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Non-technical summary

Research Question

There is widespread awareness that climate policies might tighten in the future in many

countries. In the European Union, Member States are negotiating on the terms of the

European Green Deal. In the United States, a federal price has not yet been put on

carbon emissions yet, but could be adopted. At the same time, climate politics has

often been characterized by reversals. In the US, this is exemplified by the temporary

exit from the Paris Agreement or the Supreme Court’s ruling in the case West Virginia

vs. Environmental Protection Agency (EPA), which limits the EPA’s options to regulate

greenhouse gas emissions. In the EU, the energy crisis in the wake of the Russian invasion

of Ukraine has created additional risks to the ambitious climate policy agenda. This raises

the question: What are the economic consequences of climate policy uncertainty?

Contribution

We investigate how climate policy uncertainty affects capital reallocation across broad

sectors of the economy and study the role of the financial channel. For our theoretical

contribution, we build a dynamic structural model with two production sectors (“green”

and “dirty”) that differ in their energy intensity of production and thus in the amount of

carbon emissions they create. The model features various climate policies such as carbon

taxes and financial regulations – whose future path is uncertain – as well as financial

frictions. In our empirical contribution, we test the predictions of the theoretical model by

employing a news article-based measure of climate policy uncertainty to identify climate

policy uncertainty shocks and investigate their consequences for investment and market

valuation in a panel of listed US firms.

Results

Our model predicts that climate policy uncertainty shocks (i) lower the market value of

the “dirty” sector relative to the “green” sector and (ii) reduce real investment and the

capital stock in the “dirty” sector, while real investment in the “green” sector tends to

increase. In line with the predictions from the theoretical model, we find that in response

to empirical CPU shocks (i) financial markets substantially mark down strongly carbon-

emitting listed US firms relative to firms with low carbon emissions, and (ii) substantial

investment reallocation takes place, in particular from the manufacturing sector towards

services.



Nichttechnische Zusammenfassung

Fragestellung

Die Möglichkeit einer künftigen Verschärfung der Klimapolitik in vielen Ländern ist ein

vielbeachtetes Thema. In der EU verhandeln die Mitgliedstaaten die Ausgestaltung des

Europäischen Green Deals. In den USA gibt es zwar noch keinen bundesweiten CO2-Preis,

er könnte aber eingeführt werden. Gleichzeitig war Klimapolitik in der Vergangenheit oft

von Kehrtwenden charakterisiert. Beispiele dafür sind der vorrübergehende Ausstieg der

USA aus dem Pariser Klimaabkommen oder das Urteil des Obersten Gerichtshofes der

USA, welches die Möglichkeit der US-Umweltschutzbehörde einschränkte, Treibhausga-

semissionen zu regulieren. Für die klimapolitische Agenda der EU erwachsen aus der

Energiekrise im Zuge der russischen Invasion der Ukraine neue Risiken. Es stellt sich die

Frage, welche ökonomischen Konsequenzen die Unsicherheit über die Klimapolitik hat.

Beitrag

Wir untersuchen die Effekte klimapolitischer Unsicherheit auf die Kapitalallokation zwi-

schen breiten Wirtschaftssektoren sowie die Rolle des Finanzkanals. Als theoretischen

Beitrag erstellen wir ein Modell mit zwei Produktionssektoren (
”
grün“ und

”
schmutzig“),

die sich durch ihre Energieintensität und damit durch ihren CO2-Ausstoß unterscheiden.

Das Modell bildet mehrere klimapolitische Instrumente ab, wie CO2-Emissionssteuern

und Finanzregulierungen – deren zukünftige Ausgestaltung unsicher ist – sowie Finanz-

friktionen. Als empirischen Beitrag testen wir die theoretischen Vorhersagen. Dazu ver-

wenden wir ein auf Zeitungsartikeln basierendes Maß für klimapolitische Unsicherheit,

um klimapolitische Unsicherheitsschocks zu identifizieren und untersuchen ihren Effekt

auf Marktkapitalisierung und Investitionen in einem Panel börsennotierter US-Firmen.

Ergebnisse

Unsere Modellanalyse ergibt, dass klimapolitische Unsicherheitsschocks (CPU-Schocks)

(i) den Marktwert der Firmen im
”
schmutzigen“ Sektor relativ zu denen im

”
grünen“

Sektor senken und (ii) die realen Investitionen im
”
schmutzigen“ Sektor mindern, wohin-

gegen Investitionen im
”
grünen“ Sektor dazu tendieren zu steigen. Im Einklang mit den

Aussagen des theoretischen Modells finden wir, dass empirische CPU-Schocks (i) zu einem

merklichen Verlust des Börsenwerts
”
schmutziger“ US-Firmen relativ zu

”
grünen“ Fir-

men führen, sowie (ii) zu einer bedeutenden Reallokation von Investitionen, insbesondere

weg vom Verarbeitenden Gewerbe und hin zum Dienstleistungssektor.
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the data, we employ a news article-based measure of climate policy uncertainty to
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United States. In line with the predictions from the theoretical model, we find that

in response to CPU shocks (i) financial markets markedly revalue strongly carbon-
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1 Introduction

There is widespread awareness that climate policies might tighten in the future in many

countries. In the European Union, Member States are negotiating on the terms of the

European Green Deal. In the United States, a federal price has not yet been put on

carbon emissions, but could be adopted. At the same time, climate politics has often

been characterized by reversals. In the US, this is exemplified by the temporary exit

from the Paris Agreement or the Supreme Court’s ruling in the case West Virginia vs.

Environmental Protection Agency (EPA), which limits the EPA’s options to regulate

greenhouse gas emissions. In the EU, the energy crisis in the wake of the Russian invasion

of Ukraine has created additional risks to the ambitious climate policy agenda. This raises

the question: What are the economic consequences of climate policy uncertainty?

In this paper, we study the effects of climate policy uncertainty (CPU) shocks. For

this purpose, in the first part of the paper, we develop a dynamic stochastic general equi-

librium model. To allow us investigate the allocation effects of climate policy uncertainty

within the economy, we incorporate two broad production sectors. The two sectors differ

in their energy intensity of production. In our analysis, we assume that the energy in-

tensity of production is closely linked to its associated carbon emissions. Hence, we label

the sector with the lower energy intensity “green” and the other one “dirty”.

As climate policy comes in many guises, it is not straightforward to derive general

statements on the effects of climate policy uncertainty. We meet this challenge by con-

sidering various policy tools in the model that can be used for the purpose of climate

policy. The first one, a tax on energy use, is akin to a price on carbon emissions. Sec-

ondly, we consider financial regulations concerning assets associated with high-emission

industries. Climate-related risk provisions or investors’ efforts to decarbonize their port-

folios can affect the pledgeability of assets of dirty industries and hence their financing

costs. Thirdly, we consider a tax on final goods that require, for their production, a large

amount of carbon emissions. This represents a simplified form of capturing policies that

aim to discourage the use of emission-intensive goods. Formally, we model these policy

tools as exogenous processes and CPU shocks as shocks to the standard deviation of these

processes.

The main result of the theoretical analysis is that climate policy uncertainty triggers

a reallocation of capital from dirty firms to green ones. All CPU shocks considered in

the model (i) lower the market value of the more carbon-intensive sector relative to the

less carbon-intensive one, and (ii) reduce real investment and the capital stock in the

highly carbon-intensive sector. At the same time, in some settings CPU shocks trigger

investments and raise the capital stock in the less carbon-intensive sector. Whereas the
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model predicts significant consequences for the reallocation of capital, the effects of CPU

shocks to economy-wide aggregates – such as consumption and GDP – are far more

moderate.

Central to the reallocation of capital in the model are balance sheet-constrained fi-

nancial institutions, which are modeled in the vein of Gertler and Karadi (2013). These

institutions finance the capital stock of non-financial firms. In the face of increased cli-

mate policy uncertainty, they shift their portfolio towards green assets. CPU shocks to

the tax rates on energy or on products with high carbon-emission requirements translate

into uncertainty regarding the marginal revenue product of capital in the high-emission

industry and hence into uncertainty regarding the return on its assets; the third type of

CPU shock directly affects the pledgeability of the assets of the dirty industry. Conse-

quently, in the face of a positive CPU shock, financial institutions demand a climate risk

premium on assets from the high-emission industry and the market value of dirty assets

relative to green assets declines.

CPU shocks not only cause divestment in the dirty sector: they can also raise invest-

ment in the green sector and boost the market value of green assets. This is a particularly

robust finding for uncertainty shocks to the collateral value of dirty assets held by finan-

cial institutions. This type of shock affects households and firms only indirectly and

only mildly dampens economic activity. Thus, rather than shrinking the balance sheet

of financial institutions, this shock redirects the funds divested from dirty industries into

green assets, funding an increase in real investment in the low-emission sector.

To apply the theoretical predictions to the data, we identify CPU shocks using a news

article-based measure of climate policy uncertainty for the United States (Gavriilidis

2021) and investigate the effects of empirical CPU shocks on publicly listed US firms in

sectors with different carbon-intensities. Our empirical analysis confirms the predictions

of the model. Empirical CPU shocks trigger a relative decline in the average market value

of firms in industries that are responsible for a larger amount of carbon emissions, while

greener sectors gain. Furthermore, we find that real investment increases in green sectors

and falls in dirty ones in response to CPU shocks.

More specifically, we identify CPU shocks by orthogonalizing the measure for climate

policy uncertainty with respect to US economic policy uncertainty (Baker, Bloom and

Davis 2016), crude oil and natural gas spot prices, as well as macroeconomic and financial

uncertainty (Jurado, Ludvigson and Ng 2015). The extracted shocks correspond well to

anecdotal episodes in the sample. For instance, shocks are largely positive during the

global climate strike in 2019. To zero in on capital reallocation across firms we use US

firm-level data. We focus on firms that are characterized as downstream emitters of
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carbon in the sense that they do not necessarily emit carbon only directly but especially

indirectly via very carbon-intensive inputs. In other words, while we exclude coke and

petroleum production, mining, and utilities from the sample, we explicitly account for

upstream inputs sourced from those sectors (for instance, by sectors such as services,

manufacturing, construction, retail trade, etc.). Thus, in order to characterize sectors

by their full carbon emission requirement per unit of output, one needs to account for

domestic and international input-output linkages. For this purpose we employ the World

Input-Output Database and the corresponding environmental accounts.

To investigate capital reallocation between sectors, we split firms into five groups

that are ordered by the carbon emissions they require. We find that – in line with

the predictions from the theoretical model – in response to CPU shocks (i) financial

markets revalue heavily carbon-emitting firms relative to firms with low carbon emission

requirements. Whereas in the group of the 20% of firms with the highest carbon emission

requirements a firm faces a 2% market valuation loss, in the group of the 20% of firms

with the lowest carbon emission requirements firms face a roughly 2% gain in market

valuation (expressed relative to an average firm in the market and as the average effect in

the current and following quarter of the shock). (ii) In response to the financial market

revaluation, firms adjust their real investment decisions. Whereas in the quintile of the

highest emitters a firm decreases – relative to an average firm in the market – its quarterly

net investment by almost USD 2 million (constant 2019) in response to a CPU shock,

a firm in the low-emission quintile increases investment by roughly USD 1.5 million.

Overall, the empirical findings confirm the theoretical predictions of substantial capital

reallocation toward less carbon-intensive industries – in practice, particularly from the

manufacturing sector towards services.

Overall the empirical analysis confirms the model predictions that CPU shocks trigger

a capital reallocation from high-emission to low-emission industries that affects both the

market values of firms and their real investment activity. Our results imply that not

only a higher stringency of climate policies but also greater climate policy uncertainty

can reduce the carbon intensity of aggregate production and trigger green investment,

thereby aiding the decarbonization of an economy.

Related literature Our theoretical analysis is related to the work of Fried, Novan

and Peterman (2022) and Bretschger and Soretz (2022). Fried et al. (2022) analyze the

effect of climate policy transition risk in a multi-sector model and find that climate-

related policy transition risk reduces firms’ investment in fossil capital relative to green

capital and results in decarbonization in the aggregate economy. Our analysis of firms’

investment decisions corroborates this finding in a setting with infinitely-lived agents in
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which we model uncertainty in a more standard fashion as the stochastic volatility of

exogenous policy tools. Bretschger and Soretz (2022) investigate the theoretical effects of

stochastic taxes and subsidies on dirty and green production factors in a one-sector model.

Their results suggest that uncertainty regarding taxation of dirty capital incentivizes

investors to divest from this input factor. We show, in a setting that allows for the

reallocation of resources between sectors, that a similar divestment also takes place even

if the capital of the high-emission industry is not directly the target of climate taxes. We

add to the analysis of both papers by investigating the effects of uncertainty associated

with various different climate policy tools. Importantly, we account for the role of the

financial sector in the transmission of CPU shocks, which is key to our results. This

allows us to provide novel testable predictions regarding market valuation in response to

CPU shocks.

Diluiso, Annicchiarico, Kalkuhl and Minx (2021) and Carattini, Heutel and Melkadze

(2021) discuss climate transition risk in very similar DSGE models to ours, including

financial frictions as in Gertler and Karadi (2011). While they explore the possibility

that macroprudential or monetary policy can mitigate transition risk and stabilize the

economy, our analysis presents policy itself as a potential source of uncertainty.

Our theoretical analysis of the effects of CPU shocks builds on the literature on

uncertainty shocks in DSGE models. This literature was pioneered by Bloom (2009).

Born and Pfeifer (2014) discuss the effects of policy uncertainty and lay out the channels

via which uncertainty can affect investment and consumption in a standard medium-scale

model. Mikkelsen and Poeschl (2019) and Khalil and Strobel (2021) investigate the effect

of uncertainty shocks in models with financial intermediaries.

Our paper also relates to the broader investigation of the effects of climate policy,

which has been an active field in recent years. As a result, many researchers have devel-

oped innovative models that often feature intricate production networks or international

linkages (see e.g. Hassler, Krusell, Olovsson and Reiter (2019); Bukowski and Kowal

(2010); Hinterlang, Martin, Röhe, Stähler and Strobel (2021); Varga, Roeger and in ’t

Veld (2021) and Frankovic (2022)). The literature focuses mainly on the effects of realized

policy changes or long-term transition paths. With the focus on CPU, our contribution

is complementary to this literature. In comparison, we keep the model rather small so as

to be tractable for the higher-order solution required to capture uncertainty shocks, and

to facilitate the discussion of the mechanisms at work in the model.

A small body of empirical literature investigates the effects of climate policy uncer-

tainty. Berestycki, Carattini, Dechezleprêtre and Kruse (2022) develop a news-based

CPU measure for the OECD and show a decrease of real investment by firms in carbon-
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intensive and capital-intensive sectors in response to increasing climate policy uncertainty.

Our empirical work is complementary to theirs. First, we exclude the obviously most

heavy emitters of carbon located in energy and mining sectors or in coke and petroleum

production while we do not exclude services sectors. Our genuine interest is in how firms

in – and reallocation across– broad sectors of the economy – especially services, man-

ufacturing, and construction – are affected. Second, we account for carbon-emissions

embedded in the inputs used for production, such as energy. Furthermore, our focus lies

on the US.1 Despite these differences in design, our investigation comes to the same con-

clusion regarding the investment response of high-polluting firms. In addition, we show

that low-emission firms benefit. Also, we extend the results to the effect of CPU shocks

to the market value of low- and high-emission firms. Bouri, Iqbal and Klein (2022) show

that higher CPU as measured by Gavriilidis (2021) is positively associated with a better

performance of green stocks relative to stocks of dirty companies as captured in selected

exchange traded funds (ETFs). Our empirical analysis focuses on the consequences of

CPU shocks to granular firm-level variables, while Bouri et al. (2022) study the relation

between levels of CPU and prices for ETFs. Our result – that firms in more energy-

intensive industries reduce their investment when CPU rises – is consistent with those

of Hoang (2022), who shows that heavy-emitter US firms reduce their R&D investment

in the face of higher CPU. Noailly, Nowzohour and van den Heuvel (2022) find that a

rise in environmental policy uncertainty is related to lower funding for green technology

startups. This stands in contrast to our finding that higher climate policy uncertainty

raises relative net investment in greener sectors. While Noailly et al. (2022) focus on the

role of environmental policy uncertainty for high-risk green investment, we study the role

of climate policy uncertainty for the reallocation of capital across large firms and broad

sectors of the economy.

2 Climate policy uncertainty in a model of differ-

ently exposed sectors

We analyze the effect of climate political uncertainty in a two-sector model with energy

use and financial frictions. The key difference between the sectors lies in the energy

intensity of their production: dirty industries are more energy-intensive, green ones less

so. In this setting, we consider various avenues for modeling CPU. As a first option,

we capture CPU with taxes, whose future rates are uncertain and which are levied on

1The results of Berestycki et al. (2022) are likely to reflect mostly the effect on European firms as
the Orbis firm-level dataset they use provides a better coverage of European firms than of US firms.
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energy use and – in an alternative specification – on consumption goods produced by the

sector with a higher energy intensity. In addition, we consider the case that uncertainty

regarding climate regulations translates into uncertainty regarding the collateral value of

assets in the dirty industries and hence affects the willingness of financial institutions to

finance capital spending in dirty industries.

2.1 The model

The agents in the model are households, financial intermediaries and two non-financial

firm sectors. The non-financial sectors feature goods producers, retailers and capital

producers. Energy is exogenously provided and used by the goods producers of each

sector as an input factor in production.

2.1.1 Households

The representative household i consumes, supplies labor and saves in bank deposits. The

utility function of the household reads

U = E0

∞∑
t=0

βt

[
(Ci,t − hCi,t−1)

1−σc

1− σc

− χ
(Li,t)

1+σl

1 + σl

]
, (1)

where Ci,t is consumption by household i and Li,t is its supply of labor. Parameter h

governs habit formation in consumption, σc is the coefficient of relative risk aversion, σl

is the inverse of the Frisch elasticity, and β is the discount factor.

The household’s budget constraint is

Ci,t +Di,t = Rt−1Di,t−1 +
Wi,t

Pt

Li,t + Tt, (2)

where Rt is the real interest rate on the household’s bank deposits, Di,t. Wi,t is the

nominal wage set by household i, Pt is the consumer price index, and Ti,t summarizes

the net income from transfers, taxes and firms’ profits. In equilibrium, all households are

identical in their consumption and deposits (∀i : Ci,t = Ct and Di,t = Dt).

βEtΛt+1Rt = 1 (3)

where Λt = λt

λt−1
denotes the households’ stochastic discount factor, and λt = (Ct −

hCt−1)
−σc − βhEt(Ct+1 − hCt)

−σc is the marginal utility of consumption.
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Different types of labor are bundled according to the Dixit-Stiglitz aggregator

Lt =

(ˆ 1

0

(Li,t)
ϵw−1
ϵw di

) ϵw
ϵw−1

, (4)

where Lt is the aggregate labor demand and ϵw is the elasticity of substitution across

differentiated labor inputs within the production of each sector. Across sectors, we assume

that there are no restrictions to labor mobility so that the wage equalizes across sectors.

Lt is used as a factor input by cost-minimizing firms. This implies that household i faces

the labor demand function

Li,t =

(
Wi,t

Wt

)−ϵw

Lt, (5)

where Wt is aggregate wage index,

Wt =

(ˆ 1

0

(Wi,t)
1−ϵwdi

) 1
1−ϵw

. (6)

Households set wages with a markup over their marginal rate of substitution between

consumption and leisure, MRSi,t = χ
(Li,t)

σl

λc,t
. We assume Calvo-type wage setting with a

fixed probability, ζw, so a household cannot update its wage in any given period. These

assumptions result in a standard wage Phillips curve.

2.1.2 Production sectors green and dirty

Firms in the two non-financial sectors (green and dirty, i.e. k ∈ G,D) are comprised

of goods-producing firms, retailers and capital producers. In the baseline model, the

climate policy-related asymmetry between the two sectors lies in their energy use by

goods-producing firms.

Goods-producing firms

Goods-producing firms in sector k act in perfect competition with each other. They

produce output, Y k
p,jt, using energy, Ek

t , as an input in addition to a capital-labor bundle

KLk
t . Their production follows the CES production technology

Y k
p,t =

[
κk(Ek

t )
ι−1
ι + (1− κk)(KLk

t )
ι−1
ι

] ι
ι−1

, (7)

where κk is a weight on the energy use in aggregate output in sector k and ι the elasticity

of substitution between energy and the capital-labor bundle. The capital-labor bundle of
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firms of sector k has a standard Cobb-Douglas form

KLt = Ak
t (K

k
t−1)

αk(Lk
t )

1−αk , (8)

where Kk
t−1 denotes the capital installed at the end of period t−1 and used in production

in period t. Ak
t denotes the sector-specific productivity of this bundle. αk is the output

elasticity with respect to capital goods.

In line with the policy of introducing a tax on carbon emissions, we model a tax on

energy use in production with the tax rate, τ et . Cost minimization by goods-producing

firms gives rise to their energy demand condition

(1 + τ et )PE,t = κkP k
m,t

(
Y k
p,t

Ek
t

) 1
ι

, (9)

where PE,t is the relative price of energy (in terms of domestic consumption) and P k
m,t is

the output price of sector k.

The first order condition for the firms’ labor demand is

Wt =
(1− α)(1− κk)

Lk
t

P k
m,tKL

k
t

ι−1
ι Y k

p,t

1/ι
. (10)

Whereas wages and the price of energy equalize across sectors, capital input is sector-

specific. This gives rise to potentially differing returns on capital, Rk
k,t. We adopt the

assumption by Gertler and Karadi (2011) that goods-producing firms buy capital at the

beginning of the period, and re-sell it after using it in production. The demand for capital

by final goods producers thus depends on the marginal product of capital and variations

in the price of capital

Rk
k,t =

α(1−κk)

Kk
t−1

P k
m,tKL

k
t

ι−1
ι Y k

p,t
1/ι

+ (1− δ)Qk
t

Qk
t−1

(11)

with δ being the depreciation rate and Qk
t being the price of capital.

Capital-producing firms

Capital-producing firms buy the capital used, repair it and build new capital. The new

and refurbished capital is then sold again to final goods producers at the price Qk
t . The

production of capital is subject to investment adjustment costs, which create a dynamic

investment decision for capital goods producers. This setting gives rise to the investment
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Euler equation

Qk
t = 1 + ϕK

(
Ikt
Ikt−1

− 1

)
Ikt
Ikt−1

+
ϕK

2

(
Ikt
Ikt−1

− 1

)2

− βϕKEt

[
Λk

t+1

(
Ikt+1

Ikt
− 1

)(
Ikt+1

Ikt

)2
]
.

(12)

Retailers and the aggregate price level

Goods-producing firms in sector k sell their output goods to sector-k retailers, which

bundle the goods, and sell them as final goods. Retailers are in monopolistic competition

and set their prices with a markup over their marginal costs. They face price rigidities

à la Calvo (1983) with the probability of not being able to reset the price in any given

period denoted by ζ.

Goods market aggregation and carbon emission taxes on final goods

The households’ consumption basket is composed of goods produced in sector G (green),

CG
t and in sector D (dirty), CD

t

Ct =
[
µG(C

G
t )

Θ−1
Θ (1− µG)(C

D
t )

Θ−1
Θ

] Θ
Θ−1

, (13)

where µG is a consumption weight and Θ is the elasticity of substitution between the

different consumption goods types. The corresponding price index reads

Pt =
[
µG(P

G
t )1−Θ(1− µG)((1 + τt)P

D
t )1−Θ

] 1
1−Θ . (14)

Here, τt is a consumption tax on goods produced with a higher energy intensity.

2.1.3 Financial sector

Our model features a balance sheet-constrained banking sector in the vein of Gertler and

Karadi (2013). Banks fund themselves with deposits by households and extend loans to

firms in both sectors – green and dirty – financing their capital stocks. The differences in

climate-related risks give rise to different pledgeabilities (or collateral values) of capital

assets from the green and dirty sector. Additionally, there is the possibility that climate

policy manifests itself in the form of variations in the pledgeability of non-green assets.

More formally, bank j maximizes its value function, Vjt, subject to a balance sheet

constraint and an incentive constraint

Vjt = max
{KG

j,t},{KD
j,t}

βEtΛt+1[(1− θ)Nj,t+1 + θVj,t+1]
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s.t. QG
t K

G
jt +QD

t K
D
jt = Njt +Djt

Vjt ≥ λGQ
G
t K

G
jt + λD,tQ

D
t K

D
jt .

Λt is the stochastic discount factor of households, Nj,t is the bank’s net worth, and

parameter θ is the survival probability of banks. KG
j,t and KD

j,t are claims on the capital

stock of the green and the dirty sector, respectively. QG
t and QD

t are the real prices of

capital of firms in the respective sector. Djt are the deposits. λG and λD,t govern the

divertability of the respective assets for banks. Throughout all exercises in this paper,

we make the assumption that the incentive constraint is always binding.

We consider the notion that uncertainty regarding climate policy can affect the pledge-

ability of assets from the dirty sector. To capture this, we allow for exogenous variations

in λD,t that follow an AR(1) process with stochastic volatility (see section 2.1.5). This

specification captures in particular uncertainty regarding financial regulations on climate-

related risk provisions, as outlined above. It can, however, be interpreted more broadly,

as it also reflects the attempt by investors to decarbonize their portfolio and to avoid

unsustainable assets. This type of climate-related uncertainty can also translate into

uncertainty regarding the pledgeability of dirty assets.

Additionally, the law of motion of net worth is

Njt = (RG
kt −Rt−1)Q

G
t−1K

G
j,t−1 + (RD

kt −Rt−1)Q
D
t−1K

D
j,t−1 +Rt−1Nj,t−1,

where RG
kt and RD

kt are the real returns on capital of firms in sector A, and Rt is the return

on deposits.

To solve for the banks’ optimization problem, we guess that the value function is

linear in capital claims on both sectors and net worth

Vjt = νG
kjtQ

G
t K

G
jt + νD

kjtQ
D
t K

D
jt + νnjtNjt.

As is demonstrated in Appendix B.1, verifying this guess shows that the shadow values

of holding assets and equity are tied to the respective (excess) returns

νG
kjt = βEtΩ

G
j,t+1(R

G
k,t+1 −Rt),

νD
kjt = βEtΩ

G
j,t+1(R

D
k,t+1 −Rt),

νnjt = βEtΩ
G
j,t+1Rt,

where ΩG
j,t ≡ ΛG

t ((1− θ)+ θ(1+µjt)νnjt) is the stochastic discount factor of banks, which

incorporates the households’ stochastic discount factor as well as the limited expected life
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span of banks and the tightness of constraint. For aggregation, we assume an equilibrium

in which all banks are symmetric (i.e. ∀j : νG
kjt = νG

bt , ν
D
kjt = νD

bt , νnjt = νnt,Ω
G
jt = ΩG

t ).

2.1.4 Fiscal and monetary authority

In our modeling of the fiscal sector, we confine ourselves to the aspect of climate-related

taxes on products from the dirty sector and on energy. The revenues generated this way

are distributed to households via a lump-sum tax.2 The budget constraint of the fiscal

authority thus simply reads

τDt PD
t Y D

t + τEt PE
t Et = Tt. (15)

The central bank sets the short-term nominal interest rate following the Taylor-type

rule

Rn,t = (Rn,t−1)
ρ

((
Πt

Π

)ϕπ
(
Yt

Y

)ϕy
)(1−ρ)

, (16)

where Rn,t = RtEt[Πt+1]. Parameter ρ is the degree of interest rate smoothing. ϕπ and

ϕy govern, respectively, the feedback of the policy rule to inflation and output.

2.1.5 Climate policy uncertainty

In our model, we incorporate climate policy uncertainty by modeling taxes, whose future

path is uncertain, and by uncertainty regarding the pledgeability (collateral value) of

assets from companies in the dirty sector.

The tax rates for goods with a relatively large carbon footprint and for energy follow

exogenous auto-regressive processes with stochastic volatility

τDt = ρτDτ
D
t−1 + στD

t ϵτ
D

t , (17)

τ et = ρτeτ
e
t−1 + στe

t ϵτ
e

t . (18)

Parameters ρτD and ρτe govern the persistence of the exogenous tax rate processes. στD

t

and στe

t , which represent the volatilities of the processes, themselves follow exogenous,

stochastic processes

στD

t = ρU,τDσ
τD

t−1 + σU,τDϵU,τ
D

t , (19)

στe

t = ρU,τeσ
τe

t−1 + σU,τeϵU,τ
e

t . (20)

2Redistribution schemes of this kind have been the subject of political debate in Germany, for example
(see e.g. van der Ploeg, Rezai and Tovar Reanos 2022).
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ρU,τD and ρU,τe are persistence parameters, and σU,τD and σU,τe are the standard deviations

of the volatility process.

We assume that ϵτt , ϵ
τe

t , ϵU,τt , and ϵU,τ
e

t are normally distributed. This implies that a

decrease in tax rates is deemed as likely by agents in the model as an increase. In reality,

in the long run, the ongoing change in climate conditions will likely force governments to

tighten their climate policies, rather than to loosen them. Nonetheless, in the recent past,

US climate politics has been characterized by reversals, such as the exit from the Paris

Agreement or the Supreme Court’s ruling in the case West Virginia vs. Environmental

Protection Agency (EPA) that limits the EPA’s power to regulate carbon emissions in

the power sector. With this in mind, we deem the assumption of symmetric up- and

downside risks to be an acceptable simplification for the analysis of short-run dynamics.

In the same way, uncertainty over variations in the collateral value (or pledgeability)

of capital of the dirty sector can be captured by modeling the pledgeability of dirty sector

capital as a time-varying exogenous process (λD
t ) with stochastic volatility (σλ,D

t )

λD
t = ρλλ

D
t−1 + σD

λ,tϵ
λ,D
t , (21)

σD
λ,t = ρσλ

σD
λ,t−1 + ϵσλ,D

t . (22)

This separately modelled shock captures the fact that not only carbon taxes, but also

regulatory changes that directly address the pledgeability of dirty assets on the balance

sheet of banks, may be a source of political uncertainty.

2.2 Calibration

In our stylized setup, we consider the case of equally sized sectors, i.e. µG = 0.5. The

green and dirty sectors differ in their energy intensity in production. In the baseline

calibration, we assume that the green sector is less energy-intensive, with κG = 0.05 and

κD = 0.38. Given a low elasticity of substitution of energy and non-energy inputs in

production of ι = 0.1, and output levels in both sectors that are normalized to 1, this

implies that the steady state cost share of energy in production of the dirty sector is 6.2%

and thus 22 percent higher than in the green sector. The implied energy share for the

aggregate economy is broadly consistent with the calibrated energy share in Hassler et al.

(2019), who set the energy share to 5.5%. Moreover, calibrating the short-run elasticity of

substitution between energy and non-energy inputs in production at close to a rather low

value of around 0.1 is in line with insights from the literature studying the interrelation

between oil markets and the macroeconomy (for a discussion, see e.g. Khalil 2022). The

notion of a very low substitutability of energy and capital/labor inputs is confirmed by

12



Symbol Parameter Value

µG Preference for green goods 0.5
Θ Elast. of substit. between A-goods, B-goods and energy 0.44
κG Share of energy in production in green sector 0.05
κD Share of energy in production in dirty sector 0.38
ι Elast. of substit. between energy and capital-labor bundle 0.1
σc Coefficient of relative risk aversion 2
σl Inverse Frisch elasticity 1
β Discount factor 0.995
h Habit formation 0.8
ϕK Capital adjustment cost 10
α Capital share in cap.-labor bundle 0.36
δ Depreciation rate 0.025
ζ Price Calvo parameter 0.75
ζw Wage Calvo parameter 0.75
ϵ Elasticity of goods demand within sectors 6
ϵw Elasticity of labor demand 6
LEV Leverage rate 10
θ Survival rate of banks 0.95
Rk

b −Rd Spread of G- and D-assets returns over deposit rate 25 bp
ρ Taylor rule: interest rate smoothing 0.8
ϕπ Taylor rule: inflation coefficient 2
ϕy Taylor rule: output coefficient 0.125
ρτ , ρτe , ρλ Persistence of carbon tax shocks 0.99
ρλ Persistence of collateral value shock 0.99
ρστ , ρσe

τ
, ρσλ Persistence of climate policy uncertainty shock 0.95

Table 1: Calibration

Hassler, Krusell and Olovsson (2021). In an estimated model of input-saving technical

change, their posterior mean of this parameter is even lower at 0.02.

We set the households’ elasticity of substitution between green and dirty goods to

Θ = 0.44. This reflects the estimate for the elasticity of substitution between tradables

and non-tradables by Stockman and Tesar (1995). The distinction between tradables and

non-tradables is closely associated with the distinction between manufactured goods and

services (see, e.g. Khalil 2022), which guides our empirical analysis due to the markedly

higher energy intensity of production in the manufacturing sector.

To reflect the fact that changes in taxes and financial regulations are usually designed

to be long-lasting, we set the persistence parameters ρDτ , ρτe , and ρDλ to 0.99. The

persistence parameters of shocks to the standard deviations of the climate-related tax

rates and the pledgeability of dirty assets, ρσD
τ
, ρσe

τ
, and ρσD

λ
are set to 0.95. This matches

the autocorrelation of the news-based CPU measure by Gavriilidis (2021) purged of effects

of a number of control variables.3 In steady state, we set the standard deviation of the

climate tax on products from the dirty sector to 1%. For the standard deviation of the tax

rate on energy use, we opt for 10%. This reflects that CPU is, to a large degree, centered

around questions of energy efficiency, the design of energy markets or the use of fossil

3In particular, we obtain the residuals by regressing the log of the CPU measure on economic policy
uncertainty, macroeconomic and financial uncertainty as well as on gas and oil prices and compute the
autocorrelation of the series of accumulated residuals.
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energy sources. In addition, the price of emission allowances in the EU, which have to

be bought by energy-producing firms has often been rather volatile. We set the standard

deviation of the pledgeability of dirty assets such that CPU shock to the product tax rate

and the CPU shock to the dirty assets’ pledgeability both trigger a decline in the dirty

sector’s capital stock of the same magnitude.

The calibration of the financial parameters is largely guided by Gertler and Karadi

(2011), whose framework we adopt. One exception is the steady state leverage ratio,

LEV . The higher this is, the stronger are the effects of uncertainty shocks, as with a

higher LEV , smaller variations in asset prices can wipe out the financial intermediaries’

net worth. LEV = 10 is higher than the value of 4 chosen by Gertler and Karadi (2011),

but smaller than the average leverage ratio of banks in the US.4 The quarterly steady

state spread of assets over deposits is set to 25 bps.

In the calibration of the rest of the parameters, we largely stick to values commonly

adopted in the literature. For the household sector, we choose a coefficient of relative

risk aversion σc = 2, and an inverse of the Frisch elasticity σl = 1. The discount factor

β = 0.995 implies that the annualized real interest rate on deposits is 2% in steady state.

h = 0.8 implies a persistent habit formation in consumption. ϕK , the parameter governing

investment adjustment costs, is set to 10. Likewise, the elasticity of substitution between

varieties of goods produced in one sector, ϵ = 6, and between varieties of labor, ϵw = 6,

fall within the range of values commonly adopted in the literature. δ = 0.025 and ζ and

ζw denote the probabilities for each firm and each union to adjust their prices or wages,

respectively, in any given period. The value of 0.75 implies an average duration for prices

and wages of one year. The central bank’s Taylor rule features substantial interest rate

smoothing (ρ = 0.8), as usually diagnosed in the context of estimations of structural

models.5 ϕπ = 2 and ϕy = 0.125 are standard values for the feedback coefficients.

2.3 Consequences of climate policy uncertainty shocks

Climate policy can take many different forms. In this section, we discuss the effects of the

different climate policy uncertainty shocks embedded in the model.6 Figure 1 displays

the effects of uncertainty shocks to a tax on products from the dirty sector (red), on the

energy tax rate (black-dotted) and on the collateral value of assets from the dirty sector

(green-dashed). The size of the shock is set to four standard deviations so as to match

4See Board of Governors of the Federal Reserve System (2022).
5See e.g. Smets and Wouters (2007) or, in more recent estimations on US data, Kulish, Morley and

Robinson (2017) or Boehl and Strobel (2020).
6The uncertainty shocks are simulated using the non-linear moving average toolkit by Lan and

Meyer-Gohde (2013).
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Figure 1: Effects of a climate policy uncertainty shock

Note: The figure presents theoretical impulse responses to a shock with the size of 4 standard deviations.
y-axis in percent.

the identified CPU shocks associated with the climate strikes in 2019 (see section 3).

However, as a precise calibration of the standard deviation of climate policy measures in

the model is fraught with difficulties, we focus less on the quantitative implications of

CPU shocks in the model and more on the conceptual insights.

2.3.1 Capital reallocation

One key result of our analysis is that for all types of CPU shocks considered, financial

institutions respond to an increase in climate policy uncertainty by shifting their portfolio

to assets of the green sector. In optimum, financial institutions balance the return on
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assets with the limit that is placed on their asset holdings by the pledgeability parameters,

λG and λD
t , in the incentive constraint. In the case of both carbon taxes, uncertainty

shocks affect the marginal revenue product of capital and translate into uncertainty over

the return on the assets of dirty firms. With the third type of CPU shock, the collateral

value becomes uncertain. As a consequence, in all cases risk-averse banks require a

climate risk premium on the yield of assets from the dirty, energy-intensive industries

and divest from that sector. This lowers the price of dirty assets, reduces lending to

– and investment by – firms in the energy-intensive sector. The market value of green

assets outperforms the value of dirty assets.7

CPU shocks not only cause divestment in the dirty sector; they can also raise in-

vestment in the green sector and boost the market value of green assets. Generally, the

response of green investment is driven by two counteracting types of forces: those that

support a contraction of real investment, and those that support a shift of funds from

the dirty to the green sector. In the case of CPU shocks to climate-related tax rates, the

increase in uncertainty can weigh on aggregate demand as risk-averse households raise

their precautionary savings and hold back on spending. At the same time, firms, which

may not be able to adjust their prices in future periods due to price stickiness, raise

their prices when uncertainty increases in order to lower the probability of being stuck

with a negative markup. These forces dampen firms’ sales and production, reducing their

demand for capital. The CPU shocks to the climate-related tax rates also have a detri-

mental effect on banks’ balance sheets. As the returns, particularly that of dirty assets,

become more uncertain, risk-averse banks place a lower value on their assets. The price

of these assets falls and so does the net worth of banks, forcing them – via the incentive

constraint (Eq. 15) – to further reduce their overall asset holdings. This shrinks their

capacities to fund capital expenditures in the non-financial sectors. On the other hand,

banks that divest from the dirty sector seek to re-invest their funds in the green sector,

thus supporting investment in that sector.

In the case of a positive CPU shock to the collateral value of dirty assets, the portfolio

reallocation towards green asset is predominant. There is no general decline in aggregate

activity and asset prices, and no broad contraction of bank lending to firms. Instead, the

decline in banks’ dirty asset holdings is balanced by an expansion in the holdings of green

assets. The price of green assets increases and even raises the net worth of banks. The

7We provide more details on the effects of CPU shocks to banking sector variables in Appendix B.1.
The reallocation of capital in this model is similar to the international portfolio shift towards relatively
safe US dollar assets due to higher trade policy uncertainty in Khalil and Strobel (2021). In that paper,
the safe asset property of USD assets motivates an ex-ante asymmetry in the pledgeability of USD assets
and non-USD assets. In contrast, the reallocation of capital following CPU shocks in our model is due
to the asymmetric exposure of green and dirty assets to climate policy uncertainty across sectors.
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changed composition on the asset side of banks’ balance sheet is mirrored by an increase

in real investment in the green non-financial sector and a fall in dirty real investment.

Labor input follows the same pattern due to the changes in the marginal productivity

of labor induced by the capital movements. The effect on aggregate consumption, GDP

and inflation is muted.

CPU shocks to climate-related tax rates have a more immediate impact on the com-

position of final goods demand and on the composition of the factors used in production.

Both the uncertainty shocks to the carbon tax rate on dirty products and the uncer-

tainty shocks to the tax on energy use lower aggregate consumption and trigger a decline

in aggregate output. On impact, this lowers the investment response in the green sector.

However, subsequently, the influx of funds from the banking sector lifts investment in

the green sector such that the capital stock sees a marked increase. The reallocation of

labor between sectors follows the reallocation of capital, with labor input in the green

sector rising after a brief initial dip. The decline in consumption lowers the reservation

wage of workers and, in equilibrium, the real wage. However, the standard deviation of

the tax rate on energy use is higher than that of the tax rate on dirty products, and the

uncertainty shock to the latter has a stronger impact on consumption, investment and

prices. The reason is that product taxes directly affect consumer prices and thus the

nominal stochastic discount factor of households, which households, firms and banks use

to price the risk of future income streams. In the case of uncertainty regarding the cost

of the energy input, the effects on consumption are cushioned by internal decisions by

the firm to substitute inputs.

At this point, it is worth highlighting how our results relate to those of other papers

in the literature that investigate the effects of climate transition risk. Previous work

explores the effects of risks that come with gradual adjustment paths of carbon emissions

or an unresolved ambiguity regarding the impositin of a future carbon tax (Diluiso et

al. 2021; Carattini et al. 2021; Fried et al. 2022). In contrast, we model CPU shocks as

second-order shocks, borrowing from the macroeconomic literature on uncertainty shocks

(see e.g. Bloom, 2009) and accounting for channels that have previously been discussed in

this literature, such as precautionary savings, precautionary markups or the role of risk

for asset prices. This choice is motivated by the observation that in the short run, many

climate policy scenarios are possible – including reversals in the stringency of climate

measures.

Fried et al. (2022) also discuss risk associated with climate policy. They find that this

risk of a carbon tax being imposed in the future on fuel lowers the share of dirty capital

in production. In their model, they abstract from financial frictions. We corroborate the
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finding in our model, which relies on financial channels as our main mechanism. The

considerations of financial intermediaries on reducing their holdings of dirty assets that

are exposed to climate policy are essential for our main results, as shown in section 2.3.3.

2.3.2 Macroeconomic consequences

Importantly, while our analysis suggests that climate policy uncertainty can have sizable

reallocation effects between sectors, the consequences for macroeconomic aggregates are

smaller. The decline in GDP is at least one magnitude smaller than the response of

investment at the sectoral level. Likewise, though we simulate shocks that have sizeable

effects on asset values and sectoral investment streams, consumer price inflation only

shows a very weak response. The lower responsiveness of macroeconomic aggregates to

the CPU shock compared to sectoral variables is robust to a removal of the financial

sector from the model.

2.3.3 The role of the financial channel

The presence of balance sheet-constrained lenders is key to capital reallocation from the

dirty to the green sector. First, it allows us to investigate the effects of an uncertain

collateral value of assets from the dirty industries. Second, in the absence of financial

frictions, a CPU shock can even raise investment in the dirty sector.

To illustrate this, Figure 2 depicts the effect of uncertainty shocks to climate tax

rates in a model without financial frictions. For both the CPU shock to the tax on dirty

products and on energy use, investment increases in both sectors in the absence of balance

sheet-constrained financial intermediaries. In the case of the uncertainty shock to the tax

on dirty products, investment rises by more in the dirty sector.

A rising capital stock in the face of increased uncertainty is well known in the litera-

ture and can have different reasons (see e.g. Born and Pfeifer 2014, Caldara, Iacoviello,

Molligo, Prestipino and Raffo 2020). In the case where the utility function of households

is separable into consumption and leisure, an increase in uncertainty that dampens con-

sumption triggers an increase in hours worked via a wealth effect on the labor supply.

The higher labor input in production raises the marginal product of capital, making in-

vestment in the physical capital stock more attractive for firms in both sectors. A second

reason is embedded in the production function of firms, which features predetermined

capital and flexible labor adjustment. Any shock that raises output prices has a direct

positive effect on the marginal revenue product of capital. In addition, firms can expand

their optimal output by flexibly raising their labor input. Thus, their marginal revenue

product of capital rises by more than one to one with the output price, and can be
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Figure 2: Effects of a climate policy uncertainty shock (absent financial frictions)

Note: Results from a model without banks and financial frictions. The figure presents theoretical impulse
responses to a shock with the size of 4 standard deviations. y-axis in percent.

convex in output prices. An increase in the uncertainty of output prices can therefore

make it attractive for firms to expand their capital stock.8 This applies in the case of a

CPU shock to the tax on dirty products, which translates into uncertainty regarding the

output prices of firms in the dirty sector.

Figure 2 shows, for the case of CPU shocks to dirty product taxes, that capital is

reallocated from the green to the dirty sector and that the market value of green assets

falls behind that of dirty assets. Thus, for the transmission of CPU shocks to taxes on

dirty products, financial frictions are an essential element for facilitating the reallocation

8This is called the Oi-Hartmann-Abel effect (Oi, 1961; Hartman, 1972; Abel, 1983).
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of capital towards the green sector that we observe in our empirical analysis.

2.3.4 Sensitivity analysis

Our main results are quite robust, particularly concerning the effects of CPU shocks to

the collateral value of dirty assets. In this section, we very briefly discuss the sensitivity

of our main results to some changes in calibration. More details are provided in Appendix

B.2.

Whereas the effects of CPU shocks to product taxes and to dirty assets’ collateral

value are robust to the changes in the elasticity of substitution between energy and non-

energy inputs in production, the effects of a CPU shock to energy taxes can reverse given

sufficiently high values of ι. In that case, firms – particularly in the energy-intensive dirty

sector – quickly reduce their energy use and increase their capital input instead. Real

investment in the dirty sector rises. Banks finance the transition of the dirty sector to

reduce the exposure of their assets to uncertainty on energy taxes. As a result, funds

in the green sector dry up. Consequently, relative market values of green to dirty assets

and the climate risk premium decrease. However, as mentioned in section 2.2, the notion

that the elasticity of substitution between energy and non-energy inputs can be low in

the short run is rather common.

Whether green investment increases or decreases in absolute terms after a CPU shock,

depends on the calibration of other parameters as well. For instance, given high values for

the substitution elasticity of green and dirty goods in consumption, Θ, consumers shift

their demand towards green goods in the face of CPU shocks in order to avoid uncertainty

regarding their expenditures. This supports production and investment in the green

sector. However, if Θ is sufficiently low, this channel is attenuated and investment in the

green sector falls on impact. Low values for the elasticity of the capital-labor bundle with

respect to capital, α, deepen the decline of aggregate investment for CPU shocks related

to taxes, such that real investment in both sectors can drop on impact. Nonetheless, for

variations in these parameters, the relative increase in green to dirty investment holds.

Similarly, the rise in the market value of green assets over dirty assets and in the climate

risk premium are robust. Lastly, the results are qualitatively robust to changes in κG and

κD, which determine the energy intensiveness of production in the respective sectors.

3 Empirical evidence

We test our theoretical predictions in a firm-level dataset of listed firms in the US based on

the following empirical strategy: First, to identify climate policy uncertainty shocks, we
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extract orthogonalized innovations from a news article-based climate policy uncertainty

measure (Gavriilidis 2021). Second, we categorize firms into green and dirty based on

direct and indirect use of carbon-emitting intermediate inputs (especially energy). The

categorization takes into account domestic and international input-output linkages to

capture all carbon emissions required to produce one unit of a firm’s final goods. Third,

we study heterogeneity across low- and high-emission firms in the impact on firms’ stock

market valuations and real investment decisions in response to climate policy uncertainty

shocks.

3.1 Identifying climate policy uncertainty shocks

In order to identify shocks to uncertainty in US climate policy, we use the monthly

measure of Gavriilidis (2021), who employs the same methodology as Baker et al. (2016).

In particular, Gavriilidis (2021) screens articles of eight leading US newspapers for phrases

indicating uncertainty over policy, legislation, and regulation in the context of climate-

related issues (e.g. global warming, greenhouse, carbon emissions, renewable energy). As

we are interested in shocks to climate policy uncertainty that are unrelated to overall

economic policy uncertainty as well as macroeconomic uncertainty and conditions in

global energy markets, we estimate following regression model

∆ ln cput = β0 + β1∆ ln eput + β2∆ lnuncmacro.
t +

+ β3∆ lnuncfinan.t + β4∆ ln poilt + β5∆ ln pgast + ut, (23)

where cput is climate policy uncertainty, eput is economic policy uncertainty, uncmacro.
t

and uncfinan.t measure macroeconomic and financial uncertainty, and poilt and pgast are

prices for crude oil and natural gas.

We extract climate policy uncertainty shocks cpuϵ
t as the fitted residuals in regression

(23). We use, at a monthly frequency, the economic policy uncertainty index of Baker et

al. (2016) to measure eput. uncmacro.
t and uncfinan.t are measured by the corresponding

estimates of Jurado et al. (2015) and Ludvigson, Ma and Ng (2021). poilt is the spot

price for West Texas Intermediate crude oil and pgast is the natural gas spot price (Henry

Hub).9 As the analysis in section 3.3 is based on quarterly data, we convert the monthly

shock series into a quarterly series by using a simple average.

For data from 2000Q1 to 2021Q4, Figure 3 shows the cumulative impact of climate

9All data sources are described in Appendix C.1. As a robustness exercise – employing the measure
of Engle, Giglio, Kelly, Lee and Stroebel 2020 – we also control for climate policy news, which leads to
a very similar shock series (see Figure D.7 in the Appendix) but has the disadvantage of limited data
availability for the time span under consideration.
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Figure 3: Cumulative effects of climate policy uncertainty shocks to climate policy uncertainty

Note: The series is normalized to start at 1 in 1999Q4.

policy uncertainty shocks to climate policy uncertainty and adds selected events related

to climate policy in the US and globally. The identified CPU shocks resonate quite well

with historically interesting events surrounding the context of US climate policy. For

instance, the beginning of the Bush administration and especially the repudiation of the

Kyoto protocol imposed positive climate policy uncertainty shocks, likely indicating that

the announcements of the Bush administration made the path of US climate policy more

uncertain. In October 2007 – as another example – the “Stern review” was published,

leading to intensified debate over future climate policy around the globe. At the end

of 2015, CPU spiked with the announcement of the Paris agreement, which clarified

global policy goals in terms of greenhouse emission reductions but was less clear on

concrete implications for national and international climate policies. Interestingly, the

first years of the Trump administration are marked by a number of negative climate

policy uncertainty shocks, possibly indicating that the (then more deregulatory) path

of US policy with respect to climate and environmental concerns was not perceived as

uncertain.10 The global climate strikes in 2019, which were unrelated to concrete US

climate policy actions, triggered a large positive shock to CPU.

3.2 Classifying US sectors by their carbon emissions

To categorize firms into “more greenish” and “more dirty” firms in terms of carbon

emissions we employ environmental account estimates of Román, Corsatea, Amores,

Neuwahl, Velázquez Afonso, Rueda-Cantuche, Arto and Lindner (2019) in combination

with the World Input-Output Database (WIOD) (Timmer, Los, Stehrer and de Vries,

10Notwithstanding this, uncertainty on US trade policy increased substantially under the Trump
administration. See Caldara et al. (2020) and Khalil and Strobel (2021).
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2013; Stehrer, de Vries, Los, Dietzenbacher and Timmer, 2014). These datasets allows us

to characterize US sectors by their carbon emission requirements. In particular, because

we have information on domestic and international input-output linkages, the dataset

not only provides carbon intensities – i.e. carbon emissions of a sector per one unit of

gross sector output – but also enables us to infer carbon emission requirements taking

into account that sectors source inputs from other – potentially heavily carbon-emitting

sectors (in particular energy).

More specifically, assume a number ofN countries andM sectors (in particularN = 43

and M = 56 in the most recent WIOD release for the years 2000-2014). In our input-

output framework, we then have

A ∗ x+ c = x, (24)

x = L ∗ c. (25)

where the coefficient matrix A has dimension (NM)×(NM), and the gross output vector

x as well as the final consumption vector c have dimension (NM × 1). In this system,

L = (I − A)−1 is the Leontief inverse with dimension (NM)× (NM).

Given the (NM×1) vector of carbon emissions (in tonnes) in every sector carbonemm,

we obtain the (NM × 1) vector of carbon intensities CO2int – i.e. carbon emitted by

sector i per one unit of output of sector i – as

CO2int = CO2emm ⊘ x, (26)

where ⊘ indicates pair-wise division. It is straightforward to compute a (NM ×1) vector

of carbon emission requirements CO2req – i.e. the total carbon emissions required to

produce one unit of gross output of sector i – as

CO2req = L ∗ CO2′int. (27)

The vector CO2req summarizes carbon emission requirements for all sectors in the N

countries of the WIOD database, but we are ultimate interested only in US sectors.

3.3 Evidence based on firm-level data

In our panel regression we employ quarterly firm-level data for the US, provided by

Compustat. The data set included listed firms and provided balance sheet information.
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Table 2: Descriptive statistics: Compustat dataset averages 2000Q1-2019Q4.

CO2 Req CO2 Int Market Val. Sales Invest. Largest 2-digit NAICS categories

1 0.13 0.01 2660 505 2.1 Information, Wholesale Trade, Professional/Scientific
2 0.20 0.05 2058 544 3.6 Professional/Scientific, Real Estate, Retail Trade
3 0.27 0.06 2453 361 1.7 Manufacturing, Hospitality, Support Services
4 0.42 0.05 2015 245 1.4 Manufacturing, Construction
5 0.79 0.34 2935 499 4.3 Manufacturing (Durables- and Nondurables)

Note: All balance sheet figures are in (const. 2019) USD millions. Carbon emission requirements and intensity are in
tonnes of carbon (per one unit of ouput in const. mil. produced). All measures are group averages.

In our benchmark analysis we exclude sectors with particularly high carbon emissions,

such as utilities, mining, and coke/petroleum production. The main reason is that we

aim to focus on capital reallocation across broad economic sectors (such as services,

manufacturing, construction) that emit carbon especially indirectly by sourcing energy.

Moreover, we exclude financial services to avoid spurious results in assessing the financial

channel at the firm level.

We match each firm in the dataset with the categorization of carbon emission require-

ments at the sector level from equation (27). If a company belongs to more than one

sector, we take simple averages. We restrict the start of the panel to 2000Q1 (given the

availability of our CPU measure) and the end to 2019Q4 (before the Covid-19 pandemic).

We order all firms according to the average total carbon emission requirement (per one

unit of output) of their sector to obtain five categories of GreenCat.

Table 2 shows that the five groups differ substantially in their required carbon emis-

sions. While the group with the lowest emissions takes a value of 0.13 tonnes of carbon

per USD 1 million of output produced, the largest emitters require 0.79 tonnes. Moreover,

the table shows that carbon emissions are heavily tilted towards manufacturing, whereas

services require relatively little emissions.

For other firm characteristics, the five groups do not vary that substantially. For

instance, the groups are similar in terms of average market value and sales – despite

some differences, such as lower sales in group 3 and 4 compared to group 1, 2 and 5.

With regard to investment the statistics are more mixed. Investment is lowest on average

in group 4, indicating that investment is not necessarily tilted towards the sectors with

higher emissions.

To gauge the impact of climate policy uncertainty on capital reallocation, we estimate

the following panel regression

xi,t = κi +

t−(T−1)∑
l=t

βa,lcpu
ε
l +

t−(T−1)∑
l=t

βb,lcpu
ε
l ∗GreenCati + vi,t, (28)

where xi,t is – measured in deviations from a common path of all firms (business cycle)
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– (1) the log of the current market value of a firm i or (2) net investment (in const.

2019 USD millions) of a firm i. The market value of a firm is measured as outstanding

shares times market price of the share, while net investment is measured as the change

in the reported value of a company’s property, plant, and equipment normalized by the

implicit price deflator of US gross private domestic investment (provided by the Bureau of

Economic Analysis). vi,t is an i.i.d. error term and κi captures firm-fixed effects. We set

T = 2. GreenCati is the firm’s category in terms of total carbon emission requirements,

as described above.

Regression (28) directly maps to the theoretical predictions of section 2.3. Thus, our

empirical hypothesis is that (i) CPU shocks lower the market value of the more carbon-

intensive sector relative to the less carbon-intensive sector and (ii) CPU shocks lower

real investment of the more carbon-intensive sector relative to the less carbon-intensive

sector.

3.4 Results

Figure 4 plots the results for the response of firms’ market value to increasing climate

policy uncertainty for different levels of carbon emissions. Note that carbon emissions

capture direct emissions and indirect emissions caused by input-output linkages. Firms

are categorized into five groups (GreenCat), where 1 indicates the low-emission firms

and 5 the high-emission firms. For each group Figure 4 shows the marginal effect of an

identified CPU shock (expressed as the average effect in the current and following quarter

of the shock).

The results indicate that climate policy uncertainty shocks induce substantial firm

revaluation in the face of climate policy uncertainty shocks. While an average firm in the

group of the 20% of firms with the highest carbon emission requirements in the sample

faces a roughly 2% market valuation loss in response to an average CPU shock, an average

firm in the group of 20% of firms with the lowest carbon emission requirements faces an

average 2% gain in market value. This indicates that especially services sector firms gain

in market value while especially highly-emitting manufacturing firms are devalued.

In response to CPU shocks that affect firms’ valuation, firms also adjust their real

investment decisions. Figure 5 shows the response of net investment to climate policy

uncertainty shocks across differently emitting firms. While an average firm in the group

of firms with the highest carbon emission requirements lowers its quarterly net investment

by around USD 1.5 million (constant 2019) USD in response to a CPU shock, an average

firm in the quintile with the lowest carbon emission requirements increases investment

by almost USD 2 million.
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Figure 4: Current market value response to climate policy uncertainty shocks for different levels of required carbon
emissions
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Note: 1 represents low carbon-emission requirements while 5 represents high carbon-emission require-
ments. Confidence intervals at the 90%-level. Expressed as the average effect in the current and following
quarter of the shock. Sample period: 2000Q1-2019Q4. # of firms=11,445. # of observations: 349,214.

Figure 5: Net investment response to climate policy uncertainty shocks for different levels of required carbon emissions
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net investment above USD 500 million are excluded from the sample. # of firms=10,394. # of observa-
tions: 331,454.
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These results are important as they indicate that there is substantial reallocation

within the economy, especially from the manufacturing sectors, which are more strongly

represented in the high-emission groups, towards the services sectors. Moreover, the find-

ings suggest decarbonization of the aggregate economy under climate policy uncertainty

as production factors are reallocated to the cleaner sectors of the economy.

3.4.1 The response of aggregate consumption, investment and GDP to cli-

mate policy uncertainty shocks

Our theoretical exercise highlights that the consequences of CPU shocks for the realloca-

tion of capital are substantial – which is confirmed in the empirical exercise – but that the

effects of CPU shocks to economy-wide aggregates are far more moderate. As a sanity

check for our theoretical exercise, it is instructive to see how climate policy uncertainty

shocks affect consumption, investment and GDP in the data. In particular, we estimate

xt = κ+ xt−1 +

t−(T−1)∑
l=t

βlcpu
ε
l + γt + vt, (29)

where xt is (i) aggregate real consumption (in logs), (ii) aggregate real investment (in

logs), or (iii) real GDP (in logs). vt is an i.i.d error term and κ a constant. We set T = 2.

γt is a vector of controls that includes, in the case of regression (i), current and lagged

values of aggregate investment and aggregate profits (both in logs), and, in the case of

regression (ii), current and lagged values of aggregate consumption and aggregate profits

(both in logs). We estimate separate regressions excluding and including the control

vector γt. To avoid spurious results we exclude the Great Recession period (2008 Q3 to

2009 Q4).11 Figure 6 shows the results. Each chart reports the average of the effects in

the current and following quarter of the shock.

In line with the theoretical predictions, we find small responses of consumption, in-

vestment and GDP. The responses of investment and GDP are in fact not different from

zero. In the specification including controls, we find a statistically significant negative

consumption response.

11In the benchmark firm-level analysis we did not exclude the Great Recession observations. In the
panel estimation this is less of an issue as the left-hand-side observation is measured in deviation from an
average firm. This accounts for fluctuations in the business cycle more generally. However, we repeated
the firm-level regressions excluding the observations from 2008 Q3 until 2009 Q2 and obtain very similar
results compared to the benchmark (see Appendix D).
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Figure 6: Responses of aggregate consumption, investment and GDP to climate policy uncertainty shocks
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Note: Average response (first two quarters) of US real consumption, US real investment, and US real
GDP to a climate policy uncertainty shock. Confidence intervals at the 90% level. “w. contr.” indicates
that control variables (other than lagged dependent variables) are included. Sample period: 2000Q1-
2019Q4. Excluding left-hand-side observations from 2008Q3 to 2009Q2.

3.4.2 Controlling for climate-related first-moment shocks

As a robustness check we run a similar regression as (28), but instead of categorizing

firms into five groups we directly include the sector-specific required carbon emissions in

the regressions. Moreover, we add a measure of climate policy news (Engle et al. 2020) –

in first differences of logs – to additionally control for shifts in climate policy news. This

measure aims at capturing climate news, for instance related to weather events (such

as floods, hurricanes or droughts), planet-wide consequences of global warming (such as

higher sea levels), and coverage about regulations. Although it implicitly aims at captur-

ing changes in climate-related risk, one can interpret these shocks as first-moment shocks,

as the knowledge (or the news) about consequences of climate change and/or climate poli-

cies increases. At minimum, including the measure allows us to control for the possibility

that our innovations capturing climate policy uncertainty shocks are contaminated by

climate-related news.12

12In Appendix D we also demonstrate that our extracted CPU shock series remains very similar when
we additionally include the measure of Engle et al. (2020) in the orthogonalization procedure.
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Table 3: Controlling for first-moment effects of climate-related events

Net investment:

CPU (1) Climate change news (2)

carbon em. req. -2.83** 11.28***
(-2.36) (4.08)

N 299551 299551

Market value:

CPU (1) Climate change news(2)

carbon em. req. -3.51* 3.92
(-2.16) (-1.26)

N 296970 296970

Note: t statistics in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 3 reports the results. The evidence hints at important differences in the trans-

mission of climate policy uncertainty and climate policy news. The results for the response

of climate policy uncertainty remain robust and are similar compared to the findings dis-

cussed above. The coefficient of net investment for climate policy news is – in contrast

to the sign of policy uncertainty shocks – significantly positive. This suggests that actual

climate-related news raises investment in the high-emission sectors. This can be related

to actual disruptions to physical capital due to climate-related events. It could also be

the case that climate-related news leads to energy-efficient or low-emission investment in

the dirtier sectors of the economy. Our approach does not allow us to distinguish be-

tween green investment and dirty investment within sectors. Thus, we cannot interpret

the implications of this finding for decarbonization.

4 Conclusion

This paper argues that an increase in climate policy uncertainty triggers a reallocation

of capital from carbon-intensive industries to industries with a lower carbon intensity

in their production. We consider various forms of modeling CPU shocks and cast them

in a dynamic general equilibrium model. In this setting, we show that an increase in

climate policy uncertainty favors the market value of green over dirty assets, lowers real

investment by firms in carbon-intensive industries and tends to raise real investment

by green firms. The key mechanism in our model relies on the notion that financial

institutions seek to avoid uncertainty. Thus, as a consequence of CPU shocks, they have

a motive to divest from dirty industries and to invest in green industries.
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To test the theoretical prediction of the model, we sort US industries by the carbon

emission-content of their products, accounting for the carbon intensity of their upstream

industries. We show that identified CPU shocks reduce the average market value of

firms in industries with a higher carbon intensity in production and lowers their physical

investment. This mostly affects manufacturing sectors. At the same time, we show

that real investment activity and the market value of green industries profit from higher

climate policy uncertainty.

Our analysis suggests that not only realized climate policy measures benefit the envi-

ronment. Also the mere uncertainty surrounding future climate policies reduces carbon

emissions by scaring investors out of investments in carbon-intensive industries.
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A Appendix to the theoretical model

A.1 Financial sector

The banking sector is modeled in the vein of Gertler and Karadi (2013). Banks fund

themselves with deposits by households and extend loans to firms in both the green and

the dirty sector to finance their capital stock. Bank j maximizes its value function, Vjt,

subject to a balance sheet constraint and an incentive constraint

Vjt = max
{KG

j,t},{KD
j,t}

βEtΛt+1[(1− θ)Nj,t+1 + θVj,t+1]

s.t. QG
t K

G
jt +QD

t K
D
jt = Njt +Djt

Vjt ≥ λGQ
G
t K

G
jt + λD,tQ

D
t K

D
jt .

Λt is the stochastic discount factor of households, Nj,t is bank j’s net worth, and parameter

θ is the survival probability of banks. KG
j,t and KD

j,t are claims on the capital stock of

the green and the dirty sector, respectively. QG
t and QD

t are the real prices of capital

of firms in the respective sector. Djt are the deposits. Parameters λG and λD,t govern

the divertability of the respective assets for banks.13 We consider possible time-variation

in the latter to allow for uncertainty about λD,t. Additionally, the law of motion of net

worth is

Njt = (RG
kt −Rt−1)Q

G
t−1K

G
j,t−1 + (RD

kt −Rt−1)Q
D
t−1K

D
j,t−1 +Rt−1Nj,t−1,

where RG
kt and RD

kt are the real returns on capital of firms in sector A, and Rt is the return

of deposits.

Guessing that the value function is linear in capital claims on both sectors and net

worth yields

Vjt = νG
kjtQ

G
t K

G
jt + νD

kjtQ
D
t K

D
jt + νnjtNjt.

The Lagrangian function for the optimization problem of the bank reads

L = (1 + µjt)(ν
G
kjtQ

G
t K

G
jt + νD

kjtQ
D
t K

D
jt + νnjtNjt)− µjt(λGQ

G
t K

G
jt + λD,tQ

D
t K

D
jt )

13Throughout all exercises in this paper, we make the assumption that the incentive constraint is
always binding.
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Hence, the first order conditions for holdings of domestic and foreign bonds as well as for

the Lagrangian multiplier, µjt, are

νG
kjt = λG

µjt

1 + µjt

νD
kjt = λD,t

µjt

1 + µjt

νG
kjtQ

G
t K

G
jt + νD

kjtQ
D
t K

D
jt + νnjtNjt = λGQ

G
t K

G
jt + λD,tQ

D
b,tK

D
jt

The demand for domestic bonds by domestic banks can be obtained by rearranging

the incentive constraint

QG
t K

G
jt =

νD
kjt − λD

λG − νG
kjt

QD
t K

D
jt +

νnjt
λG − νG

kjt

Njt

The value function can be written solely as a function of Njt by substituting out the

assets using the foregoing equation

Vjt =νG
kjtQ

G
t K

G
jt + νD

kjtQ
D
t K

D
jt + νnjtNjt

⇔Vjt =

[
νG
kjt

νD
kjt − λD,t

λG − νG
kjt

+ νD
kjt

]
QD

t K
D
jt +

[
νG
kjt

νnjt
λG − νG

kjt

+ νnjt

]
Njt

⇔Vjt =

[
νG
kjt

νnjt
λG − νG

kjt

+ νnjt

]
Njt

⇔Vjt =

[
λGνnjt

λG − νG
kjt

]
Njt

⇔Vjt =

[
λGνnjt

λG − λG
µjt

1+µjt

]
Njt

⇔Vjt =(1 + µjt)νnjtNjt

Defining Ωj,t ≡ Λt((1− θ)+ θ(1+µjt)νnjt), plugging this expression of the value function
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into the Bellman equation, and using the law of motion of net worth yields

Vjt = νG
kjtQ

G
t K

G
jt + νD

kjtQ
D
t K

D
jt + νnjtNjt

= βEtΛt+1[(1− θ)Nj,t+1 + θVj,t+1]

= βEtΛt+1[(1− θ)Nj,t+1 + θ(1 + µj,t+1)νnj,t+1Nj,t+1]

= βEt[Ωt+1((R
G
k,t+1 −Rt)Q

G
t K

G
j,t + (RD

k,t+1 −Rt)Q
D
t K

D
j,t +RtNj,t)].

Applying the method of undetermined coefficients results in

νG
kjt = βEtΩj,t+1(R

G
k,t+1 −Rt),

νD
kjt = βEtΩj,t+1(R

G
k,t+1 −Rt),

νnjt = βEtΩj,t+1Rt.

For aggregation, we assume an equilibrium in which all banks are symmetric (i.e. ∀j :

νG
kjt = νG

kt, ν
D
kjt = νD

kt, νnjt = νnt,Ω
A
jt = ΩA

t ).

A.2 The full set of model equations

A.2.1 Households

1 = βEt[
it

Πt+1
Λt+1] (A.1)

Λt =
λt

λt−1
(A.2)

λt = (Ct − hCt−1)
−σc − βh(Et[Ct+1]− hCt)

−σc (A.3)

it is the short-term nominal interest rate set by the central bank, Πt consumer price

inflation, and βΛt the stochastic discount factor of households. λt is the marginal utility

of consumption, with h and σc being the degree of habit formation and the coefficient of

relative risk aversion.
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A.2.2 Wage setting

Optimal wage setting implies the following first order conditions

1 = ϵw
ϵw−1

Z1w,t

Z2w,t
(A.4)

Z1w,t =
(

Wt

W ∗
t

)ϵw(1+σl)

χ (Lt)1+σl

λt
+ βζwEt

[(
W ∗

t+1

W ∗
t
Πt+1

)ϵw(1+σl)

Z1w,t+1

]
(A.5)

Z2w,t = (W ∗
t )

1−ϵw(Wt)
ϵwLt + βζwEt

[(
W ∗

t+1

W ∗
t
Πt+1

)ϵw−1

Z2w,t+1

]
(A.6)

Wt is the real wage and W ∗
t is the optimal real wage. Z1w,t and Z2w,t are auxiliary

variables, which allow for a recursive formulation of the wage Phillips curve. ϵw is the

elasticity of substitution between varieties of labor, χ the weight on the disutility of labor

in the households’ preferences, σl the inverse of the Frisch elasticity, and ζw the probability

that a union updates its price in any given period. The dynamics of the aggregate wage

index and wage dispersion, ∆w,t, are captured by

1 = ζw

(
Wt

Wt−1
Πt

)ϵw−1

+ (1− ζw)
(

Wt

W ∗
t

)ϵw−1

(A.7)

∆w,t = ζw∆w,t−1

(
Wt

Wt−1
Πt

)ϵw
+ (1− ζw)

(
W ∗

t

Wt

)−ϵw
(A.8)

Lt = Lf,t∆w,t (A.9)

Lf,t = LA
f,t + LB

f,t. (A.10)

Lt is the labor supplied by households. LA
f,t and LB

f,t are the amounts of labor employed

by firms in sectors A and B. Lt and Lft differ due to wage dispersion.

A.2.3 Production, price setting, capital goods and goods market clearing

Goods-producing firms in the green and dirty sector (sectors G and D) produce their out-

put, Y k
p,jt, using energy, E

k
t , and a capital-labor bundle KLk

p,t, as inputs. Their production

follows the CES production technology

Y k
p,t =

[
κk(Ek

t )
ι−1
ι + (1− κk)(KLk

p,t)
ι−1
ι

] ι
ι−1

, (A.11)

κk is the steady-state ratio of energy use in aggregate output in sector k and ι the elasticity

of substitution between energy and the capital-labor bundle. The capital-labor bundle of

firms of sector k has a standard Cobb-Douglas form

KLp,t = Ak
t (K

k
t−1)

αk(Lk
t )

1−αk , (A.12)
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where Kk
t−1 denotes the capital installed at the end of period t−1 and used in production

in period t. Ak
t denotes the sector-specific productivity of this bundle. αk is the output

elasticity with respect to capital goods.

In line with the policy of introducing a tax on carbon emissions, we model a tax on

energy use in production with the tax rate, τ et . Cost minimization by goods-producing

firms gives rise to their energy demand condition

(1 + τ et )PE,t = κkP k
m,t

(
Y k
p,t

Ek
t

) 1
ι

, (A.13)

where PE,t is the relative price of energy (in terms of domestic consumption) and P k
m,t

is the output price of sector k.

The first order condition for the firms’ labor demand is

Wt =
(1− α)(1− κk)

Lk
t

P k
m,tKL

k
p,t

ι−1
ι Y k

p,t

1/ι
, (A.14)

Whereas wages and the price of energy equalize across sectors, capital input is sector-

specific. This gives rise to potentially differing returns to capital, Rk
k,t. We adopt the

assumption by Gertler and Karadi (2011) that goods-producing firms buy capital at the

beginning of the period, and re-sell it after using it in production. Demand for capital

by final goods producers thus depends on the marginal product of capital and variations

in the price of capital

Rk
k,t =

α(1−κk)

Kk
t−1

P k
m,tKL

k
p,t

ι−1
ι Y k

p,t
1/ι

+ (1− δ)Qk
t

Qk
t−1

(A.15)

with δ being the depreciation rate and Qk
t being the price of capital.

Capital-producing firms

Capital-producing firms buy the used capital, repair it and build new capital. The new

and refurbished capital is then sold again to final goods producers at price Qk
t . The

production of capital is subject to investment adjustment costs, which create a dynamic

investment decision for capital goods producers. This setting gives rise to the investment

Euler equation

Qk
t = 1 + ϕK

(
Ikt
Ikt−1

− 1

)
Ikt
Ikt−1

+
ϕK

2

(
Ikt
Ikt−1

− 1

)2

− βϕKEt

[
Λk

t+1

(
Ikt+1

Ikt
− 1

)(
Ikt+1

Ikt

)2
]

(A.16)
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Retailers

Sector-k retailers buy the output of producing firms of their sector at price P k
m,t, which

therefore constitutes the marginal cost of retailers. They are in monopolistic competition

and set their prices with a markup over their marginal costs. They face price rigidities

à la Calvo (1983), with the probability of not being able to reset the price in any given

period being ζ. The first order condition for the optimally set price, P ∗,A
t , can be derived

as

∞∑
l=0

(βζ)lEt

{
λt+l

λt

(
P k
t

P k
t+l

)−ϵ

Y k
p,t+l

[
P ∗,k
t

P k
t+l

− ϵ

ϵ− 1
MCk

t+l

]}
= 0.

Retailers in sector k set their optimal prices according to

p∗,kt = ϵ
ϵ−1

Zk
2,t

Zk
1,t
. (A.17)

Here, p∗,kt is the optimal price relative to the overall price level in a given sector. The

superscript A,A stands for prices related to goods produced in A and sold in A, A,B

for goods produced in A and sold in B, B,A for goods produced in B and sold in A,

and B,B for goods produced in B and sold in B. Z1t and Z2t are auxiliary variables to

facilitate recursive price Phillips curves with Calvo pricing.

Zk
1,t = Y k

p,t + βζEt

{
λt+1

λt

(Πk
t+1)

ϵ−1Zk
1,t+1

}
(A.18)

Zk
2,t = Y k

p,tMCk
t + βζEt

{
λt+1

λt

(Πk
t+1)

ϵZk
2,t+1

}
(A.19)

Πk stand for the rate of change in prices in the respective sectors. ϵ is the elasticity of

substitution between varieties of goods and ζ is the probability that a firm can update

its price in any given period. The dynamics of the inflation rates and the respective price

dispersion measures, ∆k
t , are

1 =(1− ζ)(p∗,kt )1−ϵ + ζ(Πk
t )

ϵ−1 (A.20)

∆k
t =ζ∆k

t−1(Π
k
t )

ϵ + (1− ζ)

(
1− ζ(Πk

t )
ϵ−1

(1− ζ)

) ϵ
ϵ−1

(A.21)

Accounting for price dispersion, the production of final goods in either sector equals the
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demand for these goods

Y k
p,t =Y k

t ∆
k
t . (A.22)

Sector-k output is used for consumption and investment.

Y k
t =Ck

t + Ikt (A.23)

Consumption basket and consumer prices

The households’ consumption basket is composed of energy consumption, EC
t , and core

consumption of goods produced in the green sector, CG
t , and in the dirty sector, CD

t

Ct =
[
κE(EC

t )
Θ−1
Θ + (1− κk)µG(C

G
t )

Θ−1
Θ (1− κk)(1− µG)(C

D
t )

Θ−1
Θ

] Θ
Θ−1

. (A.24)

κE and µG are consumption weights and Θ is the elasticity of substitution between energy

and the different consumption good types. The consumer price index reads

Pt =
[
κE(PE

C,t)
1−Θ + (1− κk)µG(P

G
t )1−Θ(1− κk)(1− µG)((1 + τt)P

D
t )1−Θ

] 1
1−Θ . (A.25)

τt is a consumption tax on goods produced with a higher energy intensity.

Households’ demand for core consumption goods and energy depends on relative

prices.

CG
t =(1− κE)µG(pGt )

−ΘCt (A.26)

CD
t =(1− κE)(1− µG)((1 + τt)p

D
t )

−ΘCt, (A.27)

EC
t =κE((1 + τ et )p

E
C,t)

−ΘCt. (A.28)

The CPI and the development of relative prices are linked via

Πt =ΠG
t

PG
t−1

Pt−1

PG
t

Pt

, (A.29)

Πt =ΠG
t

(1+τt−1)PG
t−1

Pt−1

(1+τt)PG
t

Pt

, (A.30)

Πt =ΠE
C,t

(1+τet−1)P
E
C,t−1

Pt−1

(1+τet )P
E
C,t

Pt

. (A.31)

For simplicity, we assume that energy is provided to firms and households at fixed real
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prices, PE
t = PE and PE

C,t = PE
C .

A.2.4 Financial sector

The banking sector is modeled in the vein of Gertler and Karadi (2011, 2013). Banks

fund themselves with deposits by households and invest in capital assets of both the green

and the dirty sector. The aggregate bank balance sheets read

QG
t K

G
t +QD

t K
D
t = Nt +Dt, (A.32)

where Nt and Dt are the banks’ net worth and their deposits. The banks’ net worth

evolves according to

Nt = (RG
kt −Rd,t−1)Q

G
t−1K

G
t−1 + (RD

kt −Rd,t−1)Q
D
t−1K

D
t−1 +Rd,t−1Nt−1

RG
kt and RD

kt are the real return on capital of the respective sectors. Rdt is the return on

bank deposits.

The bankers’ optimization problem, discussed in the main body of the text, gives rise

to the following first order conditions for optimal asset holdings

νG
kt = λG

µt

1 + µt

, (A.33)

νG
kt = λD,t

µt

1 + µt

, (A.34)

The parameters λG and λD,t govern the divertability of the respective assets for banks. νG
t

and νD
t are the shadow values of the asset holdings for banks. µt is the Lagrangian mul-

tiplier of the incentive constraint. The rearranged first order condition for the multiplier

is

QG
t K

G
t =

νD
kt − λD,t

λG − νG
kt

QD
t K

D
t +

νnt
λG − νG

kt

Nt. (A.35)

νnt is the shadow value for the bank of an additional unit of net worth. The shadow

values of asset holdings and net worth are related to the spreads in the following way

νG
kt = βEtΩt+1(R

G
k,t+1 −Rd,t), (A.36)

νD
kt = βEtΩt+1(R

D
k,t+1 −Rd,t), (A.37)

νnt = βEtΩt+1Rd,t, (A.38)
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where we have defined

Ωt ≡ Λt((1− θ) + θ(1 + µt)νnt). (A.39)

Note that there is a turnover of bankers in the financial sector. Therefore, one can

distinguish between the net worth of new and old bankers, No,t and Nn,t, respectively.

No,t =θ(RG
ktQ

G
t−1K

G
t−1 +RD

ktQ
D
t−1K

D
t−1 −Rd,t−1Dt−1), (A.40)

Nn,t =ω(QG
t−1K

G
t−1 +QD

t−1K
D
t−1). (A.41)

where ω is set such that the initial wealth of banks entering the banking sector offsets

the wealth that exits with banks that leave the sector.

A.2.5 Fiscal and monetary authority

In our modeling of the fiscal sector, we confine ourselves to the aspect of climate related

taxes on products of the dirty sector and on (fossil) energy. The revenues generated in

this way are distributed to households via a lump-sum tax. The budget constraint of the

fiscal authority reads

τBt PB
t Y B

t + τEt PE
t Et = Tt. (A.42)

The central bank sets the short-term nominal interest rate following the Taylor-type

rule

Rn,t = (Rn,t−1)
ρ

((
Πt

Π

)ϕπ
(
Yt

Y

)ϕy
)(1−ρ)

, (A.43)

where Rn,t = RtEt[Πt+1]. Parameter ρ is the degree of interest rate smoothing. ϕπ and

ϕy govern the feedback of the policy rule to inflation and output, respectively.

A.2.6 Climate policy uncertainty

We capture climate policy uncertainty by modeling taxes on energy and dirty goods,

whose future path is uncertain. Tax rates follow exogenous autoregressive processes with

stochastic volatility

τt = ρττt−1 + στ
t ϵ

τ
t , (A.44)

τ et = ρτeτ
e
t−1 + στe

t ϵτ
e

t . (A.45)
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Parameters ρτ and ρτe govern the persistence of the exogenous tax rate processes. στ
t and

στe

t , the volatilities of the processes, themselves follow exogenous, stochastic processes

στ
t = ρU,τσ

τ
t−1 + σU,τϵU,τt , (A.46)

στe

t = ρU,τeσ
τe

t−1 + σU,τeϵU,τ
e

t . (A.47)

ρU,τ and ρU,τe are persistence parameters and σU,τ and σU,τe are the standard deviations

of the volatility process. ϵτt , ϵ
τe

t , ϵU,τt , and ϵU,τ
e

t are normally distributed.

B Further model results

This section contains some additional results of our model analysis.

B.1 Financial sector dynamics

Figure B.1 shows that, after the CPU shock to taxes on dirty products as well as after

CPU shocks to energy taxes, the ensuing uncertainty raises the real deposit rate. Note

that, as shown in the main body of the text, these taxes raise the real deposit rate. With

their funding costs rising, the balance sheet-constrained banks reduce the size of their

balance sheets and sell assets. The price of capital in both sectors declines, reducing the

net worth of banks overproportionally.

The decline in asset prices is amplified via a second important channel through which

uncertainty affects the banking sector. This channel relies on the fact that banks are

owned by households and inherit their risk-aversion. As uncertainty raises the deposit

rate and reduces the net worth of banks via their balance sheet, the value that banks

attribute to an additional unit of net worth, νn,t, increases and so does their stochastic

discount factor, Ωt. Thus, the decline in asset prices following the tax-related CPU

shock causes losses for the banks at times in which banks are in need of more net worth.

Consequently, risk-averse banks place a lower marginal value on their asset holdings (νG
k,t

and νD
k,t), amplifying the decrease in their demand for assets, particularly for assets from

the dirty sector, which carry a higher risk for their portfolio.

In the case of the uncertainty shock to the collateral value of dirty assets, the mecha-

nism is different. Here, banks increase their overall holdings of assets and build up their

net worth. Still, to avoid the uncertainty associated with the dirty assets’ collateral value,

they shift their portfolio towards green assets and reduce their holdings of dirty assets.

This is a setting, in which the bank fares rather well at times in which the stochastic

discount factor declines. Thus, this type of uncertainty also lowers the marginal values
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Figure B.1: Effects of a climate policy uncertainty shock

Note: The figure presents theoretical impulse responses to a shock with the size of 4 standard deviations.
y-axis in percent.
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that risk-averse banks place on their asset holdings.

B.2 Sensitivity analysis

Fried et al. (2022) show that capital flows between sectors in the face of climate transition

risk may change with the substitutability of energy and non-energy inputs in production.

In our case, the main effects of CPU shocks to product taxes on dirty goods and of CPU

shocks to the assets pledgeability are robust to changes in the substitution elasticity, ι.

The effects of CPU shocks to energy taxes, however, are sensitive to this parameter.

The short-run elasticity of substitution between energy and capital/labor inputs in

production, ι, matters for the transmission of CPU shocks to the energy tax rate. In the

Figure B.2: Effects of an uncertainty shock to the tax rate on energy for different values of the elasticity of substitution of
inputs in production

Note: The figure presents theoretical impulse responses to a shock with the size of 4 standard deviations.
y-axis in percent.
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case that it is low – as in the baseline calibration – firms in the dirty sector cannot quickly

reduce their energy use and are stuck with increased uncertainty regarding their cost of

production. In turn, the return on assets in the dirty sector becomes more uncertain,

inducing banks to withdraw their financing. Investment in the dirty sector declines.

However, for sufficiently high values of ι the effects of the CPU shock on the energy

tax reverses. Figure B.2 shows that, for ι = 0.4, firms quickly reduce their energy use. In

turn, firms, particularly those in the energy-intensive dirty sector, increase their demand

for capital. Real investment in the dirty sector rises. Banks finance the transition of the

dirty sector to reduce their assets’ exposure to uncertainty on energy taxes. As a result,

funds in the green sector dry up. Consequently, the relative market value of green to dirty

assets and the climate risk premium decrease. For a high ι, the ensuing dynamics after a

CPU shock to energy taxes can be quite sharp. The precautionary motive of households

and firms to hold back spending or to raise prices become more prominent. This leads to

a stronger fall in consumption and to a stronger increase in inflation than in the case of a

low short-run elasticity of substitution for inputs in production. With CPI rising faster,

the central bank raises its policy rate by more, which weighs more heavily on investment

and consumption than in the baseline case.

Our choice of a low value of ι in the baseline calibration (ι=0.1) is in line with insights

from the literature on the role of oil for the macroeconomy (see e.g. Khalil 2022). The

notion of a very low substitutability of energy and capital/labor inputs is confirmed by

Hassler et al. (2021). In an estimated model of input-saving technical change, their

posterior mean of this parameter is even lower, at 0.02. In addition, the result of our

empirical analysis – which is that climate policy uncertainty shocks result in a reallocation

of real investment from dirty towards green industries – supports the notion that the

calibration of a low ι captures the more relevant case.

For higher values of the elasticity of substitution of green and dirty goods in the

households consumption basket, Θ, the reallocation of capital from the dirty to the green

sector becomes more pronounced. (see Figure B.3, dashed line). As uncertainty hits the

dirty sector and translates into uncertainty about product prices, households allocate their

spending to the less uncertain green goods. With demand concentrated on green goods,

this stimulates investment in the green sector. Conversely, when Θ is lower (crossed line),

this channel is attenuated. This holds for the case of a CPU shock to dirty product taxes

(left-hand panels) as well as for a CPU shock to energy taxes (right-hand panels).

Figure B.4 shows that lower values of the elasticity of the capital-labor bundle with

respect to capital, α, deepen the decline of aggregate investment in the case of both a

CPU shock to dirty product taxes (left-hand panels) and for a CPU shock to energy
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Figure B.3: Effects of climate policy uncertainty shocks: different values of the elasticity of substitution in consumption

Crossed line: Θ = 0.2, dotted line: Θ = 0.44, dashed line: Θ = 0.9. Left panels: Impulse
responses to CPU shock to tax rate of dirty products Right panels: Impulse responses to CPU shock
to tax rate of energy use. Note: The figure presents theoretical impulse responses to a shock with the
size of 4 standard deviations. y-axis in percent.

taxes (right-hand panels). As a consequence, for α = 0.45, investment in the green sector

increases on impact, whereas for α = 0.25 it decreases on impact (though by less than in

the dirty sector) and gradually recovers thereafter.

Figure B.4: Effects of climate policy uncertainty shocks: different values of the output elasticity of capital

Crossed line: α = 0.25, dotted line: α = 0.36, dashed line: α = 0.44. Left-hand panels: Impulse
responses to CPU shock to tax rate of dirty products. Right-hand panels: Impulse responses to CPU
shock to tax rate of energy use. Note: The figure presents theoretical impulse responses to a shock with
the size of 4 standard deviations. y-axis in percent.

Figure B.5 shows that variations in the share of energy used in production in the

green sector, κG, do not change the main results qualitatively. The same holds for κD.

In this figure – as above – we focus on the CPU shocks that are related to taxes. The
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effects of the CPU shock related to the collateral value are not affected by changes in the

parameters discussed.

Figure B.5: Effects of climate policy uncertainty shock: different values of the energy share in production

Crossed line: κG = 0.03, dotted line: κG = 0.05, dashed line: κG = 0.1. Left-hand panels:
Impulse responses to CPU shock to tax rate of dirty products. Right-hand panels: Impulse responses
to CPU shock to tax rate of energy use. Note: The figure presents theoretical impulse responses to a
shock with the size of 4 standard deviations. y-axis in percent.

B.3 Allowing for uncertainty about carbon taxes on households’

energy consumption

In our baseline model, we focus on energy use by firms. Here, we discuss a model variant,

in which households also consume energy.

In this setting, the households’ consumption basket is composed of energy consump-

tion, EC
t , and core consumption of goods produced in sector G, CG

t , and in sector D, CD
t ,

Ct =
[
κE(EC

t )
Θ−1
Θ + (1− κE)µG(C

G
t )

Θ−1
Θ (1− κE)(1− µG)(C

D
t )

Θ−1
Θ

] Θ
Θ−1

, (B.1)

where κE and µG are consumption weights and Θ is the elasticity of substitution between

energy and the different consumption good types. The corresponding price index reads

Pt =
[
κE((1 + τ et )P

E
C,t)

1−Θ + (1− κE)µG(P
D
t )1−Θ(1− κE)(1− µG)((1 + τt)P

D
t )1−Θ

] 1
1−Θ .

(B.2)

Here, τt is a consumption tax on goods produced with a higher energy intensity.

The steady state share of energy consumption of households, κE, is set to 0.09, which

was the relative importance of energy in the US Urban Consumer Price Index in June
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2022.14 As a simplification, we assume that the households’ elasticity of substitution

between green-sector and dirty-sector goods is the same as between energy and non-

energy goods, namely Θ = 0.44. In the simulations below, we reduce the standard

deviation of the tax rate on energy use to one percent to achieve a roughly similar level

of divestment as in the baseline simulations.

Figure B.6 shows, for the CPU shock on the energy tax rate, that the effects associated

with the reallocation of capital between sectors, such as the climate risk premium and

an increase in the relative market value of green assets remain intact. Notably, as the

uncertainty shock to the energy tax rate now directly affects agents’ nominal stochastic

discount factor expenditures, the effects on real activity are amplified. Households now

initially shift their expenditures from energy use to core consumption goods (CG
t and

CD
t ). After a few quarters, however, the precautionary savings motive predominates and

consumption decreases. Investment is reduced in both sectors. The decrease in aggregate

demand lowers inflation.

Any differences in the effects of the CPU shocks to the tax rate of dirty products and

on the collateral value of dirty assets compared to the baseline model are negligible.

14See https://www.bls.gov/charts/consumer-price-index/consumer-price-index-relative-importance.htm.
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Figure B.6: Effects of a climate policy uncertainty shock

Note: The figure presents theoretical impulse responses of the size of 4 standard deviations. y-axis in
percent.
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C Data description

C.1 Data sources for time series

Time series Data source

US climate policy uncertainty
Gavriilidis (2021),

http://www.policyuncertainty.com

US climate change-related news
Engle et al. (2020), https://sites.google.com/

view/stefanogiglio/data-code

US macroeconomic and financial uncertainty

Jurado et al. (2015),

https://www.sydneyludvigson.com/

macro-and-financial-uncertainty-indexes

US economic policy uncertainty
Baker et al. (2016),

http://www.policyuncertainty.com

West Texas Intermediate Cushing (CME Group)

spot prices

Energy Information Administration, Haver

Analytics.

Natural gas (Henry Hub) spot prices
Energy Information Administration, Haver

Analytics.

Gross private domestic investment (implicit price

deflator)

Bureau of Economic Analysis, Fred Economic

Data.

Personal consumption expenditure Bureau of Economic Analysis, Haver Analytics.

Gross private domestic investment Bureau of Economic Analysis, Haver Analytics.

Corporate profits Bureau of Economic Analysis, Haver Analytics.

Gross domestic product Bureau of Economic Analysis, Haver Analytics.

Table C.1: Time series at a monthly frequency
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D Further empirical results

Figure D.7: Quarterly climate policy uncertainty shocks
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Figure D.8: Current market value response to climate policy uncertainty shocks for different levels of required carbon
emissions excluding left-hand-side observations from 2008Q3 to 2009Q2
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Figure D.9: Net investment response to climate policy uncertainty shocks for different levels required carbon emissions
excluding left-hand-side observations from 2008Q3 to 2009Q2.
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