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Abstract. As pointed out by Sion and Wolfe (1957), a non-cooperative game on the unit square
need not admit a Nash equilibrium, neither in pure nor in randomized strategies. In this paper, we
consider finite approximations of the Sion-Wolfe game. For all parameter constellations relevant
for the limit consideration, we characterize the set of Nash equilibria in iteratively undominated
strategies. Values of finite approximations of the Sion-Wolfe game are shown to accumulate
around three values that do not correspond in a simple way to the majorant and minorant values
of the continuous game. To understand why this is happening, we apply the iterated elimination
of weakly dominated strategies to the continuous game as well. The existence of e-equilibrium,

however, does not seem to be related to the properties of finite approximations.
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1. Introduction

In the early years of game-theoretic research, fundamental contributions established the existence
of mixed-strategy solutions for noncooperative games in increasing generality. Notable results
have been achieved, in particular, for finite two-person zero-sum games (von Neumann, 1928;
von Neumann and Morgenstern, 1945), finite n-player games (Nash, 1950, 1951), and games with
infinite strategy spaces (Glicksberg, 1952; Fan, 1952; Debreu, 1952). This line of research came
to a sudden halt, however, when Sion and Wolfe (1957) presented an example of a two-person
zero-sum game on the unit square that does not have a value. What that example means for
the modern theory of games that is not restricted by the zero-sum condition is that a game with
compact strategy spaces and bounded payoff functions need not possess a Nash equilibrium in
mixed strategies.

In this paper, we consider finite approximations of the Sion-Wolfe game. Players are assumed
to choose strategies from a finite equidistant grid. Payoff functions are adjusted correspondingly.
Applying the iterated elimination of weakly dominated strategies, and subsequently characterizing
the set of Nash equilibria in the reduced game, we determine the value of each finite approximation.
Our main finding is that, as the number of grid points goes to infinity and the payoff function
approaches that of the continuous game, the values of the finite approximations accumulate around
three values. Moreover, those values do not correspond in a simple way to the majorant (minimax)
and minorant (maximin) values of the continuous game.

As Sion and Wolfe (1957) noted, their game admits an interpretation as a Colonel Blotto game
with two battlefields in which one player has a head start in the form of additional troops in one
battlefield. In a standard Colonel Blotto game without a head start (Borel, 1921), each player
allocates a budget of one unit of a perfectly divisible resource across several equivalued battlefields
where, on each battlefield separately, the highest bidder wins (and the winner is drawn randomly
in the case of a tie). Moreover, the resource is either used or lost. In a Colonel Blotto game with a
head start, however, the bid of the privileged player in one battlefield is raised by the head start.
The analysis of Sion and Wolfe (1957) assumed that the head start corresponds to precisely one
half of the unit budget.

This interpretation carries over to the finite approximation. Denoting by n the number of



soldiers available for allocation (assumed to be the same for each player), and by k the head
start consisting of additional soldiers for player 1 on one of the battlefields, we study the set of
mixed-strategy Nash equilibria in the corresponding Colonel Blotto game, which will be denoted
by B(n, k). We restrict attention to those cases that matter in the limit consideration, i.e., n

large and k ~ n/2. The analysis naturally leads to the consideration of three cases:
(A) The head start is strictly larger than half of the budget, i.e., k > n/2;

(B) the head start is precisely equal to half of the budget, i.e., k = n/2 with n even;
(C) the head start is strictly smaller than half of the budget, i.c.. k < n/2.

In each case, we identify a Nash equilibrium in mixed strategies and thereby characterize the
unique pair of equilibrium payoffs (values).

It turns out that, even though B(n, k) is, in general, not dominance solvable (in the sense of
Moulin, 1979), the identification of equilibrium candidates in the finite approximations is largely
simplified by the iterated elimination of dominated strategies.! In particular, it is shown that, if
the approximation is sufficiently close to the continuous game, the finite game B(n, k) admits an
essentially unique Nash equilibrium in iteratively undominated strategies. In fact, in the most
natural approximation captured by case (B), the equilibrium turns out to be unique even without
the prior elimination of dominated strategies.

To understand the gap between the finite and continuous variants of the game, we apply iter-
ated weak dominance to the continuous model as well. This exercise not only leads to a potentially
more transparent proof of the main result of Sion and Wolfe (1957), but also provides valuable
intuition. Specifically, the restriction to a finite grid prohibits players’ mutual undercutting that
is ultimately the crucial point underlying the non-existence problem. As a result, the strategic
interaction in the discrete game is not representative of the strategic interaction in the continuous
game. The very same intuition is supported by the analysis of an extension in which only one
player is restricted to choose from a discrete set, while the other chooses from the unit interval.
In contrast, there does not seem to be a tight link between the existence of e-equilibria on the

one hand and the gap between the finite and the continuous model on the other.

'Throughout the paper, we will use term dominance for what is commonly understood as weak dominance
between pure strategies. See Section 2 for details.



Related literature. More than a century ago, Borel (1921) proposed the study of Colonel
Blotto games. Since then, a sizable literature on Colonel Blotto games has emerged. Notable
contributions concerning continuous strategy spaces include Borel and Ville (1938), Gross and
Wagner (1950), Friedman (1958), and Roberson (2006), in particular.? Related to the present
study is work by Macdonell and Mastronardi (2015) who solved the two-battlefield case with
heterogeneous budgets. Washburn (2013, Sec. 5.1.3) constructed equilibria for the Colonel Blotto
game with arbitrary head starts subject to a playability constraint (which amounts to the existence
of a suitable copula that satisfies the budget constraint ex post). Vu and Loiseau (2021, Sec. 5)
studied Colonel Blotto games with three or more battlefields, allowing for pre-allocated resources
and different effectiveness across players. Extending Roberson’s approach, they derived exact
equilibria in special cases. Further, they obtained approximate equilibria in more general classes
of Colonel Blotto games with favoritism. They achieved this by first drawing realizations of the
unilaterally optimal strategies for a sufficiently large number of battlefields, and subsequently
rescaling the realizations to ensure the budget constraint.

Colonel Blotto games are particularly appealing if units of the budget are indivisible. E.g.,
Borel considered an example with three battlefields and a budget of n = 7 soldiers. The number
seven was chosen because it is “the smallest integer for which the game does not have simple
manners of playing superior to all others” (Borel, 1921, p. 100).> An informative review of the
early literature, some of which apparently is still classified, may be found in Beale and Heselden
(1962). More recently, Hart (2008) derived optimal strategies in discrete Colonel Blotto games
from optimal strategies in so-called General Lotto games. In a General Lotto game, each player
chooses a one-dimensional distribution that, if applied to all battlefields in an i.i.d. fashion, satisfies
the budget constraint in expectation. Then, provided that an optimal strategy in a General
Lotto game may be represented as a mixed strategy in a Colonel Blotto game that is symmetric
across all battlefields, the mixed strategy in a Colonel Blotto game is optimal as well, i.e., an
equilibrium is found in the Colonel Blotto game. That method delivers optimal strategies for

Colonel Blotto games in the case of homogeneous budgets, and a variety of partial results in the

2For a survey, see Kovenock and Roberson (2010).
3Similarly, the analysis below considers the simplest non-trivial case of a Colonel Blotto game with a head start,
viz. the case of two battlefields.



case of heterogeneous budgets.* Note, however, that the introduction of a head start creates an
asymmetry between battlefields. Therefore, the “Lotto approach” just described does not extend

5 Hortala-Vallve and Llorente-

in an obvious way to the setup considered in the present paper.
Saguer (2012) studied the properties of pure-strategy equilibria in Colonel Blotto games, allowing
for battlefield valuations that are heterogeneous both across battlefields and across players. The
paper most closely related to the present analysis is Liang et al. (2019), who used brute force to
characterize the equilibrium set of the Colonel Blotto game with two battlefields and heterogeneous
budgets (yet no head start).® In contrast to the present study, however, they did not apply
dominance arguments.

The remainder of the paper is structured as follows. Section 2 introduces the model. Section 3
concerns the equilibrium analysis. In Section 4, we derive implications for the Sion-Wolfe example.

Section 5 offers additional discussion. Section 6 concludes. Technical proofs have been relegated

to an Appendix.

2. Preliminaries

2.1 Set-up and notation

Two players, called player 1 and player 2, are competing on two battlefields, called battlefield
A and battlefield B. Each player commands an integer number n of indivisible soldiers, where
we assume n > 2 throughout. Players compete by allocating soldiers across battlefields. We
denote by z; the number of soldiers allocated by player i € {1,2} to battlefield A. Then, without
loss of generality, the remainder y; = n — x; is the number of soldiers allocated by player i to
battlefield B. Thus, strategy spaces for player 1 and 2 may be specified (in reduced form) as

X1 ={{21=0,...,21 =n} and Xo = {22 =0, ..., 22 = n}, respectively.

4Cf. the discussion in Dziubinski (2013, Sec. 5).

5Beale and Heselden (1962), using an approach that might be considered a predecessor of Hart’s (2008), allowed
for asymmetries between battlefields. While interesting, that approach leads in general to approximations of optimal
strategies only. Therefore, we do not expect this approach to be useful for the general identification of equilibria
in the case of asymmetries across battlefields. Cf. Washburn (2014, Sec. 6.3) whose discussion suggests a similar
conclusion.

5 A class of games related to those considered above are finite Colonel Blotto games with heterogeneous budgets
yet no head start. That type of model was first considered in some generality by Hart (2008) who established, in
particular, general bounds on the values. The precise characterization of values has been accomplished by Liang et
al. (2019).



Player 1 is assumed to have a head start on battlefield A in the form of a nonnegative integer
number k of additional soldiers. Player 2, in contrast, does not have any additional soldiers.
Throughout the analysis, it will be assumed that k£ € {2,...,n — 1}.7 If a player has, in total,
more soldiers on a battlefield than her opponent, then she wins on that battlefield and receives a
reward of 1, while the loser suffers a penalty of —1 from that battlefield. In the case of a tie on a
battlefield, both players get a payoff of 0 from that battlefield. Note that, after both players have
deployed their troops, player 1 has a total of z1 + k soldiers on battlefield A, while player 2 has

a total of x4 soldiers there. Player 1’s payoff from battlefield A is therefore given as
I3 (1, 2) = sgn((a1 + k) — x2), (1)

where the sign function sgn(.) is defined as usual by sgn(§) = 1if £ > 0, by sgn(¢) = 0if £ = 0, and
by sgn(¢) = —1if ¢ < 0. Moreover, due to the zero-sum condition, 115 (z1, 2) = —1I{(z1, 72). On
battlefield B, player 1 has a total of y; = n — x soldiers, while player 2 has a total of yo = n — a9

soldiers. From the accounting identity
y1 —y2 = (n—x1) — (n—x9) = x9 — 21, (2)
player 1’s payoff from battlefield B is therefore seen to be given as
H]13(.%’1, x9) = sgn(xg — x1). (3)

Again, we have IE(z1,z9) = —1I18 (21, 29). Payoffs are assumed additively separable across bat-
tlefields. Consequently, player i's total payoff is II; (21, x9) = 112 (21, 29) + 1B (21, 32), for i = 1, 2.
The two-person zero-sum game just defined will be referred to as the Colonel Blotto game with
budget n and head start k, in short B(n, k).

The general structure of the payoff matrix is illustrated in Figure 1.8 Only player 1’s payoffs
are shown. Below the main diagonal, all entries vanish (player 1 wins on battlefield A, but loses
on battlefield B). On the main diagonal, all entries equal 1 (player 1 wins on battlefield A, but

ties with player 2 on battlefield B). The entries of the neighboring & — 1 upper off-diagonals

"While the cases k = 0 and k > n are trivial, the case k = 1 is complicated. More importantly, none of the cases
excluded by this assumption is needed for our later limit consideration.

8Strictly speaking, the matrix represents payoffs in the case n > 2k + 2 only, with (straightforward) adaptions
necessary to cover other cases.

6



equal 2 (player 1 wins on both battlefields), while the entries of the k-th upper off-diagonal equal
one (player 1 ties with player 2 on battlefield A, but wins on battlefield B). The entries in the

remaining upper off-diagonals vanish (player 1 loses on battlefield A, but wins on battlefield B).

2 >
. A "\? £ “X? ¢ iy ﬁ\{ AL 1\9 ‘}\’ 2
2 2|10
1 2 1
0 2 2
k-1 0 1] 2| 2
k 0 1
kLT 0| 1
n-k-1 | o|lo|o| | | ||l 2]2|.]2|1]0
n—k ol oo | | | | | o] 2].]|2
n-k+1 | oo |o| | | || OOl ]| ]2]|2]2
-2 1|2 | 2
-1 1| 2
n 1

Figure 1: Player 1’s payoffs in B(n, k).

The set of probability distributions over the finite set X; will be denoted by A(Xj;), and
any element p; € A(X;) will be referred to as a mized strategy for player i. Given any pure
strategy realization v € {0,...,n}, the Dirac distribution ¢, is the probability distribution on
{0,...,n} that gives all probability weight to the realization v, i.e., §,({v}) =1, and 0, ({r'}) =0
for any v # v. Then, any probability distribution p; € A(X;) may be expressed in a unique
way as a weighted sum p; = Y., pyd,. where p, € [0,1] is the probability that player ¢’s
mixed strategy p; realizes as x; = v, so that Y ,_p, = 1. For any pu; € A(X;), we call the
set supp{p;} = {v : p, > 0} C X; the support of p;. As usual, players’ payoff functions
are extended to mixed strategies by taking expectations. We will use notation such as E,,[]
and E,, ,,[] for the respective expected values. A mixed-strategy Nash equilibrium is a pair
(175 13) € A(X71) x A(X2) such that By s [T (21, 22)] > E,y 3 [Tl (21, 2)] for any py € A(X7),
and Eyx o (z1,22)] > Eys s [y (z1,z2)] for any s € A(X2).

Given that the considered game is finite, a mixed-strategy equilibrium exists by Nash’s theo-



rem. Moreover, B(n, k) is zero-sum, so that all equilibria are payoff-equivalent. We will refer to
player 1’s equilibrium payoff v; = Fx - [Il1 (21, 22)] as the value of the game. Since player 1 has

an advantage over player 2, we (correctly) anticipate that vy € [0, 1].

2.2 Dominated strategies
The consideration of dominance relationships between strategies (Farquharson, 1969; Brams, 1975;
Moulin, 1979) turns out to be a useful tool for identifying equilibria in the finite approximations
of the Sion-Wolfe game. We recall the definitions.

Let X 1 € X and )?2 C X5 be nonempty sets of strategies for both players. We will say that
T € )?1 is dominated by T1 € X’l for player 1 in )?1 X )?2 if the following two conditions are
simultaneously satisfied. First, for any pure strategy zs € )?2, we have Iy (z1, z9) < II;(Z7, x2).
Second, there exists a strategy Ts € )A(Q such that Iy (x1, ¥2) < II1(Z1, Z2). Similarly, we will say
that a pure strategy zo € X, is dominated by a strategy Zo € X, for player 2 in X1 x X, if
analogous conditions hold with the roles of players 1 and 2 exchanged. We will say that x; € X’,
is dominated in X 1 X )?2 if there exists a strategy T; € )?Z such that z; is dominated by Z; for
player ¢ in )?1 X )?2.9

We are interested in undominated strategies. Let, therefore, X il) and Xél) denote the sets
of strategies for player 1 and 2, respectively, that are not dominated in X; x Xs. The following

result characterizes these sets in the Colonel Blotto game with budget n and head start k.

Lemma 1. The respective sets of undominated strategies in B(n,k) are given by X{l) =

{0,...,n—k+1} and Xél) ={0}U{k+1,...,n}, respectively.

Proof. As can be seen from Figure 1, 71 = n — k + 1 dominates all x; € {n —k+2,...,n} for
player 1. There are no other dominated strategies for player 1. Similarly, Zo = 0 dominates all

x9 € {1,...,k} for player 2, while no other strategy is dominated for player 2. [

We provide some intuition. In the considered case, strategy 1 = n — k + 1 dominates all higher

strategies for player 1. Indeed, any strategy x1 > n — k + 1 secures a win on battlefield A, but

9In general, a pure strategy may be dominated by a mixed strategy even though it is not dominated by any
pure strategy (cf. Pearce, 1984). However, the additional mileage gained by using the more powerful definition is
limited in our present application. Hence, we stick to the basic concept.



Z1 =n — k41 is the most parsimonious in doing so, i.e., it leaves the largest number of soldiers
for battlefield B. Similarly, for player 2, bidding any xz9 € {1,...,k — 1} is dominated by 3 = 0,
because out of all strategies that imply a certain loss on battlefield A, X5 = 0 brings most soldiers
to battlefield B. In fact, also xo = k is dominated by Zo = 0 because the only scenario in which
player 2 achieves a tie on battlefield A with x9 = k entails that player 1 sends n soldiers to
battlefield B, so that player 2 loses on battlefield B rather than achieving a tie there with zo = 0.

Starting from players’ unrestricted strategy spaces, we may recursively define

X0 _ x, (i € {1,2}). (4)

(t-1) :
(t) x; € X; s.t. x; is not .
x = i ie{l,2};te{1,2,...}). 5
{ dominated in X" x x{~Y (e {.2pted ) 5)

Needless to say, this extends our earlier definition of X {1) and X;l). A simple induction argument

shows that X,L.(t) # o for any ¢ and t. Since B(n, k) is a finite game, no further eliminations
take place for sufficiently high ¢, so that Xft) X Xét) = Xft_l) X Xét_l). In this case, we refer
to Xi(oo) = Xl-(t) as the set of strategies surviving the IEDS (iterated elimination of dominated
strategies) procedure.

Two well-known facts about dominated strategies should be recalled. First, the elimination
of dominated strategies may eliminate Nash equilibria.'® Second, and more importantly for the
identification of equilibrium strategies, a Nash equilibrium found in a reduced game obtained by
iteratively eliminating dominated strategies remains an equilibrium in the original game.!!

We will say that a mixed-strategy equilibrium p* = (p}, 13) in B(n, k) is an equilibrium in
iteratively undominated strategies if supp{p;} C X,i(oo) for i € {1,2}. Using the second fact

recalled above, the set of equilibria in iteratively undominated strategies is isomorphic to the set

of equilibria in the reduced game obtained via the IEDS procedure from B(n, k).

3. Equilibrium analysis

In this section, we will identify Nash equilibria in the finite Colonel Blotto game with budget n

and head start k. As discussed in the Introduction, there are three cases.

107 he analogous statement for strictly dominated strategies is not true, of course.
HEor a formal argument, see the proof of Proposition 1 in Moulin (1979).



3.1 The case k > n/2
Suppose first that the head start is strictly larger than half of the budget. In that case, dominance
arguments turn out to have a lot of bite and quickly guide to an equilibrium. The following

example illustrates this fact.

(a)

x, X2 0 1 2 3 4 5
0 1 2 2 1 0 0
1 0 1 2 2 1 0
2 0 0 1 2 2 1
3 0 0 0 1 2 2
4 0 0 0 0 1 2
5 0 0 0 0 0 1

(b)

x, *2 0 4 5 (©)
0 1 0 0 x4 x; 0 5
1 0 1 0 0 1 0
2 0 2 1 3 0 2
3 0 2 2

Figure 2: Elimination of dominated strategies in 2B(5, 3).

Example 1. Let n =5 and k = 3. The payoff matrix of B(5,3) is shown in panel (a) of Figure
2, where dominated strategies are marked in grey. Panels (b) and (c) exhibit the reduced game
after one and two rounds of elimination, respectively. As can be seen, the reduced game obtained
after application of ITEDS is represented by a simple two-by-two matrix. Player 1 either sends
x1 = 3 soldiers to battlefield A (the minimum necessary to win with certainty there), or she sends
all her troops to battlefield B (if 1 = 0 so that y; = 5). Similarly, Player 2 throws all her troops
either on battlefield A (if o = 5) or on battlefield B (if zo = 0, so that yo = 5). We conclude
that the strategies pj = %50 + %(53 and ps = %50 + %55 form the unique equilibrium in iteratively

undominated strategies.!?

12For this, we make use of the aforementioned fact that a Nash equilibrium in a given game remains a Nash
equilibrium if a dominated strategy is added to the game. Starting from the mixed equilibrium in the two-by-
two game, and iteratively adding strategies in reversed order of the elimination procedure shows that the Nash
equilibrium in the reduced form is a Nash equilibrium also in 9B(5, 3).

10



The general analysis in the case k > n/2 is entirely analogous. We arrive at our first result.

Proposition 1. Suppose that k > n/2. Then, there is a unique equilibrium in ilteratively un-
dominated strategies in B(n, k), which is given by pf = %50 + %5n—k+1 and ph = %50 + %571. The

value is v1 = %
Proof. See the Appendix. [J

Admitting strategies eliminated by the elimination procedure, the equilibrium is no longer unique.
In Example 1, any strategy for player 2 of the form uj = %50 + %54 + 1(%)‘55, with A € [0,1]
is optimal. However, only for A\ = 0, the corresponding equilibrium (u}, 43) is in iteratively

undominated strategies.

3.2 The case k = n/2, with n even
In this case, the iterated elimination of dominated strategies is equally effective as before. In fact,

the equilibrium turns out to be unique.

Proposition 2. Suppose that k = n/2, with n even. Then, there is a unique Nash equilibrium
in B(n, k), which is given by pj = %50 + %&C + %5k+1 and ph = %50 + %5k+1 + %571. The value of
B(n, k) is v = 3.

Proof. See the Appendix. [J

To prove uniqueness, we show that pure strategies outside of the equilibrium support are never a
best response to the equilibrium identified by the IEDS procedure. We then exploit interchange-
ability of Nash equilibria in two-person constant-sum games. It suffices to note that the payoff

matrix, cut back to represent only strategies in the equilibrium support, is invertible.

3.3 The case n =2k +r, with r € {1,...,k — 1}
The structure of equilibrium changes slightly compared to the previous cases. We start again

with an example.

Example 2. Let n = 5 and k = 2. The elimination procedure simplifies the game, as shown in
panels (a) through (c) of Figure 3. The unique equilibrium in iteratively undominated strategies

is given by uj = %50 + %152 + %54 and p5 = %50 + %153 + %155. The value is v; = %

11



(@ x 20 1 2 3 4 5
0 1 2 1 0 0 0
1 0 1 2 1 0 0
2 0 0 0 2 1 0
3 0 0 0 1 2 1
41 o 0 0 0 1 2
5 0 0 0 0 0 1
(b)
L X2 0 3 4 5 (©)
! . 2o 3 4 5
0 1 0 0 0 1
0 1 0 0 0
1 0 1 0 0
2 0 2 1 0
2 0 2 1 0
3 0 1 2 1
3 0 1 2 1
4 0 0 1 2
4 0 0 1 2

Figure 3: Elimination of dominated strategies in B(5, 2).

The following result identifies an equilibrium in this case.

Proposition 3. Let n = 2k +1r with v € {1,...,k — 2} and k sufficiently large.'3> Then, an
equilibrium in B(n, k) is given by pf = %50 + %&C + %15”_;”1 and p5 = %50 + ;115k+r + ;11577,. The
equilibrium is unique in iteratively undominated strategies unless r = 1, in which case it has one

degree of freedom (for player 1). The corresponding value is always v, = %

Proof. See the Appendix. [J

Thus, the equilibrium in iteratively undominated strategies is unique for r # 1. For r = 1,
however, player 1 may substitute a fair draw between 21 = k and 21 =n —k+ 1 = k+ 2 by the

pure strategy 1 = k + 1 without affecting the equilibrium.

4. Implications for the Sion-Wolfe example

Sion and Wolfe (1957, Sec. 2) considered a Colonel Blotto game with two battlefields and homoge-
neous budgets in which one player has a head start in one battlefield corresponding in size to half

of the budget. In contrast to the model considered above, however, they worked with continuous

3 The cases where either » = k—1 or k is small are not needed for the limit consideration and, therefore, omitted.

12



strategy spaces. In this section, we will review their main result and relate it to our analysis of

finite approximations.

4.1 The Sion-Wolfe game
The continuous model is defined in analogy to the finite case. Given a head start parameter x > 0,

let the two-person zero-sum game B, on the unit square be given by payoff functions
T (21, 2) = sgn((z1 + K) — 22) + sgn(z2 — z1), (6)

and mo(x1,x2) = —mi(x1,x2), respectively. In the mixed extension, players choose arbitrary
probability distributions on the unit interval, i.e., probability measures defined on the Borel sets
of [0,1]. We denote by fi; the mixed strategy of player i € {1,2}. The main result in Sion and

Wolfe (1957) may now be summarized as follows.

Lemma 2. (Sion and Wolfe, 1957) Suppose that players choose probability distributions fiy

and Ji9, respectively, on the unit interval. Then,

‘ _ - 4
WSWET = sup inf // T (21, x2)dpn (1) dpiz(@2) = 7 =~ 0.571, (7)
o p2 [0,1]x[0,1]
~ - 2
WO = inf sup // m1 (21, z2)dpn (71)dpiz(72) = - ~ 0.667. (8)
fi2 i1 [0,1]x[0,1] 3

In particular, Bgs has no value.

Proof. See the Appendix. [

The maximin value (or minorant value) v of By 5 is defined through equation (7). As usual, it is
defined from player 1’s perspective. Intuitively, this value is the expected payoff level that player 1
can guarantee herself in a sequential setting in which a first-moving player 1’s mixed strategy (but
not its pure-strategy realization) is observed by a second-moving player 2. The minimax value
(or majorant value) v of B is, in turn, defined through equation (8). One way to interpret
this number in a game-theoretic setting is to consider it as the negative of the maximin value
from player 2’s perspective, i.e., T = —v,, where v, is defined in analogy to (7) with the roles

of players 1 and 2 exchanged. The remarkable point about Lemma 2 is that v; < vy, i.e., the
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maximin value is strictly smaller than the corresponding minimax value. As a result, the game
Bo.5 has no value, and there is no Nash equilibrium in mixed strategies.

We briefly survey existing approaches to resolving the non-existence problem. First, as pointed
out by Parthasarathy (1970), if one of the players is restricted to use an absolutely continuous
strategy, then the resulting game has a value. Second, Kindler (1983) proposed the use of finitely
additive measures. While that approach is intuitive, it is not straightforward to give the resulting
solution an economic interpretation.!® Next, Boudreau and Schwartz (2019) proposed to modify
the Sion-Wolfe game at points of discontinuity. Even though this approach is consistent with
Simon and Zame’s (1990) idea of endogenizing the payoff implications of ties, it does not resolve
the nonexistence problem for the original game. Finally, one might resort to e-equilibria (Radner,

1980), as done by Vu and Loiseau (2021) in closely related games. However, for ¢ > 0 small

enough, even e-equilibrium will not exist, as noted by Dasgupta and Maskin (1986).6

4.2 Finite approzimations

As discussed in the Introduction, we try to shed light on the result above by considering discrete-
grid approximations of By 5. Thus, we consider sequences of finite Colonel Blotto games B(n, k),
where n, k — 0o and n/k ~ 2. By the results obtained so far, each such B(n, k), for n sufficiently
large and for n/k not too far away from 2, admits an essentially unique Nash equilibrium in

iteratively undominated strategies. Taking the respective limits of these sequences, we arrive at

Tt may be noted that we departed from Sion and Wolfe’s (1957) original notation, which leads to the potentially
unfamiliar values for the maximin and minimax values shown in equations (7) and (8). Details on the transformation
applied may be found in the Appendix. In a nutshell, we swapped the roles of the two players, and likewise the
roles of the two battlefields. Moreover, we normalized payoffs so that a tie on a battlefield implies a payoff of zero
from the battlefield. In fact, that same payoff normalization is proposed in the original article as well when the
abstract game is interpreted as a Colonel Blotto game with head start.

5Finitely additive measures are a more flexible notion of probability distribution, where o-additivity is replaced
by finite additivity (Yanovskaya, 1970). Intuitively, this means that it is feasible to define a bid that exceeds a
given (deterministic) bid by an arbitrarily small amount. However, from an economic perspective, finitely additive
measures suffer from the problem that Fubini’s theorem does not in general hold. In plain English, this means that
ex-ante expected payoffs need not be well-defined. The reason is that, should both players make use of an arbitrarily
small increment over an existing bid, then there would be ambiguity regarding who wins with what probability.

16We will resume the discussion of e-equilibria further below.
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the three mixed strategy profiles

ﬁHuey _ (%50 + %51/2’ %50 + 71151/2 + ;1151) ) 9)
ppevey = (%50 + %51/27 %50 + %51/2 +3501). (10)
ﬁLouie — (%50 + %51/27 %50 + %51) s (11)

where the Dirac distributions are defined in straightforward extension of the finite case. For
example, in the profile PV, derived using Proposition 2 in the case where n = 2k, the privileged
player 1 sends all of her troops to battlefield B with probability 3/5, and splits her troops equally
across the two battlefields with probability 2/5. Player 2, however, sends all of her troops to
battlefield B with probability 3/5, splits her troops equally with probability 1/5, and send all of her
troops to battlefield A with probability 1/5. The other profiles admit analogous interpretations.

Using this notation, we can make the following observation.

Corollary 1. Consider a sequence of discrete Colonel Blotto games B(n,k) with n,k — oo
such that n/k — 2. Then, the accumulation points of the corresponding sequence of unique Nash

equilibria in iteratively undominated strategies are contained in the set
9323: { IL'*ZHuey7 ~Dewey’ ZZLOUie}. (12)

Conversely, there exists a sequence of discrete Colonel Blotto games with n,k — oo such that
n/k — 2 and such that the accumulation points of the corresponding sequence of unique Nash

equilibria in iteratively undominated strategies are precisely the elements of IMs.

Proof. Consider a sequence of discrete Colonel Blotto games B(n, k) with n,k — oo, n/k < 2,
and n—2k = o(n).!” Then, the corresponding sequence of iteratively undominated Nash equilibria
characterized in Proposition 1 converges weakly to the limit profile i°". Next, by Proposition
2, any sequence of unique Nash equilibria in B(n, k) with n,k — oo such that n/k = 2 converges
weakly to the limit profile PV, Consider, finally, the sequence of discrete Colonel Blotto
games B(n, k) with n,k — oo, n/k > 2, and n — 2k = o(n). Then, the corresponding sequence of

Nash equilibria characterized in Proposition 3, which have been seen to be essentially unique in

17 As usual, the notation f(n) = o(n) means that lim,_,. f(n)/n = 0.



iteratively undominated strategies for n large enough, converges weakly to the limit profile zzfuey,

This proves the claim. [J

The situation does not become clearer when one compares the values. The corresponding limit

values are given by

2
pHiuey — 3 = 0.667 (13)
PPV = g ~ 0.600 (14)
phovie — % ~ 0.500. (15)

What is a bit strange about Corollary 1 is that the accumulation points of values of finite dis-
cretizations of the Sion-Wolfe game do not correspond in a simple way to the minimax and

maximin values of the continuous game shown in Lemma 2. Specifically, v5W°7 lies strictly be-

., Louie

tween v Dewey ' while 75Wo7

equals v, Moreover, vPe"®Y = 2 is the limit of v; as

and v 3

n = 2k — oo, but this value does not appear in the statement of Lemma 2.

Using our notation, players’ maximin strategies identified by Sion and Wolfe (1957) read

N%WW = 4750 + %51/2 + %53/4; (16)

VST = 150+ 16, + 15y, (17)

These strategies are not components of any element of 93, neither do they relate to the members

M3 in any transparent way. In fact, player 1’s respective component strategies ﬁ?uey, ~?ewey,

and 27" fail to be maximin strategies in the continuous game.'® For player 2, it turns out that

1870 see this for k"¢, for example, it suffices to check that

Egrowe [r1 (@1, 1)] = 3710, 1) + 372(3, 1)
=2 (sgn((0+ %) -1 1-0)) + 4 141y 1_1
% (sgn((0+ 3) — 1) +sgn( ) + 3 (sen((: + 4) — 1) + sgn( 1)
= % < Uy
Analogous strict inequalities, likewise for 22 = 1, hold for ﬁ]fewey and ﬁlf“ey .
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~Louie
2

I is actually a maximin strategy since

inf Eﬁ%ouie [7T2 (LUl, xz)]

x1€[0,1]

= xlg%g . %Wz(ﬂ:l, 0) + %ﬂ'z(ﬂ?h 1) (18)

= lel%(f) ; —Z (sgn(z1 + 3) —sgn(z1)) — 3 (sgn(zr — ) +sgn(l — 1)) (19)
T )

However, [l?ewey and ﬁQHuey fail to be maximin strategies for player 2.'° Further, none of the six
strategies appearing as components of a profile in 93 plays any role in the analysis of Sion and
Wolfe (1957). Thus, there does not seem to be any straightforward connection between the limits
of minimax/maximin values and strategies in the finite approximations and the minimax/maximin

values and strategies in the continuous game.

4.8 Dominated strategies

To understand what is going on, we apply the iterated elimination of weakly dominated strategies
to the Sion-Wolfe game.2?

We will need some definitions. Let G = (X, X2, u1,u2) be an arbitrary two-person zero-

sum game, i.e., X; and Xy are nonempty sets of strategies of players 1 and 2, respectively, and

uy : X1 X X9 — R and ug : X1 X X9 — R are the respective payoff functions, where u; = —uso. Let

v = sup inf u , 21
2= sup inf (1,6 (21)

and

v = inf sup wi(&y,&2), (22)
§2€X2¢1ex,

respectively, denote the minorant and the majorant of the game G.2! Then, 15 > vs.2? As

¥Tndeed, we have
Eﬁlzjeww [7T2(0, mz)] = ng(o, 0) + éﬂ'z(o, %) + %7‘(‘2(0, 1)

=—2 (sgn((0+ %) — 0) +sgn(0—0)) — £ (sgn((0+ 3) — 3) +sgn(3 — 0))
— L (sgn((0+ 3) — 1) +sgn(1—0))
=—% <,

A similar inequality holds for iy ", again with 2; = 0.

20VWe are indebted to Marco Serena for suggesting taking that route.

21Both minorant and majorant are guaranteed to be finite if u; is a bounded function.

2 (learly, u; (&1,&2) > inf£2ex2 u1(&1,&2), for any & € X1 and & € X2. Hence, SUP¢, e, u1(é1,&2) > vg, for any
&2 € Xo. Taking the infimum over all £&; € X, yields the claim.

17



before, G is said to possess a value if T = vy = vg. In that case, vg is referred to as the value
of G. If G admits a Nash equilibrium (£%,£5), then G has a value.?3 Thus, as mentioned in the
Introduction, a game without value does not possess a Nash equilibrium.?*

The following observation, for which we could not find a reference, will be our main tool for

providing an intuition underlying the Sion-Wolfe game.

Lemma 3. Suppose that G’ results from G by eliminating a set of strategies &; C X; for each
player i € {1,2} that are dominated by some fized strategy a € X;. Thenvg =vg and vy = vg-

In particular, G has a value if and only if G' has a value.
Proof. See the Appendix. [J

Thus, both the majorant and the minorant are unchanged if, for each player, a set of weakly
dominated strategies is eliminated, provided that the dominating strategies are kept. In infinite
games, it is indeed crucial that the dominating strategy is kept. Otherwise, the elimination may
lead to different values for the majorant and minorant.?> As will become clear below, the game
used by Sion and Wolfe (1957) is an example illustrating this possibility. The way in which Lemma
3 is formulated, however, makes it immune to this problem.

A straightforward variant of Lemma 3 assumes that G is the mixed extension of the Sion-Wolfe
game, and that weak dominance is applied to pure strategies. Using that variant, we arrive at

the following result.

Proposition 4. Let € > 0 be small. Then, the Sion-Wolfe game may be simplified by the iterated
elimination of weakly dominated strategies (keeping the dominating strategies in each step) so
that spaces of pure strategies in the reduced game are given by Xi() = {0}U{3}U (3,3 +¢] and

Xo(z) = {0} U (3. 5 + ] U {1}, respectively.

Proof. We execute two rounds of elimination. In the first round, we note that, in analogy to

Lemma 1, any strategy =1 € (% + &, 1] is weakly dominated by z; = % + ¢, and that any strategy

ZSince (£7,€3) is a Nash equilibrium, u;(£7,&3) = SUPg, ex, U1(€1,€5) > Ug. Moreover, from the zero-sum
property, u1(£7,£5) = infe,cx, u1 (€7, &2) < vg. The claim follows.

ZTor mixed extensions of finite two-person zero-sum games, the converse of Lemma 2 holds as well (Osborne and
Rubinstein, 1994). The converse of Lemma 2 does not hold in general, however, as we discuss in Section 4.

*In general, the elimination of strategies for player 1 (player 2) may raise (lower) either the minorant or the
majorant (or both). This is immediate from the definitions.
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x5 € (0, 3] is weakly dominated by Zo = 0. This leaves us with strategy spaces X{ = [0, 3 + ¢]

1

and X} = {0} U (3,1].%% In a second round of elimination, we see that any z; € (0, 5) is weakly

dominated by Z; = %, and that any x9 € (% + ¢,1) is weakly dominated by o = 1. This proves

the claim. J

Proposition 4 sheds light on the Sion-Wolfe game by showing that each player has essentially three
strategic options in the reduced game. Indeed, in the reduced game, player 1 chooses between
three options, either x1 =0, or x; = %, or some number slightly above one half, i.e., x1 = % + 1,
where £; € (0,¢]. The second-moving player 2 chooses between x5 = 0, or a bid slightly above

one half, i.e., 2o = % + g9, where g9 € (0,¢], or z9 = 1.

X2
X 0 0.5+¢, 1
0 1 0 0
0.5 0 2 1
0.5+ ¢ 0 Z 2

Figure 4: Elimination of dominated strategies in Bg 5.

This particular structure plays out in the case where moves are sequential, as implicit in the
definition of minorant and majorant. A first-moving player 1 bidding % + £1 cannot avoid being
undercut by player 2. Therefore, the minorant v may be determined from the game in Figure
4 with z = 0. In that case, an optimal strategy for player 1 is uj = %50 + %(50‘5 + %50,5%. For
£ = 0.25, this is indeed equal to x§W57. In fact, the corresponding minorant is v = ‘—% equals vSW57
regardless of the choice of €.

If player 2 moves first, however, then the bidding game allows player 1 to undercut player 2,
which means that the majorant may be determined from the game in Figure 4 with z = 2. In that

case, an optimal strategy for player 2 is p5 = %50 + %51. The mixed strategy p5"°" is equivalent

26The eliminations applied in the proof of Proposition 4 do not eliminate all weakly dominated strategies for
player 1 in the first round. Doing this would take away also dominating strategies and, hence, be inconsistent with
the assumptions of Lemma 3. Indeed, eliminating all weakly dominated strategies in each round, it is easy to check
that XV = [0, 1] and XY = {o}u (3,1], so that x® = o, 1} and X$¥ = {0,1}. The resulting two-by-two game
has value v = %, i.e., both minorant and majorant are affected.
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in terms of expected payoffs but uses the weakly dominated pure strategy xo = % without good
reason. The corresponding majorant is 7 = % = oW,

The logic of mutual undercutting breaks down when continuous strategy spaces are replaced
by finite approximations. For example, if & = n/2 with n even, as in Proposition 2, then there
is a lowest bid strictly above k, which is & + 1 . Then, regardless of the order of moves, the
payoff matrix with player 1 choosing z1 € {0,k,k + 1} and player 2 choosing x5 € {0,k + 1,n}
would be the one shown in Figure 4 with the tie-breaking payoff z = 1. This is why, even in that
most natural approximation, neither the limit strategy profile z°¢"®Y nor the corresponding limit
pDewey — % have no simple interpretation in B 5.

Similar considerations can be made in the other two cases considered above. If k > n/2, as
in Proposition 1, than the payoff matrix with player 1 choosing z1 € {0,k,n — k + 1} and player
2 choosing z2 € {0,k + 1,n} would be the one shown in Figure 4 with z = 2. This explains

Huey _ 2 “SW57
— 3

why v =7 . Finally, if £ < n/2, as in Proposition 3, then for the same set of pure

strategies, we would have z = 0, but also the payoff from playing x1 = k against 9 = n would be

~Louie

0 rather than 1, which explains why, again, neither g nor ytovie —

% appear in the analysis

of %0.5.

5. Further discussion

This section elaborates on several additional topics. These include e-equilibria, the possibility
that only one player is restricted to a discrete grid, Colonel Blotto games with a head start, and

the use of discretization and IEDS in other games.

5.1 e-equilibria

Is there a connection between the limiting values not corresponding with the continuous case and
the lack of e-equilibria for Sion and Wolfe’s game? By definition, in an e-equilibrium, profitable
deviations may exist, but the player must not gain more than a given € > 0 by deviating (Radner,
1980). As mentioned above, an e-equilibrium does not exist in the Sion-Wolfe game for £ > 0
sufficiently small. This, however, is a general property of two-person zero-sum games that do not

have a value, as may be seen from the following general observation.
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Proposition 5. A two-person zero-sum game G has a wvalue if and only if it admits an z-

equilibrium for any £ > 0.
Proof. See the Appendix. [

The proposition above, which might be of independent interest, says that a two-person zero-sum
game has a value if and only if it admits e-equilibria for all € > 0. In particular, e-equilibria, for
€ > 0 small, do not exist in the Sion-Wolfe game and similar examples of games without value.
However, there is no obvious link of this fact to the anomaly discussed in the previous section.?”

In view of Proposition 5, it is natural to ask for the set of € > 0 for which an e-equilibrium
exists in a given two-person zero-sum game. Given that an e-equilibrium is trivially also an
¢’-equilibrium for any ¢ > ¢, it is clear that there exists, provided that payoffs are bounded,

a smallest ey, > 0 such that, for any € > e, an e-equilibrium exists. From the proof of

Proposition 5, it follows that

2

]
|

< €min <V — 0. (23)

].

e

For example, for the Sion-Wolfe game, ey, € [Qil,

5.2 Only one player’s strategy is on a finite grid®®

Liang et al. (2019) considered a setting where one of the players chooses from the continuum,
while the other player chooses from a finite grid. Below, we follow this approach. For convenience,
we restrict attention to the case where n is even. Moreover, we stick to the convention followed

throughout the paper that the player choosing from the continuum chooses from the unit interval.

Proposition 6. Let k = 5 with n > 2 even. (i) Suppose that player 1 chooses her pure strategy

from a finite grid X, = {0, ...,n}, while player 2 chooses her pure strategy from the unit interval
Xo = [0,1]. Then, there is an essentially unique equilibrium in iteratively undominated strategies,

which is given by p} = ‘-%50%— %514 + %5k+1 and ps = %504— %5%4-5 + %51, and the corresponding value

4 = ySWoT,

s v = (ii) Suppose that player 1 chooses her pure strategy from the unit interval

2TFor completeness, we mention that, even if G admits an e-equilibrium for any € > 0, a Nash equilibrium still
need not exist. To see this, it suffices to consider a mixed extension of a matching-pennies game in which fair
randomization is forbidden for the players.

28We are grateful to one of the referees for suggesting this extension.
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X1 =0, 1], while player 2 chooses her pure strategy from a finite grid Xo = {0, ...,n}. Then, there
is a unique equilibrium in iteratively undominated strategies, which is given by p} = %50 + %5%4_5

and p5 = %50 + %571, the corresponding value is vi = % =g3Wo7,

Proof. See the Appendix. [

This exercise proves to be instructive. If player 1’s choice is restricted to the finite grid, while
player 2’s choice is unrestricted, then the value of the resulting game is the minorant of the Sion-
Wolfe game. If, however, player 2’s choice is restricted to the finite grid, while player 1’s choice is
unrestricted, then the value of the game is the majorant of the Sion-Wolfe game. Compared to the
analysis of the finite games, allowing one player to choose from the continuum keeps the concept
of undercutting the opponent alive, but gives this possibility to only one of the two players, so

that a Nash equilibrium is feasible.

5.8 Colonel Blotto games with a head start
The purpose of the present paper has been the analysis of discrete approximations of the Sion-
Wolfe game. As a by-product, however, we have characterized equilibria in the discrete Colonel
Blotto game with a head start. This part of the analysis generalizes to arbitrary integer values
for n > 1 and k£ > 0. As illustrated by Figure 3(c), the iterated elimination of weakly dominated
strategies leads to reduced-form payoff matrices closely related to symmetric Toeplitz matrices
(Gohberg and Semencul, 1972; Rodman and Shalom, 1992).2° Applying conditions sufficient for
the invertibility of such matrices, one can show that the equilibrium in iteratively undominated
strategies is often unique in B(n, k), with players deploying “units” of k soldiers rather than
individual soldiers (Aspect and Ewerhart, 2022). As a result of the restricted flexibility of the
head start compared to a larger budget, however, the value of B(n, k) is always weakly lower,
and sometimes strictly so, than in a setting where k soldiers are added to player 1’s budget, as in
Liang et al. (2019).

Vu and Loiseau (2021) considered a general class of Colonel Blotto games with head starts.
They allowed for three or more battlefields, heterogeneity of valuations across battlefields and

players, and heterogeneous effectiveness of players’ resources in each battlefield. One special case

29 Ag will be discussed below, Toeplitz matrices arise similarly in the analysis of Silverman’s game.
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for which equilibria can be obtained in their approach is the case of homogeneous battlefields and
homogeneous favouritism across the battlefields (for instance, in the case of equal effectiveness, this
would require equal head starts for the two players across the battlefields). Notably, homogeneous
valuations of the battlefields is not enough. This point is important, because if there was an
equilibrium existence result for three battlefields with homogeneous values of battlefields, it would
mean that the case of two battlefields is special in that it does not allow equilibrium existence
in general. Further, although Vu and Loiseau (2021) do not provide equilibrium existence, they
do provide a characterization of e-Nash equilibria with ¢ € 5(1 /v/m), where m is the number of
battlefields.?? This tells us that, when the number of battlefields grows beyond any finite bound,
the margin between the majorant and the minorant values in the continuous game goes to zero. In

this sense, the two-battlefield variant may be considered the most acute in terms of this margin.

5.4 Use of discretization and weak dominance in other games

Silverman’s game is a particular two-person zero-sum game (Evans, 1979; Heuer and Leopold-
Wildburger, 2012). In a simple version with continuous strategy spaces, each player selects a
number from a given set S C Rsg. The player who selected the larger number wins 1, unless
the larger number is at least ¢ > 1 times as large, in which case the player who selected the
smaller number wins b > 0. In the case of a tie, payoffs are zero. The variety and depth of the
game-theoretic analysis of Silverman’s game contrasts with the elementary nature of the present
analysis. For example, Evans and Heuer (1992) work with polynomial conditions that are absent
from our analysis. However, dominance arguments and Toeplitz matrices naturally arise in the
analysis of both classes of games. Similarly, motivated by Silverman’s game that partitions the
square into four subsets with equal payoffs, Heuer (2001) studies a general class of zero-sum games
on the square that partitions the square into three subsets with equal payoffs. This class includes
a variant of the Sion-Wolfe game as a special case. In terms of results, however, the conclusions
are often similar. I.e., continuous variants of Silverman’s game need not possess a value, and

discrete variants of it may often possess an essentially unique equilibrium.3!

30T hus, € > 0 is bounded from above by a product of 1/y/m and other factors that grow at most logarithmically
in m.

31Similar examples of zero-sum games on the square appear in Carmona (2005), Duggan (2007), Montero and
Page (2007), Prokopovych and Yannelis (2014), and Boudreau and Schwarz (2019), for instance. Those papers,
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6. Conclusion

The research efforts documented in this paper have been motivated by the desire to better un-
derstand the nature of the Sion-Wolfe example. It is simply hard to accept that noncooperative
game theory fails to deliver any prediction for the outcome of a simple game with straightforward
economic interpretation. In an attempt to resolve the issue, we have characterized the values of
discrete-grid approximations of the Sion-Wolfe game. In the cases relevant for the approximation,
the equilibrium was shown to be essentially unique in iteratively undominated strategies. Linking
the findings back to the game with continuous strategies, two main observations have been made.
First, the set of limit points of values in approximating finite games consists of three points. Sec-
ond, one of the three limit points lies outside of the interval formed by the maximin and minimax
values in the continuous Blotto game. Given that the existence of a value may be a question hard
to settle in specific games, we conclude that the analysis of finite approximations is potentially
misleading about the nature of interaction in games with continuous strategy spaces.

The contribution of Sion and Wolfe (1957) was it to formally show that an economically
relevant game with compact strategy spaces and bounded payoff functions need not possess an
equilibrium point. However, as seen above, the iterated elimination of weakly dominated strategies
is an alternative and potentially more transparent way to establish that the majorant and minorant
values in the Sion-Wolfe game do not coincide.

The iterated elimination of weakly dominated strategies is natural in the context of games
considered in the present paper. This technique might prove useful also in the study of other
variants of conflicts with not too many battleficlds, for example, with heterogeneous budgets or
heterogeneous valuations. However, it might be less effective in Blotto games without head starts

or too many battlefields.

however, pursue the more ambitious objective of characterizing the condition of better-reply security (Reny, 1999)
in the mixed extension.
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Appendix

This Appendix contains technical material omitted from the body of the paper. Lemma A.1

prepares the proof of Proposition 1.

Lemma A.1 If k > n/2, then the sets of iteratively undominated strategies in B(n, k) are given

by Xfoo) = X£2) ={0,n—k+1} and Xéoo) = Xéz) = {0,n}, respectively.

Proof. By Lemma 1, the respective sets of undominated strategies after the first round of
elimination are given by X{l) ={0,...,n—k+1} and Xél) ={0}U{k+1,...,n}. See panel (a)
of Figure A.1 for illustration. In the second round, 1 = n—k+1 dominates any z1 € {1,...,n—k}
for player 1, and Zo = n dominates any zo € {k+1,...,n — 1} for player 2, as is evident from
panel (b). The game obtained after two rounds of elimination is, consequently, represented by the

two-by-two payoff matrix shown in panel (c). Clearly, further eliminations are not feasible. [J

(a) X3

Xy 0 1 2 k-1 k k+1 n
0 1 Z 2 2 1 0 0
0 1 2 2 2 0
2 0 0 1 7 2 2 0
= 1
n—k+1 0 0 0 1 2 2
n—k+2 0 0 0 0 2
n—1 2
n 0 0 0 0
B L % o k+1 n
0 1 0 0 ©
1 0 0 X Xz 0 n
2 0 2 0 0 1 0
1 n—k+1 0 2
n—k+1 0 2 2

Figure A.1: Iterated elimination of dominated strategies in the case k > n/2.

Proof of Proposition 1. The game shown in Figure A.1(c) admits the unique equilibrium

W = (p7, p3), where pj = %50 + %5n_k+1 and p3 = %50 + %5,,,. As discussed in the body of



the paper, this implies that p* is the unique equilibrium in iteratively undominated strategies in

B(n, k). Obviously, player 1’s equilibrium payoff is v = % O

Lemma A.2 is used in the proof of Proposition 2.

Lemma A.2 Suppose that k = n/2, with n even. Then, the sets of iteratively undominated

strategies are given by Xix) = XfQ) ={0,k,k+1} and Xéoo) = X§2) = {0,k +1,n}, respectively.

Proof. By Lemma 1 and using n—k = k, the respective sets of undominated strategies are given
by Xfl) ={0,...,k+ 1} and Xél) ={0}U{k+1,...,n}. See Figure A.2 for illustration. In the
second round, ¥; = k dominates any x; € {1,...,k— 1} for player 1, while 3 = n dominates any
zo € {k+2,...,n—1} for player 2. The reduced payoff matrix is, consequently, the three-by-three

matrix shown in panel (¢). Further eliminations are obviously not feasible. [J

(a} X2 0

xy k—1 k k+1 Ek+2 n
0 1 2 2 1 0 0
1 2 2 1 0 0
k—1 0 0 1 2 2 2 0
k 0 0 0 1 2 2 1
k+1 0 0 0 0 1 2 2
k+2 0 0 0 0 0 1 2
n 0 0 0 0 0 0 s 1
(b)
xy X2 0 k+1 k+2 n i
c
1 9 9 x4 Xz 0 kE+1 n
g 9 0 1 0
= = = = k 0 1
k 2 y 1
k+1 0 2
k+1 0 1 2 2

Figure A.2: Iterated elimination in the case n = 2k.

Proof of Proposition 2. (Equilibrium property) The reduced game shown in panel (c¢) of Figure

A.2 admits a unique equilibrium p* = (uf, p3), given by strategies uj = 250 + %5k + %5k+1 and
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Wy = %50 + %6k+1 + %571. Thus, p* is the unique equilibrium in iteratively undominated strategies
in B(n, k). Clearly, player 1’s equilibrium payoff in p* is v = % (Uniqueness) We check that no
strategy outside of player 1’s equilibrium support is a best response. Player 1’s expected payoff

against p5 is given by

w

1 1
EME [Hl(l‘l, .LQ)] = Hl(wl, 0) + 5 : Hl(zL‘l, k+ 1) + 5 . Hl(.’L‘l, n), (24)

5

where player 1’s ex-post payoffs are taken from Figure A.2(a). This needs to be compared to
II; = 2. There are four cases. First, if 21 = 1, then B [ (21, 72)] = 1.1 < Ij. Second,
if 21 € {2,...,k — 1}, then Ej[lli(21,22)] = % -2 < IIf. Third, if 21 = k + r for some
7 € {2,...,k — 1}, then E,s[Ili(z1,22)] = 1.2 < Ij. Fourth and finally, if 21 = n, then
By (1L (21, 72)] = % -1 < IIj. Thus, no pure strategy outside player 1’s equilibrium support is
a best response. In particular, pi is the unique best response to p} in B(n, k). We now show

analogously that no pure strategy outside of player 2’s equilibrium support is a best response to

p;. Player 2’s expected payoff is
3 1 1
By [a(z1,22)] = R (0, 29) + R - Ha(k, x2) + = Ao(k +1,22), (25)

and this needs to be compared to I} = —%. There are three cases. First, if o € {1,...,k — 1},
then E:[IIa(z1, 72)] = 3.(-2) <IIj. Next, if 7o = k, then By [a(z1, 22)] = -+ (-1) =
—% < II5. Third and finally, if 23 = k +r for some r € {2,...,k — 1}, then E:[Ila(z1,22)] =
% (—=2)+ % (=2) = —% < II5. Thus, as above, we have shown that 3 is the unique best response
to pi in B(n, k). Since no other strategy than the ones played in p* are best responses, and Nash

equilibria in zero-sum games like B(n, k) are interchangeable (see, e.g., Osborne and Rubinstein,

1994, Section 2.5), there cannot be any other equilibrium in B(n, k). O
The following lemma is needed in the proof of Proposition 3.

Lemma A.3 Suppose that n =2k +r, for some r € {1,...,k — 1}, and k sufficiently large.

(i) If r =1, then X\ = X = {0,k,k + 1,k + 2} and X = X = {0,k +1,n};

(ii) if 1€ {2, k—2}, then X = XV = {0, k,n—k+1} and X° = XY = {0,k +1,n}.
Proof. (i) In this case, n — k + 1 = k 4 2. Hence, the respective sets of undominated strategies

are given by Xfl) = {0,...,k + 2} and Xél) = {0} U{k + 1,...,n}, as illustrated in Figure
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A.3. In the second round, any z; € {1,...,k — 1} is dominated by z; = k for player 1, so that
Xf) ={0,k,k+1,k+2}. Similarly, any z9 € {k+3,...,n—1} is dominated by Zo = n for player
2, so that Xéz) ={0,k+ 1,k 4+ 2,n}. In a third round of elimination, we see that zo = k + 2 is
dominated by Zo = k+1 for player 2, so that X 53) = {0,k+1,n}. Since no further eliminations are
feasible, the claim follows. (ii) In this case, n—k+1 = k+r+1, so that XF) ={0,....k+r+1}
and Xél) ={0} U{k+1,...,n}. See Figure A.4. In the second round, any x; € {1,...,k—1}is
dominated by 71 = k for player 1, and any =2 € {k+7r+2,...,n—1} is dominated by 72 = n for
player 2. Therefore, in analogy with the previously considered case, X §2) ={0}U{k,...,k+r+1}
and X§2> ={0}u{k+1,....,k+r+1}U{n}. In the third round, 1 € {k+1,...,k+r—1}is
dominated by 71 = k for player 1, and zo € {k+2,...,k+r+ 1} is dominated by 7o = k+ 1 for
player 2, so that X§3) ={0,k,k+r,k+r+1} and Xé?’) = {0,k + 1,n}. In the fourth and final
round, z1 = k + r is dominated by Z; = k + r + 1 for player 1. Thus, X§4) = {0,k k+r+1}.
Clearly, further eliminations are not feasible. [

(a) x2 k+1 k+2 k+3 n—1

X1 0 n

0 1 0 0 0 0

0 0 0 0

0 2 1 0 0 0

k-1 0 2 2 2 0 0

k 0 2 2 2 1 0

k+1 0 1 2 2 2 1

k+2 0 0 1 2 2 2

(b) (€)

x %2 0 k+1 k+12 n x X2 0 k+1 n
0 1 0 0 0 0 1 0 0
k 0 2 2 0 k 0 2 0
k+1 0 1 2 1 k+1 0 1 1
k+2 0 0 1 2 k+2 0 0 2

Figure A.3: The case r = 1.

Proof of Proposition 3. If r = 1, then the reduced payoff matrix, shown in Figure A.3(c),
leaves four strategies for player 1 and three strategies for player 2, which makes it straightforward
to verify the claim. If » € {2,...,k — 2}, the reduced payoff matrix is even a diagonal matrix.
Multiplying its inverse with a constant vector and normalizing delivers the unique equilibrium

strategy. O
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X x 2 X
(a) . & .‘gx A)( d-x ) \? " ( b) # -gx £ a.x
2 K3 X o -
%1 @ ’ = %, 2 x’ £ xd g >
0 1 0 0 0 0 0 0 1 0 0 0
1 0 1 = 0 0 0 0 k ] 2 2 2 2 0
2 0 2 — 0 0 0 0 k+1 0 1 2 2 0
k—1 0 2 2 1 0 0 k+r—1 0 0 0 Z 2 0
k 0 2 2 2 0 0 k+r 0 0 0 1 2 1
= k+r+1 0 0 0 0 1 2
k+r oy 2 2 ol 2 1 ()
X2
ktr+1| o | o | | 1| 2| o| 2|2 % 8 Bt & B op 0 e ow
0 1 0 0 *1
0 1 0 0
k 0 2 0
k 0 2 0
k+r 0 0 1
k+r+1 0 0 2
k+r+1 0 0 2

Figure A.4: The case r € {2,...,k — 2}.

Proof of Lemma 2. Sion and Wolfe (1957) consider a two-person zero-sum game on the square,

with player 1 choosing @ and player 2 choosing y, where player 1’s payoff function is given as

~1 ffe<y<z+s
K(z,y) = 0 fe=yory=a+; (26)
1 otherwise.

In comparison, one notes that in B 5,

2 if$1<l’2<$1+%
mi(x1,x9) =4 1 ifaxg=x10rzo =121+ % (27)
0 otherwise.

It is now easy to check that, by letting @ = 1 — 29 and y = 1 — x1, we obtain m(x1,x9) =
1—K(x,y). Thus, exchanging the roles of players 1 and 2, and applying the linear transformations
of strategy spaces and payoff functions, the Sion-Wolfe game is indeed strategically equivalent to
Bo.5. Moreover, as the maximin value in the Sion-Wolfe game is supinf K = % and the minimax

value is inf sup K = %, we obtain

sup inf // m1(x1, x2)dpy (z1)dfie(x2) = 1 — infsup K = il, (28)
A— [0,1]x[0.1] 7

2
inf sup // 71 (21, x2)dfir (x1)dfiz(x2) = 1 — supinf K = —, (29)
B2 [0,1]x[0.,1] 3

as claimed. [J
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Proof of Lemma 3. By the definition of weak dominance, é € X;\6;, for i € {1,2}. Hence,
player i’s strategy set X, = X;\ &; is non-empty, for i € {1,2}. By assumption, u1(&;,&2) <
ul(ﬁ,gg) for any ¢; € &1 and & € X. Therefore, infe,ex, u1(&1,&2) < infeex, ul(ﬁ,gg) for any
§1 € 61. Hence, supg, cx, infe,ex, u1(61,82) < SUPg, e, infe,cx, u1(&1,&2). Since the reverse in-
equality is obvious, it follows that supg, cx, infe,ex, u1(&1,&2) = SUPg, cx infe,cx, u1(&1,&2). Next,
we note that supg, ey, u2(61,&2) = SUPg, cx, ua(&1,&2) for any & € X;. By the zero-sum property,
this implies infe,cx, u1(&1,&2) = infe,cx, u1(&1,&2) for any & € X;. Combining the last two in-
sights, it follows that U = Ug, as claimed. Exchanging the roles of player 1 and 2, this also

proves the second claim and, hence, the lemma. [J

Proof of Proposition 5. (If) Take some ¢ > 0. By the definition of the minorant, there exists
&} € X1 such that

inf (€. 62) 2 v, (30)
2

N ™

and therefore

ui (&7, &2) > v — (€2 € X2). (31)

N ™

Similarly, by the definition of the majorant, there exists £ € X9 such that such that

sup u1(61,63) ST+ . (32)
&1
so that

W) <v-5 (e (33)

Evaluating inequality (31) at £ = &5, and subsequently subtracting the result from inequality

(33), one obtains
u(6,§) —w (€, &) <v—v+e (& €X). (34)
In complete analogy, one shows that

ug(€r,€2) —ua(é1,63) ST—ut+e (&2 € X2). (35)

Thus, if G has a value, then (£5,&5) is an e-equilibrium. (Only if) Suppose that (£5,&5) is an

e-equilibrium, for some € > 0. Then,

us(&5.65) > ua(&5,6) —e (&2 € Xo). (36)
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Since uo = —usq, this implies

ur(&1,63) Sui(&,62) +e (&2 € Xa). (37)

Hence,

u1 (€7, 65) < i?f uy(€7,&2) + e < Supi?f u1(€1,&) +e=v+e. (38)
2 & &

In particular, v > —oo. Analogously, one shows that us(&},£5) < —v + ¢, or equivalently, that
u1(€5,&5) > v —e. In particular, 7 < co. Using that v <, it follows that both 7 and v are finite,

and hence, v — v < 2¢. Since € > 0 was arbitrary, it follows that v — v = 0, as claimed. [J

Proof of Proposition 6. (i) We execute two rounds of elimination. In the first round, we note
that any strategy x1 € {k + 2,...,n} is weakly dominated by Z; = k + 1, and that any strategy
x5 € (0, 3] is weakly dominated by Z» = 0. This leaves us with strategy sets X} = {0,...,k+1} for

player 1 and X} = {O}U(%, 1] for player 2. In the second round, we note that any z; € {1,...,k—1}

k+1
n ’

is weakly dominated by 1 = k, and that any strategy x2 € | 1) is weakly dominated by zo = 1.

This leaves us with strategy sets X7 = {0, k, k + 1} for player 1 and X} = {0} U (3, 2L) U {1} for
player 2. The resulting payoff matrix, with three options for each player, is again that shown in
Figure 4, where z = 0. Solving that game leads to the strategies and the value, as claimed.? (ii)
As in the previous case, one executes two rounds of elimination. In the first round, we note that
any r, € (% + £,1] is weakly dominated by z; = % + ¢, and that any z9 € {0,...,k} is weakly
dominated by Zo = 0. This leaves us with strategy sets X| = [0, $4¢] and X, = {0}U{k+1,...,n},
respectively. In the second round, we see that any z; € (0, % + ¢) is weakly dominated by 7, = 0,
and that any x9 € {k+1,...,n} is weakly dominated by Zs = n. This leaves us with strategy sets

" =40, 3 + ¢} for player 1 and X5 = {0,n} for player 2. The resulting payoff matrix, with two
options for each player, is that shown in Figure 2(c). Solving that game leads to the strategies

and the value, as claimed. [J

*?There is a multiplicity in so far that the £ maybe chosen over the interval (0, £).
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