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Abstract

This paper estimates the curvature of the Earth, defined as one over its radius,

without using any physics. The orthodox model is that the Earth is nearly spherical

with a curvature of π/20, 000 km. By contrast, the heterodox flat-Earth model

stipulates a curvature of zero. Abstracting from the well-worn arguments for and

against both models, rebuttals and counter-rebuttals ad infinitum, we propose a novel

statistical methodology based on verifiable flight times along regularly scheduled

commercial airline routes; this methodology allows for both estimating and making

inference for the curvature. In particular, a formal hypothesis test resolutely rejects

the flat-Earth model, whereas it does not reject the orthodox spherical-Earth model.

KEY WORDS: Flat-Earth model, geodesy, nonlinear least squares, trigonometry.

JEL classification codes: C12, C13.
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1 Introduction

This paper develops a novel and first-of-its-kind statistical methodology to learn about

Earth’s curvature (and thus about its radius as well, one being the reciprocal of the other);

estimation is the first step, followed by formal inference as a second step. In particular,

this methodology allows us to carry out a powerful, easily verifiable, and even-handed

test of the flat-Earth model vs. the spherical-Earth model. There are at least three strong

reasons to write, read, or publish this paper — each either overturns a weak objection or

negates reliance on an appeal to authority.

First: The flat-Earth model is heterodox whereas the spherical-Earth model is orthodox.

This objection is weak because, by the nature of scientific revolutions, all theories currently

accepted as orthodox started with the minority opinion of one single person (or group)

who disagreed with then-prevailing orthodoxy. Such process will continue as long as

civilization perdures. What this implies, however, is that very few of the many heterodox

opinions bubbling up will survive tough tests. On this basis, the challenge is to design a

test that is most powerfully conclusive, and this is what we do in the present paper.

Second: The flat-Earth model is a conspiracy theory. This objection is weak because

many conspiracies that were once alleged to be theories later turned out to be validated

by facts. For example, the Donation of Constantine was used during the Middle Ages

by the Roman Catholic Church to justify its temporal control over Italy. It was only

exposed as a fraudulent conspiracy centuries later during the Renaissance by Lorenzo

Valla. Many conspiracy theories will turn out to be false, but only by extending to all of

them an even-handed treatment can we fish out the few that may later turn out factual.

Third: The flat-Earth model is easily rejected by the testimony of astronauts,

Antarctica explorers, Navy captains, and other high-level specialists whose careers depend

on espousing the correct model of the shape of the Earth. This is a powerful objection, but

one not accessible to the educated layman whose everyday knowledge lies elsewhere.

Therefore, a statistical test that relies only on high-school trigonometry and easily

downloadable commercial flight data is much more convincingly general in its reach.

To the best of our knowledge, a test of the flat-Earth hypothesis against the spherical-

Earth hypothesis has not yet been conducted in the most solid and convincing way which

requires: (i) a simple yet powerful design; (ii) easily verifiable and uncontroversial data;

and (iii) execution in an even-handed and disinterested way. The present paper fills this

gap. Naturally, theoretical physicists have weighed in on the debate; for example, see

Kuzii and Rovenchak (2019). The beauty of our approach is that we can resolve the

argument without any recourse to physics whatsoever; in particular, our purely statistical
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methodology also produces an estimator of Earth’s radius (which is the reciprocal of

Earth’s curvature) that enjoys near-perfect accuracy.

The paper unfolds as follows. Section 2 develops a general formula for the distance

between two points on Earth that embeds both the flat model and the spherical model as

special cases of a ‘curvature’ parameter. Section 3 accurately calibrates a specific linear

mapping from kilometric distance to flight duration that should be acceptable to both

flat-Earth and spherical-Earth proponents, by focusing on airline routes where they are

most in agreement: the ones oriented along a North-South axis, allowing for North Pole

flyover. Section 4 uses this calibration to execute a formal hypothesis test by focusing on

airline routes where flat-Earth and spherical-Earth models are most in disagreement: the

ones oriented along an East-West axis, far from the North Pole. Section 5 concludes and

reaffirms the core insight of our paper, namely that whereas travel along the North-South

axis allows for model calibration and agreement between the flat-Earth and spherical-

Earth models, travel along the East-West axis produces a powerful test to discriminate

unambiguously between the two models. The Appendix contains all mathematical proofs,

as well as supporting materials.

2 Integrated Model of Distance between Two Points

The Flat Earth Society promotes Figure 2.1 as a map of the surface of the Earth.1

1Appendix B contains other historically-famous representations of the same view from various sources.
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Figure 2.1: Map of the continents and oceans if the Earth is flat.

Although far from immediately obvious, especially considering the persistence of the debate

and strident beliefs on both sides, analytical thinking reveals that there is a surprising

amount of commonality between the flat-Earth and spherical-Earth models. Such points

of agreement shall form the foundation on which a powerful test of the flat-Earth model

can later be erected.

2.1 Four Cardinal Points and Longitude

The first point of agreement between the spherical-Earth and flat-Earth models is that

they both agree that there is the concept of “the North”. This is presumably due to the

fact that a simple magnetic compass, which was available in Medieval Europe at least

a century before Copernicus and Galileo, always indicates the same direction — which

happens to be the same as the position of the North Star, an easily-identifiable star visible

4



everywhere in the Northern Hemisphere on cloudless nights.2 If we face North, the concept

of West is defined as the perpendicular direction through the left shoulder, East through

the right, and South as the diametrical opposite of North.

Hereby, we deduce that the North Pole exists according in the flat-Earth model as well:

If all the people on Earth walked North, this is where they would meet. Indeed, Figure 2.1

clearly shows that the North Pole is the center of the disk-shaped flat Earth.

An equally important point of agreement is the concept of longitude. It is customary

to pick one specific line (properly called meridian) that extends away from the North Pole

(going South) as reference: the prime meridian that goes through Greenwich near London

defines 0◦ of longitude.3 From the configuration of the continents, the Greenwich meridian

can be clearly seen in Figure 2.1 as extending vertically downwards from the North Pole.

Then, any meridian is indexed by a longitude East or West in the range [0◦, 180◦]. Not all

meridians can be shown on a map, of course; the map in Figure 2.1 shows the ones that

are integer multiples of 15◦.

2.2 Parallel Circles

Given the symmetry of rotation, it is possible to draw circles on the surface of the Earth

that contain all the points that are a given distance from the North Pole. Both spherical-

Earth and flat-Earth models agree on this, although they might name them differently:

“parallel circles” in the former case and “concentric circles” in the latter.

A real and substantive terminological difficulty does however emerge from the distinct

labeling of the circles. In the spherical-Earth model, they are labeled by the latitude in

degrees away from the equator (North or South). In the flat-Earth model, the equator

exists, and can be see in Figure 2.1 as the circle running through Ecuador, the Congo,

and Singapore, but it has no special pride of place relative to the other circles.

The reconciliation comes from realizing that Figure 2.1 is a polar azimuthal equidistant

projection (Snyder, 1987, p. 192). This means that all points on the map are at the

distance from the North Pole stipulated by the spherical-Earth model. If we list the eleven

circles visible in Figure 2.1 by order of increasing radius, we get the following table of

correspondence between the flat-Earth and spherical-Earth nomenclatures.

2There is a difference between the geographic North and the magnetic North, but it is so small that

we need not take it into account here.
3In 1984, the prime meridian was moved 102 meters East of its original location in the middle of the

Greenwich observatory, but this does not impinge upon our analysis.
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Circle Number Latitude Notable City Distance from North Pole

Circle 1 75◦ North Kullorsuaq (Greenland) 1, 667 km

Circle 2 60◦ North Kronstadt (Russia) 3, 333 km

Circle 3 45◦ North Minneapolis (USA) 5, 000 km

Circle 4 30◦ North New Orleans (USA) 6, 667 km

Circle 5 15◦ North Khartoum (Sudan) 8, 333 km

Circle 6 0◦ Equator Quito (Ecuador) 10, 000 km

Circle 7 15◦ South Braśılia (Brazil) 11, 667 km

Circle 8 30◦ South Porto Alegre (Brazil) 13, 333 km

Circle 9 45◦ South Dunedin (New Zealand) 15, 000 km

Circle 10 60◦ South Base Orcadas (Argentina) 16, 667 km

Circle 11 75◦ South Concordia (Artanctica) 18, 333 km

Table 2.1: Distance from the North Pole for eleven circles.

The fourth column computes the kth circle’s distance from the North Pole as

∆k
..=

15k

90
× 10, 000 for k = 1, . . . , 11 . (2.1)

This is because the meter was defined by the French Revolution as the (1/10, 000, 000)th

part of the distance between the North Pole and the equator (Circle 6 in the table). An

expedition was sent out to measure France from North to South along the Paris meridian,

which resulted in the production of a platinum bar of one meter of length subsequently

held at the Paris observatory, and available for international reference.4 The meter thus

defined is physically the same in both the flat-Earth model and the spherical-Earth model.5

By building on the commonalities identified between the two models, we are now ready

to develop an integrated formula for the distance between any two locations on Earth.

2.3 Conversion to Polar Coordinates

The first priority is to transform latitudes and longitudes commonly expressed as degrees/

minutes/seconds into polar coordinates: distance from the North Pole and longitude

expressed in radians relative to the Greenwich meridian.

4Further expeditions and progress in geodesical technology brought international specialists to the

realization that the original platinum specimen at the Paris observatory was too short. However, the

difference is so small that it need not concern us here.
5Appendix C provides low-tech confirmation using a humble road map of the type motorists rely on

to plan their trips and a hand-held measuring tape.
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Proposition 2.1. Define the constant c∗ = π
20,000 km

.

1. If a point has latitude d◦m′s′′ North, then its distance from the North Pole is

r =
π

180◦

[
90◦ −

(
d+

m

60
+

s

602

)]
× 1

c∗
. (2.2)

2. If a point has latitude d◦m′s′′ South, then its distance from the North Pole is

r =
π

180◦

[
90◦ +

(
d+

m

60
+

s

602

)]
× 1

c∗
. (2.3)

3. If a point has longitude d◦m′s′′ East, then its longitude expressed in radians is

θ =
π

180◦

(
d+

m

60
+

s

602

)
. (2.4)

4. If a point has longitude d◦m′s′′ West, then its longitude expressed in radians is

θ = − π

180◦

(
d+

m

60
+

s

602

)
. (2.5)

These four statements are valid in both the flat-Earth model and the spherical-Earth model.

The constant c∗ ..= π/20, 000 km is equal to one over the radius of the Earth if the Earth

is spherical, so it represents the curvature of the Earth (or, one could also say, of the

meridians). If the Earth is flat, c∗ does not serve to measure curvature anymore, but still

serves to convert latitude into distance from the North Pole.

The main reason why we insist on defining the location of a specific point on the Earth

by using the pair (r, θ) is that both the flat-Earth model and the spherical-Earth model

agree on (r, θ). A supplementary reason is that (r, θ) constitute what is known as a pair

of polar coordinates, which facilitates usage of standard trigonometric techniques.

2.4 Distance between Two Points in the Flat-Earth Model

We can now give the formula for the distance between any two points on the flat Earth.

Theorem 2.1. Consider two points P1 and P2 whose respective polar coordinates are

(r1, θ1) and (r2, θ2). In the flat-Earth model, the distance between these two points is

equal to

dF(r1, θ1; r2, θ2) =
√
r21 + r22 − 2r1r2 cos(θ1 − θ2) . (2.6)

This is what one would find by using a hand-held ruler to measure the length a straight

line between any two cities on the flat-Earth map in Figure 2.1.
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2.5 Distance between Two Points in the Spherical-Earth Model

To continue the parallel examination of the spherical-Earth model alongside its unorthodox

flat-Earth rival, we now present a counterpart to Theorem 2.1.

Theorem 2.2. Consider two points with polar coordinates (r1, θ1) and (r2, θ2). In the

spherical-Earth model, the distance dS(r1, θ1; r2, θ2) between these two points is equal to

1

c∗
arccos

{
cos2

(
θ1 − θ2

2

)
cos
[
(r1 − r2)c∗

]
+ sin2

(
θ1 − θ2

2

)
cos
[
(r1 + r2)c

∗]} , (2.7)

where c∗ ..= π
20,000 km

is Earth’s curvature in the spherical-Earth model (cf. Proposition 2.1).

This formula is particularly intuitive in two cases:

1. When both points are on the same meridian, cos2
(
θ1−θ2

2

)
= 1 and sin2

(
θ1−θ2

2

)
= 0,

so the output is the difference between the two distances from the North Pole. This

corresponds to a path that does not go through either pole.

2. When the two points are on antimeridians relative to each other, cos2
(
θ1−θ2

2

)
= 0

and sin2
(
θ1−θ2

2

)
= 1, so the output depends on the sum of the two distances from

the North Pole. This corresponds to a path that goes through a pole.

In the general case, since cos2
(
θ1−θ2

2

)
+ sin2

(
θ1−θ2

2

)
= 1, the distance will be a weighted

average of the distance implied by the difference r1 − r2 (not going through/near a pole),

and the one implied by the sum r1 + r2 (going through/near a pole), with their relative

importances controlled by the difference of longitudes θ1 − θ2.

2.6 Making Curvature a Free Input

This section contains our final mathematical result: an integrated formula for distance

that embeds both the spherical-Earth model and the flat-Earth model as special cases,

depending on how the curvature parameter is dialed up or down.

Theorem 2.3. Define the distance function D
(
r1, θ1; r2, θ2; c

)
as1

c
arccos

{
cos2

(
θ1−θ2

2

)
cos
[
(r1 − r2)c

]
+ sin2

(
θ1−θ2

2

)
cos
[
(r1 + r2)c

]}
if c > 0√

r21 + r22 − 2r1r2 cos(θ1 − θ2) if c = 0
(2.8)

on the domain {(r1, θ1; r2, θ2; c) ∈ R4 : r1 ≥ 0, r2 ≥ 0, c ≥ 0, r1c ≤ π, r2c ≤ π}. The

function D is continuous on its domain of definition.
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The function D embeds both the spherical-Earth distance function as the special case

c = c∗ and the flat-Earth distance function as the special case c = 0. Having c as a free

input (parameter) will allow us to construct an estimator of Earth’s curvature as well as

a test of the flat-Earth model against the spherical-Earth model. In order to implement

such statistical methodology in practice, we first need to identify an accurate proxy for

distance that is easy to collect and verify.

3 Flight Time as Proxy for Distance between Cities

In order to validate (average) flight times of regularly-scheduled commercial aircraft as an

accurate proxy for the distance between two points on the surface of the Earth in a way

that is acceptable to proponents of both models, our initial focus will be on airline routes

where the flat-Earth model and the spherical-Earth model most agree.

3.1 Geometric Analysis of Agreement

Pairs of locations for which both models give the same distance are identified by the

following theorem.

Theorem 3.1. Let P1 be a point on the surface of the Earth with distance r1 from the

North Pole and longitude θ1 expressed in decimal degrees. Similarly: P2 = (r2, θ2). Then

dF(r1, θ1; r2, θ2) = dS(r1, θ1; r2, θ2) if either one of the two following conditions is satisfied:

Condition 1: The points are on the same meridian (θ1 = θ2);

Condition 2: The points are on antimeridians (|θ1 − θ2| = π) and r1 + r2 ≤ 20,000 km.

3.2 Airport Pairs on North-South Axis

Manual exploration of the website flightsfrom.com yields ten commercial airline routes

(listed in Table 3.1) that approximately satisfy the conditions of Theorem 3.1. The

first eight satisfy Condition 1 (same meridian), and the last two satisfy Condition 2

(antimeridian, flying through the North Pole route). Distances between airports have

been obtained from the original latitude and longitude data by following the derivations

of Section 2. Just to illustrate, and for the sake of clarity, we can provide a fully worked-

out example of the intermediary calculations for the first row of Table 3.1 between

Johannesburg and Istanbul.

Johannesburg: r1 = 12, 904 km θ1 = 0.493 rad ; (3.1)

Istanbul: r2 = 5, 415 km θ2 = 0.501 rad . (3.2)

9
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Readers are strongly encouraged to double-check these computations independently, as they

are technically central to the paper.

City Airport Latitude Longitude dF dS

Johannesburg (S. Africa) JNB 26◦08′00′′S 28◦15′00′′E
7,489 km 7,489 km

Istanbul (Turkey) IST 41◦15′44′′N 28◦43′40′′E

Santiago (Chile) SCL 33◦23′34′′S 70◦47′08′′W
8,238 km 8,232 km

New York (USA) JFK 40◦38′23′′N 73◦46′44′′W

Frankfurt (Germany) FRA 50◦02′00′′N 08◦34′14′′E
4,561 km 4,560 km

Abuja (Nigeria) ABV 09◦00′24′′N 07◦15′47′′E

Abu Dhabi (UAE) AUH 24◦25′59′′N 54◦39′04′′E
3,237 km 3,236 km

Mahé (Seychelles) SEZ 04◦40′28′′S 55◦31′19′′E

London (UK) LHR 51◦28′39′′N 00◦27′41′′W
5,097 km 5,097 km

Accra (Ghana) ACC 05◦36′17′′N 00◦10′03′′W

Melbourne (Australia) MEL 37◦40′24′′S 144◦50′36′′E
8,191 km 8,173 km

Tokyo (Japan) NRT 35◦45′55′′N 140◦23′08′′E

Hong Kong (China) HKG 22◦18′32′′N 113◦54′52′′E
6,039 km 6,032 km

Perth (Australia) PER 31◦56′25′′S 115◦58′01′′E

Cape Town (S. Africa) CPT 33◦58′10′′S 18◦35′50′′E
9,433 km 9,386 km

Frankfurt (Germany) FRA 50◦02′00′′N 08◦34′14′′E

Dubai (UAE) DXB 25◦15′10′′N 55◦21′52′′E
13,403 km 13,390 km

Los Angeles (USA) LAX 33◦56′33′′N 118◦24′29′′W

Doha (Qatar) DOH 25◦16′23′′N 51◦29′36′′E
12,994 km 12,983 km

San Francisco (USA) SFO 37◦37′08′′N 122◦22′30′′W

Table 3.1: Ten airport pairs with essentially identical flat-Earth and spherical-Earth

distances.

Disagreement between the flat-Earth model and the spherical-Earth model is exceedingly

small for all of the ten flights listed in Table 3.1: It ranges from 0 to only 48 kilometers

at most, never exceeding 1% of the flight distance. This scenario constitutes a golden

opportunity to assess empirically, the suitability and accuracy of (average) flight time as

a proxy for distance between cities. Since the underlying distances for these airport pairs

are essentially identical for the flat-Earth and spherical-Earth models, the validity of the

empirical relationship obtained should be equally acceptable to both parties.

3.3 Flight Times Along A North-South Axis

We collect flight times over the routes in Table 3.1 from flightaware.com. These are

defined as the average take-off-to-landing time over all the flights that took place over a
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three-month window.6 The data were manually collected from the website on 12 November

2022 and go as far back as 12 August 2022. We carried out an independent check over

the ten most recent flights with a competitor site, airportia.com, and found negligible

discrepancies of only a few minutes at most. Gate-to-gate times are slightly longer because

of taxiing around the runway; flightaware.com reports those too, and they match on

average what the airline itself has announced, which is yet another independent check.

Given the economic incentives for airlines, the needs of passengers and their ability to

transmit and propagate information about flight arrival and departures via social networks,

as well as oversight by regulatory authorities, it is simply not possible to cheat on such

data systematically, let alone by a wide margin.

Airline Route Flight # Flight Time Average

Turkish Airlines
Johannesburg → Istanbul TK41 08h42min

08h44min
Istanbul → Johannesburg TK40 08h46min

LATAM Airlines
Santiago → New York LA532 09h50min

09h41min
New York → Santiago LA533 09h33min

Lufthansa
Frankfurt → Abuja LH594 05h37min

05h39min
Abuja → Frankfurt LH595 05h40min

Etihad Airways
Abu Dhabi → Mahé EY622 04h17min

04h13min
Mahé → Abu Dhabi EY621 04h10min

British Airways
London → Accra BA81 06h06min

06h12min
Accra → London BA78 06h18min

Japan Airlines
Melbourne → Tokyo JL774 09h21min

09h27min
Tokyo → Melbourne JL773 09h33min

Cathay Pacific
Hong Kong → Perth CX171 07h01min

07h04min
Perth → Hong Kong CX170 07h07min

Lufthansa
Cape Town → Frankfurt LH577 11h18min

11h13min
Frankfurt → Cape Town LH576 11h07min

Emirates Airlines
Dubai → Los Angeles EK215 15h33min

15h23min
Los Angeles → Dubai EK216 15h13min

Qatar Airways
Doha → San Francisco QR737 15h02min

14h52min
San Francisco → Doha QR738 14h42min

Table 3.2: Average flight times between ten airport pairs with essentially identical flat-

Earth and spherical-Earth distances.

6The number of flight times over which we average depends on the sample size for any given route in

Table 3.2; the mean and median of the twenty sample sizes are, roughly, equal to 65.
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Remark 3.1 (Average Flight Time). Each “flight time” in column four of Table 3.2,

and later in Table 4.2, is actually an average of many individual flight times collected;

but, in order to keep terminology compact, what we mean by “average flight time” listed

in column five of the two tables is the average of the two “flight times” in column four

(to and fro). Clearly, we need to work with this overall average flight time in order to

eliminate small effects of head and tail winds. (The average to and fro times are not

substantially different but can be up to 20 minutes apart.)

3.4 Estimating Average Flight Times by Linear Regression

Having gathered airport-pair distance data (Table 3.1 ) and flight time data along the

same routes (Table 3.2), we are now ready to fit a model that estimates average flight

time based on distance for a generic flight. Given the visible and obvious agreement

between the spherical-distance column and the flat-distance column in Table 3.1, this

linear regression model should be equally agreeable to flat-Earthers and spherical-Earthers

alike. The model specification is grounded in the fundamental premise that engineering

and economic constraints governing the modern airline industry dictate that average flight

times depend on distance and little else.

(As widely reported in the popular and business press, average flight times have,

counterintuitively, increased despite advances in technology; for example, see Ledsom

(2022). These increases are attributed to practices like “schedule padding” and the desire

to save money on fuel; recall however that our data collection window was a mere three

months, obviating any issues in our case.)

The precise specification is that we stack the vector of ten North-South axis spherical-

Earth distances atop the vector of ten North-South axis flat-Earth distances to construct

an independent variable of dimension 20× 1 that we call X. We then stack two copies

of the corresponding average flight times on top of each other to construct a dependent

variable of dimension 20 × 1 that we call Y . Finally, we regress Y (unit: hours) on a

constant and X (unit: kilometers). The result is:

Ŷ =
34

60
+

X

905 km/h
. (3.3)

This means that in order to estimate average flight times, we just need to charge a constant

penalty of 34 minutes for the initial climb after takeoff and the final descent before landing,

and assume an average cruising speed of 905 km/h that carries the passengers from

departure point to arrival point.

12



3000 6000 9000 12000 15000

Distance between Airports (km)

4

6

8

10

12

14

16
A

v
e

ra
g

e
 F

lig
h

t 
ti
m

e
 (

h
o

u
rs

) Adjusted R2 = 99.9%

Spherical

Flat

Fitted

Figure 3.1: Linear regression of average flight time on a constant and distance along the

North-South axis.

The adjusted R2 of the estimated linear regression model (3.3) is a near-perfect 99.9%,

so treating the relationship as exact (over the range of observed distances in the data,

or slightly outside of it) seems justified.

4 Testing the Flat-Earth Model

Whereas all the work so far has been to establish commonalities between flat-Earth and

spherical-Earth models, in order to calibrate an (essentially) exact relationship between

flight time and distance, we now turn to the maximal disagreement in order to set up a

powerful test, using flight times as a mutually acceptable proxy.

4.1 Geometric Analysis of Disagreement

The main difference between the two models is quite obvious: It lies in the implied

circumferences of the eleven circles listed in Table 2.1. Figure 4.1 illustrates this

comparison.
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Figure 4.1: Implied circumferences of the eleven circles listed in Table 2.1 according to

both models.

The two formulas used to generate Figure 4.1 are, for k = 1, . . . , 11,

CFlat(k) = 2π
15k

90
×10, 000 km and CSpher(k) = 4 cos(90◦−k·15◦)×10, 000 km . (4.1)

Remark 4.1 (Deviations from Perfect Sphericity). The formula for CSpher(k) in (4.1)

assumes that the Earth is a perfect sphere, in which case the circumference of the equator

is four times the distance from the North Pole to the equator. The mainstream view is

more nuanced: the Earth is spherical only approximately. It is slightly flatter around the

poles, and bulges a little more around the equator. In this paper, we opt to ignore such

refinements and instead treat the Earth as a perfect sphere for the sake of simplicity.

Initially, when one is close to the North Pole, in particular at 75◦ degrees of latitude,

there is very little difference between the circumferences implied by both models. However,

the difference gradually increases as one gets further away from the North Pole, and from

Circle 6 onwards (beyond the equator into the Southern hemisphere) it is huge. This

presents a golden opportunity to construct a powerful test of the flat-Earth model.

4.2 Airport Pairs on East-West Axis Far from the North Pole

Using the three criteria highlighted below:

1. departure and arrival cities linked by a direct regularly-scheduled commercial flight,

2. being as far away from the North Pole as possible,

3. and spanning an arc of longitude as wide as possible,
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we put together a list of ten airline routes where the flat-Earth model should strongly

disagree with the spherical-Earth model. These are presented in Table 4.1.

City Airport Latitude Longitude r (km) θ (rad)

Santiago (Chile) SCL 33◦23′34′′S 70◦47′08′′W 13, 710 −1.24

Auckland (NZ) AKL 37◦00′29′′S 174◦47′30′′E 14, 112 3.05

Johannesburg (S. Africa) JNB 26◦08′00′′S 28◦15′00′′W 12, 904 0.49

Sydney (Australia) SYD 33◦56′46′′S 151◦10′38′′E 13, 772 2.64

São Paulo (Brazil) GRU 23◦26′08′′S 46◦28′23′′W 12, 604 −0.81

Luanda (Angola) LAD 08◦51′30′′S 13◦13′52′′E 10, 984 0.23

Papeete (France) PPT 17◦33′24′′S 149◦36′41′′W 11, 951 −2.61

Nouméa (France) NOU 22◦00′59′′S 166◦12′58′′E 12, 446 2.90

Auckland (NZ) AKL 37◦00′29′′S 174◦47′30′′E 14, 112 3.05

Perth (Australia) PER 31◦56′25′′S 115◦58′01E 13, 549 2.02

Johannesburg (S. Africa) JNB 26◦08′00′′S 28◦15′00′′W 12, 904 0.49

Perth (Australia) PER 31◦56′25′′S 115◦58′01′′E 13, 549 2.02

Perth (Australia) PER 31◦56′25′′S 115◦58′01′′E 13, 549 2.02

Port Louis (Mauritius) MRU 20◦25′48′′S 57◦40′59′′E 12, 270 1.01

Easter Island (Chile) IPC 27◦09′53′′S 109◦25′18′′E 13, 018 −1.91

Santiago (Chile) SCL 33◦23′34′′S 70◦47′08′′W 13, 710 −1.24

Wellington (NZ) WLG 41◦19′38′′S 174◦48′19′′E 14, 592 3.05

Melbourne (Australia) MEL 37◦40′24′′S 144◦50′36′′E 14, 186 2.53

Singapore (Singapore) SIN 01◦21′33′′N 103◦59′22′′E 9, 849 1.81

Johannesburg (S. Africa) JNB 26◦08′00′′S 28◦15′00′′W 12, 904 0.49

Table 4.1: Ten airport pairs where flat-Earth and spherical-Earth models should disagree.

There is a wide variety of airports (14 in total), spanning Africa, South America, Oceania,

and Asia. The average distance from the North Pole is 13,034 km, ranging from a minimum

of 9,849 km (Singapore) to a maximum of 14,592 km (Wellington). Longitudes (expressed

in radians) are quite different between departure and arrival airports, meaning that the

routes have a strong alignment with the East-West axis instead of North-South.
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4.3 Flight Times Along An East-West Axis

As in Section 3.3, we collect the average takeoff-to-landing flight times between 12 August

and 12 November 2022 from flightaware.com. These are reported in Table 4.2.7

Airline Route Flight # Flight Time Average

LATAM Airlines
Santiago → Auckland LA801 12h04min

11h08min
Auckland → Santiago LA800 10h11min

Qantas Airways
Johannesburg → Sydney QF64 11h16min

12h28min
Sydney → Johannesburg QF63 13h40min

Angola Airlines
São Paulo → Luanda DT748 7h58min

8h08min
Luanda → São Paulo DT747 8h17min

Aircalin
Papeete → Nouméa SB601 6h06min

5h36min
Nouméa → Papeete SB600 5h06min

Air New Zealand
Auckland → Perth NZ175 6h41min

6h11min
Perth → Auckland NZ176 5h40min

Qantas Airways
Johannesburg → Perth QF66 8h57min

9h49min
Perth → Johannesburg QF65 10h40min

Air Mauritius
Perth → Port Louis MK441 7h50min

7h03min
Port Louis → Perth MK440 6h17min

LATAM Airlines
Easter Island → Santiago LA842 4h13min

4h29min
Santiago → Easter Island LA841 4h44min

Qantas Airways
Wellington → Melbourne QF172 3h34min

3h21min
Melbourne → Wellington QF171 3h09min

Singapore Airlines
Singapore → Johannesburg SQ478 9h58min

9h58min
Johannesburg → Singapore SQ479 9h59min

Table 4.2: Flight times for ten airport pairs where flat-Earth and spherical-Earth models

should disagree.

The majority of these routes depart from and/or arrive in Australia or New Zealand.

4.4 Statistical Analysis

We have now gathered all the building blocks to construct an estimator of Earth’s curvature,

along with corresponding inference. In order to conduct the analysis, we map distances

7The number of flight times over which we average depends on the sample size for any given route in

Table 4.2; both the mean and median of the twenty sample sizes are, roughly, equal to 50.

16

flightaware.com


into flight times using the calibration of Section 3.4:

T
(
ri,1, θi,1; ri,2, θi,2; c

)
..=

34

60
+
D
(
ri,1, θi,1; ri,2, θi,2; c

)
905 km/h

, (4.2)

where (ri,1, θi,1) are the polar coordinates of the first-listed airport on route i = 1, . . . , 10

(see the last two columns of Table 4.1), (ri,2, θi,2) are the polar coordinates of the second-

listed one, D is the integrated formula for distance from Theorem 2.3, and c is the (a

priori unknown) curvature. The curvature c is then estimated via nonlinear least squares:

ĉ ..= argmin
c

10∑
i=1

[
Yi − T (ri,1, θi,1; ri,2, θi,2; c)

]2
where Yi is the average flight time for route i, as recorded in the last column of Table 4.2,

and c can range over the domain
[
0,min(mini(π/ri,1),mini(π/ri,2))

]
. The results are as

follows:

ĉ = 1.578 · 10−4 and SE(ĉ) = 4.981 · 10−7 ,

where the standard error SE(ĉ) is computed according to Greene (2008, Theorem 11,2);

note that we use the degree-of-freedom correction for σ̂2 (with K = 1) outlined below

Greene (2008, Equation (11-13)).

An asymptotic (or standard-theory) nominal 95% confidence interval for c is then

obtained as

ĉ± t9,0.975 · SE(ĉ) = [1.567 · 10−4, 1.589 · 10−4] , (4.3)

where tn,λ denotes the λ quantile of the t-distribution with n degrees of freedom. (Some

might use z0.975 = 1.96, the 0.975 quantile of the standard normal distribution, instead

of t9,0.975 = 2.262 in the construction of the asymptotic confidence interval (4.3) but we

prefer to ‘err’ on the conservative side by using a wider interval.)

Alternatively, one can use the studentized symmetric bootstrap based on resampling

cases; for example, see Davison and Hinkley (1997, Sections 6.2 and 7.4). In this way one

obtains a nominal 95% confidence interval as

ĉ± t|·|,∗0.95 · SE(ĉ) = [1.565 · 10−4, 1.591 · 10−4] . (4.4)

Here t
|·|,∗
λ denotes the bootstrap estimate of the λ quantile of the sampling distribution of

|ĉ− c|
SE(ĉ)

.

As is often the case with small sample sizes, the bootstrap confidence interval is somewhat

wider than the asymptotic confidence interval, the reason being that

t
|·|,∗
0.95 = 2.580 > 2.262 = t9,0.975 = t

|·|
9,0.95 ,
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where t
|·|
n,λ denotes the λ quantile of |X| with X ∼ tn.

Nevertheless, both intervals came to the same conclusion: Whereas the flat-Earth

model is rejected, the spherical-Earth model is not. This is because both intervals do not

contain zero but do contain c∗ ..= π/20, 000 = 1.571 · 10−4.

Another way to carry out inference on the flat-Earth model is to compute a p-value

for the hypothesis testing problem

H0 : c = 0 vs. H0 : c > 0 .

Both asymptotic theory and the bootstrap yield a p-value < 0.001, so that the flat-Earth

model is resolutely rejected by the data.

Last but not least, by inverting the endpoints of the confidence intervals (4.3)–(4.4) for

Earth’s curvature c one can back out nominal 95% asymptotic and bootstrap confidence

intervals for Earth’s radius 1/c as

[6, 293 km, 6, 383 km] respectively [6, 286 km, 6, 390 km] . (4.5)

Since the point estimate of Earth’s radius is given by 1/ĉ = 1/1.578 · 10−4 = 6,338 km,

even the somewhat wider bootstrap confidence interval implies a relative accuracy of 99.2%,

where we define relative accuracy as one minus the ratio of margin of error to point estimate.

For a symmetric confidence interval, the margin of error is given by half the width of

the interval, that is, by the distance from the point estimate to either end point of the

interval. The two confidence intervals in (4.5) for 1/c are not symmetric anymore due to

the nonlinear operation of inverting the endpoints of the symmetric intervals for c. To

be conservative, we thus take the larger of the two distances from the point estimate to

either end point, which results in the following relative accuracy based on the bootstrap

confidence interval: 1− (6, 390− 6, 338)/6, 338 = 0.9918.

4.5 Discussion

The results of our statistical analysis have been obtained by making some simplifying

assumptions:

1. In the spherical-Earth model, the Earth is perfectly spherical.

2. The meter is exactly 1
10,000,000th

of the distance from the North Pole to the equator.

3. The mapping from distances to average flight times estimated via linear regression

on North-South routes was used as if it held perfectly.

4. The small sample (n = 10) that we have collected synthesizes the information

content of the other regularly-scheduled commercial airline routes not downloaded.
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Having said that, none of these limitations, even taken together, really matter in the end:

Even if we increased the widths of the confidence intervals (4.3)–(4.4) by a factor of ten,

the flat-Earth model would still be rejected.

Our contribution to a topic uniquely intriguing in both scientific discourse and in

popular culture, is that we managed to conclusively discriminate between two strongly

opposing physics models without doing any physics experiment or physics theory. Rather,

we simply and carefully applied the statistical method. It is usually hard to change

one’s mind (let alone someone else’s mind) about a belief held; but for the proponents of

the flat-Earth model, we suggest an easy way to do so: Take one of the flights listed in

Table 4.2 and time it with your own watch. (Strictly speaking, take a round-trip flight

and then record the average of the two flight times.)

Sometimes a simple picture that distills the essence of the result is a good way to

summarize the main point. There are two flights from Perth (Western Australia) that

take almost exactly seven hours on average: due North to Hong Kong, and due West

to Mauritius. Given near-identical average flight durations, the distances should match

too. They do not if the Earth is flat, but they do if it is spherical, as Figure 4.2 illustrates.

Figure 4.2: Perth–Hong Kong and Perth–Mauritius lines drawn in black on both maps.

If the Earth were flat, Perth–Mauritius should take twice as long as Perth–Hong Kong,

which it does not. The fundamental contradiction is that, under the flat-Earth model, flight

durations observed on an East-West axis far away from the North Pole are incompatible

with flight durations observed on a North-South axis.
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5 Conclusion

We have carried out a side-by-side evaluation of the unorthodox flat-Earth model against

the orthodox spherical-Earth model, without a priori favoring one over the other. The

key was to use, as an instrument, the distance between pairs of airports connected by

regularly-scheduled commercial flights, whose times of departure and arrival are essentially

unfalsifiable public knowledge.

We first selected airport pairs of locations for which both models give the same distance,

namely airport pairs on the North-South axis that are either on the same meridian or

on an antemeridian with a combined distance from the North Pole less than or equal to

20,000 km. We used these selected routes along the North-South axis (allowing for North

Pole flyover) to calibrate a simple linear regression connecting distance to flight duration

in a way that should be equally acceptable to the proponents of both the flat-Earth model

and the spherical-Earth model. We then selected flight routes along the East-West axis

far away from the North Pole to set up a powerfully discriminant test between the two

models.

The outcome is that observed flight durations along the East-West axis are too short

to be compatible with those along the North-South axis if the Earth is flat. This test

decisively rejects the flat-Earth model in favor of the spherical-Earth model. Our unique

test’s main and compelling advantages are (i) its simple yet powerful design; (ii) its use of

easily verifiable and uncontroversial data; and (iii) the fact that it was executed in an

even-handed and disinterested way.

Last but not least, we have demonstrated that the statistical methods can estimate

a physics quantity as important as Earth’s curvature with a remarkably high relative

accuracy of 99.2% without using any physics whatsoever.
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A Mathematical Proofs

A.1 Proof of Proposition 2.1

Regarding the first two statements, the expression between square brackets is called the

colatitude of the point, expressed in decimal degrees. Rescaling by π/180◦ converts it

into radians. If the Earth is spherical with distance from the North Pole to the equator

10, 000km, then Equations (2.2–2.3) follow. If the Earth is flat, due to the fact that the

polar azimuthal equidistant projection preserves distances along meridians, the equations

also hold.

Regarding the last two statements, they are just conversion from the degrees/minutes/

seconds formalism to decimal degrees to radians. The sign comes from the trigonometric

convention that turning counterclockwise is positive.

A.2 Proof of Theorem 2.1

The first step of the proof is to convert the polar coordinates (ri, θi) into Cartesian

coordinates centered on the North Pole. In this layout, from Figure 2.1 we see that the

Greenwich Meridian (0◦) lies on the vertical axis in the direction of negative ordinates,

and the antimeridian (180◦) on the same axis in the direction of positive ordinates. The

horizontal axis encompasses the 90◦ East meridian in the direction of positive abscissae,

and the 90◦ West meridian in the direction of negative abscissae. From this we deduce

that the Cartesian coordinates of points P1 and P2 are as follows:

x1 = r1 sin (θ1) y1 = −r1 cos (θ1) (A.1)

x2 = r2 sin (θ2) y2 = −r2 cos (θ2) (A.2)

From Equations (A.1–A.2), we deduce the Euclidean distance between points P1 and P2:

dF(r1, θ1; r2, θ2) =
√

(x2 − x1)2 + (y2 − y1)2

=

√
[r2 sin (θ2)− r1 sin (θ1)]

2 + [r2 cos (θ2)− r1 cos (θ1)]
2

=
√
r21 + r22 − 2r1r2 [sin (θ1) sin (θ2) + cos (θ1) cos (θ2)]

=
√
r21 + r22 − 2r1r2 cos (θ1 − θ2) , (A.3)

where the last line uses the classic trigonometric identity for angle subtraction.
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A.3 Proof of Theorem 2.2

The shortest path between two points on the spherical Earth is the shorter arc of a great

circle that joins these two points. Great circles lie on the surface of the Earth and have

the same center as the Earth. To join two points P1
..= (r1, θ1) and P2

..= (r2, θ2), there

exists a unique great circle, except in the special cases where P1 and P2 are identical or

antipodal. All great circles have circumference 40, 000km (four times the distance from

the North Pole to the equator) and radius ρ = 20, 000km/π. Thus, to obtain the distance

between P1 and P2, it is sufficient to determine the angular length a of the arc between

these two points along the great circle that joins them. This is achieved by the law of

cosines (see, e.g., Kells et al. (1940), §156, Equation (18), p. 315):

cos a = cos(λ1) cos(λ2) + sin(λ1) sin(λ2) cos(θ1 − θ2) . (A.4)

On this basis, we see that dS(r1, θ1; r2, θ2) is equal to

20, 000km

π
arccos

[
cos(λ1) cos(λ2) + sin(λ1) sin(λ2) cos(θ1 − θ2)

]
. (A.5)

Thanks to the classic trigonometric identities

sinx sin y =
cos(x− y)− cos(x+ y)

2
, cosx cos y =

cos(x− yb) + cos(x+ y)

2
, (A.6)

we conveniently rearrange the spherical-Earth distance dS(r1, θ1; r2, θ2) as

1

c∗
arccos

[
1 + cos(θ2 − θ1)

2
cos(λ1 − λ2) +

1− cos(θ2 − θ1)
2

cos(λ1 + λ2)

]
. (A.7)

Using other some other classic trigonometric identities,

1 + cos x

2
= cos2

(x
2

)
,

1− cosx

2
= sin2

(x
2

)
, (A.8)

we end up with dS(r1, θ1; r2, θ2) being equal to

1

c∗
arccos

[
cos2

(
θ1 − θ2

2

)
cos
(
λ1 − λ2

)
+ sin2

(
θ1 − θ2

2

)
cos
(
λ1 + λ2

)]
(A.9)

=
1

c∗
arccos

[
cos2

(
θ1 − θ2

2

)
cos
(
λ1 − λ2

)
+ sin2

(
θ1 − θ2

2

)
cos
(
λ1 + λ2

)]
(A.10)

=
1

c∗
arccos

{
cos2

(
θ1 − θ2

2

)
cos
[
(r1 − r2)c∗

]
+ sin2

(
θ1 − θ2

2

)
cos
[
(r1 + r2)c

∗]} ,

and thus the proof of Theorem 2.2 is complete.
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A.4 Proof of Theorem 2.3

What needs to be proven is that

lim
c↘0

D(r1, θ1; r2, θ2; c) =
√
r21 + r22 − 2r1r2 cos(θ1 − θ2) . (A.11)

From the Taylor series expansion of the cosine around zero:

cos(ε) = 1− ε2

2
+ o
(
ε2
)

and arccos

(
1− ε2

2

)
= ε+ o

(
ε
)
. (A.12)

Remembering also that sin(ε) = ε+ o(ε), we start from a variant of Equation (A.5):

cos(r1c) cos(r2c) + sin(r1c) sin(r2c) cos(θ1 − θ2)

=

(
1− r21c

2

2

)(
1− r22c

2

2

)
+
(
r1c
)(
r2c
)

cos(θ1 − θ2) + o
(
c2
)

(A.13)

= 1− r21 + r22 − 2r1r2 cos(θ1 − θ2)
2

c2 + o
(
c2
)

(A.14)

arccos
[
cos(r1c) cos(r2c) + sin(r1c) sin(r2c) cos(θ1 − θ2)

]
=
√
r21 + r22 − 2r1r2 cos(θ1 − θ2) c+ o(c) , (A.15)

from which we deduce limc↘0D(r1, θ1; r2, θ2; c) =
√
r21 + r22 − 2r1r2 cos(θ1 − θ2).

A.5 Proof of Theorem 3.1

Let us remind the reader that the arc-cosine is a strictly decreasing function that maps

[−1, 1] into [0, π]. Thus, arccos
[
cos(x)

]
= x if and only if x ∈ [0, π]. We start with the

same-meridian case θ1 = θ2 (modulo 2π).

dF
(
r1, θ1; r2, θ2

)
=
√
r21 + r22 − 2r1r2 = |r1 − r2| (A.16)

dS
(
r1, θ1; r2, θ2

)
=

1

c∗
arccos

{
cos
[
(r1 − r2)c∗

]}
(A.17)

=
1

c∗
arccos

{
cos
[
|r1 − r2|c∗

]}
= |r1 − r2| (A.18)

Next, we turn to the antimeridian case θ1 = θ2 + π (modulo 2π).

dF
(
r1, θ1; r2, θ2

)
=
√
r21 + r22 + 2r1r2 = r1 + r2 (A.19)

dS
(
r1, θ1; r2, θ2

)
=

1

c∗
arccos

{
cos
[
(r1 + r2)c

∗]} (A.20)

This case splits into two sub-cases. The first sub-case is defined by r1 + r2 ≤ 20, 000km,

implying that (r1 + r2)c
∗ ≤ π, so we have:

dS
(
r1, θ1; r2, θ2

)
=

1

c∗
arccos

{
cos
[
(r1 + r2)c

∗]} = r1 + r2 . (A.21)
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This corresponds to flying over the North Pole, which is possible in the spherical-

Earth model and also in the flat-Earth model. The second sub-case is defined by

r1 + r2 > 20, 000km, implying that (r1 + r2)c
∗ > π, so we have:

dS
(
r1, θ1; r2, θ2

)
=

1

c∗
arccos

{
cos
[
(r1 + r2)c

∗]} (A.22)

=
1

c∗
arccos

{
2π − cos

[
(r1 + r2)c

∗]} = 40, 000km− (r1 + r2) . (A.23)

This corresponds to flying over the South Pole, which is impossible if the Earth is flat.

B More Representations of the Flat-Earth Map

The geometry of Figure 2.1 goes back at least to Cassini’s 1696 publication of the map

shown in Figure B.1. It depicts what was drawn on the floor of the Paris Observatory at

the time. The Paris Observatory is also noteworthy in that, a century later, it hosted

the first platinum meter bar that was to become the universal reference for the unit of

distance, defined as the 1
10,000,000th

part of the distance from the North Pole to the equator.

Figure B.1: Map of the continents and oceans according to Cassini.
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Technically speaking, this is known as the polar azimuthal equidistant projection. It means

that distances from the North Pole to any point on Earth are preserved, and longitudes

are also preserved. In France, it is known as the “Postel” projection, after the local

16th-century astronomer who pioneered it; see Edney and Pedley (2020, pp. 326–328) for

comprehensive historical background.

Closer to our times, the emblem of the United Nations, which also features on its flag,

adopts the same flat-Earth projection, as shown in Figure B.2.

Figure B.2: Emblem of the United Nations.

This is not to say that the renowned French astronomers Cassini and Postel, and all the

founding members of the United Nations believed that the Earth is flat. Our point is

that there are strong reasons for proponents of the flat-Earth model to adopt the polar

azimuthal equidistant projection as their map.

The map in Figure 2.1 was collected from the official site of the Flat Earth Society at

http://theflatearthsociety.org/home/index.php/about-the-society/faq

This webpage has been archived dozens of times on http://archive.org, the “Wayback

Machine”, including recently on 22 September 2022 at 19:55:58. The origins of the modern

flat-Earth movement can be traced back to Rowbotham (1881, Figure 54), so we also

reproduce his map below.
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Figure B.3: Classic XIXth-century map from a leading proponent of the flat-Earth model.

C Homemade Sanity Check for Map Scale

We now address a potential objection, which is that Figure 2.1 lacks a kilometric scale. In

and of itself, this is a bit of a handicap for the flat-Earth model because it means that it

is not a fully specified model — whereas the spherical-Earth model is. This handicap is

not insurmountable, as we were able to complete the flat-Earth model by using the very

definition of the meter in Equation (2.1). Still, some people may remain unconvinced and,

for example, claim that ‘the Earth is much smaller than we think’ or ‘the Earth is much

bigger than we think’. In this case, the kilometric distances from the North Pole listed in

the fourth column of Table 2.1 could be, say, 50% smaller, or twice as large (although

they would all have to be rescaled by the same coefficient of proportionality).

This potential objection is easily addressed by noticing that both models also agree

about distances between any two cities on the same meridian, due to the nature of the

polar azimuthal equidistant projection. Therefore, it is sufficient to purchase a privately-

produced roadmap, measure the distance between two towns on the same meridian, and
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compare it to the theoretical number implied by Equations (2.1). France, in particular,

has a long history in the development of the automobile, including Grand Prix racing

(now called Formula One), and the production of high-performance tires through the old

multinational company Michelin. In order to promote the use of cars (and of tires), the

Michelin family has since the beginning sponsored the production of the world-famous

Michelin guide for restaurants, awarding Michelin stars very gingerly, and also a full

complement of Michelin road maps. They can hardly be suspected of fraud, as (before the

recent development of onboard GPS devices) French drivers mostly relied on Michelin’s

kilometric measurements to complete their trips, and every car has an odometer against

which accuracy can be checked.8

The meridian at longitude 2◦ East traverses France nearly from its Northermost tip

on the English Channel to its Southernmost tip on the Spanish border. We can pick two

small communes on this meridian: Créquy (Pas-de-Calais, postal code 62310), which is

located at 50◦30′ North, and Sonnac-sur-l’Hers (Aude, postal code 11230), which is located

at 43◦ North. Thus, the difference in latitudes, 7◦30′, is exactly 1/12th of the distance

between the North Pole and the equator (Circle 6). According to the official definition of

the meter embedded inside Equation (2.1), it should be 10,000
12

= 833 kilometers.

To run a crude sanity check with readily-available materials, we applied a hand-held

ruler onto the 2017 Michelin map of France, reference code ‘721 National’. We personally

measured the distance between these two towns. It turned out to be 83 centimeters, as

shown in Figure C.1 below.

At the 1:1,000,000 scale specified on the map (1 cm = 10 km), this corresponds

to roughly 830 km. Thus, a crude — but robust — sanity check confirms Table 2.1

independently: The Earth cannot be ‘much smaller than we think’ or ‘much bigger than

we think’ because otherwise the Michelin maps of France would have been unusable for

motorists during all these years.

Note that France is ideal for running such a ‘hands-on’ experiment because the country

is so small (1, 000× 1, 000 km) that its maps under the flat-Earth model and the spherical-

Earth model would look almost indistinguishable from one another: Curvature would

have negligible impact, especially around the 45◦ North parallel (a.k.a. Circle 3 in the

nomenclature of Table 2.1).

8The second author has done so himself since being old enough to get a driver’s license.
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Figure C.1: Manual confirmation that the meter is the 1
10,000,000th

part of the distance

between the North Pole and the equator. The distance between Créquy (yellow square

at the Northern end) and Sonnac-sur-l’Hers (orange square at the Southern end) is

approximately 83 centimeters, with a map scale of 1 cm = 10 km.
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