mongolia is dominated by rainfed agriculture2; Mongolian farmers therefore heavily rely on precipitation 
and thus might be more informed about related changes in rainfall. In Kyrgyzstan, where many farmers partially irrigate their fields 
with meltwater from mountain glaciers, farmers are to a certain degree independent from rainfall and thus might be less sensitive to 
drought events caused by lack of precipitation. In addition, water reservoirs could also alleviate the impact of meteorological drought 

Table 5 
Test of equality of means of each variable before and after matching.   

Unmatched samples Nearest-neighbor matching Kernel matching  

Treated Control Diff. Treated Control Diff. Treated Control Diff.  

N =
1702 

N =
1128 

P-value N =
1700 

N =
1128 

P-value N =
1700 

N =
1128 

P- 
value 

Age 45.99 49.25 − 7.49 *** 46.00 46.97 0.10 46.00 46.15 − 0.41 
Gender 1.16 1.23 − 4.42 *** 1.16 1.16 1.59 1.16 1.15 0.82 
Education in agriculture 0.37 0.16 12.67 *** 0.37 0.36 0.30 0.37 0.36 0.71 
Extension service attendance 0.45 0.26 10.11 *** 0.45 0.50 − 3.07*** 0.45 0.49 − 2.88* 
Annual farm income 4.42 3.09 20.59 *** 4.42 4.49 − 1.15 4.42 4.47 − 0.77 
Agroecological zones 2.40 1.77 20.96 *** 2.39 2.35 1.70 2.39 2.36 − 1.43 
Attitude to reliability of online weather 

information 
2.30 3.03 − 19.40 

*** 
2.30 2.34 − 1.32 2.30 2.34 − 1.21 

Smartphone-ownership 0.99 0.80 18.35 *** 0.99 0.99 − 1.35 0.99 0.99 − 0.71 
Country 2.25 2.11 4.81 *** 2.25 2.27 − 0.77 2.25 2.28 − 1.10 

* p < 0.10, ** p < 0.05, *** p < 0. 

Table 6 
Overall matching quality indicators before and after matching.  

Quality indicators Pseudo R2 LR chi2 Mean standardized bias Total bias reduction % 
Matching algorithms 

Before matching 0.227 864.30 50.2 116.7* 
Nearest neighbor matching 0.005 22.60 3.7 16.3 
Kernel matching 0.007 32.42 5.1 19.6  

Table 7 
ATT results for the impact of smartphone-based weather information on accurate drought perception.  

Outcome variable Treated households 
(N = 1700) 

Control households 
(N = 1128) 

ATT nearest neighbor ATT kernel 

Accurate meteorological drought perception 0.56 (0.50) 0.37 (0.48) 0.08 (0.02) * 0.07 (0.03) ** 

Standard errors in parentheses. 
* p < 0.10, ** p < 0.05, *** p < 0.01. 

Table 8 
ATT results for the impact of smartphone-based weather information on accurate drought perception.  

Accurate meteorological drought perception Treated households Control households ATT nearest neighbour ATT kernel 

Kyrgyzstan 0.45 (0.02) 0.31 (0.03) 0.15 (0.04) *** 0.14 (0.03) *** 
Mongolia 0.71 (0.02) 0.54 (0.05) 0.16 (0.06) *** 0.17 (0.06) *** 
Uzbekistan 0.54 (0.02) 0.58 (0.03) − 0.04 (0.05) − 0.04 (0.04) 

Standard errors in parentheses. 
* p < 0.10, ** p < 0.05, *** p < 0.01. 
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in Kyrgyzstan and Uzbekistan, resulting in the observed discrepancies. Another explanation for these strong country-level differences 
might be risk-proximity. Wachinger et al. (2013) stated that people located in risk-prone areas perceive themselves closer to danger 
and are thus more aware of potential risks connected to the economic activity. About 91 percent of our sample farmers in Mongolia and 
67 percent of the sample farmers in Uzbekistan were located in arid zones, which could have made them more alert to climate risk and 
climate events, hence resulted in higher accuracy of drought incidence perception. Our results are consistent with the findings of other 
studies highlighting individual differences in risk perceptions (see also chapter 2.1) (van Winsen et al., 2016; Weber et al., 2002). 

For future research, our results thus suggest to take a closer look on the interaction between precipitation dependence and risk 
proximity with (digital) climate risk information. A dedicated measurement of these variables was unfortunately not within the scope 
of this study. For instance, general areas of rainfed and irrigated agriculture are in theory well discernable, yet we observed that the 
differences between both systems are blurred within our target regions, as outdated irrigation systems may not be functional under 
regional drought events. Similarly, risk proximity may be dependent on a number of individual factors, for instance farming history, 
and would require a more in-depth study. On a more detailed level, this study is limited by the fact that it focused on meteorological 
drought instead of agricultural drought due to data requirements. In future research, we would like to test the robustness of our result 
to a change in drought definition. Furthermore, higher resolution of weather data from satellites could help to reduce potential basis 
risk in terms of the chosen weather index. Future research should focus more in-depth on subjective drought perception along a smaller 
in-depth sample. Finally, panel data could provide the opportunity to test farmers’ perception changes over time. 

7. Conclusion 

Overall, we showed that farmers’ in our study region are mostly not aware of objective drought risk in their region. This is 
problematic because lacking knowledge of climatic risks may inhibit appropriate climate risk adaptation measures, making farmers in 
the region highly vulnerable to future weather extremes under progressing climate change. While many farmers today can still rely on 
irrigation, their dependency on rainfall may in future increase, when surface and groundwater reservoirs are depleted and glacier 
melting peaked. Our findings suggest that smartphone-based weather information access could be a tool in promoting awareness for 
farmers to weather changes in the scope of climate change. Policy makers should create an enabling environment to accelerate the 
adoption and use of applications to access weather information and support risk management. Moreover, our results show that 
software solutions and policy interventions should also target marginalized farmers with low incomes, low education and low digital 
literacy, who might otherwise not be able to make full use of ICT potential. One example for a targeted software solution is the Farm 
Pulse App developed in the scope of project KlimALEZ, which is available in all regional languages and provides easy access to users 
even with low digital literacy. 
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Appendix A  

Table A1 
Crop growing calendar based on FAO, 2018.  

Country Crop type Sowing months Growing months Harvesting months 

Kyrgyzstan Spring wheat, barley A, M J, J, A S, O 
Uzbekistan Cotton, summer wheat A, M J, J, A S 
Mongolia Spring wheat, barley A, M J, J, A S  
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Table A2 
SPEI values and their trends in Kyrgyz, Mongolian and Uzbek districts.   

Region District Average severe drought events Coefficient 

Kyrgyzstan Chuy Jayil  1.09  1.945   
Panfilov  1.45  0.534  
Sokuluk  1.27  1.226 

Issyk-Kul Ak suu  0.82  − 1.727  
Tup  1.73  − 0.185 

Batken Batken  0.64  − 1.917  
Kadamjy  1.45  − 1.618 

Osh Kara-Suu  0.91  1.007  
Nookat  1.18  − 0.959 

Jalal-Abad Bazar Korgon  0.73  0.917  
Suzak  0.55  − 1.290 

Mongolia Arkhangai Khotont  0.3  − 1.375   
Tuvshruulekh  0.3  − 2.750 

Bulgan Bayan Agt  0.6  − 1.833  
Bugat  0.5  − 1.784  
Bugerkhangai  0.5  − 1.864  
Khangal  0.6  − 2.903  
Khisih-Undur  0.5  − 1.338  
Khutag Ondor  0.7  − 1.410  
Orkhon 1  0.5  − 2.420  
Selenge  0.6  − 3.270  
Teshig  0.7  − 1.100 

Darkhan-Uul Khongor  0.5  − 1.635 
Dornod Khalkhgol  0.7  − 0.971  

Tsagan Ovoo  0.6  0.000 
Khentii Bayan Adarga  0.6  − 0.936  

Binder  1.0  − 2.200  
Dadal  1.0  − 1.438  
Kherlen  0.5  − 1.338  
Unmnudelger  1.0  − 2.600 

Khuvsgul Erdenebulgan  0.8  − 2.357  
Rashant 0.6  − 1.328 
Tarialan 0.8  − 2.357  

Orkhon Bayan-Undur  0.5  − 1.338  
Jargalant1  0.6  − 3.3 

Selenge Altanbulag  0.6  − 1.053  
Baruunburen  0.5  − 1.904  
Bayangol  0.5  − 1.338  
Eroo  0.7  − 2.357  
Javkhlant  0.5  − 2.115  
Khuder  0.6  − 1.043  
Khushaat  0.5  − 3.173  
Mandal  0.7  − 1.410  
Orkhon  0.6  − 2.221  
Orkhontuul  0.2  − 5.500  
Saikhan  0.6  − 3.270  
Sant  0.5  − 3.270  
Tsaganuur  0.6  − 3.080  
Zuunburen  0.4  − 4.321 

Tuv Argalant  0.5  − 2.538  
Bayankhangai  0.3  − 3.109  
Bayantsogt  0.5  − 2.538  
Ceel  0.2  − 5.500  
Erdenesant  0.5  − 2.567  
Jargalant  0.4  − 3.3  
Sumber  0.2  − 5.500  
Ugtaaltsaidam  0.5  − 1.948  
Baruunturuun  0.6  − 0.936  
Sagil  1.0  − 1.100  
Ulaangom  0.4  − 2.420 

Uvurkhangai Kharkhorin  0.1  − 5.500 
Zavkhan Asgat  0.5  − 1.481  

Tes  0.4  − 0.880 
Uzbekistan Andijan Altinkul  0.6  − 0.660   

Khadjaabad  0.5  1.058  
Pakhtaabad  0.6  0.550  
Ulugnar  0.6  − 1.069 

(continued on next page) 
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Table A2 (continued )  

Region District Average severe drought events Coefficient 

Khorezm Yangiarik  1.1  − 1.185  
Yangibazar  1.1  − 1.100  
Khiva  1.0  − 1.188  
Koshkupir  1.1  − 1.294  
Shavat  1.0  − 1.188 

Samarkand Pakhtachi  0.6  − 0.907  
Pastargom  0.7  0.000  
Payarik  0.5  − 0.839  
Narpay  0.7  0.282  
Zamin  0.8  − 1.764   

Table A3 
Test of Sensitivity to hidden biases Mantel and Haenszel, (1959), test statistics.  

Gamma Q_mh+ Q_mh- p_mh+ p_mh- 

1  2.613  2.613  0.004  0.004 
1.1  2.190  3.045  0.014  0.001 
1.2  1.805  3.440  0.036  0.000 
1.3  1.451  3.808  0.073  0.000 
1.4  1.126  4.151  0.130  0.000 
1.5  0.823  4.475  0.205  0.000 
1.6  0.540  4.780  0.294  0.000 
1.7  0.275  5.071  0.392  0.000 
1.8  0.025  5.348  0.490  0.000 
1.9  − 0.017  5.612  0.507  0.000 
2  0.207  5.866  0.418  0.000  

Country-specific results of Propensity score matching. 

Fig. A1. Propensity score distribution and common support for Kyrgyz sample.   

Table A4 
Test of equality of means of each variable before and after matching, Kyrgyz sample.   

Unmatched 
Sample  

Nearest Neighbour Matching Kernel Matching  

(continued on next page) 
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Table A4 (continued )  

Unmatched 
Sample  

Nearest Neighbour Matching Kernel Matching  

Variable Treated Control Diff. P- 
value 

Treated Control Diff. P- 
value 

Treated Control Diff. P- 
value 

Variable Treated Control Diff. P- 
value 

Treated Control Diff. P- 
value 

Treated Control Diff. P- 
value 

Age  46.01  49.83 − 4.74 ***  46.10  45.82 0.3  46.10  46.07  0.04 
Gender  1.25  1.27 − 0.71  1.26  1.27 − 0.54  1.26  1.27  − 0.43 
Education in agriculture  0.14  0.07 4.08 ***  0.14  0.15 − 0.53  0.14  0.14  0.04 
Extension service attendance  0.17  0.15 0.61  0.17  0.18 − 0.40  0.17  0.19  − 0.60 
Annual farm income  2.37  2.3 1.27  2.37  2.35 0.34  2.37  2.37  0.02 
Agroecological zones  0.87  0.59 10.40 ***  1.12  1.13 − 0.07  1.12  1.13  − 0.18 
Attitude to reliability of online weather 

information  
3.24  3.39 − 2.47***  3.25  3.27 − 0.29  3.25  3.26  − 0.10 

Smartphone ownership  1.00  0.82 9.31***  1.00  1.00 0  1.00  1.00  0.04  

Fig. A2. Propensity score distribution and common support for Mongolian sample.   

Table A5 
Test of equality of means of each variable before and after matching, Mongolian sample.   

Unmatched Sample Nearest Neighbour Matching Kernel Matching 

Variable Treated Control Diff. 
P-value 

Treated Control Diff. 
P- 
value 

Treated Control Diff. P-value 

Age  47.52  49.77 − 1.82 *  47.84  47.74  0.12  47.84  47.83 0 
Gender  1.3  1.28 0.46  1.30  1.30  − 0.20  1.30  1.30 − 0.14 
Education in agriculture  0.33  0.38 − 0.9  0.33  0.29  1.21  0.33  0.33 − 0.06 
Extension service attendance  0.59  0.46 2.43***  0.58  0.62  − 0.98  0.58  0.57 0.23 
Annual farm income  4.15  3.52 3.45***  4.10  4.08  0.21  4.10  4.10 0.03 
Agroecological zones  0.9  0.94 − 1.05  2.92  2.90  1.05  2.92  2.92 0.15 
Attitude to reliability of online weather information  1.73  1.83 − 1.25  1.73  1.84  − 2.46  1.73  1.81 − 1.76* 
Smartphone-ownership (omitted form the 

regression)  
–  – –  –  –  –  –  – –  
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Fig. A3. Propensity score distribution and common support for Uzbek sample.   

Table A6 
Test of equality of means of each variable before and after matching, Uzbek sample.   

Unmatched 
Sample  

Nearest Neighbour Matching Kernel Matching  

Variable Treated Control Diff. P- 
value 

Treated Control Diff. P- 
value 

Treated Control Diff. P- 
value 

Age 45.19 46.92 − 2.61*** 45.20 44.10 2.81*** 45.20 44.43 1.92* 
Gender 1.05 1.05 − 0.2 1.05 1.07 − 1.35 1.05 1.05 0.25 
Education in agriculture 0.49 0.35 3.72*** 0.49 0.48 0.48 0.49 0.48 0.58 
Extension service attendance 0.49 0.54 − 1.25 0.49 0.47 1.16 0.49 0.51 − 0.79 
Annual farm income 5.5 5.68 − 2.70*** 5.53 5.54 − 0.3 5.53 5.59 − 1.30 
Agroecological zones 0.27 0.47 − 5.77*** 2.72 2.72 − 0.05 2.72 2.73 − 0.65 
Attitude to reliability of online weather 

information 
2.14 2.28 − 2.79*** 2.15 2.14 0.41 2.15 2.08 2.4*** 

Smartphone ownership 0.98 0.76 12.89*** 0.98 0.98 0 0.98 0.98 0  
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