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Computing and Comparing

Measures of Rationality

Lasse Mononen†

Abstract

The rationality of choices is one of the most fundamental assumptions of traditional

economic analysis. Yet, substantial evidence has documented that choices often cannot

be rationalized by utility maximization. Several measures of rationality have been

introduced in the literature to quantify the size of rationality violations. However, it is

not clear which of these measures should be used in applications, and many measures

are computationally very demanding, which has restricted their widespread use. First,

we introduce novel variations of the measures that allow us to establish connections

between the different measures. Second, we develop methods to compute the most-used

measures of rationality. Exploiting this computational progress, we offer simulation-

based comparisons of the accuracy of the measures. These simulations show that a

new type of measure that combines the size of rationality violations with the number

of rationality violations outperforms other measures. Finally, we offer a method to

calculate statistical significance levels for rationality violations.

1 Introduction

One of the most fundamental assumptions in economics is that choices are rational, i.e.,

that they maximize a utility function. Yet, there is substantial evidence that choices are

not always rational (e.g. Echenique et al., 2011, Choi et al., 2014, Dean and Martin, 2016).

In order to understand the reasons for non-rational choices and to evaluate and improve

the quality of choices, it is fundamental to understand how close choices are to maximizing
†University of Zurich: lasse.mononen@econ.uzh•ch

The author thanks Pietro Ortoleva, Nick Netzer, Jakub Steiner, and seminar audiences at Aalto University
and D-TEA for useful comments and suggestions.
This research project and related results were made possible with the support of the Alfred P. Sloan Foun-
dation and the NOMIS Foundation.
A supplementary computational toolbox for Matlab implementing the discussed programs is available at
https://github.com/lmononen/measures-of-rationality-toolbox

1

https://github.com/lmononen/measures-of-rationality-toolbox


utility in different settings. This helps us understand if people make better choices in some

markets than others or if some groups make better choices than others.

Over the past decades, several measures of rationality have been proposed to quantify the

quality of choices. However, it is not clear which of these measures should be used in empirical

applications. Additionally, most of the measures are computationally very demanding which

has restricted their widespread use (Smeulders et al., 2014). Due to these computational

constraints, most of the empirical literature has focused on a single, easy-to-compute measure

even though it has been argued to not be a good choice (Echenique, 2022). Later on, in

Section 1.1, we wil show that this choice of measure might have impacted conclusions about

the quality of choices in empirical applications.

To address these issues, we provide novel efficient computation methods for the most

common measures of rationality. Exploiting this computational progress, we perform a

simulation-based comparison of the accuracy of the different measures of rationality. Addi-

tionally, we consider novel variations of the measures and show how these variations provide

connections between the existing measures. Especially, our simulation-based comparison

suggests a new type of rationality measure that combines measures capturing the size of

rationality violations with measures counting the number of rationality violations.

Before discussing the results, we highlight the importance of the rationality measures with

two applications. First, consider a government that wants to improve the citizens’ welfare

by regulating markets where the citizens make bad choices. These bad choices might be

due to impulsive purchases, limited attention, complexity of the markets from advertising,

price shrouding, or complexity of the alternatives as with financial derivatives. However,

the government only observes the purchases that people make in this market but not the

preferences of the people, so it cannot judge if any given purchase was good or bad. Here,

measures of rationality offer a way of quantifying the quality of the choices without making

any assumptions about the citizens’ preferences or about the source of mistakes, simply by

comparing how close the observed choices are to rational choices. This allows the government

to evaluate the complexity of the markets and choose the correct markets to regulate.

Second, measures of rationality offer a method for assessing the suitability of economic

analysis. Virtually every study of consumption behavior assumes rationality in the form of
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utility maximization. Hence it is fundamental to understand how close people’s behavior is to

the assumption of rationality. The measures of rationality allow us to assess if some markets

are more suitable for economic analysis than others, or if the assumption of rationality is a

better approximation for some groups than for others.

We study the rationality of consumer choice. Afriat (1967) showed that a consumer’s

choices are rationalizable by maximizing a utility function iff there are no revealed preference

cycles among the observed choices, a condition known as the generalized axiom of revealed

preference (GARP). Measures of rationality quantify the severity of GARP violations.

A well-known measure of rationality is Varian’s goodness-of-fit index (Varian, 1990). The

idea of this measure is that the consumer has some underlying rational preferences. Then

the distance of the observed choices to the underlying preferences is measured by the fraction

of income that the consumer could have saved without a loss of welfare. Since we do not

observe the consumer’s true preferences, this measure takes the minimum over all rational

preferences of the average fraction of income that the consumer could have saved (see Halevy

et al., 2018).

Here, the total size of rationality violations is measured in absolute deviations or the ℓ1

norm. Alternatively, the total size of rationality violations could be measured using the sum

of squared errors, or the ℓ2 norm raised to the power of two. More generally, we consider

variations of Varian’s index that use the ℓp norm raised to the power of p, thereby generalizing

the sum of squared errors to any power p. As p increases, we give more weight to the largest

violation of rationality. As p decreases, we give more weight to the number of rationality

violations.

First, we show that, as p → ∞, this variation of Varian’s index converges to Afriat’s

efficiency index (Afriat, 1972), which captures the single largest fraction of income that

the consumer could have saved without a welfare loss. Second, we show that, as p → 0,

the variation converges to a refinement of the Houtman-Maks index (Houtman and Maks,

1985), which is the smallest fraction of observations that needs to be dropped to rationalize

the choices. The limit refines the Houtman-Maks index by breaking its ties by the geometric

average of rationality violations. This result shows that the Houtman-Maks index is a
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counting version of Varian’s index that only counts the number of rationality violations but

does not take into account their size.

Additionally, we consider the well-known swaps index (Apesteguia and Ballester, 2015)

that counts the smallest number of pairwise preference swaps required to rationalize the

choices. We offer a novel alternative representation for the swaps index as the smallest

number of revealed preference removals to make the revealed preferences acyclical. This

alternative representation is computationally more tractable and allows us to apply the

same computational methods as for Varian’s index to calculate the swaps index. In analogy

to the connection between Varian’s index and the Houtman-Maks index, we show that the

swaps index is a counting version of the normalized minimum cost index (Mononen, 2022),

counting only the number of revealed preference removals but not taking into account the

amount of money that the consumer could have saved.

In addition to deriving these theoretical results, we provide novel computational tech-

niques to compute Varian’s index and its variations. We reformulate Varian’s index as a

simple binary linear programming problem that we solve with a modified version of a depth-

first search algorithm. Even though computing Varian’s index is known to be NP-hard, our

algorithm works efficiently and fast on the datasets used in typical applications. The same

technique can be used for the different variations of Varian’s index and the other rationality

measures discussed above.

Using these computational advances, we offer a simulation-based comparison of the ac-

curacy of different measures of rationality. We employ a calibrated model of choice mistakes

and compare the accuracy of the measures in capturing the extent of these choice mistakes.

We show that the best measure at capturing choice mistakes crucially depends on the fat-

tailedness of the mistake distribution. With fat-tailed choice mistakes, variations of Varian’s

index with a low p≈0.1 perform the best. With concentrated mistakes, variations of Varian’s

index with p ≈ 0.5 perform the best.

Especially, variations with p = 2 or p = 1 that have been suggested in the literature always

perform worse than variations with p=0.5. This suggests that measures that give more weight

to the number of rationality violations work best in applications. The intuition for this result

is that it is more likely that the data has a single large mistake than multiple small ones. To
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illustrate this with a simple example, consider two positively truncated normally distributed

variables X and Y . Here, we have that the probability of max{X, Y } ≥ 2 min{X, Y } is

above 0.5. That is, it is more likely to have one large mistake than two small mistakes.

Now, if the observed data can be explained by two small rationality violations or one large

rationality violation, then variations of measures with low p will rationalize the data with

the single large violation, and variations with high p will rationalize the data with the two

small violations. The measure with low p is more often correct. Our general approach based

on simulated choice mistakes can be tailored to any specific choice environment, to give a

recommendation for the best measure in that environment.

Finally, we offer a method to calculate statistical significance levels for violations of

rationality. This test is based on testing if the observed measure of rationality could have

been generated by random choice with the same expenditures and prices. The previous

literature has used a fixed measure of 0.05 as a cut-off for large violations of rationality. In

contrast, our resulting significance thresholds depend on the choice situation and on how

difficult it is to observe violations of rationality in that choice situation. We find that in

the experimental data from Choi et al. (2014), 63% of people are statistically significantly

more rational than random behavior at 95% significance level, even though only 17% of the

choices are rationalizable by a utility function.

This paper contributes to the literature on computing measures of rationality. Smeulders

et al. (2014) showed that most measures of rationality are computationally complex and

NP-hard (except for Afriat’s efficiency index, which is only polynomially complex). We

highlight how this computational complexity captures only the worst-case scenario for large

problems. Instead, for the data sets often used in applications, the measures can be efficiently

calculated. Recently, Heufer and Hjertstrand (2019) and Demuynck and Rehbeck (2023a)

provided computational methods for calculating Varian’s goodness-of-fit, the Houtman-Maks

index, and the minimum cost index, based on reformulating these indices as mixed linear

programming problems. In Section 6.1 we will show that the methods presented here compute

these indices substantially faster and more reliably in existing data sets. Our results also

contribute to the literature that applies measures of rationality in empirical and experimental

studies (e.g., Choi et al., 2014, Dean and Martin, 2016, Drichoutis and Nayga, 2020). Our
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results offer guidance as to which measure to choose in applications and provide a method

to calculate the significance levels for violations of rationality.

The remainder of the paper proceeds as follows. We begin, in Section 1.1, with a simple

empirical application highlighting that the different variations of measures of rationality

matter for empirical analysis. Next, in Section 2, we introduce the formal setting and

discuss the computation of measures of rationality. Here, we focus on Varian’s goodness-

of-fit index and provide extensions for other measures. In Section 3, we consider variations

of the measures and show that existing measures are the limits of the variations that weigh

the size and the number of rationality violations differently. In Section 4, we provide the

simulation-based comparisons and we offer a method to calculate statistical significance

levels. Section 5 concludes. The proofs are included in the appendix.

1.1 Empirical Motivation

We begin with a simple empirical application highlighting that the choice of the rationality

measure matters in practice. We focus on Drichoutis and Nayga’s (2020) recent experiment

on the effect of cognitive load on the rationality of risky choice. In the experiment, subjects

were asked to memorize numbers while they allocated a budget between two risky accounts

where one of them was paid with 50% probability. The authors found no effect of cognitive

load on the degree of rationality. We show that, by using the measures suggested by our

simulation-based comparisons, cognitive load has a significant effect on the quality of choice.

In Table 1, we report the effect of cognitive load in the experiment on different measures

of rationality (capturing distance to rationalization by a utility function that respects first-

order stochastic dominance). A higher score means less rational choices. The first two

columns show the results from Drichoutis and Nayga (2020), according to which cognitive

load does not affect Afriat’s efficiency index or the Houtman-Maks index. The next two

columns show that cognitive load does also not affect Varian’s goodness-of-fit or a variation

of this index that gives more weight to the size of rationality violations. The last two columns

show, however, that cognitive load does affect the variations of Varian’s index that give more

weight to the existence of rationality violations and are suggested by our simulation as the
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AEI HM Var Var2 Var0.5 Var0.1
High Cognitive .018 .027 .0038 .00039 .013∗ .03∗∗

load treatment (.022) (.017) (.0041) (.0014) (.008) (.014)

Age .0026 -.00039 -.00015 -.0000097 -.00039 -.00094
(.0078) (.0057) (.0014) (.00048) (.0028) (.0049)

Female .019 .018 .0048 .0014 .01 .021
(.023) (.017) (.0041) (.0013) (.0081) (.015)

Household size -.0079 .0067 -.0005 -.0001 -.000084 .0044
(.011) (.0079) (.0024) (.00086) (.0045) (.0072)

Reference income .0097 .0075 .0018 .00064 .0035 .0063
(.0078) (.0063) (.0015) (.00053) (.0029) (.0054)

Raven’s test score -.02∗∗∗ -.0079 -.0042∗∗∗ -.001∗∗ -.009∗∗∗ -.012∗∗

(.0077) (.0056) (.0014) (.00047) (.0028) (.0049)

Experience with .057∗∗ .0096 .0068 .0024 .012 .012
Raven’s test (.024) (.017) (.0044) (.0015) (.0085) (.015)

Total decision time -.012∗∗∗ -.0054∗∗ -.0026∗∗∗ -.00076∗∗∗ -.0056∗∗∗ -.0079∗∗∗

(.0032) (.0027) (.00068) (.00024) (.0013) (.0023)
Observations 343 343 343 343 343 343
Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1. The table shows a regression of rationality on cognitive load and demographics, using the ex-
perimental data of Drichoutis and Nayga (2020). AEI, HM, and Var stand for Afriat’s efficiency index, the
Houtman-Maks index, and Varian’s goodness-of-fit, respectively. Varp stands for Varian’s index when the
total size of adjustments is measured in ℓp norm raised to the power of p. A higher measure always signifies
less rational choices.

best measures. This shows that cognitive load might affect the quality of choices, contrary

to the authors’ conclusion.

2 Computing Measures of Rationality

We first introduce the standard consumer choice setting and when the choices can be ratio-

nalized. Then, we move on to considering non-rational choices and to measuring how close

the choices are to being rational, using Varian’s goodness-of-fit index. Next, we move on

to computing this index by providing a novel computational method. Finally, we show how

this computational method can be applied to other indices. The paper is accompanied by

an easy-to-use toolbox for Matlab that implements all procedures.
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2.1 Setting

We study the rationality of consumer choice. At each time period t, the consumer makes non-

negative purchases xt at positive prices pt for G goods over T time periods (or observations).

These prices pt with the purchases xt form data D

D =
(
(p1, x1), . . . , (pT , xT )

)
.

We say that data are rationalizable with a utility function if the purchases can be ex-

plained as maximizing a non-satiated utility function.

Definition Data D =
(
(p1, x1), . . . , (pT , xT )

)
is rationalizable if there exists a non-satiated

utility function u : RG
+ → R such that for all 1 ≤ t ≤ T,

xt ∈ arg max
{
u(x)

∣∣∣pt · x ≤ pt · xt

}
.

As is well known, the rationalizability of choice data is characterized by the generalized

axiom of revealed preference (GARP) stating that there are no choice cycles (Afriat, 1967).

That is, the revealed preference is acyclical as defined next.

Definition (R, P) is the revealed preference of data D if for all 1 ≤ t, t′ ≤ T ,

xt R xt′ ⇐⇒ pt · xt ≥ pt · xt′ and

xt P xt′ ⇐⇒ pt · xt > pt · xt′ .

Definition (xt1 , . . . , xtn) is a cycle if for all 1 ≤ i ≤ n, when xtn+1 := xt1 ,

xti
R xti+1 and for some 1 ≤ j ≤ n, xtj

P xtj+1 .

(R, P) is acyclical if it does not have cycles.

Here each cycle constitutes a money pump cycle, i.e., a sequence of trades where the

consumer is always willing to pay a non-negative amount of money to do each of the trades

but at the end of the cycle is left with the starting bundle.
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Figure 1. An example of Varian’s index. The data is D =
(
(p1, x1), (p2, x2)

)
with a cycle between x1 and

x2. Each budget is individually adjusted downwards until there are no cycles left. The smallest average size
of budget adjustments to break all the cycles is the value of Varian’s index. In this example, we adjust the
income of at observation (p2, x2) until x1 is not anymore in the budget set to break the cycle.

2.2 Varian’s Goodness-of-Fit Index

Next, we consider data with cycles and measure how close the data is to rational choice by us-

ing Varian’s goodness-of-fit index (Varian, 1990). This index relaxes the revealed preference

with observation-specific adjustment factors (et) ∈ [0, 1]T as follows

xt R(et) xt′ ⇐⇒ (1 − et)pt · xt ≥ pt · xt′ and

xt P(et) xt′ ⇐⇒ (1 − et)pt · xt > pt · xt′ .

Varian’s index is the least average of adjustments required to rationalize the data

IVar(D) = 1
T

inf
(et)∈[0,1]T

T∑
t=1

et such that
(
R(et), P(et)

)
is acyclical.

The idea is that Varian’s index is the most conservative estimate for the per observation

average fraction of income that the decision maker could have saved without affecting the

welfare. Each budget is adjusted downwards by a fraction et until there are no cycles left.

This is illustrated in Figure 1. In the figure, we have two goods and our data consists of two

observations: x1 at price p1 and x2 at price p2. At the first observation, everything under

the budget line defined by p1 is available and similarly at the second observation. Especially,

there is a cycle between x1 and x2. Varian’s index is calculated by pulling each budget

line individually towards the origin until there are no cycles left. The minimal average of

adjustment factors is the value of Varian’s index.
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Next, we move on to computing Varian’s index. Our computation method proceeds

in two steps. First, we reformulate the index as a binary linear programming problem of

removing all the cycles. Second, we provide a novel algorithm for finding a critical set of

cycles that needs to be removed.

2.2.1 Reformulating Varian’s Goodness-of-Fit Index

Varian’s index requires finding the optimal levels of adjustment factors et ∈ [0, 1] for each ob-

servation. However, the problem can be reformulated to a simple binary linear programming

problem with a binary variable for each revealed preference.

First, we simplify the variables et ∈ [0, 1] to binary variables. At the infimum solution,

each et is pt·(xt−xt′ )
pt·xt

for some t′ or 0. When the value of et is at pt·(xt−xt′ )
pt·xt

+ε for any ε > 0, then

this adjustment et removes the revealed preference xt R xt′ and all the "cheaper" revealed

preferences xt R xt∗ such that

pt · (xt − xt∗) ≤ pt · (xt − xt′).

This observation allows us to reformulate Varian’s index as a problem of removing sets of

cheaper trades for revealed preference xt R xt′ at the cost pt·(xt−xt′ )
pt·xt

until there are no cycles

left.

Next, we simplify the constraint. In the previous reformulation, a revealed preference

xt R xt∗ is removed if a more expensive trade xt R xt′ is removed. Formally, for a revealed

preference pair (xt, xt∗), denote the set of more expensive trades than xt∗ at xt as

U(xt, xt∗) =
{
(xt, xt′)

∣∣∣pt · (xt − xt∗) ≤ pt · (xt − xt′)
}
.

Now, the revealed preference xt R xt∗ is removed if the set of cheaper trades for a revealed

preference in U(xt, xt∗) is removed. The constraint of removing all the cycles can be equiv-

alently stated as that for each cycle (xt1 , . . . , xtn), there exists 1 ≤ i ≤ n such that a set of

cheaper trades for a revealed preference in U(xti
, xti+1) is removed.

Finally, since the cost of removing revealed preferences that are not strict is zero, we can

focus on the strict revealed preference P and strict cycles as defined next.

Definition (xt1 , . . . , xtn) is a strict cycle if for all 1 ≤ i ≤ n, when xtn+1 := xt1 ,

xti
P xti+1 .
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The collection of strict cycles up to different rotations is denoted Cs.

The next result formalizes the reformulation of Varian’s index.

Theorem 1 Varian’s index is the value of the following binary linear programming problem

min
θ∈{0,1}P

∑
(xt,xt′ )∈P

θ(xt, xt′)pt · (xt − xt′)
pt · xt

subject to

for all (xt1 , . . . , xtn) ∈ Cs,
n∑

i=1

∑
(xti ,xt′ )∈U(xti ,xti+1 )

θ(xti
, xt′) ≥ 1,

where the summation of indices is taken modulo the length of the sequence and xtn+1 = xt1 .

2.2.2 Row Generation: Finding Critical Cycles

Solving the binary linear programming problem in Theorem 1 involves finding all the cycles

and finding an optimal method to remove all of them, both of which are NP-hard prob-

lems. However, the problem of optimally removing all the cycles can be efficiently solved

by standard methods. The problem of finding all the cycles is more demanding in practice.

However, we can simplify this problem since, generally, only a few cycles are critical cycles

that are binding constraints at the optimal solution. Then an optimal solution for removing

only these critical cycles will give the optimal solution to the full problem in Theorem 1. This

reduces the number of constraints in the problem significantly. We will find these critical

cycles by solving the problem in Theorem 1 for a subset of cycles and finding new critical

cycles that the optimal solution did not remove by using a greedy method.

Our method for finding critical cycles is a novel variation of the depth-first search. The

algorithm is described in Algorithm 1. It starts from an optimal solution θ∗ to a subproblem

of Theorem 1 for a set of cycles C∗ and finds new critical cycles that this solution missed.

It follows in several steps. First, we compute the additional cost of removing the revealed

preference (xt, xu) from the current solution θ∗:
pt · (xt − xu)

pt · xt

−
∑

(xt,xv)∈P
θ∗(xt, xv)pt · (xt − xv)

pt · xt

where the first term is the original cost of removing (xt, xu) and the second term is the cost

of the current optimal removals of revealed preferences involving xt on the left-hand side. In

the optimal solution, there is at most one removal of this type. Second, we implement the
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current solution θ∗ for the relaxed revealed preference and remove all the revealed preferences

with an additional cost lower than 0. Third, we implement a variation of depth-first search

to find cycles. This is a standard method to find cycles in a graph. In our variation, when a

cycle is found, we rollback the depth-first search to the beginning of the cycle and remove the

cycle greedily by removing the revealed preference with the lowest additional cost. After this,

we continue the depth-first search from the beginning of the cycle without the additionally

removed revealed preference. The cycles that the search finds give new critical cycles that

the previous solution did not remove.

Finally, our algorithm to calculate Varian’s index is described in Algorithm 2. As a

first step, we find all the cycles of length 2. After this, we iteratively solve for the optimal

removals for a subproblem of Theorem 1 for the current set of cycles and find new critical

cycles for the current optimal solution until no more critical cycles are found. When there

are no more critical cycles that the current optimal solution missed, the current optimal

solution gives the optimal solution to the full problem in Theorem 1.

Finally, Varian’s goodness-of-fit can be solved separately within each strong component

of the revealed preference graph to further simplify the problem. This was noted by Dean

and Martin (2016) in the context of the minimum cost index.

2.3 Swaps Index and Normalized Minimum Cost Index

Our computation methods generalize to the swaps index (Apesteguia and Ballester, 2015)

after providing a novel alternative representation for it. The swaps index captures the

smallest number of better alternatives in the choice sets than the chosen alternatives for any

preference. This measure is defined for random data in an abstract choice setting with a

finite set of alternatives. An observation (x, A) is choosing x from the choice set A. The

set of all the possible observations is denoted by O. Random data f is a distribution of

observations, f ∈ ∆(O). Denote the set of strict preferences (without indifference) by P .

The swaps index is the smallest number of preference swaps required to rationalize the data

by a strict preference,

ISwaps(f) = min
≻∈P

∑
(x,A)∈O

f(x, A)
∣∣∣{y ∈ A|y ≻ x}

∣∣∣.
12



Algorithm 1: Critical Cycles Search
Input: (pt)T

t=1, (xt)T
t=1, θ∗ ∈ {0, 1}P

Global variables: C, /* The set of new critical cycles that the program returns */
B, /* The set of greedily removed revealed preferences to break new cycles */
(visited(t))T

t=1, /* Visited observations */
(stacked(t))T

t=1 /* Visited observations that part of currently searched cycles */
Denote: AddCost(xt, xu):= pt·(xt−xu)

pt·xt
−
∑

(xt,xv)∈P θ∗(xt, xv)pt·(xt−xv)
pt·xt

begin
for t = 1 to T do

if visited(t) = false then /* Start DFS from xt if unvisited */
visited(t) := stacked(t) := true
Critical_Cycles_Search_Sub(t)
stacked(t) := false /* No more cycles found that include xt */

return C /* Return the new critical cycles that found */
Function Critical_Cycles_Search_Sub(t): /* Search for cycles from xt and update C
and B for the found cycles. Exits if found a cycle that includes a previous observation in
the search or no more cycles that include xt. */
for u = 1 to T do /* Move the search on the revealed preference from xt to xu */

if AddCost(xt, xu) > 0 & (xt, xu) /∈ B then /* xt P xu and not removed */
if visited(u) = false then /* Move to xu if unvisited */

while visited(u) = false & (xt, xu) /∈ B do /* Search until no cycles found that
include xu or remove the revealed preference xt P xu */
visited(u) := stacked(u) := true
cycle := Critical_Cycles_Search_Sub(u) /* Search xu */
if cycle ̸= 0 then /* cycle ̸= 0 iff found a cycle that includes xt & xu */

visited(u) := stacked(u) := false /* Rollback the search to xt */
if visited(t) = true then /* Not at the beginning of the cycle */

return (xt, cycle) /* Return the cycle collected so far */
else /* At the beginning of the cycle */

visited(t) := true /* Unmark the first element of the cycle */
i∗ = arg min{AddCost(cyclei, cyclei+1)|1 ≤ i ≤ |cycle|}
B := B ∪ {(cyclei∗ , cyclei∗+1)} /* Greedily break the cycle */
C := C ∪ {cycle} /* Add the found cycle & search xu again */

else /* No more cycles found that include xu */
stacked(u) := false /* Return the search to xt */

else if stacked(u) = true then /* The last visited elements until xu form a cycle */
visited(u) := false /* Mark u & rollback the search until t=u */
return (xt, xu) /* Return the cycle collected so far */

return 0 /* If no cycles found, return 0 */
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Algorithm 2: Varian’s Goodness of Fit
Input: (pt)T

t=1, (xt)T
t=1,

Notation: Varian_argmin(p, x, C): the optimal solution to a subproblem of Theorem 1 for
the set of cycles C.

begin
θ∗ := 0
for t = 1 to T do /* Search for two-cycles */

for u = t to T do
if pt · (xt − xu) > 0 & pu · (xu − xt) > 0 then

Cnew := Cnew ∪ {(xt, xu)}

if Cnew = ∅ then /* If no two-cycles, then search for any cycles */
Cnew := Critical_Cycles_Search(p, x, θ∗)

while Cnew ̸= ∅ do /* Solve the optimal revealed preference removals if found new
critical cycles */
C := C ∪ Cnew /* Update the set of cycles */
θ∗ := Varian_argmin(p, x, C) /* Optimally break the current set of cycles */
Cnew := Critical_Cycles_Search(p, x, θ∗) /* Search for new critical cycles that the
current optimal solution missed */

return
∑

(xt,xt′ )∈P θ∗(xt, xt′)pt·(xt−xt′ )
pt·xt

/* Return the value of the optimal solution that
removed all the cycles */

We provide a novel alternative representation for the swaps index based on a revealed

preference on random data. We say that x is revealed to be preferred over y if x is chosen

when y was available,

x P∆ y ⇐⇒ there exists A ⊇ {x, y} such that f(x, A) > 0.

The swaps index focuses on rationalization by a strict preference and so here we do not

distinguish between weak and strict revealed preferences.

Using this revealed preference, the next result shows that the swaps index has a repre-

sentation as the lowest cost of removing revealed preferences to make the revealed preference

rationalizable by a utility function when the cost of removing a revealed preference x P∆ y

is the probability that x is chosen over y in the data.

Theorem 2 For all random data f ∈ ∆(O),

ISwaps(f) = min
B⊆P∆

∑
(x,y)∈B

∑
A⊇{x,y}

f(x, A) such that P∆ \B is acyclical.
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Using this alternative representation, we can compute the swaps index analogously to Var-

ian’s index when we remove revealed preferences instead of sets of cheaper trades. Formally,

we use a trivial set of more expensive trades U(xt, xt′) = {(xt, xt′)}. With this definition, the

swaps index can be computed using Algorithms 1 and 2.

Moving back to the consumer setting, the normalized minimum cost index (NMCI)

(Mononen, 2022) removes revealed preferences similarly to the swaps index and our com-

putational methods generalize symmetrically to this index.1 The normalized minimum cost

index is defined in the consumer choice setting as

INMCI(D) = 1
|D|

min
B⊆R

∑
(xt,xt′ )∈B

pt · (xt − xt′)
pt · xt

such that (R \ B, P \ B) is acyclical.

Here, NMCI removes revealed preferences until the revealed preference is rationalizable

by a utility function, where the cost of removing a revealed preference is the fraction of

income that could be extracted from that trade.2 This index captures conservatively the per

observation fraction of income that the decision maker could have saved without affecting

welfare from all the possible trades. It can be computed analogously to the swaps index using

the same trivial upper contour sets using Algorithms 1 and 2. In Section 3, we elaborate

on the connection between the swaps index and NMCI and show that the swaps index is

a counting version of the normalized minimum cost index that only counts the number of

revealed preference removals but does not take into account the amount of money that the

consumer could have saved.

2.4 Afriat’s Efficiency Index

Next, we move on to Afriat’s efficiency index (Afriat, 1967; 1972). This is the most often

used measure of rationality in the literature. This index relaxes the revealed preference with

a common adjustment factor e ∈ [0, 1],

xt Re xt′ ⇐⇒ (1 − e)pt · xt ≥ pt · xt′ and

xt Pe xt′ ⇐⇒ (1 − e)pt · xt > pt · xt′ .

1The computational methods extend also to the minimum cost index (Dean and Martin, 2016).
2In contrast, Varian’s index removes observations, as in Theorem 1, instead of revealed preferences.
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Figure 2. An example of Afriat’s efficiency index. We have two goods g and g′. Prices are represented
by lines defining the budget sets. The data is D =

(
(p1, x1), (p2, x2)

)
with a cycle between x1 and x2. The

budgets are adjusted downwards until there are no cycles left. The size of the common budget adjustment
to break all the cycles is the value of Afriat’s index.

Afriat’s efficiency index is the least amount of adjustment required to rationalize the data

IAEI(D) = inf
e∈[0,1]

e such that (Re, Pe) is acyclical.

This index captures conservatively the largest fraction of income that the decision maker

could have saved without affecting the welfare. This is graphically illustrated in Figure 2.

In contrast to Varian’s index, here all the budget lines are moved towards zero at a common

speed until there are no cycles left. The fraction that the budget lines are moved towards

zero is Afriat’s index.

A variation of our critical cycles search provides a novel algorithm to compute Afriat’s

efficiency index that is more efficient than the current algorithms in the literature. Our

algorithm is based on increasing an estimate of Afriat’s index until there are no cycles left.

This differs from the algorithm by Smeulders et al. (2014) that estimates the index from

above by decreasing the estimate for Afriat’s index until the data does not satisfy GARP.

Our algorithm is described in Algorithm 3. Here, we always remove all revealed preferences

with a lower cost than the current estimate for Afriat’s index. We search for cycles as in

the critical cycles search, Algorithm 1. However, when the search finds a cycle, instead of

removing the revealed preference with the cheapest cost, we update the estimate for Afriat’s

index by the cheapest cost. When the search finishes, there are no cycles left and the estimate

is Afriat’s index.
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Algorithm 3: Afriat’s Depth-First Search
Input: (pt)T

t=1, (xt)T
t=1,

Global variables: e, /* The current estimate for Afriat’s index */
(visited(t))T

t=1, /* Visited observations */
(stacked(t))T

t=1 /* Visited observations that part of currently searched cycles */
begin

e := 0 /* Set starting point at 0 */
for t = 1 to T do

if visited(t) = false then /* Start DFS from xt if unvisited */
visited(t) := stacked(t) := true
AEI_DFS_sub(t)
stacked(t) := false /* No more cycles found that include xt */

return e /* The final estimate is Afriat’s index */
Function AEI_DFS_sub(t): /* Search for cycles from xt and update e for the found cycles.
Exits if found a cycle that includes previous observations in the search or no more cycles
that include xt. */
for u = 1 to T do /* Move the search on the revealed preference from xt to xu */

if pt·(xt−xu)
pt·xt

> e then /* xt P xu & not removed by e */
if visited(u) = false then /* Move to xu if unvisited */

while visited(u) = false & pt·(xt−xu)
pt·xt

> e do /* Search until no cycles found that
include xu or remove the revealed preference xt P xu */
visited(u) := stacked(u) := true
cost := AEI_DFS_sub(u) /* Search xu */
if cost ̸= 0 then /* cost ̸= 0 iff found a cycle that includes xt & xu */

cost := min
(
cost, pt·(xt−xu)

pt·xt

)
/* Update the cheapest trade of the cycle */

visited(u) := stacked(u) := false /* Rollback the search to xt */
if visited(t) = true then /* Not at the beginning of the cycle */

return cost /* Return the cheapest trade of the cycle so far */
else /* At the beginning of the cycle */

visited(t) := true /* Unmark the first element */
e := max(e, cost) /* Update the estimate e & search xu again */

else /* No more cycles found that include xu */
stacked(u) := false /* Return the search to xt */

else if stacked(u) = true then /* The last visited elements until xu form a cycle */
visited(u) := false /* Mark u & rollback the search until t=u */
return pt·(xt−xu)

pt·xt
/* Return the cheapest trade of the cycle found so far */

return 0 /* If no cycles found, return 0 */
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2.5 Other Measures

Another commonly used measure of rationality is the Houtman-Maks index (Houtman and

Maks, 1985) that is the smallest fraction of observations that needs to be dropped to ratio-

nalize the data. This corresponds to Varian’s index when the cost of removing any lower

contour set is 1.3 In Section 3, we formalize this connection and show that the Houtman-

Maks index is a counting version of Varian’s index that only counts the number of budget

adjustments but does not take into account the size of the budget adjustments.

Next, instead of decreasing the income as in Varian’s index, we could increase the price of

the bundles until the revealed preference is rationalizable. This is the motivation for inverse

Varian’s goodness-of-fit index. Here, again, we relax preferences by adjustments (et′) ∈ [0, 1]T

for each observation but this time we scale up the price of the bundles:

xt R(et′ ) xt′ ⇐⇒ pt · xt ≥ pt · xt′

1 − et′
and

xt P(et′ ) xt′ ⇐⇒ pt · xt > pt · xt′

1 − et′
.

Inverse Varian’s index is the least amount of adjustment required to rationalize the data.

IInvVar(D) = 1
T

inf
(et′ )∈[0,1]T

T∑
t=1

et′ such that
(
R(et′ ), P(et′ )

)
is acyclical.

The idea of this measure is illustrated in Figure 3. Here, instead of pulling the budget lines

inwards to break the cycles, we are increasing the costs of bundles and pushing the bundles

outwards away from the origin to break the revealed preference cycles.

The next result shows that this measure corresponds to Varian’s index after modifying

the observed data by transposing the matrix [pt·(xt−xt′ )
pt·xt

]t,t′ . This means that if we observed

that when xt was purchased the bundle xt′ was available at a fraction pt·(xt−xt′ )
pt·xt

cheaper

cost, then in the modified data set D′ when x′
t′ was purchased also x′

t was available at a

fraction pt·(xt−xt′ )
pt·xt

cheaper cost. Especially, this result shows that inverse Varian’s index can

be computed using Varian’s index after reversing the direction of the revealed preference

graph.

3When the weak and strict revealed preferences differ and there are t ̸= t′ such that pt · xt = pt · xt′ ,
Algorithm 1 looking only for strict critical cycles does not find all the critical GARP cycles for the Houtman-
Maks index. In this case, we use a modification of Johnson’s (1975) algorithm for finding all the critical
GARP cycles.
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Figure 3. An example of inverse Varian’s index. The data is D =
(
(p1, x1), (p2, x2)

)
with a cycle between

x1 and x2. Each bundle is individually scaled upwards until there are no cycles left. The smallest total size
of bundle adjustments to break all the cycles is the value of inverse Varian’s index. In this example, we
adjust x1 until it is not anymore in the budget set at (p2, x2) to break the cycle.

Theorem 3 Assume that the data set is D =
(
(p1, x1), . . . , (pT , xT )

)
. If a data set D′ =(

(p′
1, x′

1), . . . , (p′
T , x′

T )
)

is such that for all t, t′

p′
t · (x′

t − x′
t′)

p′
t · x′

t

= pt′ · (xt′ − xt)
pt′ · xt′

,

then

IInvVar(D) = IVar(D′).

Finally, we discuss methods that require finding all the revealed preference cycles. Swof-

ford and Whitney (1987) and Famulari (1995) suggest the number of cycles to measure

rationality. Echenique et al. (2011) suggest the money pump index that is the average cost

of each cycle. Formally,

IMPI(D) = 1
|C|

∑
(xt1 ,...,xtn )∈C

n∑
i=1

pti
· (xti

− xti+1)∑n
j=1 ptj

· xtj

where C denotes the set of cycles.

These measures are computationally demanding. However, the problem of finding all the

cycles can be parallelized to make these measures computationally easier. There are multiple

methods to find all the cycles, such as Johnson (1975) that we focus on here. This method

searches for cycles based on a depth-first search of the revealed preference graph. This can

be parallelized by combining it first with a breadth-first search for the first n-elements of the

cycles and then continuing the depth-first search starting from these first n-elements. Here
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all the searches with different starting sequences will find different cycles since the sequence

of the first n-elements of the cycle will be different.4 So these searches can be performed

in parallel using the standard algorithm. Due to computational constraints, we do not use

these measures in our following applications.

3 Variations of Measures

We now introduce variations of Varian’s index, inverse Varian’s index, and the normalized

minimum cost index by using different norms to measure the total size of the adjustments.

These variations provide a connection to Afriat’s index, the Houtman-Maks index, and the

swaps index. The variations follow Varian’s (1990) suggestion of using the sum of squared

errors or the Euclidean norm to measure the total size of the adjustments. With the sum of

squared errors, a single large fraction of income that the consumer could have saved without

a loss of welfare is more irrational than consistently making small mistakes with the same

total fraction of income that the consumer could have saved. Additionally, we consider

concave norms that consider consistent small mistakes as more irrational than a single large

mistake.

Varian’s index measures the total size of adjustment factors (et) ∈ [0, 1]T in the ℓ1 norm.

We generalize this by measuring the total size of adjustment factors in the ℓp norm for

p ∈R++. As is standard, we raise the norm to the power of p and focus on the sum of errors.

Formally, Varian’s index of degree α is

IVarα(D) = 1
T

inf
(et)∈[0,1]T

T∑
t=1

eα
t such that

(
R(et), P(et)

)
is acyclical.

For α = 1, this is Varian’s index. For α = 2, the mistakes are measured in the Euclidean

norm with the sum of squared mistakes. Here, the idea is that bigger mistakes are worse and

should be weighted more relative to small mistakes. For 0<α<1, this gives a concavification

of Varian’s index. The idea of the concavification is that we give more weight to the existence

of mistakes relative to the size of the mistakes.

We define analogously the inverse Varian’s index of degree α, InvVarα, and the nor-

malized minimum cost index of degree α, NMCIα. These variations of measures can be
4Additionally, the algorithm guarantees that the first element of the cycle is the lowest element in the

cycle. This guarantees that we do not find different permutations of the same cycle.
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computed symmetrically to the original measures. For Varian’s index, these variations can

be reformulated as in Theorem 1 with the only difference that the objective function is

min
θ∈{0,1}P

∑
(xt,xt′ )∈P

θ(xt, xt′)
(

pt · (xt − xt′)
pt · xt

)α

.

3.1 Connections Between Measures

We now provide connections between the different measures of rationality using the new

variations. When α → ∞, we give more weight to the largest mistake. The next theorem

shows that in the limit, after a normalization, we obtain Afriat’s index.

Theorem 4 For all data D,

lim
α→∞

(
IVarα(D)

) 1
α = lim

α→∞

(
IInvVarα(D)

) 1
α = lim

α→∞

(
INMCIα(D)

) 1
α = IAEI(D).

When α → 0, we give more weight to the number of mistakes. The next theorem shows

that in the limit, for Varian’s index and inverse Varian’s index, we obtain the Houtman-

Maks index. For the normalized minimum cost index, we obtain the swaps index.5 These

limits apply, however, only to data sets where the strict and the weak revealed preferences

coincide, since the cost of removing weak revealed preferences that are not strict is 0 for the

limit measures but 1 for the counting measures.

Theorem 5 For all data D such that for all t ̸= t′, pt · (xt − xt′) ̸= 0,

lim
α→0

IVarα(D) = lim
α→0

IInvVarα(D) = IHM(D)

and

lim
α→0

INMCIα(D) = ISwaps(D).

The Houtman-Maks index provides a very coarse ranking for the rationality of choices

and many different datasets D and D′ have the same rationality index. However, it is

often the case that, for any small α, Varian’s index provides a strict ranking for the datasets,

IVarα(D) ̸= IVarα(D′), even if IHM(D)= IHM(D′). Thus, by focusing on the ranking of Varian’s

index for small α, we obtain a refinement of the Houtman-Maks index. We show next that
5Here, we interpret deterministic data as random data with a uniform probability. Netzer and Lu (2022)

offer an alternative extension of the swaps index to consumer choice based on Lebesgue measure of non-chosen
alternatives that are better than the chosen alternative.
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this refinement is captured by breaking the ties of Houtman-Maks with the geometric average

of budget adjustments. Later on, in Section 4.1, measures of rationality based on these

limiting orders are highlighted as the best variations in some cases.

Before stating the result, we need some notation. First, we denote the support of (et) ∈

[0, 1]T as the positive indices,

supp(et) = {t|et > 0}.

Second, we break the ties of Houtman-Maks by using the geometric average of budget ad-

justments required to rationalize the data when a fraction of IHM(D) budgets are adjusted:

IVar
Geom.Avg(D) =

inf
(et)∈[0,1]T

( ∏
t∈supp(et)

et

) 1
| supp(et)|

s.t. | supp(et)|
T

= IHM(D) and
(
R(et), P(et)

)
is acyclical.

The next result formalizes that in the limit as α → 0, Varian’s index firstly ranks the

rationality of choices based on the Houtman-Mask index and secondly based on the geometric

average of budget adjustments.

Theorem 6 Assume that data sets D and D′ are such that for all t ̸= t′, pt · (xt − xt′) ̸= 0

and p′
t · (x′

t − x′
t′) ̸= 0. If

IHM(D) > IHM(D′)

or

IHM(D) = IHM(D′) and IVar
Geom.Avg(D) > IVar

Geom.Avg(D′),

then there exists α∗ > 0 such that for all α ∈ (0, α∗),

IVarα(D) > IVarα(D′).

This result shows that the appropriate way to break the ties of the Houtman-Maks index

is by the geometric average of budget adjustments.Since budget adjustments are fractions

of income, a natural way to capture the average budget adjustment is by the geometric

average. Formally, the result follows from taking a first-order approximation of the ℓp norm

as p → 0. In the appendix, we show that using higher-order approximations provides a

full characterization for the limiting pairwise comparisons of rationality. Additionally, in

the appendix, we extend the result to any data sets where the weak and strict revealed

preferences might not coincide.
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Remark Usually, in practice, data sets have the same number of observations. In this case,

the lexicographic ranking of rationality of the data sets in Theorem 6 is captured by the

measure of rationality

IHM(D) + 1
T

IVar
Geom.Avg(D).

This measure of rationality is included in the supplementary toolbox.

Lastly, we extend symmetrically the limiting order for NMCI and the swaps index and

show that the appropriate way to break the ties of the swaps index is by the geometric

average of the removed revealed preferences. Define

INMCI
Geom.Avg(D) =

min
B⊆R

( ∏
(xt,xt′ )∈B

pt · (xt − xt′)
pt · xt

) 1
|B|

s.t. |B|
T

= ISwaps(D) and
(
R \ B, P \ B

)
is acyclical.

Theorem 7 Assume that data sets D and D′ are such that for all t ̸= t′, pt · (xt − xt′) ̸= 0

and p′
t · (x′

t − x′
t′) ̸= 0. If

ISwaps(D) > ISwaps(D′)

or

ISwaps(D) = ISwaps(D′) and INMCI
Geom.Avg(D) > INMCI

Geom.Avg(D′),

then there exists α∗ > 0 such that for all α ∈ (0, α∗)

INMCIα(D) > INMCIα(D′).

4 Applications

4.1 Simulation Comparisons

In our first application, we compare the accuracy of different measures of rationality based

on simulations with choice mistakes. We find that the variations of measures with a degree

0.5 always improve the performance. This suggests that consistent small mistakes are more

indicative of lower rationality than a single large mistake.

More specifically, our comparisons show that the choice of the best measure depends on

how fat-tailed the mistake distribution is, but it does not depend on the number of periods

or the number of goods. Especially, with fat-tailed mistake distributions, the best variations

have a degree of approximately 0.
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4.1.1 Choice Model

We model a decision maker (DM) who makes mistakes at purchasing the optimal quantities.

Specifically, the DM makes choices with a trembling hand around the optimal bundle on the

budget line.6

We assume that the DM has a constant income w of 8. We assume that the prices are

independent draws from a normal distribution with mean 4 and variance 1 that is truncated

to be above 0.1. The number of goods G is varied in different specifications.

The decision maker is assumed to have a symmetric additive log utility over the goods.

The utility from a bundle (xg)G
g=1 ∈ RG

+ is

u
(
(xg)G

g=1

)
=

G∑
g=1

log(xg).

The optimal demand is (x∗
g)G

g=1 given the income w and prices (pg)G
g=1. The decision maker

makes choice mistakes (εg)G
g=1 in the income shares of goods and scales uniformly the income

shares to consume the whole income. That is, the observed choice with mistakes is
x∗

g + w
pg

εg

1 +∑G
g′=1 εg′

.

We test for different mistake distributions. The distributions are chosen to have a mode

at 0 and are truncated to be above −pg

w
x∗

g, for the bundles to be non-negative. Here we

focus on two very different mistake distributions: normal and Cauchy distributions. The

normal distribution is a concentrated standard distribution and the Cauchy distribution is

a standard example of a fat-tailed distribution. The results are robust to using log-normal,

log-Cauchy, uniform, Weibull, Fréchet, Gumbel, or Gamma distributions.

4.1.2 Ordinal Measure Comparisons

The mistake model gives an objective size of mistakes from the variance or scaling of the

distributions. We study how well the measures of rationality capture these objectively sized

mistakes. The first difficulty is that these objective mistakes might be measured in different

units from the measures of rationality and that values of different measures of rationality
6Our results are robust to very different types of mistakes: randomizing uniformly on the budget plane,

random utility with an additive utility error for logit choices on the budget plane, or making the utility
function observation-dependent with variance in the parameters of the utility function.
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might not be directly comparable. To avoid these unit problems, we focus on ordinal com-

parisons and focus on finding out if different measures rank the irrationality of different data

sets correctly according to the objective criterion.

We compare pairwise the rationality of data sets drawn from two different populations.

These two populations have different mistake levels e1 and e2 such that e1 > e2. We draw

data sets D1 and D2 with different prices from these two populations using the previous

section’s choice model. Now D1 is objectively more irrational than D2 based on the mistake

levels in the population. We focus on non-trivial comparisons and redraw these data sets

until they have violations of rationality.7 We then estimate the probability that the measure

of rationality I ranks the data sets correctly:

P
(
I(D1) > I(D2)

∣∣∣D1, D2 not rational
)
,

where the probability is taken over the price distribution and the mistake distributions for

D1 and D2. With these "hit rates" for correct rankings for each measure, we can compare

the performance of the different measures.

4.1.3 Calibration

We calibrate the size of mistakes in our simulations using the share of rational people in the

population. For a mistake level e, we estimate the share of rational people,

P (D is rationalizable)

where D is a random data set from a population with mistake level e. We calibrate the

mistake level e based on this estimate using a simulated method of moments.8

In the calibration, we keep the average share of rational people across populations con-

stant at 50% and compare two populations that differ in their share of rational people.

Formally, we start from two populations that consist of 50% rational individuals and in-

crease the level of mistakes of one population and decrease the level of mistakes of the other

population in such a way that the average share of rational people is kept at 50%. That is,
7Without violations of rationality, all the different measures would agree on the ranking of the data sets

and the comparison would be trivial.
8Since the mistake levels are unidimensional, we implement this simulated method of moments as a root-

finding problem. We solve the root-finding problem using a combination of Brent’s method (Brent, 1973)
and Algorithm 748 (Alefeld et al., 1995) that combines inverse cubic and quadratic interpolation with double
length secant and bisection methods.
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Figure 4. Measures’ hit rate differences to Afriat’s index’s hit rate when mistakes are drawn from normal
distribution. The two populations share of rational people are calibrated to be a mean preserving spread
from 50%. The x-axis changes the percentage level of mean preserving spread.

we take mean preserving spreads of rationality for these two populations. We vary the level

of these mean preserving spreads from 5% to 45%. This changes the difficulty of predicting

which data set has lower mistakes. We have chosen the average share of rationality to be

50% in order to have as many mean preserving spreads for comparison as possible.

4.1.4 Comparisons of Measures

We focus on 6 goods with 45 time periods in our simulations. The low number of goods

follows empirical studies on the measures of rationality that aggregate goods into a few

categories. The results are robust to changing the number of goods or time periods. The

simulation sample size for each point is 100,000 pairwise comparisons.
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Figure 5. Measures’ hit rate differences to Afriat’s index’s hit rate when mistakes are drawn from Cauchy
distribution. The two populations share of rational people are calibrated to be a mean preserving spread
from 50%. The x-axis changes the percentage level of mean preserving spread.

Figures 4 and 5 compare the hit rates of different measures to Afriat’s index’s hit rate

when mistakes are normal and Cauchy distributed, respectively.

We start with normally distributed mistakes in Figure 4. First, this graph shows that

Varian’s index, inverse Varian’s index, and the normalized minimum cost index are perform-

ing better than Afriat’s index. However, the differences are small. Second, the counting

measures of the Houtman-Maks index and the swaps index are performing up to 10 percent-

age points worse than Afriat’s index. Third, variations of measures with α > 1 decrease the

performance. Especially, the measures perform worse than Afriat’s index for high α. Fourth,

variations of measures with α < 1 first improve the performance of the measures for α close

to one and then decrease the performance of the measure for lowers value of α. The peak

performance is around α = 0.5.
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The normally distributed mistakes illustrate a concentrated mistake distribution. Other

mistake distributions and mistake models with concentrated mistake distributions create

the same results: logit-choice mistakes, trembling hand mistakes, or time-dependent utility

function parameters with concentrated distributions of log-normal, uniform, Gumbel, or

reversed Weibull.

Next, we move on to Cauchy distributed mistakes in Figure 5. This graph shows that

Varian’s index, inverse Varian’s index and the normalized minimum cost index are performing

better than Afriat’s index. The performance improvement is up to 4 percentage points.

Second, the counting measures the Houtman-Maks index and the swaps index are performing

much better than Afriat’s index. The Houtman-Maks index improves the performance by up

to 16 percentage points and the swaps index by up to 8 percentage points. Third, variations

of the measures with α > 1, again, decrease the performance of the measures. For α = 10,

the measures are performing equal to Afriat’s index. Variations of the measures with α < 1

increase the performance of the measures. For α = 0.1, Varian’s index and Inverse Varian’s

index are performing better than the Houtman-Maks index and improve the performance by

up to 16.5 percentage points. For α = 0.1, the normalized minimum cost index is performing

slightly worse than the swaps index. This highlights that for Varian’s and inverse Varian’s

index, using the geometric average of the size of the adjustments for tie-breaking improves

the performance, but for the normalized minimum cost index it decreases the performance.

The Cauchy distributed mistakes illustrate a fat-tailed mistake distribution. Other mis-

take distributions and mistake models with fat-tailed mistake distributions create the same

results: uniform random choice on the budget plane, trembling hand mistakes, or observation

dependent utility function parameters with fat-tailed distributions of log-Cauchy or Fréchet.

These results highlight the connection between measures counting the number of rational-

ity violations, such as the Houtman-Maks index and the swaps index, and measures capturing

the intensity of rationality violations, such as Varian’s index and NMCI. This connection was

highlighted theoretically in Theorems 5 to 7. Our simulation results show how overweighting

small budget adjustments always improves the performance of the measures. However, the

optimal amount of overweighting depends on how fat-tailed the mistake distribution is. If

the mistakes are concentrated, then the intensities of rationality violations are valuable at
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capturing the size of choice mistakes and it is optimal to overweight the mere existence of

budget adjustments only slightly. On the other hand, if the mistakes are fat-tailed, then the

size of the budget adjustments is less useful at capturing the size of choice mistakes. Instead,

it is optimal to prioritize the existence of budget adjustments and use the size of the budget

adjustments only to break ties.

The intuition for this distinction is that with fat-tailed mistakes there are big mistakes

even at low mistake levels, so the size of the budget adjustments is not useful at distinguishing

between different mistake levels anymore. Instead, the rate of mistakes should be used for

identifying the extent of mistakes. This highlights how the choice of the measure of rationality

depends on the application and different measures are better at capturing different types of

mistakes depending on how concentrated the mistakes are.

4.2 Significance Levels for Measures of Rationality

In our second application, we calculate statistical significance levels for the measures of

rationality. We show that these significance levels give a different picture for the prevalence of

irrational choices in empirical applications than the current approaches used in the literature.

Especially, these significance levels depend on the choice situation and how difficult it is to

observe violations of rationality in the choice situation. This situation-dependency in the

power of measures of rationality has been noted in the literature (Andreoni and Harbaugh,

2008; Andreoni et al., 2013).

Our significance levels are based on testing if the measure of rationality observed in the

data could have been generated by a person choosing randomly on the budget line. Formally,

the observed data is
(
(p1, x1), . . . , (pT , xT )

)
. Denote the income wt = pt · xt and the budget

line

B(pt, wt) = {x ∈ RG
+|pt · x = wt}.

For a measure of rationality I, we are testing the null hypothesis

H0 : I
(
(p1, x1), . . . , (pT , xT )

)
∼ I

(
(p1, Uni(B(p1, w1))), . . . , (pT , Uni(B(pT , wT )))

)
.

Here, Uni(B(pt, wt)) denotes the uniform distribution with a constant density function on

B(pt, wt).
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We apply this approach to the experimental data from Choi et al. (2014). In this ex-

periment, the subjects allocated income between two risky accounts. The accounts were

equally likely and one of them paid off. The experiment had 1182 participants. We focus

on one-sided tests of the null hypothesis at 95% significance level. We estimate the cumu-

lative density function for I
(
(p1, Uni(B(p1, w1))), . . . , (pT , Uni(B(pT , wT )))

)
by Monte Carlo

simulations.

The first column of Table 2 shows that, in this experimental data, 56% of people are

rational using Afriat’s index and 61% using Varian’s index. The swaps index classifies 59%

of people as rational and is close to Varian’s index and the normalized minimum cost index.

Inverse Varian’s index of degree 0.5 classifies the most people as rational (63%). Variations of

the measures with a degree above one distinguish less people as more rational than random

behavior. Additionally, performing one-sided test for more irrational choices than random

behavior shows that 2% of the participants were significantly more irrational than random

behavior.

Second, we apply this method to the empirical data set from Dean and Martin (2016).

This is scanner level data for 977 representative households from Denver metropolitan area

over 2 years. The data is aggregated to monthly purchases and to three aggregate products

of beverages, meals, and snacks. The second column of Table 2 shows that, in this empirical

data the shares of rational people are approximately halved compared to the previous exper-

imental data set. A major difference to the experimental data set is that the Houtman-Maks

index and the swaps index classify fewer people as rational than Afriat’s index due to many

random choices having the same values for these indices.

To get a perspective into these numbers, we contrast them to the standard methods used

in the literature to classify choices as rational. The first method is if the observed choices are

rationalizable and satisfy GARP. The second method uses a cut-off value of 0.05 for Afriat’s

index to classify the choices as rational. This method has been used e.g. in Varian (1990),

Choi et al. (2007), Lanier et al. (2018), and Polisson et al. (2020).

The first column of Table 2 shows that, in the experimental data, satisfying GARP is too

stringent a condition. Up to 45% of statistically significantly rational people do not satisfy

GARP. Additionally, Afriat’s index cut-off of 0.05 is also too demanding and misclassifies
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Choi et al. (2014) Dean & Martin (2016)
Share Significantly Rational Irrational Rational Irrational

Afriat’s Index 0.563 0.020 0.277 0.011
Houtman-Maks 0.511 0.003 0.184 0.002

Swaps 0.589 0.017 0.207 0.002
Varian 0.608 0.022 0.287 0.008

InvVarian 0.613 0.016 0.288 0.008
NMCI 0.600 0.021 0.286 0.006

Varian2 0.583 0.020 0.284 0.010
InvVarian2 0.585 0.019 0.282 0.009

NMCI2 0.583 0.019 0.282 0.009
Varian10 0.568 0.022 0.252 0.011

InvVarian10 0.568 0.021 0.256 0.011
NMCI10 0.569 0.021 0.255 0.011
Varian0.5 0.622 0.018 0.288 0.005

InvVarian0.5 0.632 0.015 0.288 0.005
NMCI0.5 0.608 0.020 0.288 0.005
Varian0.1 0.611 0.013 0.277 0.005

InvVarian0.1 0.608 0.014 0.278 0.004
NMCI0.1 0.621 0.019 0.278 0.004

Satisfy GARP 0.173 0.300
Afriat’s Index ≤ 0.05 0.453 0.955

Table 2. Shares of statistically significantly rational and irrational people according to different measures
of rationality in the experimental data in Choi et al. (2014) and the empirical data in Dean and Martin
(2016). Additionally, the share of rational people according to criteria that the choices are rationalizable or
Afriat’s index is below 0.05.

11% as irrational when the choices are statistically significantly more rational than random

behavior according to Afriat’s index.

On the contrary, the second column shows that, in the empirical data satisfying GARP

is an excellent proxy for classifying people as rational.9 On the other hand, Afriat’s index

cut-off at 0.05 is too lenient and misclassifies at least 65% of the sample. This highlights

that the significance level of the measure of rationality depends on the choice situation and

the observed budget sets.

5 Conclusion

This paper has provided novel, more accurate methods to evaluate the severity of nonrational

choices. These methods are easy-to-use and computationally feasible. Our empirical example
9Note that there might be people who satisfy GARP but are not statistically significantly more rational

than random choice behavior since more than 95% of the random choices satisfy GARP.
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showed that using more accurate measures of rationality for studying the determinants of

rationality of choices can give a substantially different picture.

Our analysis compared the measures of rationality in a general environment. However,

our general approach offers a recipe for comparisons that can be tailored to any specific

experimental environment. First, we focused on different types of choice mistakes. However,

in other environments, different types of mistakes could be more reasonable, such as (rational)

inattention in observing the budget slope, probability of temptation, or choice framing.

Second, the budget environment can be tailored to be the same as in any experiment. The

tailored comparisons then give a ranking of the accuracy of the different measures in the

specific experimental environment.
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6 Appendix

6.1 A Comparison to Demuynck and Rehbeck (2023a)

Recently, Demuynck and Rehbeck (2023a; 2023b) provided computational methods for cal-

culating Varian’s goodness-of-fit, the Houtman-Maks index, and the minimum cost index.

Their method is based on reformulating the indices as a mixed linear programming problem.

However, this method is prone to reporting incorrect values due to evaluating strict inequal-

ity constraints in the linear programming problem with weak inequalities. The following

example illustrates this point.

Example 1 The data set consists of two goods and three periods.

D =
(
(p1, x1), (p2, x2), (p3, x3)

)
=



74

68

 ,

47

23


 ,


86

13

 ,

10

57


 ,


21

82

 ,

 2

72



 .

Here, IVar(D) = 0.0877. The computational toolbox of Demuynck and Rehbeck (2023b)

claims erroneously that IVar(D) = 0.0595.

However, by adjusting the fixed parameter in Demuynck and Rehbeck (2023b) that makes

the strict inequalities weak, their method can be corrected.

In Table 3, we compare the computation time for Varian’s goodness-of-fit, the Houtman-

Maks index, and the normalized minimum cost index between our method and the method

of Demuynck and Rehbeck (2023a; 2023b) using Drichoutis and Nayga’s (2020) experiment

from Section 1.1. We compare the total time of computing the measures for all 343 subjects

in the experiment. We compare our method implemented in Matlab to the original method of

Demuynck and Rehbeck and to an adjusted version that reports correct values (but increases

computation time). We do this for both an implementation in Matlab for a comparable

comparison and an implementation using the proprietary Gurobi solver to solve the mixed

linear programming problem of Demuynck and Rehbeck. The comparison was run on a

desktop computer with an Intel(R) Core(TM) i9-10850K CPU 3.60GHz processor. This

comparison shows that the algorithms presented here perform substantially better than the

methods in Demuynck and Rehbeck (2023a). Additionally, with the unadjusted method

of Demuynck and Rehbeck, 15% of the values of Varian’s index and 62% of NMCI were
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Varian Houtman-Maks NMCI
Algo. 1-2 in Matlab 5.83 4.30 12.14

D&R in Matlab 65820 163.19 311.94
Adjusted D&R in Matlab 571119 37287 347515

D&R w/ Gurobi 312.98 83.95 160.34
Adjusted D&R w/ Gurobi 442.00 112.58 741.63

Table 3. Comparison of computation time in seconds for Algorithms 1 and 2 when implemented in Matlab
and Demuynck and Rehbeck’s (2023b) (D&R) method when implemented in Matlab and when using Gurobi
solver and when adjusted to report the correct values. The comparison is for Varian’s goodness-of-fit,
the Houtman-Maks index, and the normalized minimum cost index using the experiment from Drichoutis
and Nayga (2020). The computation time is the total time to compute the index for 343 subjects in the
experiment.

incorrect by more than 0.01
T

where T = 60 is the number of budget choices that normalizes

the indices.
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Online Appendix to “Computing and Comparing

Measures of Rationality”

Not intended for publication

S.1 Proof for Theorem 1

We prove a more general version of Theorem 1 that shows the result also for all the variations

of Varian’s index.

Theorem 8 Assume that f : [0, 1] → R+ is a strictly increasing and continuous function.

Define the index

IfVar(D) = inf
(et)∈[0,1]T

T∑
t=1

f(et) such that
(
R(et), P(et)

)
is acyclical.

We have,

IfVar(D) = min
θ∈{0,1}P

∑
(xt,xt′ )∈P

θ(xt, xt′)f
(

pt · (xt − xt′)
pt · xt

)
subject to

for all (xt1 , . . . , xtn) ∈ Cs,
n∑

i=1

∑
(xti ,xt′ )∈U(xti ,xti+1 )

θ(xti
, xt′) ≥ 1,

where the summation of indices is taken modulo the length of the sequence and xtn+1 = xt1 .

Proof. Denote the value of the binary linear programming problem by I∗ and the optimal

removals by θ∗.

We show first that for all t, there is at most one t′ such that θ∗(xt, xt′) = 1. Assume,

per contra, that there exist t1, t2 such that t1 ̸= t2 and θ∗(xt, xt1) = θ∗(xt, xt2) = 1. Assume,

w.l.o.g. that

pt · (xt − xt1) ≥ pt · (xt − xt2).

Now we have for all (x, y) ∈P, if (xt, xt2) ∈ U(x, y), then (xt, xt1) ∈ U(x, y). Thus θ̃ defined

by θ̃(x, y) = θ∗(x, y) by for all (x, y) ∈P \(xt, xt2) and θ̃(xt, xt2) = 0 is a solution to the binary

linear integer programming problem. Additionally, this solution has a lower value since

pt · (xt − xt2) > 0 and so f

(
pt · (xt − xt2)

pt · xt

)
> 0

contradicting the optimality of θ∗.
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Next, we show that I∗ ≥ IfVar − ε for any 1 > ε > 0. Since [0, 1] is a compact set and f is

continuous, f is uniformly continuous. There exist δ > 0 such that for all x, y ∈ [0, 1] with

|x − y| < 2δ, |f(x) − f(y)| < ε
T

. Define (eθ
t ) ∈ [0, 1]T by the following. For all t such that

there exist t′ with θ(xt, xt′) = 1, define

eθ
t = pt · (xt − xt′)

pt · xt

.

For all other t, define eθ
t = 0. Additionally, define (eδ

t ) ∈ [0, 1]T by for all t

eδ
t = min{eθ

t + δ, 1}.

Now we have by the above observation
T∑

t=1
f(eθ

t ) = I∗

and so
T∑

t=1
f(eδ

t ) ≤
T∑

t=1
f(eθ

t ) +
T∑

t=1
|f(eδ

t ) − f(eθ
t )| ≤ I∗ + ε.

We show that
(
R(eδ

t ), P(eδ
t )
)

is acyclical. We have R(eδ
t ) ⊇R and P(eδ

t ) ⊇P. Thus it suffices

to show that any of the cycles of (R, P) is not a cycle in
(
R(eδ

t ), P(eδ
t )
)
. Let (xt1 , . . . , xtn) be a

cycle of (R, P). First, assume that there exists 1 ≤ i ≤ n such that (xti
, xti+1) ∈R \ P. Then

pti
· xti

= pti
· xti+1 and since eδ

ti
≥ δ, (xti

, xti+1) /∈ R(eδ
t ). Thus (xt1 , . . . , xtn) is not a cycle of(

R(eδ
t ), P(eδ

t )
)
. Second, assume that there exists 1 ≤ i ≤ n such that

pti
· (xti

− xti+1)
pti

· xti

= 1.

Now pti
· xti+1 = 0. Since pti

is strictly positive and xti+1 is non-negative, this is only possible

if xti+1 = 0. Since xti+1 R xti+2 , we have 0 = pti+1 · xti+1 ≥ pti+1 · xti+2 . Thus we must have

xti+2 = 0. Continuing this by induction, we have for all 1 ≤ j ≤ n, xtj
= 0 which is a

contradiction since for some 1 ≤ j ≤ n, xtj
P xtj+1 . Next, assume that for all 1 ≤ i ≤ n,

(xti
, xti+1) ∈ P and

pti
· (xti

− xti+1)
pti

· xti

< 1.

Now (xt1 , . . . , xtn) ∈ Cs. Thus by the definition of θ∗, there exist 1 ≤ i ≤ n and (xti
, xt′) ∈

U(xti
, xti+1) such that θ(xti

, xt′) = 1. First, if
pti

· (xti
− xt′)

pti
· xti

= 1,
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then we have

eδ
t ≥ pti

· (xti
− xt′)

pti
· xti

>
pti

· (xti
− xti+1)

pti
· xti

.

Second, if
pti

· (xti
− xt′)

pti
· xti

< 1,

then

eδ
t >

pti
· (xti

− xt′)
pti

· xti

≥
pti

· (xti
− xti+1)

pti
· xti

.

Thus, in both cases we have (xti
, xti+1) /∈ R(eδ

t ). Hence, (xt1 , . . . , xtn) is not a cycle of(
R(eδ

t ), P(eδ
t )
)
. This shows that

(
R(eδ

t ), P(eδ
t )
)

is acyclical. So we have,

I∗ + ε ≥
T∑

t=1
f(eδ

t ) ≥ IfVar.

Since 1 > ε > 0 was arbitrary, this shows that

I∗ ≥ IfVar.

Next, we show that

I∗ ≤ IfVar.

By the definition of IfVar and the continuity of f , there exist a convergent sequence (e∗,j
t )T

j=1 ⊆

[0, 1]T that converges to (e∗
t ) such that for each j,

(
R(e∗,j

t ), P(e∗,j
t )
)

is acyclical and IfVar =∑
t f(e∗

t ).

We show first that for each t such that e∗
t > 0, there exist t′ such that

e∗
t = pt · (xt − xt′)

pt · xt

. (1)

Assume, per contra, that there exist t0 with e∗
t0 > 0 such that for all t′

e∗
t0 ̸= pt0 · (xt0 − xt′)

pt0 · xt0
.

Denote

υ = 1
2 min

{∣∣∣∣e∗
t0 − pt0 · (xt0 − xt′)

pt0 · xt0

∣∣∣∣
∣∣∣∣∣1 ≤ t′ ≤ T

}
.

Now, we have υ > 0 and for all 1 ≤ t′ ≤ T

(1 − e∗
t0)pt0 · xt0 ≥ pt0 · xt′ ⇐⇒ (1 − e∗

t0 + υ)pt0 · xt0 ≥ pt0 · xt′

by the choice of υ. Since f is uniformly continuous, there exist δ ∈ (0, υ) such that for all

x, y ∈ [0, 1] with |x−y| < 2δ, we have |f(x)−f(y)| <
f(e∗

t0 )−f(e∗
t0 −υ)

T
. Define (ẽt) by ẽt = e∗

t + δ
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for t ̸= t0 and ẽt0 = e∗
t0 − υ. Since (e∗,j

t ) → (e∗
t ) as j → ∞, there exist k such that for each

t e∗,k
t < e∗

t + δ. Now by the choice of υ, R(e∗,k
t )⊇R(ẽt) and P(e∗,k

t )⊇P(ẽt). Since (R(e∗,k
t ), P(e∗,k

t ))

is acyclical, especially (R(ẽt), P(ẽt)) is acyclical. Additionally, we have∑
t

f(ẽt) ≤
∑
t̸=t0

|f(ẽt) − f(e∗
t )| +

∑
t′ ̸=t0

f(e∗
t′) + f(ẽt0v)

< f(e∗
t0) − f(ẽt0) +

∑
t̸=t0

f(e∗
t ) + f(ẽt0) =

∑
t

f(e∗
t ).

This contradicts the optimality of (e∗
t ).

Now for each t such that e∗
t > 0, choose τ(t) such that

e∗
t = pt · (xt − xτ(t))

pt · xt

.

Define θe ∈ {0, 1}P by defining for each t such that e∗
t > 0, θe(xt, xτ(t)) = 1 and θe(xt, xt′) = 0

for all other (xt, xt′) ∈ P.

We show that θe solves the binary linear optimization problem. Assume, per contra,

that there exists (xt1 , . . . , xtn) ∈ Cs such that for all 1 ≤ i ≤ n and (xt, xt′) ∈ U(xti
, xti+1),

θ(xt, xt′) = 0. Thus for all 1 ≤ i ≤ n, by the definitions of U(xti
, xti+1) and θe and (1),

e∗
ti

<
pti

· (xti
− xti+1)

pti
· xti

. (2)

Denote

η = 1
2 min

{
pti

· (xti
− xti+1)

pti
· xti

− e∗
ti

∣∣∣∣∣1 ≤ i ≤ n

}
.

Now η > 0. Define (eη
t ) ∈ [0, 1]T by for each 1 ≤ i ≤ n eη

ti
= e∗

ti
+ η and for all other t, eη

t = e∗
t .

By (1,2), for each 1 ≤ i ≤ n, (xti
, xti+1) ∈ P(eη

t ). Thus (R(eη
t ), P(eη

t )) is not acyclical. Since

e∗,j → e∗ as j → ∞, especially there exist j∗ such that for each 1 ≤ i ≤ n, e∗,j∗

ti
≤ e∗

ti
+η, but for

each 1 ≤ i ≤ n, (xti
, xti+1) ∈ P(e∗,j∗

t ) and so (R(e∗,j∗
t ), P(e∗,j∗

t )) is not acyclical contradicting the

definition of (e∗,j∗

t ). Thus there does not exist (xt1 , . . . , xtn)∈Cs such that for all 1≤ i≤n and

(xt, xt′) ∈ U(xti
, xti+1), θ(xt, xt′) = 0. This shows that θe solves the binary linear optimization

problem. Thus

I∗ ≤
∑

(xt,xt′ )∈P
θe(xt, xt′)f

(
pt · (xt − xt′)

pt · xt

)
=

T∑
t=1

f(e∗
t ) = IfVar.
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S.2 Proof of Theorem 2

Lemma 9 For all f ∈ ∆(O),

ISwaps(f) = min
≻∈P

∑
(y,x)∈≻

∑
A⊇{x,y}

f(x, A).

Proof. We have

ISwaps(f) = min
≻∈P

∑
(x,A)∈∆(O)

f(x, A)
∣∣∣{y ∈ A|y ≻ x}

∣∣∣
= min

≻∈P

∑
x∈X

∑
A⊇{x}

f(x, A)
∑
y∈A

1(y ≻ x)

= min
≻∈P

∑
(x,y)∈X×X

∑
A⊇{x}

f(x, A)1(y ∈ A)1(y ≻ x)

= min
≻∈P

∑
(x,y)∈X×X

1(y ≻ x)
∑

A⊇{x,y}
f(x, A)

= min
≻∈P

∑
(y,x)∈≻

∑
A⊇{x,y}

f(x, A).

Theorem 2 For all random data f ∈ ∆(O),

ISwaps(f) = min
B⊆P∆

∑
(x,y)∈B

∑
A⊇{x,y}

f(x, A) such that P∆ \B is acyclical.

Proof. Denote for all f ∈ ∆(O),

I∗(f) = min
B⊆P∆

∑
(x,y)∈B

∑
A⊇{x,y}

f(x, A) s.t. P∆ \B is acyclical. (3)

Let B∗ be an optimal solution to (3). Since P∆ \B∗ is acyclical there exist an extension

≻∗ of P∆ \B∗ such that ≻∗ is a linear order (Chambers & Echenique, 2016, Theorem 1.5).

Especially, we have for all (x, y) ∈ B∗, y ≻∗ x. Additionally, we have for all (x, y) /∈ B∗ such

that y ≻∗ x, ∑A⊇{x,y} f(x, A) = 0.

By (3) and the above observations, we have

I∗(f) =
∑

(y,x)∈B∗

∑
A⊇{x,y}

f(y, A) =
∑

(x,y)∈≻∗,
(y,x)/∈B∗

∑
A⊇{x,y}

f(y, A) +
∑

(x,y)∈≻∗,
(y,x)∈B∗

∑
A⊇{x,y}

f(y, A)

=
∑

(x,y)∈≻∗

∑
A⊇{x,y}

f(y, A).
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So, by Lemma 9,

I∗(f) ≥ min
P∈P

∑
(y,x)∈P

∑
A⊇{x,y}

f(x, A) = ISwaps(f).

Finally, for each P∗ ∈ P , we have by denoting BP = P∆ \ P∗

∑
(x,y)∈P∗

∑
A⊇{x,y}

f(y, A) =
∑

(x,y)∈P∗,

(y,x)/∈BP

∑
A⊇{x,y}

f(y, A) +
∑

(x,y)∈P∗,

(y,x)∈BP

∑
A⊇{x,y}

f(y, A) =
∑

(y,x)∈BP

∑
A⊇{x,y}

f(y, A).

So by (3) and Lemma 9,

I∗(f) ≤ min
P∈P

∑
(y,x)∈P

∑
A⊇{x,y}

f(x, A) = ISwaps(f).

S.3 Proof of Theorem 3

Theorem 3 Assume that the data set is D =
(
(p1, x1), . . . , (pT , xT )

)
. If a data set D′ =(

(p′
1, x′

1), . . . , (p′
T , x′

T )
)

is such that for all t, t′

p′
t · (x′

t − x′
t′)

p′
t · x′

t

= pt′ · (xt′ − xt)
pt′ · xt′

,

then

IInvVar(D) = IVar(D′).

Proof. Let (et) ∈ [0, 1]T . Now we have for all t, t′.

pt · xt ≥ pt · xt′

(1 − et′) ⇐⇒ et′ ≤ pt · (xt − xt′)
pt · xt

= p′
t′ · (x′

t′ − x′
t)

p′
t′ · x′

t′
⇐⇒ (1 − et′)p′

t′ · x′
t′ ≥ p′

t′ · x′
t.

This shows that (R(et′ ), P(et′ )) has a cycle iff for the modified data (R(et), P(et)) has a cycle

going to the opposite direction. This shows the claim by the definitions of Inverse Varian’s

index and Varian’s index.

S.4 Limits for Measure Variations

The next two results show Theorem 4.

Proposition 10 For all data D,

lim
α→∞

(
INMCIα(D)

) 1
α = IAEI(D).

6



Proof. Let ε > 0, α > 0, and denote

B∗ =
{

(xt, xt′) ∈ R
∣∣∣pt · (xt − xt′)

pt · xt

≤ IAEI(D) + ε
}

.

By the definition of Afriat’s index, (R\B∗, P\B∗) is acyclical. Additionally, |B∗| ≤ T (T −1).

Thus, for all α(
INMCIα(D)

) 1
α ≤

(
1
T

∑
(xt,xt′ )∈B∗

(
pt · (xt − xt′)

pt · xt

)α
) 1

α

≤ (T − 1) 1
α (IAEI(D) + ε).

On the other hand,(
INMCIα(D)

) 1
α ≥

( 1
T

inf
e∈[0,1]

eα s.t. (Re, Pe) is acyclical
) 1

α

= T − 1
α IAEI(D)

by the definition of Afriat’s index. Thus by taking ε → 0 and α → 0, shows the claim.

Proposition 11 For all data D,

lim
α→∞

(
IVarα(D)

) 1
α = IAEI(D).

Proof. For all data D and α ∈ (0, 1),(
INMCIα(D)

) 1
α ≥

(
IVarα(D)

) 1
α ≥

( 1
T

inf
e∈[0,1]

eα s.t. (Re, Pe) is acyclical
) 1

α

= T − 1
α IAEI(D)

by the definitions of NMCIα and Afriat’s index. This shows the claim by Proposition 10.

The claim for inverse Varian’s index in Theorem 4 follows symmetrically and the proof

is omitted.

Define for all data D

IStrict-HM(D) = 1
T

inf
(et)∈[0,1]T

|{t|et > 0}| such that P(et)
D is acyclical.

Especially, if the data D is such that for all t ̸= t′, pt · (xt − xt′) ̸= 0, then IHM(D) =

IStrict-HM(D).

The next result shows Theorem 5 for Varian’s index.

Proposition 12 For all data D,

lim
α→0

IVarα(D) = IStrict-HM(D).

Proof. Let D = ((pt, xt))T
t=1 be the data. First, if IStrict-HM(D) = 0, then P is acyclical and

so for all α ∈ R++, IVarα(D) = 0, which shows the claim.
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Assume that IStrict-HM(D) > 0. Denote

A = 1
2 min{pt · (xt − xt′)

pt · xt

|pt · (xt − xt′) > 0}

and

B = 1
2 + 1

2 max{pt · (xt − xt)
pt · xt

|pt · (xt − xt) > 0, xt ̸= 0}.

Now there exist e∗ ∈ {0, B}T such that |{t|e∗
t ̸= 0}| = IStrict-HM(D) and Pe∗ is acyclical. On

the other hand, if Pe is acyclical, then there exist N ⊆{1, . . . , T} such that |N |≥IStrict-HM(D)

and for each t ∈ N , et ≥ A. Thus for all α > 0,

IStrict-HM(D)Bα ≥ IVarα(D) ≥ IStrict-HM(D)Aα.

Taking α → 0 shows the claim.

The rest of the limits in Theorem 5 follow symmetrically and the proof is omitted.

S.4.1 Proof of Theorem 6

Before proving Theorem 6, we show some simple lemmas.

Proposition 13 Assume that (xi)n
i=1, (ai)n

i=1 ∈ Rn
++. Then

lim
k→∞

( n∑
i=1

aix
k
i

) 1
k = max

i
xi.

Proof. We have ( n∑
i=1

aix
k
i

) 1
k ≤

(
max

l
al

n∑
i=1

max
j

xk
j

) 1
k =

(
n max

l
al

) 1
k max

j
xj

and ( n∑
i=1

aix
k
i

) 1
k ≥

(
min

l
al max

j
xk

j

) 1
k =

(
min

l
al

) 1
k max

j
xj.

By taking k → ∞ shows the claim.

Proposition 14 Assume that (xi)n
i=1, (ai)n

i=1 ∈ Rn
++, (yj)m

j=1, (bj)m
j=1 ∈ Rm

++ are such that for

each k ∈ N
n∑

i=1
aix

k
i =

m∑
j=1

bjy
k
j ,

then maxi xi = maxj yj.

Proof. Follows directly from Proposition 13 since for each k ∈ N,( n∑
i=1

aix
k
i

) 1
k

=
( m∑

j=1
bjy

k
j

) 1
k

.
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Proposition 15 Assume that (xi)n
i=1, (yj)m

j=1 ∈R++, a, b ∈R++ are such that for each k ∈N

a
n∑

i=1
xk

i = b
m∑

j=1
yk

j ,

then

max
i

xi = max
j

yj and a|{i ∈ {1, . . . , n}|xi = max
k

xk}| = b|{j ∈ {1, . . . , m}|yj = max
k

yk}|.

Proof. Assume w.l.o.g. that for each i, j xi ≤ xi+1 and yj ≤ yj+1. First, by Proposition 14,

xn = ym. Denote,

T = |{i ∈ {1, . . . , n}|xi = xn}| and T ′ = |{j ∈ {1, . . . , n}|yj = ym}|.

Assume w.l.o.g. that bT ′ ≥ aT . Now for each k ∈ N

a
n−T∑
i=1

xk
i = b

m−T ′∑
j=1

yk
j +

(
bT ′ − aT

)
yk

m.

By Proposition 14, bT ′ − aT = 0 that shows the claim.

Proposition 16 Assume that (xi)n
i=1, (yj)m

j=1 ∈R++, a, b ∈R++ are such that for each k ∈N

a
n∑

i=1
xk

i = b
m∑

j=1
yk

j ,

then for each c ∈ R++

a|{i ∈ {1, . . . , n}|xi = c}| = b|{j ∈ {1, . . . , m}|yj = c}|.

Proof. Follows directly by applying Proposition 15 inductively.

Lemma 17 Assume that X is finite, θ ∈ R+, and f : X × R+ is such that for each x ∈ X

f(x, ·) is ∞-times differentiable. For each α ∈ R+, denote C0(α) = X and for each n ∈ N,

Cn(α) = arg min
x∈Cn−1(0)

fn
2 (x, α)

where fn
2 is the n derivative of f(x, ·). Then for each n ∈ N ∪ {0}, there exist a function

h : X × R+ such that for each x ∈ X,

f(x, α) =
n∑

i=0
αif i

2(y, 0) + αnh(x, α) and lim
α→0+

h(x, α) = 0

and there exist δn > 0 such that for all α ∈ [0, δn),

min
x∈X

f(x, α) =
n∑

i=0
min

y∈Ci(0)
αif i

2(y, 0) + min
z∈Cn(0)

αnh(z, α).

9



Proof. We show the claim by induction on n. First, the case n = 0 follows trivially since f

is continuous for each x.

Assume that n∈N and that the claim holds for n−1. Endow X with the discrete topology.

By the maximum theorem, each Cn is upper hemicontinuous and so by the discrete topology

there exist δ1 > 0 such that for all α ∈ [0, δ1), Cn(α) ⊆ Cn(0).

Denote

ε = min
{∣∣∣fn

2 (x, 0) − fn
2 (y, 0)

∣∣∣∣∣∣∣x, y ∈ Cn(0), fn
2 (x, 0) ̸= fn

2 (y, 0)
}

,

where min∅ = ∞.

By Taylor approximation, there exist a function hn : X ×R++ such that for each x ∈ X,

f(x, α) =
n∑

i=0
αif i

2(x, 0) + αnhn(x, α) and lim
α→0+

hn(x, α) = 0.

Especially, by the induction assumption, for all x ∈ X and α ∈ R+,

hn−1(x, α) = αfn
2 (x, 0) + αhn(x, α).

Let δ > 0 be such that δ < δ1 and for all α ∈ [0, δ) and x ∈ X, |hn(x, α)| < ε. Then we have

for all α ∈ [0, δ), by the induction assumption,

min
x∈X

f(x, α) =
n−1∑
i=0

min
y∈Ci(0)

αif i
2(y, 0) + min

z∈Cn−1(0)
αn−1hn−1(z, α)

=
n−1∑
i=0

min
y∈Ci(0)

αif i
2(y, 0) + min

z∈Cn−1(0)
αnfn

2 (z, 0) + αnhn(z, α)

=
n−1∑
i=0

min
y∈Ci(0)

αif i
2(y, 0) + min

z∈Cn(0)
αnfn

2 (z, 0) + min
z∈Cn(0)

αnhn(z, α)

where the last equality follows from the assumption that for all α ∈ [0, δ) and x ∈ X,

|hn(x, α)| < ε.

Proposition 18 For each data D, the following set is closed

{(et) ∈ [0, 1]T | such that P(et) is acyclical}.

Proof. For each n ∈ N, let (en
t ) ∈ [0, 1]T be such that P(en

t ) is acyclical and (en
t ) → (et) as

n → ∞. Let t1, . . . , tm ⊆ {1, . . . , T} be a sequence. Denote

A =
m⋃

i=1

{
(at) ∈ [0, 1]T |ati

≥
pti

· (xti
− xti+1)

pti
· xti

}
.
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A is closed as a finite union of closed sets. For each in n ∈ N, (en
t ) ∈ A. Thus (et) ∈ A. Since

the sequence t1, . . . , tm ⊆ {1, . . . , T} was arbitrary, this shows that P(et) is acyclical.

Proposition 19 Assume that D is a data set, (et) ∈ [0, 1]T is such that P(et) is acyclical,

and u ∈ {1, . . . , T} is such that eu = 1. Then there exist (e′
t) ∈ [0, 1]T such that P(e′

t) is

acyclical and for all t ∈ {1, . . . , T} et ≥ e′
t and eu > e′

u

Proof. First, if xt = 0, the xt cannot be a part of cycle for P since for all v ∈ {1, . . . }, xt ̸P xv.

Define (e′
t) ∈ [0, 1]T by for all t ̸= u, e′

t = et and

e′
u = 1

2 + 1
2 max

{
pu · (xu − xt)

pu · xu

∣∣∣∣t ∈ {1, . . . , T}, xt ̸= 0
}

∪ {0}

where in the case of xu = 0, for all c ∈ R, c
0 = 0.

Now, we have for all t ∈ {1, . . . , T} such that xt ̸= 0, xuP(et)xt iff xuP(e′
t)xt that shows

the claim by the first observation.

Finally, we show a more general version of Theorem 6 that fully characterizes the limiting

order.

Proposition 20 For each n ∈ N, denote

C0(D) = arg min
(et)∈[0,1]T

1
T

∣∣∣{t|et > 0}
∣∣∣ such that P(et)

D is acyclical.

V 0(D) = min
(et)∈[0,1]T

1
T

∣∣∣{t|et > 0}
∣∣∣ such that P(et)

D is acyclical.

Cn(D) = arg min
(et)∈Cn−1(D)

1
|{t|et > 0}|

∑
t|et>0

ln(et)n,

V n(D) = min
(et)∈Cn−1(D)

1
|{t|et > 0}|

∑
t|et>0

ln(et)n,

and

m = min
{
n ∈ N

∣∣∣V n(D) ̸= V n(D′)
}
.

(1) If m < ∞ and V m(D) > V m(D′), then there exists α∗ > 0 such that for all α ∈ (0, α∗),

IVarα(D) > IVarα(D′).

(2) If m = ∞, then there exists α∗ > 0 such that for all α ∈ (0, α∗), IVarα(D) = IVarα(D′).

Proof. Endow [0, 1]T with the standard order > in RT . Denote the set of minimizers of >

of the set {(et) ∈ [0, 1]T | such that P(et)
D is acyclical} by X(D). By Proposition 18, this is
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well-defined. Now if (et) ∈ [0, 1]T is such that P(et)
D is acyclical then for all (e′

t) ∈ [0, 1]T

with (e′
t) ≥ (et), we have P(e′

t)
D is acyclical. Thus by Theorem 1

X(D) ⊆
{

pt · (xt − xu)
pt · xt

∣∣∣∣t, u ∈ {1, . . . , T}
}

and so X(D) is a finite set.

Define

C̃0(D) = arg min
(et)∈X(D)

1
T

∣∣∣{t|et > 0}
∣∣∣

Ṽ 0(D) = min
(et)∈X(D)

1
T

∣∣∣{t|et > 0}
∣∣∣

C̃n(D) = arg min
(et)∈Cn−1(D)

1
T

∑
t|et>0

ln(et)n,

Ṽ n(D) = min
(et)∈Cn−1(D)

1
T

∑
t|et>0

ln(et)n.

For each n ∈ N, Ṽ n(D) = V 0(D)V n(D). Define the function fD : X(D) × R+ → R by

fD((et), α) = 1
T

∑
t|et>0

eα
t .

For each α > 0, we have

IVarα(D) = min
(et)∈X(D)

fD((et), α)

and

fD,n
2 ((et), 0) = ln(et)n.

Define X(D′), C̃n(D′), Ṽ n(D′), and fD′ similarly for D′.

First, if m = 0, then the claim follows from Proposition 12. Next, assume that 0 < m < ∞

and V m(D) > V m(D′). By Lemma 17 and since X(D) and X(D′) are finite, there exist

hD : R+ → R, hD′ : R+ → R, and α0 > 0 such that limα→0+ hD(α) = limα→0+ hD′(α) = 0 and

for all α ∈ (0, α0)

IVarα(D) =
m∑

i=0
min

y∈Ci(D)
αifD,i

2 (y, 0) + αmhD(α)

IVarα(D′) =
m∑

i=0
min

z∈Ci(D′)
αifD′,i

2 (z, 0) + αmhD′(α).

We have by the definition of m,

IVarα(D) − IVarα(D′) = αm
(

min
y∈Cm(D)

fD,m
2 (y, 0) − min

z∈Cm(D′)
fD′,m

2 (z, 0) + hD(α) − hD′(α)
)

.
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Since miny∈Cm(D) fD,m
2 (y, 0) > minz∈Cm(D′) fD′,m

2 (z, 0), there exist α1 < α0 such that for all

α ∈ (0, α1),

|hD(α) − hD′(α)| < min
y∈Cm(D)

fD,m
2 (y, 0) − min

z∈Cm(D′)
fD′,m

2 (z, 0).

Thus for all α ∈ (0, α1),

IVarα(D) > IVarα(D′).

Lastly, assume that m = ∞. Since X(D) and X(D′) are finite, there exists n0 ∈ N such

that C̃n0(D)∩∞
i=0 C̃i(D) and C̃n0(D′)∩∞

i=0 C̃i(D′). Let (et)∈∩∞
i=0C̃

i(D) and (e′
t)∈∩∞

i=0C̃
i(D′).

Now for each n ∈ N, we have
1
T

∑
t|et>0

ln(et)n = 1
T ′

∑
t|e′

t>0
ln(e′

t)n.

So since each et, e′
t ∈ (0, 1], for each n ∈ N,

1
T

∑
t|et>0

| ln(et)|n = 1
T ′

∑
t|e′

t>0
| ln(e′

t)|n.

Thus by Proposition 16, for each c ∈ R++

1
T

∣∣∣∣{t ∈ {1, . . . , T}
∣∣∣| ln(et)| = c

}∣∣∣∣ = 1
T ′

∣∣∣∣{t ∈ {1, . . . , T ′}
∣∣∣| ln(e′

t)| = c
}∣∣∣∣.

So by Proposition 19, we have for all c ∈ (0, 1]
1
T

∣∣∣∣{t ∈ {1, . . . , T}
∣∣∣et = c

}∣∣∣∣ = 1
T ′

∣∣∣∣{t ∈ {1, . . . , T ′}
∣∣∣e′

t = c
}∣∣∣∣. (4)

By Lemma 17, there exist α0 > 0 such that for all α ∈ (0, α0)

min
x∈X(D)

fD(x, α) = min
x∈C̃n0 (D)

fD(x, α)

and

min
x∈X(D′)

fD′(x, α) = min
x∈C̃n0 (D′)

fD′(x, α).

By (4), for all x ∈ C̃n0(D), y ∈ C̃n0(D′) and α ∈ (0, α0),

fD(x, α) = fD′(y, α)

that shows the claim.

The proof of Theorem 7 follows symmetrically and is omitted.
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