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1. Introduction

The Riemann Hypothesis (RH) is a famous open problem in the field of analytic

number theory. The purpose of this note is to report on a somewhat curious

observation relating RH to the theory of games. Specifically, it is shown that a pa-

rameterized family of games may be constructed with the property that, provided

that RH holds true, each game in this family admits a unique Nash equilibrium.

The family of games constructed below falls roughly in the class of difference-form

contests (Hirshleifer, 1989; Baik, 1998; Che and Gale, 2000; Ewerhart and Sun,

2018; Ewerhart, 2021). We argue that the example is not degenerate in a trivial

way. I.e., neither is the conclusion of our result a tautology, nor is RH used in the

definition of our class of games.

There does not seem to exist prior academic work that connects RH to the

theory of games. Nobel Laureate John Nash, whose contributions in the early 50s

became the basis of modern game theory (Nash, 1950, 1951) and who had also

solved Hilbert’s 19th problem on partial differential equations, is understood to

have worked on RH.1 However, the bibliography of Milnor (1998) does not list any

manuscript written by Nash with an obvious relationship to number theory.2

The mathematical literature has come up with a large variety of conditions that

are either necessary for, suffi cient for, or equivalent to RH. In particular, Gröchenig

(2020) related RH to the total positivity of a particular Fourier transform, and

the observation made below draws heavily from his contribution.3 However, the

1According to a popular biography (Nasar, 1998), as well as to a Hollywood movie based upon
it, Nash’s presentation on the topic at Columbia University in 1959 became incomprehensible
because of his beginning mental illness (see also Sabbagh, 2003).

2In a volume coedited by late John Nash, Connes (2016) related RH to chip-firing games on
graphs. Those games, however, are one-player “solitaire” problems (Baker and Norine, 2007).
More recently, Carmona et al. (2020) recovered the GUE distribution from limits of equilibria
in N -player stochastic games as N → ∞. While GUE describes the distribution of distances
between neighboring zeros of the Riemann zeta function (Montgomery, 1973; Odlyzko, 1987;
Rudnick and Sarnak, 1994, 1996), GUE arises in numerous other applications as well.

3For an introduction to total positivity, see Karlin (1968). Katkova (2007) related RH to
totally positive sequences.
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present analysis also crucially exploits certain game-theoretic arguments that are

not commonly discussed in the literature on the zeta function.4

The remainder of this paper is structured as follows. Section 2 provides back-

ground on RH. Section 3 introduces difference-form contests. Section 4 presents

the main result. Section 5 offers some discussion. Section 6 outlines the proof of

Theorem 1. Section 7 concludes. All proofs have been relegated to an Appendix.

2. Background on the Riemann hypothesis (RH)5

The Riemann zeta function is defined as

ζ(s) =
∑∞

n=1

1

ns
(s > 1), (1)

where n runs over all natural numbers and where s > 1 is required to guarantee

convergence of the infinite sum (Titchmarch, 1986). With Γ(s) =
∫∞
0
xs−1e−xdx

denoting the gamma function, one writes

ξ(s) = s(s−1)
2

π−s/2Γ( s
2
)ζ(s). (2)

This function can be shown to admit an analytic representation that is valid for

any argument s (even complex). Moreover, ξ satisfies the functional equation

ξ(s) = ξ(1− s), (3)

i.e., ξ is symmetric with respect to a reflection at s = 1
2
.

The ξ-function does not vanish for real values s. However, ξ is known to

possess complex zeros of the form s = 1
2

+ i · τ , where i =
√
−1 and τ ∈ R.6 The

Riemann hypothesis (RH), formulated by Riemann (1859), claims that any zero

4These arguments concern conditions suffi cient for the uniqueness of mixed strategy Nash
equilibria in games with analytic payoffs (Ewerhart and Sun 2018; Ewerhart, 2021). Games
with analytic payoff functions appear in early work on two-person zero-sum games on the square
(Karlin, 1957, 1959). See also Ewerhart (2015) and Levine and Mattozzi (2022).

5This section may be skipped by readers interested only in the main results.
6E.g., ρ1 = 0.5 + i · 14.134725 . . . is a zero of the ξ function, i.e., ξ(ρ1) = 0.
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of ξ is of this form. Expressed in terms of the zeta function, RH is commonly

expressed by saying that “every non-trivial zero of ζ lies on the critical line.” If

true, the conjecture would admit powerful conclusions about the distribution of

prime numbers (Davenport, 1980).

Proving RH is one of the seven problems for which the Clay Mathematics Insti-

tute awards a prize of one million dollars (Bombieri, 2000). Numerous interesting

but ultimately partial results are available. For example, it is known that “more

than 40 percent”of the non-tivial zeros of ζ lie on the critical line (Conrey, 1989).

Moreover, starting with Turing (1953), substantial effort has been invested into

attempts to reject RH using computational means. However, at least the first 1013

non-trivial zeros lie exactly on the critical line (Gourdon, 2004; Platt and Trud-

gian, 2021).7 Still, as argued by Sarnak (2004, pp. 6-7), this need not mean that

RH is “likely true.”Finally, annoucements of alleged solutions to the problem are

quite common (see, e.g., Schembri, 2018). At the time of writing, however, RH

remains an open mathematical problem.

3. Difference-form contests

Two players, 1 and 2, each choose a nonnegative investment, x1 ≥ 0 and x2 ≥ 0.

There is a prize of value W > 0. Expected payoffs are given by

Π1(x1, x2) = F (x1 − x2)W − x1, (4)

Π2(x1, x2) = F (x2 − x1)W − x2, (5)

where F (t) = 1
2

+
∫ t
0
f(τ)dτ for some measurable function f that is symmetric

with respect to the origin. The resulting two-player game will be denoted by

G0 ≡ G0(f,W ).

It should be noted that the above definition does not require f to be a proba-

bility density function. If f is a probability density function, however, then F (t) =

7For details on the methods employed to ensure that all complex zeros of ζ up to a given
height lie exactly on the critical line, see Edwards (1974, Ch. 8).
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∫ t
−∞ f(τ)dτ is the corresponding distribution function. Moreover, F (x1 − x2) is

the probability that player 1 wins the prize, while F (x2 − x1) = 1 − F (x1 − x1)
is the probability that player 2 wins the prize. In that case, therefore, G0 is a

symmetric difference-form contest. If f is not a probability density, then G0 is not

a difference-form contest in the usual meaning of the term.

Further, it should be noted that the above payoff functions need, in general,

not be quasiconcave, even if f is a very well-behaved probability density.8 It is

therefore natural to allow for mixed strategies, defined as probability distributions

on the Borel subsets of a suitably chosen compact subinterval of the real line (Das-

gupta and Maskin, 1986). Pure strategies may then be considered as degenerate

probability distributions, as usual.

The following examples illustrate equilibria in difference-form contests.

Example 1 (Hirshleifer, 1989; Baik, 1998). Let f be a continuous density

single-peaked at the origin. If W ≤ 1/f(0), then players’ expected payoffs are

strictly declining in their own strategy. In that case, therefore, the unique Nash

equilibrium of G0 is in pure strategies, with equilibrium strategies given by x∗1 =

x∗2 = 0.

Example 2 (Ewerhart and Sun, 2018). Let f be given as the logistic density

f(t) = α exp(−αt)
(1+exp(−αt))2 , where α = 6.75. Suppose also that W = 1. Then, the unique

mixed-strategy equilibrium in G0 is symmetric, and has each player i indepen-

dently choose xi = y1 ≡ 0.45597 with probability q1 = 0.51011, and xi = 0 with

probability q2 = 1−q1. The equilibrium payoff is Π∗i = 0.2674. Player i’s expected

payoff against the equilibrium strategy,

E[Πi(x1, x2)] =
q1

1 + exp(−α(xi − y1))
+

q2
1 + exp(−αxi)

− xi, (6)

considered as a function of xi, is depicted in Figure 1. As can be seen, its maxima

are located at xi = y1 and xi = 0.
8For illustration, see Example 2 below.

4



Figure 1. Expected payoff against the equilibrium strategy.

In general, however, the equilibrium of a difference-form contest need not be

unique. We illustrate the possibility of multiple equilibria by modiyfing the as-

sumptions in the framework of Che and Gale (2000).

Example 3. Let f be the uniform density over the interval [−c, c], for some c > 0.

Thus, f(t) = 1
2c
if t ∈ [−c, c], and f(t) = 0 otherwise. Then, x∗1 = c and x∗2 = 0

form an asymmetric Nash equilibrium in pure strategies in G0 in the non-generic

case W = 2c.9 By symmetry, a second equilibrium is given by (x∗∗1 , x
∗∗
2 ) = (0, c).

A way to understand the multiplicity in Example 3 is that the uniform density

is not suffi ciently well-behaved. Indeed, it is neither analytic nor a proper Pólya

frequency function.
9Indeed, with

F (t) =

 0 if t < −c
1
2 + t

2c if t ∈ [−c, c]
1 if t > c,

(7)

expected payoffs against the respective opponent’s equilibrium strategy are given by

Π1(x1, 0) = 2cF (x1)− x1 (8)

=

{
c if x1 ∈ [0, c]

2c− x1 if x1 > c,
(9)

Π2(c, x2) = 2cF (x2 − c)− x2 (10)

=

{
0 if x2 ∈ [0, 2c]

2c− x2 if x2 > 2c.
(11)

Therefore, (x∗1, x
∗
2) = (c, 0) is indeed an equilibrium.
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4. Statement of the main result

The statement of our main result uses the Riemann ξ-function, which has been

introduced in Section 2. Gröchenig (2020) noted that the Fourier transform of

the reciprocal of the “shifted”ξ-function exists for all frequencies. Building on his

result, we can make the following observation.

Lemma 1 The function

f#(t) =
ξ(1
2
)

2π

∫ +∞

−∞

cos(tx)dx

ξ(1
2

+ x)
(12)

is well-defined for all t ∈ R. Moreover, f# is symmetric with respect to the origin,
continuous, and vanishing at infinity.

Proof. See the Appendix. �

Clearly, f# does not belong to the class of functions commonly employed in eco-

nomics and statistical analysis (Johnson et al., 1995). In fact, little definite is

known about f#. For instance, it is not even known if f# is globally nonnegative.

However, the numerically obtained graph of f#, which is outlined in Figure 2,

suggests that f# is, in fact, a very well-behaved probability density function.10

Figure 2. The graph of f#.

10All computations have been conducted using Wolfram’s Mathematica 12.0.0 Kernel for Mi-
crosoft Windows (64-bit).
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The generalized difference-form contest in which f is chosen to be f# will be

denoted by G#0 ≡ G0(f
#,W ). We are ready to state our main result.

Theorem 1. If RH holds true, then G#0 admits precisely one equilibrium (for any

W > 0).

Proof. See Section 6. �

5. Discussion

In this section, we will argue that Theorem 1 is not degenerate in an obvious way,

because the conclusion is not a tautology (Subsection 5.1) and because RH does

not enter the definition of the game (Subsection 5.2).

5.1 The conclusion of Theorem 1 is not a tautology

It should be noted that it is not at all diffi cult to come up with a non-cooperative

game that has precisely one Nash equilibrium if RH holds true. For example, the

Prisoner’s Dilemma admits a unique Nash equilibrium if RH holds true. As the

conclusion is true, the implication holds regardless of the validity of the premise

(by the rules of Boolean logic). But the situation is different here. In view of the

possibility of multiple equilibria illustrated by Example 3, it is not known (and

might never become known) if the conclusion of Theorem 1 holds true or not.

Thus, the conclusion is an open conjecture like the hypothesis.11 In particular, if

the conclusion of equilibrium uniqueness could be shown to be wrong (which is

not feasible in the case of the Prisoner’s Dilemma), then the hypothesis would be

proven wrong.12

11Both RH and equilibrium uniqueness in the two-player contest may be characterized as being
undecidable in the practical sense. Undecidability in the logical sense is a possibility here as well
(i.e., RH and/or equilibrium uniqueness might be true but not provable), but this possibility is
not crucial for the present discussion.
12A similar type of reasoning is used in the literature on the P versus NP problem in com-

putational complexity theory (Cook, 1971), which happens to be a millennium problem like
RH.
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5.2 RH does not enter the definition of the game

It would be nice, and certainly more satisfying, to find a game-theoretic conjecture

that is logically equivalent to RH. In the abstract, this is actually not a big problem.

E.g., one may even easily write down games for which the existence of a unique

Nash equilibrium is equivalent to RH. To see this, consider the game G1 depicted

in Figure 3, where

θ =


+1 if RH holds true

−1 if RH does not hold true.
(13)

If RH holds true, then G1 admits (T,L) as the unique Nash equilibrium. If, how-

ever, RH does not hold true, then there are two Nash equilibria in pure strategies,

viz (T,R) and (B,L). Similarly, G2 admits (T,L) as a unique pure-strategy Nash

equilibrium if RH holds, and otherwise no pure-strategy Nash equilibrium.

Figure 3. The games G1 and G2.

In such examples, however, RH is used directly in the description of the payoff

functions. That is, even if the strategy chosen by player 2 is correctly anticipated

in G1 or G2, a human player 1 could not tell if T yields a higher payoff than B. In

contrast, RH has no role in the definition of payoffs in G#0 , i.e., expected payoffs

could, at least in principle, be approximated up to arbitrary accuracy without

assuming RH. In fact, given that best responses in the mixed extension of G#0 have

finite support, this argument extends to the relevant class of randomized strategies.

For this reason, the two-player contest might be a more appealing example than

G1 or G2, even though Theorem 1 does not capture a logical equivalence.
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6. Proof of Theorem 1

The proof has three steps. First, it is shown that, provided that RH holds true, the

function f# defined through Lemma 1 is both a proper Pólya frequency function

and a probability density function. In a second step, f# is seen to be analytic on

the real line (irrespective of RH). Finally, it is shown that, because f# satisfies

these properties, G#0 admits a unique Nash equilibrium if RH holds true.

Lemma 2. Suppose that RH holds true. Then, f# is a both a proper Pólya

frequency function and a probability density function.

Proof. See the Appendix. �

The property of f being a proper Pólya frequency function means that, in addition

to f being integrable over R, it is the case that, for any n ≥ 1, and for any real

parameters a1 > a2 > · · · > an and b1 > b2 > · · · > bn, the matrix

Mf

(
a1 a2 · · · an
b1 b2 · · · bn

)
=


f(a1 − b1) f(a1 − b2) · · · f(a1 − bn)
f(a2 − b1) f(a2 − b2) · · · f(a2 − bn)

...
...

. . .
...

f(an − b1) f(an − b2) · · · f(an − bn)

 (14)

has a positive determinant. The requirements for n = 1 and n = 2 can be shown

to correspond to positivity and strict logconcavity of f , respectively, but the re-

quirements for n ≥ 3 do not admit an equally simple interpretation. Examples of

proper Pólya frequency functions include any logistic or normal probability density

function (Karlin, 1957, 1959).

Lemma 2 is based upon a mathematically deep correspondence between Pólya

frequency functions (where the determinant in the above definition is merely re-

quired to be nonnegative, and there must be at least two points where the function

does not vanish) and functions of the Laguerre-Pólya class of type II ( i.e., functions

analytic on the complex plane that are locally uniform limits, not identically zero,

9



of polynomials whose zeros all lie on the real line). This correspondence was estab-

lished by Schoenberg (1947) who observed that Pólya frequency functions may be

characterized as normally smoothed limits of convolutions of multiple exponential

probability density functions. Since the Laplace transform of an exponential prob-

ability density function is just the reciprocal of a factor in a Weierstrass product

representation (Schoenberg, 1951, pp. 349-350), and since the Laplace transform

converts convolutions into products, the correspondence connects Pólya frequency

functions with functions of the Laguerre-Pólya class. In particular, as noted by

Gröchenig (2020, Thm. 4), the shape of f# allows conclusions regarding the loca-

tion of the zeros of the ξ-function, and vice versa. More specifically, f# is a Pólya

frequency function if and only if RH holds true. Lemma 2 refines the suffi ciency

part of that observation using a result by Schoenberg and Whitney (1953) for

proper Pólya frequency functions.

Next, we show that f# is real-analytic, i.e., the derivatives of f# of all finite

orders exist, and at any point on the real line, f# is locally approximated arbitrarily

well by its Taylor expansion.

Lemma 3. f# is analytic on R.

Proof. See the Appendix. �

The proof of Lemma 3 exploits, like Lemma 1, that the reciprocal of the shifted ξ

function diminishes exponentially for real arguments large in absolute value.

The third step of the proof exploits the following result, whose uniqueness part

is a special case of Ewerhart (2021, Prop. 1).

Lemma 4. Suppose that f is a probability density function that is symmetric

with respect to the origin. Then, a symmetric equilibrium µ∗ exists in G0. If, in

addition, f is a proper Pólya frequency function as well as analytic on R, then

there are no asymmetric equilibria, and µ∗ is the unique equilibrium.

10



Proof. See the Appendix.

The existence part of the proof of Lemma 4 is based on standard conditions for

symmetric compact games with continuous payoffs (Becker and Damianov, 2006).

In contrast, the uniqueness part has multiple steps, in which the various assump-

tions are combined with powerful theorems from complex analysis and the theory

of two-person zero-sum games. In view of Lemma 2, however, it seems most desir-

able to understand how the property of f being a proper Pólya frequency function

contributes to the conclusion that the equilibrium is unique. To explain this, we

recall that general properties of contests with analytic payoffs imply the existence

of a finite set S of pure strategies with the property that any mixed equilibrium

strategy is bound to randomize over this set.

Then, given the finite set of potential maximizers, necessary first-order con-

ditions hold at all positive investment levels used with positive probability in

equilibrium. Moreover, if a player chooses a zero investment level with positive

probability (this is always the case for both players, as a consideration of second-

order conditions shows), then the resulting equilibrium payoffΠ∗ must necessarily

be the same as that resulting from the lowest positive investment level used with

positive probability (and if there is no such positive investment level, then there

is nothing to show). These first-order conditions and the indifference condition

may be combined into a system of linear equations, one for each player, in which

the probabilities with which pure strategies are used and the player’s equilibrium

payoff are the unknowns. To prove uniqueness, it then suffi ces to show that this

system of linear equations is not degenerate.

To this end, the propery of f being a proper Pólya frequency function is ex-

ploited. In fact, given that f features prominently in the first-order conditions,

this last point would be straightforward if it were known that all investment levels

used in equilibrium with positive probability are positive. In that case, the unique

solvability of the linear system of first-order conditions would follow directly from

11



the fact that the relevant determinant is nonzero (even positive). However, as

mentioned above, both players necessarily choose the zero investment level with

positive probability, which is why this simple argument does not go through. In-

stead, the linear system of equations contains an indifference condition, which

involves the distribution function F in addition to the density function f . But

then, fortunately, the sign of the relevant determinant may still be evaluated as

an integral over positive determinants.

After these preparations, the proof of Theorem 1 is straightforward. Suppose

that RH holds true. Then, by Lemmas 2 and 3, f# satisfies the assumptions of

Lemma 4. Hence, there exists a unique equilibrium in G#.

7. Concluding remarks

We have constructed a parameterized family of two-person games with the property

that every game in this family admits a unique Nash equilibrium if RH holds true.

Thus, a game-theorist able to identify two equilibria in one of the considered games

would reject RH. We have done our best to explain why we believe that our result

is not degenerate in an obvious way.13

It would be desirable to better understand how tight the conditions of Theorem

1 are for equilibrium uniqueness. For example, as suggested by an anonymous

referee, it would be interesting to know if the existence of a non-trivial zero of

the Riemann zeta function slightly off the critical line, possibly with a very large

absolute imaginary component, would allow to construct multiple equilibria in

some game G#0 . This question, however, must be left for future work.

13On a more speculative note, the steps of the analysis could be replicated for more general
classes of L-functions (Sarnak, 2004). However, additional assumptions might be needed, such
as that the L-function does not vanish at s = 1

2 (Stark and Zagier, 1980).

12



A. Appendix

We start with some auxiliary results. The following lemma is well-known.

Lemma A.1 The Riemann ξ-function, defined in (2), has the following properties:

(i) ξ > 0 on the real line, in particular ξ(1
2
) > 0;

(ii) ln ξ(s) ∼ 1
2
s ln s for s real and s→∞;

(iii) Re ρ ∈ [0, 1] for any zero ρ of ξ;14

(iv)
∑

ρ
1
|ρ|2 <∞, where the sum runs over all zeros of ξ;

(v)
∑

ρ
1
|ρ| diverges.

Proof. For claims (i) through (iii), see Titchmarch (1986, pp. 29-30). For claims

(iv) and (v), see Davenport (1980, Sec. 12). �

The following result, for which we could not find a reference, is used in the proof

of Lemma 1.

Lemma A.2 The “shifted” ξ-function admits the product representation

ξ(s+ 1
2
) = ξ(1

2
)
∏

ρ

(
1− s

ρ− 1
2

)
es/(ρ−

1
2
), (15)

where the product runs over the non-trivial zeros of the zeta function. Moreover,∑
ρ

∣∣ρ− 1
2

∣∣−2 <∞ and
∑

ρ

∣∣ρ− 1
2

∣∣−1 =∞.

Proof. We start with the first claim. By Edwards (1974, Sec. 2.8), the ξ-function

admits the product representation

ξ(s) = c ·
∏

ρ

(
1−

s− 1
2

ρ− 1
2

)
, (16)

14As usual, Re ρ and Im ρ denote the real and imaginary parts of the complex number ρ,
respectively.
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where c is a constant, and it is understood that the factors for ρ and 1 − ρ are

paired to guarantee conditional convergence. Replacing s by s+ 1
2
, one obtains

ξ(s+ 1
2
) = c ·

∏
ρ

(
1− s

ρ− 1
2

)
. (17)

Making the pairing explicit yields

ξ(s+ 1
2
) = c ·

∏
Im ρ>0

(
1− s

ρ− 1
2

)(
1− s

(1− ρ)− 1
2

)
, (18)

where we used the fact that Im ρ and Im(1− ρ) have opposite signs. Noting that

es/(ρ−
1
2
)es/(1−ρ−

1
2
) = 1, relationship (18) transforms into

ξ(s+ 1
2
) = c ·

∏
Im ρ>0

(
1− s

ρ− 1
2

)
es/(ρ−

1
2
)

(
1− s

1− ρ− 1
2

)
es/(1−ρ−

1
2
) (19)

= c ·
∏

ρ

(
1− s

ρ− 1
2

)
es/(ρ−

1
2
), (20)

where the product in (20) is, at this point, still understood to pair the factors for ρ

and 1−ρ. However, by Edwards (1974, Sec. 2.5),
∑

ρ

∣∣ρ− 1
2

∣∣−2 <∞. Hence, using
the Weierstrass Factorization Theorem for entire functions (Conway, 1978, p. 279),

the product in (20) converges locally uniformly on the complex plane. Moreover,

letting s = 0 in (20) yields c = ξ(1
2
). This completes the proof of the first claim.

The second claim has been shown above. As for the third and final claim, we note

that by Lemma A.1(iii), Re ρ ∈ [0, 1]. Moreover, by Lemma A.1(iv), |ρ|2 > 1
4
for

all but finitely many zeros ρ.15 Hence, for all but finitely many zeros ρ,∣∣ρ− 1
2

∣∣2 =
∣∣(Re ρ)− 1

2

∣∣2 + |Im ρ|2 ≤ 1
4

+ |Im ρ|2 ≤ 2 |ρ|2 , (21)

which implies
∣∣ρ− 1

2

∣∣ ≤ √2 |ρ|. Therefore, using Lemma A.1(v), the infinite sum∑
ρ

∣∣ρ− 1
2

∣∣−1 diverges. This proves the lemma. �
Proof of Lemma 1. As noted by Gröchenig (2020, p. 4), the exponential decline

of 1/ξ(x + 1
2
) on the real line ensures that its Fourier transform exists, i.e., the

15Computationally, this inequality holds of course for all zeros ρ, because Im ρ1 ' 14.134725
for the zero ρ1 with the smallest positive imaginary component.
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integral

f̃(t) =
1

2π

∫ +∞

−∞

exp(itx)dx

ξ(1
2

+ x)
(−∞ < t <∞) (22)

is well-defined. Now, using Euler’s formula

exp(itx) = cos(tx) + i sin(tx), (23)

as well as the functional equation (3), one observes that

f̃(t) =
1

2π

∫ +∞

−∞

cos(tx)

ξ(1
2

+ x)
dx+

i

2π

∫ +∞

−∞

sin(tx)

ξ(1
2

+ x)
dx︸ ︷︷ ︸

=0

(24)

=
1

2π

∫ +∞

−∞

cos(tx)

ξ(1
2

+ x)
dx. (25)

Thus, the integral in (12) is well-defined, and so is f#. Next, we note that f#,

defined as a cosine integral transform, is obviously symmetric with respect to the

origin. Finally, being the Fourier transform of an absolutely integrable function,

f̃ is continuous on R and vanishes at infinity (Rudin, 1974, Thm. 9.6). Both

properties are inherited by f# = ξ(1
2
)f̃ , of course. This proves the lemma. �

Proof of Lemma 2. Suppose that RH holds true. Then, by Gröchenig (2020,

Thm. 3), there exists a Pólya frequency function Λ(x) such that

1

ξ(1
2

+ is)
=

1

2π

∫ +∞

−∞
Λ(x) exp(xs)dt (−∞ < s <∞). (26)

Applying nowMellin’s inverse formula, as in Schönberg (1947, Thm. 3), one obtains

Λ(x) =
1

2πi

∫ +i∞

−i∞

exp(xz)dz

ξ(1
2

+ iz)
=

1

2π

∫ +∞

−∞

exp(ixt)dt

ξ(1
2

+ t)
= f̃(x). (27)

Clearly, this is just the suffi ciency part of Gröchenig’s (2020, Thm. 4), i.e., that f̃

is a Pólya frequency function if RH holds true. We claim, however, that f̃ is even

a proper Pólya frequency function if RH holds true. We know that the shifted ξ

is an entire function. Moreover, for each non-trivial root ρ of the zeta function,
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ρ − 1
2

= i Im ρ is purely imaginary. Hence, invoking Lemma A.2, we have the

product representation

ξ(1
2

+ is) = ξ(1
2
)
∏

ρ

(
1− s

Im ρ

)
es/ Im ρ, (28)

where
∑

ρ |Im ρ|−1 = ∞ and
∑

ρ |Im ρ|−2 < ∞. Therefore, in view of (26) and
(27), Schoenberg and Whitney (1953, Thm. 1, Case 2), implies that f̃ is a proper

Pólya frequency function. Given that ξ(1
2
) > 0 by Lemma A.1(i), the same holds

true for f#. It remains to be shown that f# is a probability density function. By

evaluating the determinant of (14) in the special case n = 1, a1 = t, and b1 = 0, one

checks that f# is globally positive. Moreover, from the Fourier inversion theorem

(Rudin, 1974, Thm. 9.11), ∫ +∞

−∞
f̃(t)dt =

1

ξ(1
2
)
. (29)

Thus,
∫ +∞
−∞ f#(t)dt = 1, and f# is indeed a probability density function. �

Proof of Lemma 3. Take some ε > 0. For z ∈ C such that |Im(z)| < ε, we have∣∣∣∣exp(izx)

ξ(1
2

+ x)

∣∣∣∣ ≤ exp(ε |x|)
ξ(1
2

+ x)
(30)

Moreover, from Lemma A.1(ii),

exp(ε |x|)
ξ(1
2

+ x)
= O

(
exp

(
|x|
(
ε− lnx

2

)))
. (31)

Focusing on the case |x| ≥ exp(2ε), one observes that the left-hand side of (31) is

asymptotically diminishing at an exponential rate as |x| → ∞, i.e.,

exp(ε |x|)
ξ(1
2

+ x)
= O (exp (−ε |x|)) . (32)

The analytic nature of f̃ on the strip |Im(z)| < ε may now be deduced directly

from (32) using the conditions put forward by Mattner (2001).16 This proves the

lemma. �
16Alternatively, one may rely on Paley and Wiener (1934, Thm. I).
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Proof of Lemma 4. (Existence) By assumption, f is a probability density func-

tion. Therefore, any strategy xi > W is strictly dominated by xi = 0. We may

therefore, without loss of generality, assume that each player’s strategy space is

[0,W ]. Given that payoff functions are continuous, it follows from Becker and

Damianov (2006, Thm. 1) that G0 admits a symmetric mixed-strategy Nash equi-

librium µ∗ = (µ∗1, µ
∗
2), where µ

∗
1 = µ∗2. (Uniqueness) We check the conditions of

Ewerhart (2021, Prop. 1).17 By assumption, f is a proper Pólya frequency func-

tion. Hence, f is a Pólya frequency function. Using Schoenberg (1951, Lemma

1), this implies that f is logconcave. But given analyticity, f is differentiable.

Moreover, f > 0 because f is a proper Pólya frequency function. Therefore, f ′/f

is weakly declining. Next, one notes that f ′(0) = 0 because f is symmetric with

respect to the origin. But, since f is analytic on R, so is f ′. Further,f ′ is not

constant (otherwise f would be affi ne, in conflict with the assumption that f is a

probability density function). Hence, t = 0 is an isolated zero of f ′. Combining

this with the fact that f ′/f is weakly declining implies that f ′(t)/f(t) < 0 for all

t > 0, and f ′(t)/f(t) > 0 for all t < 0. This means that all conditions of Ewerhart

(2021, Prop. 1) are satisfied. Thus, the equilibrium is indeed unique. �

For the reader’s convenience, the material below has been replicated from Ewer-

hart (2021). Compared to the original contribution, however, the proof below is

substantially shorter because the difference-form contest is known to be symmetric

in the present analysis.

Self-contained proof of the uniqueness part of Lemma 4. Fix W > 0. As

shown above, there is at least one (even symmetric) mixed-strategy Nash equilib-

rium µ∗ = (µ∗1, µ
∗
2) in G0. Given that F is analytic on the real line, a straightfor-

ward extension of Ewerhart and Sun (2018, Lemma 1) shows that there is a finite

set S of pure strategies such that any pure best response to µ∗1 is contained in

17A self-contained proof is added below.
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S. In a nutshell, expected payoffs can be shown to be analytic but not constant,

which implies the claim. Next, we note that µ∗2 is a mixed best response to µ
∗
1.

Hence, the support of µ∗2 is finite and contained in S. Suppose there exists another

equilibrium µ∗∗ = (µ∗∗1 , µ
∗∗
2 ) in G#0 . By subsidizing each player with the invest-

ment of the other player, the game G0 is seen to be strategically equivalent to a

two-person zero-sum game, which implies the exchangeability of Nash equilibrium

strategies (Ewerhart, 2017, Lemma A.1).18 Therefore, µ∗2 is a best response also

to µ∗∗1 . Consider the set of pure strategies S
′ = {y1 > y2 > . . . > yK ≥ 0} in

the support of either µ∗1 or µ
∗∗
1 .

19 If K = 1, then µ∗1 = µ∗∗1 and we are done.

Suppose, therefore, that k ≥ 2. Equating marginal benefits with marginal costs

at the certainly positive levels of investment used in equilibrium y1, . . . , yK−1, we

have the necessary first-order conditions,

K∑̂
k=1

qk̂f(yk − yk̂)W = 1 (k = 1, . . . , K − 1). (33)

Moreover, we know that

K∑̂
k=1

qk̂F (yk − yk̂)W = Π∗ (k ∈ {K − 1, K}), (34)

where Π∗ is the equilibrium payoff resulting from µ∗ (analogous conditions for

k ∈ {1, . . . , K−2} are not needed, neither is the accounting equation
∑K

k̂=1 qk̂ = 1

needed). Combining the (K − 1) first-order conditions (33) with the two payoff

conditions (34), we arrive at the system

M


q1
...
qK

−Π∗/W

 =
1

W


1
...
1

yK−1
yK

 ∈ RK+1, (35)

18In contrast to zero-sum games, however, this does not imply payoff equivalence across equi-
libria in G0.
19As mentioned in the body of the paper, one can show that yK = 0. However, that result is

not needed in the proof.
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with the square matrix M1 ∈ R(K+1)×(K+1) defined by

M1 =



f(y1 − y1)︸ ︷︷ ︸
=f(0)

· · · f(y1 − yK−1) f(y1 − yK) 0

...
. . .

...
...

...
f(yK−1 − y1) · · · f(yK−1 − yK−1)︸ ︷︷ ︸

=f(0)

f(yK−1 − yK) 0

F (yK−1 − y1) · · · F (yK−1 − yK−1)︸ ︷︷ ︸
=1/2

F (yK−1 − yK) 1

F (yK − y1) · · · F (yK − yK−1) F (yK − yK)︸ ︷︷ ︸
=1/2

1


. (36)

We claim that this system admits at most one solution. Indeed, subtracting the

last row from the second-to-last row leads to

detM1 =

∣∣∣∣∣∣∣∣∣
f(y1 − y1) · · · f(y1 − yK)

...
. . .

...
f(yK−1 − y1) · · · f(yK−1 − yK)

F (yK−1 − y1)− F (yK − y1) · · · F (yK−1 − yK)− 1
2

∣∣∣∣∣∣∣∣∣ . (37)

Next, developing the determinant along the last row yields

detM1 =
∑K

k=1{(−1)k+K(F (yK−1 − yk)− F (yK − yk)) (38)

×

∣∣∣∣∣∣∣
f(y1 − y1) · · · f(y1 − yk−1) f(y1 − yk+1) · · · f(y1 − yK)

...
...

...
...

f(yK−1 − y1) · · · f(yK−1 − yk−1) f(yK−1 − yk+1) · · · f(yK−1 − yK)

∣∣∣∣∣∣∣}.
Using

F (yK−1 − yk)− F (yK − yk) =

∫ yK−1

yK

f(t− yk)dt (k ∈ {1, . . . , K}), (39)

this becomes

detM1 =

∫ yK−1

yK

∣∣∣∣∣∣∣∣∣
f(y1 − y1) · · · f(y1 − yK)

...
. . .

...
f(yK−1 − y1) · · · f(yK−1 − yK)
f(t− y1) · · · f(t− yK)

∣∣∣∣∣∣∣∣∣ dt. (40)

As f is a proper Pólya frequency function, the determinant in (40) is seen to be

positive for any t ∈ (yK , yK−1). Hence, detM1 > 0. In particular, M1 is invertible,

as claimed. It follows that there is at most one equilibrium in G0. �
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