
Qin, Jieye; Green, Christopher J.; Sirichand, Kavita

Article

Spot-futures price adjustments in the Nikkei 225: linear or
smooth transition? Financial centre leadership or home
bias?

Journal of Risk and Financial Management

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Qin, Jieye; Green, Christopher J.; Sirichand, Kavita (2023) : Spot-futures price
adjustments in the Nikkei 225: linear or smooth transition? Financial centre leadership or home
bias?, Journal of Risk and Financial Management, ISSN 1911-8074, MDPI, Basel, Vol. 16, Iss. 2, pp.
1-31,
https://doi.org/10.3390/jrfm16020117

This Version is available at:
https://hdl.handle.net/10419/275185

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/jrfm16020117%0A
https://hdl.handle.net/10419/275185
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Citation: Qin, Jieye, Christopher J.

Green, and Kavita Sirichand. 2023.

Spot–Futures Price Adjustments in

the Nikkei 225: Linear or Smooth

Transition? Financial Centre

Leadership or Home Bias? Journal of

Risk and Financial Management 16:

117. https://doi.org/10.3390/

jrfm16020117

Academic Editor: Baiding Hu

Received: 5 December 2022

Revised: 1 February 2023

Accepted: 8 February 2023

Published: 12 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

Spot–Futures Price Adjustments in the Nikkei 225: Linear or
Smooth Transition? Financial Centre Leadership or Home Bias?
Jieye Qin 1,* , Christopher J. Green 2 and Kavita Sirichand 2

1 Department of Economics, School of Economics and Management, Anhui Jianzhu University,
Hefei 230022, China

2 School of Business and Economics, Loughborough University, Loughborough LE11 3TU, UK
* Correspondence: j.qin@ahjzu.edu.cn

Abstract: This paper studies price discovery in Nikkei 225 markets through the nonlinear smooth
transition price adjustments between spot and future prices and across all three futures markets. We
test for smooth transition nonlinearity and employ an exponential smooth transition error correc-
tion model (ESTECM) with exponential generalised autoregressive conditional heteroscedasticity
(EGARCH), allowing for the effects of transaction costs, heterogeneity, and asymmetry in Nikkei
price adjustments. We show that the ESTECM-EGARCH is the appropriate model as it offers new
insights into Nikkei price dynamics and information transmission across international markets. For
spot–futures price dynamics, we find that futures led spot prices before the crisis, but spot prices
led afterwards. This can be explained by the lower level of heterogeneity in the underlying spot
transaction costs after the crisis. For cross-border futures prices, the foreign exchanges (Chicago and
Singapore) lead in price discovery, which can be attributed to their roles as global information centres
and their flexible trading conditions, such as a more heterogeneous structure of transaction costs. The
foreign leadership is robust to the use of linear or nonlinear models, the time differences between
Chicago and the other markets, and the long-run liquidity conditions of the Nikkei futures markets,
and strongly supports the international centre hypothesis.

Keywords: price adjustment; smooth transition; price discovery; information transmission; Nikkei
225 futures

1. Introduction

Price discovery is the process by which markets impound available information and
adjust to reach equilibrium (Booth et al. 1999). A critical question for an index futures
market is whether spot or futures prices lead price discovery. Theory and early empirical
studies suggest that futures prices generally lead the underlying spot prices and therefore
perform the price discovery function. This is due to more efficient trading conditions in
futures, including lower transaction costs, greater short-sale opportunities, aggregation
of the underlying shares within the index futures contract, and higher leverage (Fleming
et al. 1996). Subsequent studies indicate that spot–futures price relationships could be more
complex. In some markets, futures lead spot prices (Park et al. 2017; Chen and Tsai 2017);
in others, spot prices lead futures (Yang et al. 2012; Bohl et al. 2011); still other markets
have bidirectional causality (Booth et al. 1999; Guo et al. 2013). However, if futures for
the same underlying spot asset are quoted simultaneously on different markets, market
frictions, differences in transaction costs, and other market characteristics can induce
different adjustment processes and speeds, so that one of these markets may impound
information in the price faster than the others; this allows them to act as price-leader, either
temporarily or consistently over time. This raises a second critical question of whether a
specific futures market is most important in price discovery.

This paper aims to study price discovery for Nikkei 225 futures, which are quoted
simultaneously in the Osaka Exchange (OSE), Singapore Exchange (SGX), and Chicago
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Mercantile Exchange (CME), with a common spot market in Tokyo. The availability of
quotes on three different markets with differences in institutional characteristics offers a
broad choice for Nikkei investors and renders the spot–futures price adjustments potentially
more interesting than for a single market. We seek to identify the price discovery process
for the Nikkei, first between spot and futures prices and second among the different futures
markets. We focus on three aspects of price discovery: nonlinearities in price adjustments,
price leadership across markets, and the role of liquidity in the adjustment process.

Existing literature suggests that price discovery and information transmission pro-
cesses can create nonlinearities in price adjustments, especially because of transaction
costs and market imperfections. See, for example, McMillan (2005), Fung and Yu (2007),
Beckmann et al. (2014), Bekiros et al. (2018), and Chen et al. (2022). The speed of adjustment
may change over time depending on the size and sign of price deviations from equilibrium,
giving rise to regime-switching error correction behaviour. Allowing for transaction costs,
arbitrage is triggered only when price deviations are large enough to cover the transac-
tion costs (Anderson 1997). Interactions between noise traders and fundamental traders
contribute to nonlinearities, as small price deviations may be adjusted more quickly for
lower capital requirements and risks (McMillan and Speight 2006; Shleifer 2000). Short-sale
restrictions also impart asymmetry to price adjustments so that negative and positive
price deviations have different market responses (van Dijk and Franses 1997; Tse 2001).
In general, price adjustments may vary across regimes and depend on the size and sign
of price deviations within each regime. Nonlinear regime-switching in futures has been
described by different variants of the smooth transition autoregressive model of Teräsvirta
(1994) as it can allow for the effects of transaction costs, heterogeneity, and asymmetry.
Evidence for smooth transition behaviour was reported in several futures markets, such
as S&P500 (Taylor 2007), FTSE 100 (Taylor et al. 2000), Dow Jones (Tse 2001), Hang Seng
(Fung and Yu 2007), and emerging index futures (Sila Alan et al. 2016).

Turning to price leadership, this concerns price adjustments between competing fu-
tures markets in the same underlying spot asset. The two main hypotheses in the literature
are home-bias and international centre (Fung et al. 2001).1 The home-bias hypothesis argues
that the domestic market leads the price discovery process due to “home advantages”,
including proximity to the spot market, familiarity with local trading environment and
regulation, and fewer trading barriers (Roope and Zurbruegg 2002). In contrast, the in-
ternational centre hypothesis argues that, if a foreign market is a global financial centre,
we might expect it to lead international price discovery because it provides better trading
conditions. A global financial centre may have a higher degree of efficiency in processing
and sharing information, lower transaction costs, more opportunities for risk management
by trading other financial instruments, and access to a wider pool of capital and better in-
formed investors from around the world. Li et al. (2022) reported the offshore CME leading
price discovery for cross–listed currency futures and attributed the foreign leadership to a
more efficient trading environment including lower transaction costs.

Liquidity also plays an important role in price discovery in a multi-market setting.
Admati and Pfleiderer (1988) showed that liquidity (noise) traders who have discretion
over the timing of their trading and informed traders who trade on private information
both have incentives to trade in thick markets where their price impact is minimal. Insofar
as trading concentrates in the most liquid market, its prices tend to reveal information the
most quickly. Thus, higher liquidity creates more rapid price discovery, enhancing arbitrage
and increasing market efficiency (Chordia et al. 2008). Empirical evidence largely supports
that liquidity is positively related to price discovery and efficiency (Chung and Hrazdil
2010; Frijns et al. 2018; Li et al. 2022). In some cases, however, the positive relationship does
not hold. One reason is that the bid–ask spread, a measure of illiquidity, is often found to
be positively associated with price discovery, and thus an informative market could exhibit
wide spreads and slow price adjustments (Hasbrouck 1995). Moreover, market makers
who cannot fully remove return predictability may attract other market participants to
trade on information about order flows. The adverse selection of these market makers
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lowers liquidity but improves efficiency as prices can respond more fully to the order flows
(Chordia et al. 2008).

Most Nikkei studies look at spot–futures price interactions in just one or two markets
(e.g., Tse 1995; Iihara et al. 1996; Shyy and Shen 1997; Fung et al. 2001; Frino and West 2003;
Covrig et al. 2004; Tsuji 2007). Evidence supporting the home-bias hypothesis was reported
by Covrig et al. (2004), while Fung et al. (2001), Frino and West (2003), and Kao et al. (2015)
reported results consistent with the international centre hypothesis. Booth et al. (1996) and
Shyy and Shen (1997) could not find support for either hypothesis. Therefore, the question
of which Nikkei futures market leads the international price discovery process remains
unresolved. Furthermore, these studies mostly fail to consider all three Nikkei futures
markets; because of this, they do not provide a complete picture of Nikkei price adjustments.
Exceptionally, Booth et al. (1996) and Kao et al. (2015) examined the price transmission
among the three Nikkei futures markets, but they used linear error correction models
(ECM) and did not test for nonlinearities in price adjustments. Tsuji (2007) estimated a
nonlinear threshold autoregressive model to allow for the effect of transaction costs on the
Nikkei basis, but the adjustment process implied by the model assumes a single, constant
transaction cost threshold for all market participants, which is difficult to justify in practice,
and is not consistent with the evidence for the Nikkei that was reported by Brenner et al.
(1989). As costs and restrictions may vary among investors, market prices are likely to
switch between regimes in a smooth, continuous manner (Anderson 1997; Tse 2001). In
summary, there have been no studies of nonlinear price adjustments or the role of liquidity
in Nikkei spot and futures dynamics, and therefore, no attention has been paid to the impact
of nonlinear price dynamics on price discovery across all three Nikkei futures markets. Our
paper is motivated by all of these issues.

Accordingly, in this paper, we study the nonlinear smooth transition price adjustments
for the triple-listed Nikkei futures contracts. We test for nonlinearities and employ an expo-
nential smooth transition error correction model (ESTECM) of Tse (2001) with exponential
generalised autoregressive conditional heteroscedasticity (EGARCH) of Nelson (1991),
allowing for transaction costs, heterogeneity, and asymmetry in Nikkei price adjustments.
We establish the presence of smooth transition nonlinearity in the data and justify the use
of the ESTECM-EGARCH model. We examine whether price adjustments are essentially
simultaneous across all three Nikkei futures markets, or if one market tends to lead price
discovery. We also investigate the role of liquidity in the speeds of adjustment and price
discovery, especially whether the informativeness of the three Nikkei futures markets is
related to their liquidity.2 Our findings highlight the importance of the international Nikkei
futures (CME and SGX) in the cross-border price discovery process. This is robust to the use
of linear or nonlinear models, non-synchronous trading times, and the long-run liquidity
conditions of Nikkei futures.

Our study contributes to the existing literature in the following ways. First, to the best
of our knowledge, nonlinear smooth transition price adjustments for the triple-listed Nikkei
futures have not previously been analysed. The ESTECM-EGARCH framework enables us
to describe Nikkei price adjustments in the presence of transaction costs, heterogeneity, and
asymmetry, and offers new insights into Nikkei price dynamics and information transmis-
sion across international markets. For example, it shows the importance of heterogeneity
in transaction costs in the information roles of the different Nikkei markets, which have
not previously been explored in a nonlinear framework. Second, we study Nikkei price
dynamics before and after the 2008 global financial crisis and compare the home-bias
hypothesis to the international centre hypothesis for the three Nikkei futures markets. We
find that offshore financial centres lead the international price discovery, and that such price
leadership is robust to the use of linear or nonlinear models and to the time differences
among these markets, which strongly supports the international centre hypothesis. The
analysis is useful for exchange regulators as it reveals possible ways through which an
offshore exchange can improve its competitive advantage to become more attractive for
investors. Third, we shed light on the role of liquidity in influencing Nikkei speeds of
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adjustment and price discovery, and why the CME leads the international transmission
of information despite being relatively less liquid than SGX and OSE. Our results indicate
that illiquidity may weaken the short-run Nikkei price adjustments but does not affect
the long-run leadership of the CME. This is useful for Nikkei investors who seek to make
informed decisions and manage cross-border risks as it implies that trading strategies could
differ substantially across different investment horizons. Along with being important areas
of research, the characterisation of nonlinear price adjustments and the identification of
leadership in price discovery are also practical issues for Nikkei investors seeking to create
profitable trading strategies in terms of information interpretation, market opportunities
evaluation, and choice of the market through which to invest.

The rest of this paper proceeds as follows. Section 2 explains the institutional dif-
ferences among the Nikkei markets; Section 3 presents the methodology; the data and
preliminary analysis are in Section 4; the results and discussion are in Section 5; and
Section 6 concludes the paper.

2. Institutional Differences among Nikkei 225 Markets

The Nikkei 225 is a price weighted index consisting of 225 common stocks listed in the
First Section of the Tokyo Stock Exchange. Nikkei futures based on this index are traded
domestically in the OSE and internationally in the SGX and CME. The OSE is the largest
of the three markets in terms of daily average trading volume (Figure 1). Using trading
volume as a measure of liquidity, this suggests that the OSE enjoys the highest liquidity,
but that the CME is relatively illiquid. However, the foreign Nikkei markets show higher
average growth rates in trading volume than the OSE. A deeper investigation into Nikkei
futures liquidity is provided in Section 5.4. In terms of trading hours, Nikkei futures are
traded in three different time zones (Table 1). Singapore is one hour behind Japan, so the
trading hours of the OSE and SGX largely overlap, but SGX trades for 40 min longer than
OSE. The longer trading time may be important to liquidity traders, and research supports
that extra minutes contribute to daily price changes in the SGX (Covrig et al. 2004). For the
CME, Central Standard Time (CST) in Chicago is 15 h behind Japan Standard Time (JST)
in Tokyo. The opening hours of the OSE do not overlap with the opening hours of CME’s
open outcry system. However, CME Nikkei futures are also traded on the Globex electronic
trading platform, which is open almost around-the-clock and therefore does overlap OSE
trading.3 Initially, we assume synchronous trading hours; the differences in trading hours
are considered fully in Section 5.3.
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growth rate in trading volume, calculated as the average percent change in the number of contracts
traded daily.
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Table 1. The Nikkei futures contracts.

OSE SGX CME

Contract size Index × ¥1000 Index × ¥500 Index × $5

Tick size 10 index points (¥10,000) 5 index points (¥2500);
1 index point (¥500) for strategy trades 5 index points ($25)

Contract months Nearest 3 for Mar and Sept;
nearest 10 for Jun and Dec

Nearest 6 for serial months;
nearest 20 for Mar, Jun, Sept, Dec Mar, Jun, Sept, Dec

Trading hours
(Local time) 9.00–15.15, 16.30–3.00 7.45–14.25, 15.15–2.00 Open outcry: 8.00–15.15

Electronic trading: 17.00–16.15

Trading system Electronic trading Open outcry (before 01/11/2004)
Electronic trading (since 01/11/2004) Open outcry and electronic trading 1

Daily price limits ±8%, ±12%, ±16% of the
previous day’s settlement price

±7.5%, ±12.5% of the previous day’s
settlement price

±8%, ±12%, ±16% of a volume
weighted average price calculated

by CME

Margins ¥720,000 Initial: ¥396,000
Maintenance: ¥360,000 $4000 2

Trading fees ¥70 (proprietary) or ¥110 (customer)
per contract 0.0075% of traded value $0.245 (open outcry) or $0.50 (Globex)

per contract 3

Mutual offset No mutual offset Mutual offset with CME Mutual offset with SGX

Final settlement day Second Friday of the contract month Second Friday of the contract month Second Friday of the contract month

Notes: This table presents the contract specifications of the Nikkei 225 futures over the sample period 20/06/1996–
31/12/2014 (OSE and SGX), 01/01/1997–31/12/2014 (CME). Data are from the OSE, SGX and CME. 1 CME closed
the Nikkei open outcry system on 19/06/2015. 2 Equivalent to ¥430,200 using the sample average yen-dollar
middle rate 107.55. 3 Equivalent to approx. ¥26.35 (open outcry) or ¥53.78 (Globex), using the sample average
yen-dollar middle rate 107.55.

Table 1 shows key contract specifications and regulatory policies for the Nikkei ex-
changes. First, the contract size of SGX futures is half that of OSE futures, although both
are yen-denominated. Smaller contracts allow lower capital requirements and risks that
may appeal to investors with capital constraints and/or risk aversion. CME contracts are
transacted and settled in dollars, meaning that the contract size is not comparable with OSE
and SGX. This also introduces yen-dollar exchange rate risk to CME arbitrage, which is
absent from OSE and SGX.4 Second, OSE futures have had a computerised trading system
since inception, but SGX shifted from open outcry to an electronic trading system on 1st
November 2004. The shift in trading was smooth and did not exert a material effect on SGX
futures prices.5 Open outcry and the Globex electronic trading platform were available
for CME contracts up until 2015, when open outcry was discontinued. Third, the SGX
and CME permit a finer tick size than OSE, which induces smoother price changes and
narrower bid–ask spreads. Covrig et al. (2004) estimate the average percent bid–ask spread
on OSE contracts to be 0.069% compared to 0.040% for SGX. Fourth, even though all the
exchanges use price limits, generally the SGX and CME offer lower margins and trading
fees. Their contracts can be traded through the mutual offset, which provides investors
with the flexibility of being able to enter a position in either exchange and clear that position
in either the SGX or CME without additional cost. Overall, it can be argued that the foreign
exchanges offer a more flexible and attractive trading environment for Nikkei investors
than the OSE.

3. Methodology
3.1. The No-Arbitrage Conditions

The no-arbitrage condition between spot and futures prices is given by the cost of
carry model (Cornell and French 1983):

Ft = St exp(r− d)(T − t), (1)
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where Ft is the futures price, St the spot price, r the constant risk-free rate, d the continuous
dividend yield on the index, T the maturity date of the futures contract, and (T − t) the
time to maturity, i.e., the number of calendar days remaining until expiration of the futures
contract. Spot and futures prices should not deviate far from each other for long, as
arbitrage would quickly remove the price deviations to restore equilibrium. In principle,
there should be a cost of carry relationship between Nikkei spot prices and each of the three
futures prices; this implies that spot and futures prices should be cointegrated in individual
Nikkei markets, with their relationship given by:

ft = β0 + β1st + bt, (2)

where ft = lnFt, st = lnSt, and bt is a residual that includes the basis spread between the
spot and futures prices. It is widely accepted that spot and futures prices are generally
cointegrated with cointegrating vector [1, −1]. This requires bt = ft − st, where bt is
the log-basis.

For Nikkei futures, there are further no-arbitrage conditions. As they share the same
underlying index and maturity date, Nikkei futures contracts listed on domestic and foreign
markets are equivalent assets. Their markets should be linked by spread arbitrage, and
their prices should move closely together. Following Board and Sutcliffe (1996), futures
price parity can be written as:

F1t = F2t, (3)

where 1, 2 denote any two Nikkei futures markets. Any departures from futures price parity
should be quickly removed, even more quickly than in spot–futures arbitrage, because of
the lower transaction costs and risks of trading the futures. Therefore, Nikkei futures prices
should also be cointegrated, with the cointegrating relationship between any pair of log
futures prices (f 1t, f 2t) given by:

f1t = β′0 + β′1 f2t + b′t, (4)

where bt
′ is a residual, and the cointegrating vector is expected to be [1, −1].

3.2. The Linear ECM

The Granger representation theorem states that cointegrated time series can be de-
scribed by an error correction mechanism (Engle and Granger 1987). A linear ECM for spot
and futures prices is given by:

Rt = k +
p

∑
j=1

πjRt−j + αzt−1 + ut, (5)

where Rt is a 2 × 1 vector of log-returns ∆st, ∆ft (or ∆f 1t, ∆f 2t), with lags j = 1, 2, . . . , p,
and p a positive integer; πj is a 2 × 2 matrix of short-run adjustment coefficients, with
off-diagonal coefficients πsf,j, πfs,j (or π12,j, π21,j) measuring cross-market causalities; k is a
2× 1 vector of constants; ut is a 2× 1 vector of white noise; zt−1 is the error correction term;
and α (=(αs, αf)′ or (α1, α2)′) is a 2 × 1 vector of error correction coefficients showing the
speed of adjustment to equilibrium. We expect αs > 0 and αf < 0. For example, the greater
is α in the spot equation (αs), the larger is the adjustments in the spot price in response to
disequilibrium in the basis, and therefore the slower the spot market price itself reflects
information, as it is being driven by basis disequilibrium, and hence, by price discovery in
the futures market (Harris et al. 1995).

We estimate the linear ECM for all spot–futures and futures–futures pairs and conduct
Granger causality tests on these ECMs.6 In a spot–futures ECM, futures-to-spot causality
(price discovery in futures) requires rejection of H01: αs = 0 (long-run) or H02: πsf,j = 0, j = 1,
2, . . . , p (short-run). Spot-to-futures causality (price discovery in spot) requires rejection
of H03: αf = 0 (long-run) or H04: πfs,j = 0, j = 1, 2, . . . , p (short-run). Bidirectional causality
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(price discovery in both) requires rejection of either H01 and H03 (long-run), or H02 and H04
(short-run). The causality tests for the futures–futures pairs are performed analogously. For
the OSE-related pairs, long-run causality from the OSE to the other markets (the home-bias
hypothesis) requires rejection of H05: αSGX = 0 (or αCME = 0), while H06: αOSE = 0 should be
rejected for the international centre hypothesis (Fung et al. 2001).

3.3. The ESTECM

Equations (1) and (3) are perfect market relationships in the absence of transaction
costs. In the presence of transaction costs, disequilibria are not corrected until the benefits
of arbitrage exceed its costs. The no-arbitrage conditions must be replaced by no-arbitrage
bands where the band width is determined by the level of transaction costs:

FL
t ≤ Ft ≤ FU

t , (6)

where Ft
L is the lower bound and Ft

U the upper bound. Investors compare futures prices
with the transaction-cost bounds, and arbitrage only takes place when price deviations are
large enough that arbitrage gains are more than sufficient to pay the transaction costs. The
speed of adjustment to large deviations should therefore be quicker than adjustment to
small deviations.

One approach to modelling this situation is to distinguish between a middle and
an outer regime. The middle regime is the band immediately around the conventional
no-arbitrage line, and it corresponds to small price deviations without substantial arbitrage
incentives or price adjustments. The outer regime corresponds to large price deviations
with active arbitrage and rapid price adjustments. However, a fixed threshold of transaction
costs is difficult to justify for all market participants. Transaction costs are likely to be
heterogeneous among different investors who have different trading goals, expectations,
risks, constraints, and market access (Tse 2001). Aggregating over all investors will blur
the boundaries of individual error correction regimes (Anderson 1997), implying that
observed price adjustments will tend to be continuous and smooth for the whole market,
rather than discontinuous as the price hits a single fixed transaction costs boundary. With
heterogeneous transaction costs, there is evidence that the error correction process also de-
pends on the sign of price deviations; negative price deviations induce quicker adjustments
than positive deviations of the same size (van Dijk and Franses 1997). Such asymmetry is
comparable to the leverage effect, in which bad news tends to have a larger impact on the
second moment of asset returns than good news does (Bae and Karolyi 1994).

To allow for nonlinear price adjustments on account of transaction costs, heterogeneity,
and asymmetry, we employ an ESTECM (Anderson 1997; Tse 2001):

Rt = k +
p

∑
j=1

πjRt−j + (k∗ +
p

∑
j=1

π∗j Rt−j + αzt−1)× T(zt−d) + ut, (7)

where k* is a 2 × 1 vector of constants; πj* is a 2 × 2 matrix of nonlinear adjustment
coefficients with off-diagonal coefficients πsf,j*, πfs,j* (or π12,j*, π21,j*); and the 2× 1 residual
vector ut is iid with zero mean and finite variance. For short-run Granger causality tests,
πsf,j, πfs,j (or π12,j, π21,j) measure the cross-market adjustments in the middle regime, while
(πsf,j + πsf,j*), (πfs,j + πfs,j*) (or (π12,j + π12,j*), (π21,j + π21,j*)) measure the cross-market
adjustments in the outer regime. T(·) is the smooth transition function bounded between 0
(the middle regime) and 1 (the outer regime), and takes the following exponential form
(Tse 2001):7

T(zt−d) = 1− exp
[
−γ(zt−d − c∗)2 × g(zt−d)

]
, (8)

g(zt−d) = 0.5 + 1/{1 + exp[−θ(zt−d − c∗)]}, (9)

zt−d is the transition variable with delay parameter d > 0, γ > 0 is the smoothness parameter,
θ the asymmetry parameter, and c* is the centrality parameter. Equation (8) is a U-shaped
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curve with speedier correction for price deviations (zt−d) that are larger in magnitude,
which is consistent with the effect of transaction costs. The parameter γ governs the rate
of smooth transition between regimes. The higher γ is, the steeper the transition function
and the quicker the adjustment between the regimes. As γ → 0, T(·) → 0; as γ → ∞,
T(·)→ 1, and Equation (7) becomes linear in either case.8 Moreover, γ has implications
for the level of heterogeneity in market transaction costs (Taylor et al. 2000). Smaller γ
indicates greater heterogeneity and higher transaction costs, while larger γ indicates less
heterogeneity and lower transaction costs. Equation (9) is the asymmetry function that
increases monotonically with θ (Anderson 1997). A negative (positive) θ means that more
investors correct negative (positive) price deviations than equally sized positive (negative)
ones. If θ = 0, T(·) is symmetric around c* and investors are indifferent to the sign of
deviations. We impose the restriction k* = c* = 0, because price returns will be demeaned
(Section 4) and arbitrage is inactive at a price deviation of zero.

To test for smooth transition nonlinearity, we use the procedure of Teräsvirta (1994)
that takes the ECM as null against an ESTECM. The null hypothesis of linearity is H0:
γ = 0; however, under this hypothesis, the ESTECM contains nonlinear parameters that
are not restricted (Teräsvirta 1994; Franses and Dijk 2000). Such a problem is normally
circumvented by performing the Lagrange multiplier (LM)-type linearity tests of Saikkonen
and Luukkonen (1988) and Teräsvirta (1994). Given d, this involves running the following
auxiliary regression (Taylor et al. 2000; McMillan 2005):

Rt = β00 +
p

∑
j=1

(
β0jrt−j + β1jrt−jzt−d + β2jrt−jz2

t−d + β3jrt−jz3
t−d

)
+ vt, (10)

where rt = (∆st, ∆ft, zt−1)′ or (∆f 1t, ∆f 2t, zt−1)′; and vt is the residual. The lag length p is
determined by estimating the ECM. H0: γ = 0 is equivalent to H0: β1j = β2j = β3j = 0, under
which an LM-type test statistic asymptotically follows a χ2(3p) distribution. LM = N(RSSL
− RSSA)/RSSL, where N is the sample size, RSSL is the residual sum of squares of the linear
ECM, and RSSA the residual sum of squares of Equation (10). To select the value of d, we
perform the LM-type linearity tests for different candidates of d and determine d as the one
that generates the lowest p-value of the test, because the correct d should have the highest
power in the test (Teräsvirta 1994). Information criteria and other evaluation tests can also
be used to specify d since a suitable d should have a better model fit (van Dijk et al. 2002).

If linearity is rejected, the ESTECM is estimated by nonlinear least squares (NLS). NLS
is equivalent to maximum likelihood if the ESTECM residual is assumed to be normal;
otherwise, the NLS estimates can be interpreted as quasi-maximum likelihood (QML) esti-
mates (van Dijk et al. 2002).9 Following the prevailing practice (Teräsvirta 1994; Anderson
1997), we standardise γ by the sample variance of zt−d and standardise θ by the sample
standard deviation of zt−d to provide a scale-free environment for the nonlinear parameters.
NLS estimates are conditional on starting values. A two-dimensional grid search over
γ and θ is performed to obtain different sets of starting values, which are then used to
estimate the same specification to find the global maximum in the likelihood function. The
model with the minimal residual variance is selected as the final model.

3.4. The Conditional Variance Models

Preliminary estimates suggest heteroscedasticity in the mean model residuals. Thus,
the linear ECM residuals are described by the GARCH (1, 1) model of Bollerslev (1986):

ut = σtηt, (11)

σ2
t = ω + au2

t−1 + bσ2
t−1 (12)

where ηt ~ iid(0,1); ω > 0; a≥ 0; b≥ 0; a + b < 1; σt is a time-varying, positive, and measurable
function of the information set at time t − 1.10 The ECM-GARCH (Equations (5), (11), (12))
is the base model in the subsequent analysis.
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The conditional variance of the ESTECM is assumed to follow the EGARCH (1, 1)
process of Nelson (1991):

lnσ2
t = ω + λ(ut−1/σt−1) + a|ut−1/σt−1|+ blnσ2

t−1, (13)

The EGARCH model is selected to capture any possible leverage effect and to be
consistent with the exponential transition function in the first moment.11 Evidence for the
leverage effect exists if λ < 0, implying that negative shocks tend to increase the conditional
variance more than positive shocks do. Equations (7), (11) and (13) form the ESTECM-
EGARCH model.

To estimate the ESTECM-EGARCH, we employ the two-step approach of Chan and
McAleer (2002) to estimate the ESTECM by NLS and then the EGARCH by QML using the
ESTECM residuals. Assuming a t-distribution for the conditional mean and the variance,
the NLS and QML are consistent such that the NLS estimates can be interpreted as QML
estimates (van Dijk et al. 2002).12

4. Data and Preliminary Analysis

Daily closing prices of the Nikkei index and daily settlement prices of the three Nikkei
futures markets during 20/06/1996–31/12/2014 (OSE, SGX) and 01/01/1997–31/12/2014
(CME) are obtained from the respective exchanges and Datastream. Since Nikkei futures
expire on the second Friday of the contract months (Table 1), the futures price series is
compiled using the nearest futures contracts and rolling over to the next nearest contract
at the start of the contract month. Nontrading days are excluded. The whole sample
is split two: before the 2008 global financial crisis (sample A) and after it (sample B).13

This enables us to compare Nikkei price dynamics before and after the crisis. In addition,
as the main object of our paper is to model stable nonlinear dynamics in the returns
data, observations falling within the extremely turbulent period of the financial crisis are
omitted. Specifically, for spot–futures interactions, sample A is 28/06/1996–09/10/2008
(OSE, SGX), 09/01/1997–12/09/2008 (CME); and sample B is 04/11/2008–31/12/2014
(OSE, SGX), 02/12/2008–31/12/2014 (CME). For futures–futures interactions, sample A is
17/01/1997–12/09/2008 and sample B is 02/12/2008–30/12/2014.

Tables A1 and A2 in Appendix A present the descriptive statistics for Nikkei data and
Johansen (1988, 1991) maximum likelihood tests for cointegration among the Nikkei spot
prices and three futures prices, respectively. Overall, the Nikkei prices are I(1), and the four
prices are cointegrated with three cointegrating vectors, or with one common stochastic
factor as expected. Therefore, the Nikkei price dynamics can be described by an ECM,
and the difference between any two prices can be used as the error correction term. We
use the log-basis (bt = ft − st) for spot–futures and the respective log futures spreads for
futures–futures: (fOSE,t − fSGX,t), (fOSE,t − fCME,t) or (fSGX,t − fCME,t).

The time to maturity of the futures contracts exerts a significant effect on our data, as
may be expected. In addition, nonlinearities in the error correction estimates can be caused
by a few outliers in the data (van Dijk and Franses 1997). To remove the time effect as each
contract approaches expiration and certain outliers, each of the spot and futures returns
and error correction terms are regressed on a constant, the time to maturity, and dummies
that represent the outliers. Any trends and outliers removed from one series are removed
from all the other series.14

5. Results and Discussion

We begin by showing residual diagnostics of the ECM-GARCH and ESTECM-EGARCH
models for both spot–futures (Table A3) and futures–futures (Table A4) in Appendix A;
these include tests for autocorrelation, any remaining GARCH, asymmetric response, and
the information criteria. The results show that both models can represent Nikkei error
correction dynamics, but the ESTECM-EGARCH model performs better in terms of the
asymmetry tests and model fit.
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Table 2 reports the results of the LM-type linearity tests. The LM-type statistics are
highly significant, which indicates that the linearity null can be strongly rejected in favour
of the ESTECM. The presence of smooth transition nonlinearity in the data justifies the
ESTECM. The ECM cannot capture such nonlinearity; hence, the ESTECM is more appro-
priate for describing the Nikkei price adjustments. Therefore, we analyse the estimation
results of both models but place more emphasis on the ESTECM-EGARCH results.

Table 2. LM-type linearity tests.

Panel A: Spot–futures pairs
(SPOT, OSE) (SPOT, SGX) (SPOT, CME)

Market SPOT OSE SPOT SGX SPOT CME

Sample A
d = 1 6.22 × 10−9 1.94 × 10−9 8.24 × 10−3 8.38 × 10−3 1.70 × 10−4 2.17 × 10−8

d = 2 3.95 × 10−3 1.88 × 10−3 1.21 × 10−1 6.70 × 10−2 3.70 × 10−6 1.12 × 10−1

d = 3 5.66 × 10−4 1.70 × 10−4 1.38 × 10−6 4.87 × 10−8 8.39 × 10−3 1.83 × 10−4

Sample B
d = 1 1.85 × 10−9 4.37 × 10−11 2.89 × 10−3 4.64 × 10−2 2.97 × 10−9 1.56 × 10−9

d = 2 4.45 × 10−4 1.93 × 10−5 1.49 × 10−2 2.31 × 10−2 7.54 × 10−10 2.03 × 10−7

d = 3 3.91 × 10−9 2.64 × 10−9 7.63 × 10−4 1.98 × 10−2 1.46 × 10−4 4.82 × 10−7

Panel B: Bilateral futures pairs
(OSE, SGX) (OSE, CME) (SGX, CME)

Market OSE SGX OSE CME SGX CME

Default: CME with OSE, SGX
Sample A 1.19 × 10−9 5.10 × 10−9 2.53 × 10−16 1.16 × 10−15 9.11 × 10−16 1.44 × 10−15

Sample B 1.06 × 10−16 2.55 × 10−17 1.81 × 10−15 1.86 × 10−11 3.08 × 10−14 9.56 × 10−12

Alternative: CME (t − 1) with OSE, SGX
Sample A 3.53 × 10−13 6.31 × 10−15 4.90 × 10−12 4.00 × 10−15

Sample B 5.75 × 10−6 7.56 × 10−16 2.81 × 10−5 1.75 × 10−15

Notes: This table reports p-values of LM-type linearity tests for Nikkei spot–futures pairs and bilateral futures
pairs. The tests are based on estimation of the auxiliary regression (Equation (10)) for each of the price returns.
The null hypothesis of linearity is equivalent to H0: β1j = β2j = β3j = 0, under which a LM-type test statistic follows
χ2(3p) asymptotically. LM = N(RSSL − RSSA)/RSSL, where N is the sample size, RSSL the residual sum of squares
from estimating the ECM, and RSSA the residual sum of squares from estimating Equation (10). Panel A tests
linearity for values of the delay parameter: d = {1, 2, 3}. Panel B tests for linearity based on d = 1. Panel B uses a
default trading time sequence, where the CME returns on day t are aligned with the OSE, SGX returns on day t;
and an alternative trading sequence, where the CME returns on day t − 1, denoted CME (t − 1), are aligned with
the OSE, SGX returns on day t (Section 5.3).

5.1. Spot–Futures Price Dynamics

Table 3 Panel A presents the results of the ECM-GARCH. Generally, the error correction
coefficients αs > 0 and αf < 0 support the error correction adjustments to equilibrium. Long-
run causalities are bidirectional as both αs and αf tend to be significant. Given a lag length
of one, we examined the short-run coefficients (πsf,1, πfs,1) directly to test the hypothesis
that returns in one market do not Granger-cause returns in the other, and we found that
futures led spot prices, especially after the financial crisis.

Table 3. Estimation results: Spot–futures price dynamics.

(SPOT, OSE) (SPOT, SGX) (SPOT, CME)
Market SPOT OSE SPOT SGX SPOT CME

Panel A: linear ECM-GARCH
Parameter estimates
Sample A

α 0.3481 ** −0.2665 ** 0.4096 ** −0.2090 ** 0.7631 ** −0.1049 **
(3.3224) (−2.4707) (3.9760) (−2.0068) (19.9597) (−2.1596)

Sample B
α 0.0109 −0.3488 ** 0.2686 ** −0.2342 * 0.7364 ** 0.0246

(0.0695) (−2.2769) (2.0821) (−1.8797) (17.6859) (0.4654)
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Table 3. Cont.

(SPOT, OSE) (SPOT, SGX) (SPOT, CME)
Market SPOT OSE SPOT SGX SPOT CME

Granger causality tests (short-run coefficients) Cross-market π p-value
Sample A πfs ,1 πsf ,1

SPOT does not cause OSE 0.0165 0.8636
OSE does not cause SPOT 0.1222 0.1816
SPOT does not cause SGX −0.0557 0.5517
SGX does not cause SPOT 0.2126 ** 0.0174
SPOT does not cause CME −0.0476 0.1208
CME does not cause SPOT 0.0183 0.5317

Sample B
SPOT does not cause OSE −0.1947 0.1824
OSE does not cause SPOT 0.4014 ** 0.0056
SPOT does not cause SGX −0.0625 0.5129
SGX does not cause SPOT 0.2227 ** 0.0231
SPOT does not cause CME 0.0402 0.2896
CME does not cause SPOT 0.0723 ** 0.0394

(SPOT, OSE) (SPOT, SGX) (SPOT, CME)
Market SPOT OSE SPOT SGX SPOT CME

Panel B: nonlinear ESTECM-EGARCH
Parameter estimates
Sample A

p 2 1 4 2 4 1
α 1.1559 −0.3575 ** 0.5400 ** −0.0640 0.6253 ** −0.1068 **

(1.5269) (−1.9752) (3.3099) (−0.4798) (7.5587) (−2.4801)
γ 0.1461 0.7785 1.9356 * 2.3417 4.4606 ** 20.2189

(1.0069) (1.0618) (1.8197) (1.5282) (2.6413) (0.2665)
θ −2.3406 15.0295 0.4863 119.8710 3.5954 30.0258

(−0.2721) (0.0101) (0.2775) (0.0002) (0.6950) (0.0076)
λ −0.0784 ** −0.0821 ** −0.0792 ** −0.0796 ** −0.0451 ** −0.0603 **

(−7.1727) (−7.3079) (−7.0450) (−7.1750) (−3.0222) (−5.3048)
Sample B

p 1 1 2 2 4 1
α 0.1631 −0.2918 0.1831 * −0.2044 0.6120 ** −15.3060

(0.4695) (−0.7096) (1.7592) (−1.5750) (9.9129) (−0.0011)
γ 0.1478 0.1051 1.7694 1.6575 852.7394 0.0001

(0.4299) (0.5572) (1.1857) (1.4016) (1.6061) (0.0011)
θ −47.7984 −16.2092 −1.4902 −3.0504 1.1110 −1.3540

(−0.0001) (−0.0011) (−0.3643) (−0.5382) (0.0215) (−0.1293)
λ −0.0910 ** −0.0986 ** −0.0977 ** −0.1043 ** −0.0450 −0.0882 **

(−5.5864) (−6.0936) (−5.7200) (−6.4223) (−1.6242) (−4.4347)
Granger causality tests (short-run coefficients) Middle regime Outer regime

Wald statistic p-value Wald statistic p-value
Sample A

SPOT does not cause OSE 0.0049 0.9443 0.5617 0.7551
OSE does not cause SPOT 33.6258 ** 0.0000 41.3764 ** 0.0000
SPOT does not cause SGX 7.3938 ** 0.0248 12.2442 ** 0.0156
SGX does not cause SPOT 25.0331 ** 0.0000 32.0654 ** 0.0001
SPOT does not cause CME 1.0255 0.3112 4.1704 0.1243
CME does not cause SPOT 7.5797 0.1082 18.4163 ** 0.0183

Sample B
SPOT does not cause OSE 0.6461 0.4215 0.6588 0.7194
OSE does not cause SPOT 8.5391 ** 0.0035 9.5248 ** 0.0085
SPOT does not cause SGX 6.7064 ** 0.0350 14.2367 ** 0.0066
SGX does not cause SPOT 3.4664 0.1767 18.1997 ** 0.0011
SPOT does not cause CME 0.0434 0.8349 0.0442 0.9781
CME does not cause SPOT 1.9830 0.7389 13.2384 0.1039

Notes: This table presents the estimation results of the linear ECM-GARCH model (Equations (5), (11), (12))
and the nonlinear ESTECM-EGARCH model (Equations (7), (11), (13)) for Nikkei spot–futures pairs. Panel A:
The ECM is estimated by OLS with the model lag p = 1 selected by Schwartz information criterion (SIC). The
GARCH is estimated by QML with Bollerslev–Wooldridge robust standard errors and covariance (Bollerslev and
Wooldridge 1992). For pair-wise Granger causality tests, given the unit model lag, the cross-market π’s are the
estimated short-run adjustment coefficients πsf,1, πfs,1 in the ECM, reported with the associated p-values based
on t-statistics. Panel B: The ESTECM is estimated by NLS with the restriction k* = c* = 0 and the model lags
chosen by Akaike information criterion (AIC). The delay parameter d = 1. The EGARCH is estimated by QML.
The Wald tests for Granger causality are performed in the middle regime (for πsf,j and πfs,j) and the outer regime
(for πsf,j + πsf,j* and πfs,j + πfs,j*). The Wald statistics (Wald) and the associated p-values are reported. Numbers in
parentheses are z-statistics. ** Significance at the 5% level. * Significance at the 10% level.
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To select the delay parameter (d) for the ESTECM, an inspection of Table 2 Panel A
finds that the smallest p-values of the LM-type statistics occur when d = 1 for OSE spot and
futures; d = 3 for SGX spot and futures; d = 2 for CME spot and d = 1 for CME futures. A
value of d > 1 means that the nonlinear regime switch takes more than one trading day to
complete. However, this is probably not plausible, considering the likely arbitrage speed
facilitated by electronic trading. Therefore, we decide to estimate the ESTECM first using
the value of d whose p-value is the smallest, and then again with d = 1 for those markets in
which the smallest p-values imply d > 1. We then make the final choice of d at the evaluation
stage. Our results show that the ESTECM estimates are generally similar across different
values of d, but the AIC of the models with d = 1 is always smaller than the AIC of the
models with d > 1. This suggests that models with d = 1 do indeed provide a better fit,
as well as being intuitively more consistent with what we expect in terms of the speed of
arbitrage. Hence, we only reported and analysed estimation results with d = 1.

Table 3 Panel B presents the results of the ESTECM-EGARCH. In all cases, αf < 0
supports the error correction adjustments to equilibrium. The bidirectional causality
remains in the CME; in the SGX, a significant αs indicates futures leading spot prices.
Comparing speeds of adjustment, futures show a quicker speed of adjustment than spot
prices in sample A (|αf| < |αs|), but the spot market has a quicker speed of adjustment in
sample B. This implies that, within a single regime, the futures prices led the price discovery
process before the financial crisis, but the spot market led afterwards. The reversal of the
price discovery roles is an interesting find and is discussed later in this paper.

The joint significance of the short-run coefficients is checked by pair-wise Granger
causality tests, which are performed separately in the middle regime (for πsf,j and πfs,j) and
the outer regime (for πsf,j + πsf,j* and πfs,j + πfs,j*). Short-run causality from spot returns
to futures returns is checked using a Wald test to examine if all the lagged spot returns
are zero in the futures equation; futures-to-spot causality is correspondingly checked
using the lagged futures returns in the spot equation. With few exceptions, the results
show futures-to-spot causality in the three Nikkei markets in both regimes, although there
is some evidence of a bidirectional relationship in the SGX. There are more significant
casual relationships in the outer regime than in the middle regime, which lends support to
the transaction-cost argument that large price deviations are adjusted more quickly than
small ones.

It is worth mentioning that the insignificance of estimates of γ should not be taken as
evidence against smooth transition, as their standard statistics are invalid.15 Estimates of γ
are sensitive to re-scaling, algorithms, and data in the transition region. It is agreed that
estimations of γ are generally imprecise (Teräsvirta 1994; Franses and Dijk 2000; Beckmann
et al. 2014). To counter this, we examined which market has a relatively larger transition
speed rather than a specific value of γ. Table 3 Panel B shows that futures have a relatively
larger transition speed in sample A, and that the spot market has a relatively larger speed
in sample B. In Figure A1 in Appendix A, the futures (spot) transition functions are steeper
than the spot (futures) transition functions before (after) the crisis. When the error correction
coefficients are also considered, this implies that, before the crisis, Nikkei futures were
both faster to reflect information within a single regime and faster to transition between
regimes. However, after the crisis, the spot market played a leading role with a quicker
speed of adjustment and quicker rate of regime switch. A possible reason for this reversal
of the price discovery roles lies in the relatively low level of heterogeneity (larger estimates
of γ) in spot transaction costs among noise and fundamental traders after the financial
crisis, compared to futures transaction costs. Noise traders follow market sentiment in
rising markets but pay more attention to fundamentals in falling markets, where prices are
driven by fundamental traders to equilibrium (McMillan and Speight 2006). As markets
fall and recover after the crisis, Nikkei investors sharing the same spot market are more
likely to behave in a similarly conservative manner, facing more equal transaction costs.
The aggregate market response to price deviations may also be subject to fewer risks of
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cognitive bias and misprice deepening (Shleifer 2000), giving rise to more rapid error
correction behaviour than in the futures.

Estimates of θ are broadly positive in sample A and negative in sample B. They imply
that a positive (negative) log-basis is removed more quickly before (after) the crisis. Since
basis adjustment is faster in futures before the crisis and faster in spot afterwards, the
sign pattern of θ is broadly consistent with the conventional argument that short positions
are less costly in the futures market. It would be natural to expect that adjustments to a
positive log-basis are more likely to be completed by short-selling futures and to a negative
log-basis by reducing long positions in the spot market. The estimates of θ are insignificant;
however, imposing θ = 0 in the mean model does affect the lag lengths and estimation of
the models substantially, and thus, estimates of θ are retained in the model. The parameter
λ is significantly negative, which suggests that negative shocks are associated with greater
volatility, giving firm evidence for the leverage effect in individual Nikkei markets.

5.2. Cross-Border Futures Price Dynamics

Table 4 Panel A displays the linear results across the borders. We see that αOSE tends
to be significant, and as between the foreign markets, the SGX mainly adjusts to SGX-CME
spreads. This suggests that long-run causality runs from the CME to the other markets.
Since the lag lengths are generally greater than unity in these estimates, we examine short-
run Granger causalities using the augmented lag method of Toda and Yamamoto (1995)
and Dolado and Lütkepohl (1996). This involves estimating a vector autoregressive (VAR)
model of order (p + 1) in levels and performing the usual Wald tests on the original p
variables, to ensure that the Wald statistics follow a standard asymptotic χ2(p) distribution.
Between the OSE and SGX, causality runs from the SGX to the OSE, not the reverse.
The significant Wald statistics in the other pairs indicate bidirectional causality, but the
causalities originating from the CME are much stronger. These provide strong evidence
that the CME is the leading market in the cross-border price discovery process, followed by
the SGX and then the OSE. The foreign-to-domestic information flows are stronger than the
reverse, giving support to the international centre hypothesis.

Table 4. Estimation results: The cross-border futures price dynamics.

(OSE, SGX) (OSE, CME) (SGX, CME)
Market OSE SGX OSE CME SGX CME

Panel A: linear ECM-GARCH
Parameter estimates
Sample A

α −1.0946 * −0.1595 −0.9659 ** 0.0039 −0.9721 ** 0.0406
(−1.9044) (−0.2909) (−10.8556) (0.0518) (−10.8722) (0.5257)

Sample B
α −0.8340 0.0598 −0.8477 ** −0.0761 −0.8133 ** −0.0731

(−1.3173) (0.0958) (−11.8565) (−0.7847) (−11.4988) (−0.7472)
Granger causality tests (short-run coefficients) Wald statistic p-value
Sample A

OSE does not cause SGX 7.4347 0.4905
SGX does not cause OSE 36.3391 ** 0.0000
OSE does not cause CME 14.9148 * 0.0608
CME does not cause OSE 909.6269 ** 0.0000
SGX does not cause CME 19.0258 ** 0.0147
CME does not cause SGX 930.2693 ** 0.0000

Sample B
OSE does not cause SGX 3.0781 0.6880
SGX does not cause OSE 10.7331 * 0.0569
OSE does not cause CME 20.9322 ** 0.0008
CME does not cause OSE 955.4050 ** 0.0000
SGX does not cause CME 20.2243 ** 0.0011
CME does not cause SGX 975.8948 ** 0.0000
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Table 4. Cont.

(OSE, SGX) (OSE, CME) (SGX, CME)
Market OSE SGX OSE CME SGX CME

Panel B: nonlinear ESTECM-EGARCH
Parameter estimates
Sample A

p 2 1 1 1 1 1
α −3.4355 ** −1.0656 −0.8532 ** 0.0708 −0.8437 ** 0.0819

(−2.7324) (−1.1475) (−22.3866) (0.4059) (−22.1564) (0.3915)
γ 0.3945 0.2535 3024.3838 0.1930 18347.6705 0.1483

(1.5462) (0.9728) (0.7482) (0.7645) (0.5265) (0.6808)
θ −66.8270 −68.2985 203.2291 −71.9725 −133.0122 −27306.5802

(−0.0003) (−0.0001) (0.1075) (0.0000) (−0.1643) (0.0000)
λ −0.0732 ** −0.0739 ** −0.0381 ** −0.0594 ** −0.0359 ** −0.0595 **

(−6.0012) (−6.0412) (−3.2108) (−4.9907) (−3.0292) (−4.9871)
Sample B

p 1 1 2 1 2 1
α −0.3714 0.3917 −0.8867 ** −0.1731 ** −0.8477 ** −0.0866

(−0.8084) (0.7475) (−16.8463) (−2.3674) (−16.0663) (−1.6029)
γ 5.4304 2.8788 42.7342 * 5.2953 49.0643 * 3331.5697

(1.0068) (0.8938) (1.6484) (0.6480) (1.8682) (0.9340)
θ −5.1529 −3.8982 43.3605 58.0112 25.8319 42.5430

(−0.3041) (−0.2923) (0.0633) (0.0017) (0.2052) (0.2703)
λ −0.0912 ** −0.0908 ** −0.0881 ** −0.1098 ** −0.0958 ** −0.1175 **

(−5.1735) (−5.0157) (−4.1879) (−4.9301) (−4.2181) (−5.0784)
Granger causality tests (short-run coefficients) Middle regime Outer regime

Wald p-value Wald p-value
Sample A

OSE does not cause SGX 2.4497 0.1175 4.5126 0.1047
SGX does not cause OSE 14.1663 ** 0.0008 22.3182 ** 0.0002
OSE does not cause CME 2.3839 0.1226 2.6288 0.2686
CME does not cause OSE 1.7192 0.1898 1.8392 0.3987
SGX does not cause CME 1.8213 0.1772 2.0069 0.3666
CME does not cause SGX 0.9182 0.3379 0.9269 0.6291

Sample B
OSE does not cause SGX 0.1767 0.6742 0.2041 0.9030
SGX does not cause OSE 0.0561 0.8128 0.2557 0.8800
OSE does not cause CME 0.3616 0.5476 2.9971 0.2235
CME does not cause OSE 3.9428 0.1393 13.4770 ** 0.0092
SGX does not cause CME 5.3791 ** 0.0204 7.1097 ** 0.0286
CME does not cause SGX 3.2738 0.1946 12.8173 ** 0.0122

Notes: This table presents the estimation results of the linear ECM-GARCH model (Equations (5), (11), (12)) and
the nonlinear ESTECM-EGARCH model (Equations (7), (11), (13)) for bilateral Nikkei futures pairs. Panel A: The
ECM is estimated by OLS with the model lags p = 7 (sample A), 4 (sample B) in first differences determined by
the sequential modified likelihood ratio test and AIC. The GARCH is estimated by QML with Bollerslev and
Wooldridge (1992) robust standard errors and covariance. The Wald tests for Granger causality are performed by
the augmented lag method of Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996). The Wald statistics
are asymptotically distributed as χ2(8) (sample A), χ2(5) (sample B), reported with the associated p-values. Panel
B: The ESTECM is estimated by NLS with the restriction k* = c* = 0, and the model lags chosen by AIC. The delay
parameter d = 1. The EGARCH is estimated by QML. The Wald tests for Granger causality are performed in the
middle regime (for π12,j and π21,j) and the outer regime (for π12,j + π12,j* and π21,j + π21,j*). The Wald statistics
(Wald) and the associated p-values are reported. Numbers in parentheses are z-statistics. ** Significance at the 5%
level. * Significance at the 10% level.

Table 4 Panel B reports the results of the ESTECM-EGARCH. There are just one or
two lags in the ESTECM bilateral futures pairs, less than those of the spot–futures pairs.
Since futures trading incurs fewer costs and risks, faster adjustments and shorter price
dependencies across the futures markets are not surprising. For price adjustments within
a single regime, generally αOSE is significant, and the CME remains the quickest market
in the nonlinear adjustment process. This confirms the finding of the linear model, i.e.,
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that foreign Nikkei futures (especially the CME) lead the home market in the cross-border
price dynamics.

Wald tests for short-run causal relationships in the middle regime and the outer regime
show that patterns of causality are mixed. There is no evidence of causality running from
OSE to the other markets, but there is some evidence of causality running from SGX and
CME to OSE. There is also evidence of bidirectional causality between SGX and CME after
the crisis. These results broadly reinforce the evidence for the information leadership of the
foreign markets.

For the rate of smooth transition, we again concentrate on which market has a relatively
larger transition speed. The larger estimates of γ are found in OSE for the OSE-related pairs.
This suggests that the OSE is the quickest market in smooth transition, probably because
of a more uniform structure of transaction costs. The foreign exchanges exhibit a more
heterogeneous structure of transaction costs. For instance, the SGX can offer two different
levels of tick sizes and more contract months, smaller contract size and margins, and the
mutual offset between the SGX and CME (Table 1). The availability of a more diversified
range of trading possibilities attracts cost-sensitive and/or capital-constrained investors
and constitutes an advantage of the offshore financial centres. For the SGX and CME, the
larger estimates of γ are in SGX (sample A) and then in CME (sample B). This implies that,
in the CME, there are faster adjustments between regimes and lower transaction costs after
the crisis than there were before. Asymmetry is found across the Nikkei futures in the
first and second moments. In OSE-SGX arbitrage, the estimates of θ < 0 indicate that more
investors respond to negative spreads than to equally sized positive ones. In the arbitrage
pertaining to the CME, the estimates of θ are mostly negative in sample A, but positive in
sample B. Compared with the corresponding results for spot and futures, the asymmetric
behaviour of the futures prices can be different once the spot market is involved. The
significantly negative λ confirms the leverage effect in the Nikkei variances.

5.3. Non-Synchronous Trading Times

The above results firmly support the price-leadership role of the international Nikkei
futures, especially the CME. However, they are based on same day returns and assume
synchronous trading hours among the exchanges. In fact, Central Standard Time (CST)
used by the CME is 15 h behind Japan Standard Time (JST), which is used by the OSE.16

However, since the CME Globex trades around the clock and OSE trades into the night,
there are long periods during any day when both markets are open (Figure 2). Moreover,
OSE and CME settlement prices are generated on the same day.17 The use of the same-day
returns may therefore be justified on two counts: first, spread arbitrage can be active due
to the common trading hours in the time sequence; and second, matching all the returns
on day t captures information on the same “nominal” day. Previous research also tends to
support this conclusion (Booth et al. 1996).

Nevertheless, it could be argued that using all the returns on day t implies a default
time sequence whereby the OSE, SGX are ahead of the CME. We consider next whether
the estimated CME leadership is determined artificially by this time sequence. To check
this argument, we follow Booth et al. (1996) and re-estimate the models with an alternative
time sequence in which the CME is the earliest trading market of the three. We completed
this by aligning the CME returns on day t − 1 with the OSE and SGX returns on day t, so
that the CME becomes the earliest trading market, and all the returns reveal information
within the same 24-h time interval.

Table 5 shows the linear results using the alternative trading sequence.18 Though long-
run causalities are bidirectional, the OSE and SGX now have faster speeds of adjustment to
futures price parity. The Wald tests for short-run causality also indicate stronger influences
of the OSE and SGX. Combining this with our earlier finding that the SGX tends to lead
the OSE, which is unaffected by the timing issues, we can argue that the SGX may be the
leading market, followed by the OSE and the CME. The price leadership of the CME seems
to be transferred to the SGX. However, these results are still consistent with the conclusion
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that it is the last trading market in each time sequence that reflects information the most
quickly. The last trading market may have more opportunities to absorb information that
already exists in the earlier markets, which contributes to its price leadership. Overall, we
find support for the hypothesis that offshore financial centres (the CME and SGX) act as
the main price discovery vehicles for information transmission. This is consistent with the
Nikkei literature that uses linear models (Kao et al. 2015) and with the network/platform
literature that shows information gravitating to the most ubiquitous international platform
(Rochet and Tirole 2003).
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Figure 2. Trading hours of the OSE and CME. Notes: The time is Central Standard Time (CST)
unless otherwise shown. The bottom line shows the time when the OSE, CME settlement prices are
generated. For reference, the Nikkei spot market opens 9.00–11.30, 12.30–15.00 (Japan Standard Time,
JST), corresponding to 18.00–20.30, 21.30–0.00 (CST).

Table 5. Nonsynchronous trading time tests.

(OSE, CME) (SGX, CME)
Market OSE CME SGX CME

Parameter
estimates
Sample A

α −0.0876 0.9663 ** −0.0645 0.9987 **
(−0.8486) (20.2841) (−0.5979) (20.9107)

Sample B
α −0.1868 ** 0.8573 ** −0.1883 ** 0.9195 **

(−2.1171) (7.7796) (−2.1128) (6.7818)
Granger causality tests (short-run coefficients) Wald statistic p-value
Sample A

OSE does not cause CME 5502.1624 ** 0.0000
CME does not cause OSE 16.0325 ** 0.0248
SGX does not cause CME 5611.5337 ** 0.0000
CME does not cause SGX 16.5222 ** 0.0208

Sample B
OSE does not cause CME 1495.1841 ** 0.0000
CME does not cause OSE 13.4686 ** 0.0194
SGX does not cause CME 1498.9699 ** 0.0000
CME does not cause SGX 11.8033 ** 0.0376

Notes: This table presents the estimation results of the linear ECM-GARCH model (Equations (5), (11), (12)) for
bilateral futures pairs (OSE, CME) and (SGX, CME). The model is estimated with the CME returns on day t −
1 aligned with the OSE, SGX returns on day t. The ECM lags p = 6 (sample A), 4 (sample B) in first differences
are determined by the sequential modified likelihood ratio test and AIC. The GARCH is estimated by QML with
Bollerslev and Wooldridge (1992) robust standard errors and covariance. The Wald tests for Granger causality are
performed by the augmented lag method of Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996). The
Wald statistics are asymptotically distributed as χ2(7) (sample A), χ2(5) (sample B), reported with the associated
p-values. Numbers in parentheses are z-statistics. ** Significance at the 5% level.
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5.4. The Role of Liquidity in Nikkei Price Adjustments

From Figure 1, the CME has the lowest average trading volume of the three futures
markets. This suggests that the CME is less liquid than the other markets and in principle
contradicts the intuitive expectation that greater liquidity encourages higher pricing effi-
ciency. Nevertheless, foreign Nikkei markets, especially the CME, show higher average
growth rates in trading volume than the OSE. We also find that the rate of smooth tran-
sition in the CME has increased over time compared to SGX, which implies more rapid
adjustments between the regimes in the CME in recent years (Section 5.2). As such, the role
of liquidity in Nikkei markets deserves a deeper investigation. In this section, we aim to
explain such foreign leadership and investigate the role of liquidity in international price
discovery for Nikkei futures.

5.4.1. Measuring Futures Illiquidity

Our paper uses daily data covering 19 years; so, for consistency we constructed a daily
measure of illiquidity, following Amihud (2002), that uses our full 19-year dataset.19 Nikkei
futures illiquidity, qt, is defined as the ratio of the daily absolute percent price change to
same-day trading volume:

qt = |lnFt − lnFt−1|/Volt, (14)

where Volt is the yen/dollar trading volume on day t, calculated as the product of the
number of contracts traded and the contract size.20 This ratio gives the daily price response
associated with one yen/dollar of trading volume, or the daily price impact of order flow
(Amihud 2002). It is then re-scaled by multiplying by 106 following Amihud (2002).

We use qt directly in the spot–futures models but, for bilateral futures pairs, we use
excess illiquidity measured as the difference between illiquidity in any two markets. Since
CME has the lowest average trading volume but OSE has the highest, the three excess
illiquidity variables are defined as: (qCME,t − qOSE,t), (qCME,t − qSGX,t), and (qSGX,t − qOSE,t),
ensuring that each excess illiquidity series is positive on average. All six illiquidity variables
are adjusted by removing time trends and outliers as specified in Section 4. For consistency,
the return series, the error correction terms, and the illiquidity measures are each adjusted
by dummying out all the outliers found in any series in each pair and detrending the time
effect. Unit root tests show that each illiquidity variable is stationary, so they can be directly
incorporated into our specification.21

5.4.2. Modelling Nikkei Price Dynamics with Illiquidity

The effect of illiquidity is examined by including qt in the nonlinear ESTECM-EGARCH
model and testing its significance. It is not clear in advance whether illiquidity would affect
the adjustment process, the smooth transition process, or both. We therefore re-estimate
the linear ECM-GARCH model with the illiquidity variable first to examine whether
qt is significant in the linear adjustment process. For example, the linear ECM for the
OSE becomes:

Rt = k +
p

∑
j=1

πjRt−j + δqOSE,t + αzt−1 + ut, (15)

where δ = (δSPOT, δOSE)′ is the coefficient vector of qOSE,t in the linear adjustment process.
Interestingly, we found the effect of illiquidity to be significant in all three markets,

especially the CME, in the post-crisis period (Table 6 Panel A and Table 7 Panel A). Moreover,
the many positive coefficients of δ indicate that illiquidity positively affects the Nikkei
futures returns. For example, excess illiquidity of CME significantly increased the CME
market returns, implying that CME returns are higher by a premium due to the higher
illiquidity (lower liquidity) of CME. This “illiquidity premium” in the equilibrium price is
consistent with Amihud (2002).
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For the pairs that exhibit significant illiquidity effects under the linear specification,
we proceed by incorporating qt in both the adjustment process and the smooth transition
process of the ESTECM, that is (using OSE as example):

Rt = k +
p

∑
j=1

πjRt−j + δqOSE,t + (k∗ +
p

∑
j=1

π∗j Rt−j + δ∗qOSE,t + αzt−1)× T(zt−d) + ut, (16)

where δ* = (δSPOT*, δOSE*)′ is the coefficient vector of qOSE,t in the nonlinear smooth transi-
tion process. For pairs where qt is insignificant in the linear model, it is incorporated only
in the smooth transition process of the ESTECM as (using OSE as example):

Rt = k +
p

∑
j=1

πjRt−j + (k∗ +
p

∑
j=1

π∗j Rt−j + δ∗qOSE,t + αzt−1)× T(zt−d) + ut, (17)

The conditional variance of the ESTECM is assumed to follow an EGARCH (1, 1) or
EGARCH (2, 1) as necessary. The ESTECM-EGARCH specification is then re-estimated
individually for Nikkei spot–futures and bilateral futures pairs. The NLS estimation details
are the same as before.

Table 6. Spot–futures price dynamics with illiquidity.

(SPOT, OSE) (SPOT, SGX) (SPOT, CME)
Market SPOT OSE SPOT SGX SPOT CME

Panel A: linear ECM-GARCH
Parameter estimates
Sample A

α 0.3384 ** −0.2814 ** 0.4044 ** −0.2118 ** 0.7637 ** −0.1037 **
(3.2261) (−2.6090) (3.9314) (−2.0421) (19.9387) (−2.1133)

δ −197.1974 −2107.9367 139.6380 −1.2788 −0.8597 −0.9426
(−0.0622) (−0.6555) (0.3985) (−0.0036) (−0.8165) (−0.6758)

Sample B
α 0.0391 −0.3294 ** 0.2656 ** −0.2339 * 0.7358 ** 0.0202

(0.2473) (−2.1190) (2.0466) (−1.8515) (17.6807) (0.3856)
δ 4124.7419 2259.8479 555.6569 138.7760 0.7659 4.2394 **

(1.1893) (0.5923) (1.1206) (0.2095) (0.9679) (3.2658)
Granger causality tests (short-run coefficients) Cross-market π p-value
Sample A πfs,1 πsf,1

SPOT does not cause OSE 0.0065 0.9458
OSE does not cause SPOT 0.1305 0.1531
SPOT does not cause SGX −0.0579 0.5367
SGX does not cause SPOT 0.2172 ** 0.0152
SPOT does not cause CME −0.0462 0.1325
CME does not cause SPOT 0.0179 0.5429

Sample B
SPOT does not cause OSE −0.1978 0.1777
OSE does not cause SPOT 0.4056 ** 0.0052
SPOT does not cause SGX −0.0623 0.5162
SGX does not cause SPOT 0.2281 ** 0.0210
SPOT does not cause CME 0.0404 0.2870
CME does not cause SPOT 0.0720 ** 0.0404
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Table 6. Cont.

(SPOT, OSE) (SPOT, SGX) (SPOT, CME)
Market SPOT OSE SPOT SGX SPOT CME

Panel B: nonlinear ESTECM-EGARCH
Parameter estimates
Sample A

p 2 1 4 2 4 1
α 3.3001 −0.4049 ** 2.9406 −0.0691 0.6871 ** 0.5237

(0.4008) (−2.1373) (1.5245) (−0.5319) (10.1349) (0.2317)
γ 0.0203 0.7151 0.0877 2.7361 3.3739 ** 0.0136

(0.3539) (1.1990) (1.2816) (1.5086) (2.9068) (0.2915)
θ −18.3518 15.7083 −1.7169 98.6235 3.4451 −43.9446

(−0.0018) (0.0107) (−0.6532) (0.0004) (0.7075) (−0.0002)
λ −0.0825 ** −0.0832 ** −0.0813 ** −0.0816 ** −0.0445 ** −0.0524 **

(−7.4164) (−7.3898) (−7.2601) (−7.2321) (−3.5478) (−3.7902)
δ * 5180.6540 −9339.2991 −219.3636 −166.4696 −0.7747 44.6965

(0.1023) (−1.4337) (−0.1396) (−0.3102) (−0.8195) (0.3870)
Sample B

p 1 1 2 2 4 1
α 0.0476 −1.2785 0.1667 −0.1834 0.6855 ** 0.0433

(0.3935) (−0.1212) (1.5120) (−1.4142) (11.7952) (0.6314)
γ 9.1023 0.0112 1.1393 1.5431 9.2825 ** 0.9851

(0.7839) (0.1118) (1.1481) (1.4436) (2.3495) (0.4616)
θ 10.3011 −26.3139 −17.8785 −36.9457 −26.4214 −12.1269

(0.1397) (−0.0001) (−0.0149) (−0.0049) (−0.0445) (−0.0123)
λ −0.0969 ** −0.1020 ** −0.0970 ** −0.0947 ** −0.0565 ** −0.0879 **

(−5.5128) (−5.9794) (−5.5615) (−5.5087) (−2.8425) (−4.3116)
δ * 5338.8145 ** 32333.3316 491.2193 −836.0924 2.5868 5.6829

(2.1027) (0.1165) (0.5067) (−1.2293) (1.1695) (0.9622)
δ 0.1464 3.0655

(0.0952) (1.2444)
Granger causality tests (short-run coefficients) Middle regime Outer regime

Wald p-value Wald p-value
Sample A

SPOT does not cause OSE 0.0177 0.8941 0.9200 0.6313
OSE does not cause SPOT 46.2326 ** 0.0000 58.9578 ** 0.0000
SPOT does not cause SGX 7.0036 ** 0.0301 11.2198 ** 0.0242
SGX does not cause SPOT 71.3739 ** 0.0000 80.6378 ** 0.0000
SPOT does not cause CME 2.7859 * 0.0951 3.3167 0.1905
CME does not cause SPOT 13.1928 ** 0.0104 21.2449 ** 0.0065

Sample B
SPOT does not cause OSE 0.9872 0.3204 1.1024 0.5763
OSE does not cause SPOT 0.2935 0.5880 11.4576 ** 0.0033
SPOT does not cause SGX 7.9611 ** 0.0187 14.1727 ** 0.0068
SGX does not cause SPOT 3.8985 0.1424 18.8842 ** 0.0008
SPOT does not cause CME 0.1953 0.6586 0.5756 0.7499
CME does not cause SPOT 13.2924 ** 0.0099 28.3652 ** 0.0004

Notes: This table presents the estimation results of the linear ECM-GARCH model (Equations (15), (11), (12)) and
the nonlinear ESTECM-EGARCH model (Equations (16) or (17), (11), (13)) with illiquidity for Nikkei spot–futures
pairs. The futures illiquidity variable qt in each Nikkei market is defined as the ratio of daily absolute percent
price change to same-day trading volume (Equation (14)). Provided that the spot–futures pairs exhibit significant
illiquidity effects in the ECM-GARCH, qt is incorporated in both the adjustment process and the smooth transition
process of the ESTECM, i.e., Equation (16) is used. Otherwise, qt is incorporated only in the smooth transition
process of the ESTECM, i.e., Equation (17) is used. Panel A: The ECM is estimated by OLS with the model lag
p = 1 selected by SIC. The GARCH is estimated by QML with Bollerslev and Wooldridge (1992) robust standard
errors and covariance. For pair-wise Granger causality tests, given the unit model lag, the cross-market π’s are the
estimated short-run adjustment coefficients πsf,1, πfs,1 in the ECM, reported with the associated p-values based on
t-statistics. Panel B: The ESTECM is estimated by NLS with the restriction k* = c* = 0 and the model lags chosen
by AIC. The delay parameter d = 1. The EGARCH is estimated by QML. The Wald tests for Granger causality
are performed in the middle regime (for πsf,j and πfs,j) and the outer regime (for πsf,j + πsf,j* and πfs,j + πfs,j*).
The Wald statistics (Wald) and the associated p-values are reported. Numbers in parentheses are z-statistics. **
Significance at the 5% level. * Significance at the 10% level.
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Table 7. The cross-border futures price dynamics with illiquidity.

(OSE, SGX) (OSE, CME) (SGX, CME)
Market OSE SGX OSE CME SGX CME

Panel A: linear ECM-GARCH
Parameter estimates
Sample A

α −1.1588 ** −0.1567 −0.9491 ** 0.0356 −0.9541 ** 0.0735
(−2.0651) (−0.2816) (−10.8521) (0.4735) (−10.8201) (0.9617)

δ 3.5829 −21.6415 −1.5791 −1.6317 −1.6111 −1.6480
(0.0088) (−0.0536) (−1.4397) (−1.2047) (−1.5547) (−1.2155)

Sample B
α −0.8253 0.0708 −0.8630 ** −0.1012 −0.8271 ** −0.0940

(−1.3037) (0.1136) (−12.0270) (−1.0777) (−11.7678) (−0.9940)
δ 887.8163 ** 909.0086 ** 0.5835 4.4500 ** 0.8516 4.4714 **

(2.0787) (2.0451) (0.7461) (3.6139) (0.9950) (3.6674)
Granger causality tests (short-run coefficients) Wald statistic p-value
Sample A

OSE does not cause SGX 7.4422 0.4898
SGX does not cause OSE 36.4347 ** 0.0000
OSE does not cause CME 15.0894 * 0.0574
CME does not cause OSE 908.2400 ** 0.0000
SGX does not cause CME 19.2558 ** 0.0135
CME does not cause SGX 928.1152 ** 0.0000

Sample B
OSE does not cause SGX 2.7749 0.7346
SGX does not cause OSE 10.0362 * 0.0742
OSE does not cause CME 18.8425 ** 0.0021
CME does not cause OSE 948.3163 ** 0.0000
SGX does not cause CME 18.3181 ** 0.0026
CME does not cause SGX 967.9434 ** 0.0000

(OSE, SGX) (OSE, CME) (SGX, CME)
Market OSE SGX OSE CME SGX CME

Panel B: nonlinear ESTECM-EGARCH
Parameter estimates
Sample A

p 2 1 1 1 1 1
α −4.3221 ** −1.3997 −0.8576 ** 0.0479 −0.8422 ** 0.1172 **

(−2.0155) (−1.1141) (−22.7438) (0.6395) (−22.4028) (2.2844)
γ 0.2035 0.1554 281.0000 1.4314 25744.9709 22.0180

(1.2140) (1.0040) (0.5645) (1.1500) (0.4681) (0.7596)
θ −15.6393 −4.3035 −0.4000 −3.0441 −5812.6910 79.6161

(−0.0116) (−0.2843) (−0.0046) (−0.3178) (−0.0001) (0.0030)
λ −0.0675 ** −0.0744 ** −0.0395 ** −0.0610 ** −0.0365 ** −0.0621 **

(−4.7177) (−6.0392) (−3.2218) (−5.0758) (−2.9964) (−5.1854)
δ * −7950.5111 −10237.4848 −3.4014 ** −4.7063 ** −3.6303 ** −3.7872 **

(−1.3692) (−1.0741) (−4.1411) (−2.1177) (−4.3460) (−4.2003)
Sample B

p 1 1 2 1 2 1
α −77.2117 −1.7619 −0.8827 ** −0.1891 ** −0.8676 ** −0.1356 *

(−0.0800) (−0.2748) (−17.8023) (−2.2830) (−17.7276) (−1.9017)
γ 0.0020 0.0277 1090.0000 2.9289 4100.0000 4.5398

(0.0798) (0.4038) (0.7234) (0.7766) (1.2486) (0.4920)
θ 514.8777 225.0730 0.9000 147.8629 0.7000 114.6071

(0.0000) (0.0000) (0.0066) (0.0001) (0.0053) (0.0001)
λ −0.0906 ** −0.0926 ** −0.0853 ** −0.1040 ** −0.0927 ** −0.1032 **

(−4.5305) (−4.5146) (−4.0802) (−4.6179) (−4.0884) (−4.6053)
δ * 126834.9657 22329.2007 5.7032 ** 2.5166 7.3026 −1.0341

(0.0834) (0.4077) (2.2960) (0.9318) (1.2720) (−0.4594)
δ 909.2016 917.5998 −3.7275 3.9692 ** −5.2613 4.7557 **

(1.1918) (1.2568) (−1.6084) (2.8813) (−0.9245) (3.8214)
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Table 7. Cont.

(OSE, SGX) (OSE, CME) (SGX, CME)
Market OSE SGX OSE CME SGX CME

Granger causality tests (short-run coefficients) Middle regime Outer regime
Wald p-value Wald p-value

Sample A
OSE does not cause SGX 2.3186 0.1278 4.1741 0.1241
SGX does not cause OSE 11.8084 ** 0.0027 14.8913 ** 0.0049
OSE does not cause CME 2.7247 * 0.0988 2.7381 0.2543
CME does not cause OSE 0.6329 0.4263 0.9301 0.6281
SGX does not cause CME 0.1479 0.7006 3.0276 0.2201
CME does not cause SGX 1.2071 0.2719 1.2099 0.5461

Sample B
OSE does not cause SGX 0.0169 0.8965 0.1940 0.9076
SGX does not cause OSE 1.6698 0.1963 1.7253 0.4220
OSE does not cause CME 0.1438 0.7045 3.0325 0.2195
CME does not cause OSE 2.2633 0.3225 6.3331 0.1756
SGX does not cause CME 0.0796 0.7778 1.4618 0.4815
CME does not cause SGX 1.5937 0.4507 6.2231 0.1831

Notes: This table presents the estimation results of the linear ECM-GARCH model (Equations (15), (11), (12)) and the
nonlinear ESTECM-EGARCH model (Equations (16) or (17), (11), (13)) with illiquidity for bilateral Nikkei futures pairs.
The illiquidity variable for these futures pairs is the excess illiquidity measure calculated as (qSGX,t− qOSE,t), (qCME,t
− qOSE,t) and (qCME,t − qSGX,t), where qt is the illiquidity variable in each Nikkei market. Provided that the bilateral
futures pairs exhibit significant illiquidity effects in the ECM-GARCH, qt is incorporated in both the adjustment process
and the smooth transition process of the ESTECM, i.e., Equation (16) is used. Otherwise, qt is incorporated only in the
smooth transition process of the ESTECM, i.e., Equation (17) is used. Panel A: The ECM is estimated by OLS with the
model lags p = 7 (sample A), 4 (sample B) in first differences determined by the sequential modified likelihood ratio
test and AIC. The GARCH is estimated by QML with Bollerslev and Wooldridge (1992) robust standard errors and
covariance. The Wald tests for Granger causality are performed by the augmented lag method of Toda and Yamamoto
(1995) and Dolado and Lütkepohl (1996). The Wald statistics are asymptotically distributed as χ2(8) (sample A), χ2(5)
(sample B), reported with the associated p-values. Panel B: The ESTECM is estimated by NLS with the restriction k* =
c* = 0 and the model lags chosen by AIC. The delay parameter d = 1. The EGARCH is estimated by QML. The Wald
tests for Granger causality are performed in the middle regime (for π12,j and π21,j) and the outer regime (for π12,j +
π12,j* and π21,j + π21,j*). The Wald statistics (Wald) and the associated p-values are reported. Numbers in parentheses
are z-statistics. ** Significance at the 5% level. * Significance at the 10% level.

5.4.3. Illiquidity Effects on Nikkei Price Discovery

A significant effect of illiquidity is found in bilateral Nikkei futures pairs (Table 7
Panel B). The illiquidity effects are in a smooth transition process (δ*) before the crisis and a
smooth transition (δ*) and adjustment (δ) process after the crisis. The post-crisis effect is
positive, which suggests that the excess illiquidity of CME tends to increase futures returns
as compensation for being relatively less liquid, constituting an illiquidity premium.22 This
reinforces the linear results of an illiquidity premium, especially in the CME during the
post-crisis period.

Comparing Table 7 Panel B with Table 4 Panel B, we find that adding illiquidity to the
ESTECM-EGARCH does not affect the long-run price adjustments of the Nikkei futures,
as identified by α. The CME remains the quickest market in price discovery, followed by
the SGX and the OSE. For short-run Granger causalities, adding illiquidity weakens the
price leadership of the CME and SGX, especially after the crisis. These results suggest that
illiquidity may have a negative impact on the short-run price adjustments to equilibrium
for the Nikkei. This is consistent with the empirical evidence in the literature that liquidity
is positively related to informational efficiency (e.g., Chordia et al. 2008; Chung and Hrazdil
2010). However, illiquidity does not appear to affect the price leadership of the foreign
Nikkei markets in the long run.

When illiquidity is included, the foreign exchanges remain the markets with more
heterogeneous transaction costs, as shown by γ. Asymmetry is also found in the first
and second moments in the three Nikkei markets, represented by θ and λ, respectively.
These results are robust to the inclusion of illiquidity effects. Therefore, our findings firmly
corroborate the international centre hypothesis, and the information advantage of the
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foreign exchanges seems to be clear. Foreign market advantages include their roles as
global information centres, their more heterogeneous and lower transaction costs, and their
longer trading hours. More importantly, foreign leadership is unaffected by the degree of
market illiquidity in the long run, though it may be weaker over shorter horizons.

6. Conclusions

Research on spot–futures interactions has increasingly suggested the presence of
nonlinear price adjustments to equilibrium. To our knowledge, this is the first paper that
examines nonlinear price adjustments in the information transmission process and price
discovery for the triple-listed Nikkei futures contracts. We studied the smooth transition
error correction behaviour between Nikkei spot and futures prices and across the three
Nikkei futures markets, addressing the question of which Nikkei market leads the price
discovery process in international information transmission. The ECM-GARCH is used
as a base model, and then the ESTECM-EGARCH is estimated to capture the nonlinear
effects of transaction costs, heterogeneity, and asymmetry. Specification tests indicate the
presence of smooth transition nonlinearity and suggest that the ESTECM-EGARCH is more
appropriate. Our key findings and their implications are as follows.

First, Nikkei price adjustments exhibit smooth transition error correction behaviour,
which can be represented by the ESTECM-EGARCH model. Nikkei prices are error-
correcting between different regimes and are asymmetric in the first and second moments.
The nonlinear dynamics can be explained partly by heterogeneity in transaction costs. For
spot–futures price dynamics, we find that futures led spot prices in price discovery before
the financial crisis, but that spot prices led afterwards. The reversal of the price discovery
roles can be attributed to the relatively low level of heterogeneity in spot transaction costs
and the associated interactions between noise traders and fundamental traders in the post-
crisis period. For cross-border futures price dynamics, we report quicker adjustments of the
OSE and slower adjustments of the SGX and CME in smooth transition, which can again
be explained by the different levels of heterogeneity in their transaction cost structures.
Our findings underline the importance of allowing for nonlinearities in futures price
adjustments in general, and in Nikkei markets in particular. Neglecting nonlinearities in
Nikkei prices could result in the loss of important information contained in the prices, such
as the level of heterogeneity in transaction costs, which is closely related to the information
roles of the markets.

Second, it is the foreign Nikkei markets that take the price leadership in the interna-
tional price discovery process. This result is robust to the use of linear or nonlinear models,
the time differences, and the long-run liquidity conditions of the Nikkei markets, and
therefore strongly supports the international centre hypothesis. Foreign leadership in price
discovery can be explained by the roles of the CME and SGX as global information centres
and their flexible trading conditions, including more heterogeneous and lower transaction
costs, and longer trading hours. The informativeness of the foreign Nikkei implies that
small, offshore exchanges can compete with a large home market in the globalisation of
futures by offering a more attractive trading environment, and thereby increasing market
competitiveness. For example, exchange regulators could aim for an improvement in
price discovery by increasing the diversity of risk management tools and transaction costs
available in the market to enhance the level of heterogeneity in transaction costs.

Third, we investigated the effect of liquidity on Nikkei price adjustments. We found
evidence of an illiquidity premium, and we showed that the relative illiquidity of foreign
Nikkei markets has a negative impact on Nikkei price adjustments in the short run but
does not have a material effect on the foreign leadership or Nikkei price adjustments in
the long run. This implies that Nikkei investors who seek to make informed decisions
and manage risks across the borders may need to pay more attention to their investment
horizons and adjust their trading strategies accordingly. Investors with a long horizon may
want to use the information channels provided by foreign Nikkei exchanges as important
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price discovery vehicles, while short-term investors are more likely to benefit from the
greater liquidity of the home market.

As with other studies that use historical data, our work is based on the chosen sample
period and therefore cannot capture real-time price interactions in and across the Nikkei
markets. Future research could re-visit some of the issues in the paper with an updated
intraday dataset, not simply to reflect more recent market conditions but also to release
some of the restrictions imposed on the ESTECM—for example, to allow for a time-varying
smoothness parameter to describe real price interdependence more accurately. The Nikkei
225 futures have also started to trade on the B3 Exchange (Brazil). It is of interest to study
the price discovery role of the emerging Brazilian Nikkei market in the future.
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Appendix A

Table A1. Descriptive statistics.

SPOT OSE SGX CME
Sample A Sample B Sample A Sample B Sample A Sample B Sample A Sample B

Panel A: Price returns
Mean −0.0003 0.0005 −0.0003 0.0005 −0.0003 0.0005 −0.0001 0.0005

Std. Dev. 0.0147 0.0153 0.0153 0.0154 0.0150 0.0150 0.0149 0.0149
AR(1) −0.0341 * −0.0552 ** −0.0712 ** −0.0505 ** −0.0455 ** −0.0371 −0.0729 ** −0.0141
ADF

(log-prices) 1 −1.8208 −1.8860 −1.7740 −1.8810 −1.8641 −1.9030 −1.7527 −1.8133

ADF
(returns) −56.8693 ** −41.4880 ** −59.0176 ** −41.5847 ** −57.4696 ** −41.6747 ** −58.3330 ** −40.4335 **

Panel B: Basis
Mean −3.5961 −8.4241 −2.1468 −8.9494 10.6465 37.4029

Std. Dev. 47.3897 34.3022 47.0671 47.6074 129.4377 130.9044
Panel C: Basis change

AR(1) −0.4431 ** −0.4614 ** −0.4471 ** −0.4312 ** −0.4311 ** −0.4891 **

Notes: This table presents descriptive statistics for Nikkei price returns, basis, and basis change. The pre-crisis
sample A is 28/06/1996–09/10/2008 (SPOT, OSE, SGX), 09/01/1997–12/09/2008 (CME); and the post-crisis
sample B is 04/11/2008–31/12/2014 (SPOT, OSE, SGX), 02/12/2008–31/12/2014 (CME). AR(1) is the first-order
autocorrelation coefficient. Augmented Dickey-Fuller (ADF) test statistics are computed with constant and
trend for log-prices; without constant or trend for returns. The ADF lag length is determined by SIC. Basis is
the difference between each Nikkei futures market and the contemporaneous spot price. Basis change is the
first–order difference in the basis. ** Significance at the 5% level. * Significance at the 10% level. 1 Zivot–Andrews
unit root tests are performed as a robustness check, and the results are qualitatively the same and available
on request.
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Table A2. Cointegration tests.

Panel A: Tests for the number of cointegrating vectors
Trace test Maximal eigenvalue test

Statistic 1% critical value Statistic 1% critical value

Sample A
None 835.4643 54.4600 346.3023 32.2400

At most 1 489.1620 35.6500 296.8546 25.5200
At most 2 192.3074 20.0400 189.6610 18.6300
At most 3 2.6464 6.6500 2.6464 6.6500

Sample B
None 642.1812 54.4600 311.2230 32.2400

At most 1 330.9582 35.6500 244.8513 25.5200
At most 2 86.1069 20.0400 85.3596 18.6300
At most 3 0.7473 6.6500 0.7473 6.6500

Panel B: Tests of cointegration restrictions
No. of cointegrating vectors LR statistic p-value

Sample A 3 6.1754 0.1034
Sample B 3 3.2024 0.3615

Notes: This table reports the results of Johansen cointegration tests for the four Nikkei spot and futures prices. The
pre-crisis sample A is 17/01/1997–12/09/2008; and the post-crisis sample B is 02/12/2008–30/12/2014. The tests
are based on a VAR model in levels with the VAR lag lengths of 8 (sample A), 4 (sample B) chosen by sequential
modified likelihood ratio (LR) test and AIC. In Panel B, the LR statistic is for testing the following restriction on
the transposed cointegrating matrix beta, which is equivalent to testing the cointegrating vector [1, −1] for every

pair of prices. β′ =

1 0 0 −1
0 1 0 −1
0 0 1 −1

.

Table A3. Model evaluation for spot–futures pairs.

(SPOT, OSE) (SPOT, SGX) (SPOT, CME)
Market SPOT OSE SPOT SGX SPOT CME

Panel A: linear ECM-GARCH
Sample A p values

Q(24) for ηt 0.6953 0.5667 0.4792 0.3000 0.9425 0.9435
Q(24) for ηt

2 0.3413 0.3057 0.5939 0.4673 0.2680 0.9728
Asymmetric tests

Sign bias test 0.8058 0.5975 0.6125 0.9782 0.5326 0.0960
Negative size bias test 0.9723 0.8283 0.8510 0.6079 0.9351 0.2120
Positive size bias test 0.0002 0.0004 0.0003 0.0008 0.3105 0.4016

Joint test 0.0029 0.0012 0.0061 0.0079 0.1846 0.0307
Information criteria

AIC −5.7547 −5.6923 −5.7593 −5.7208 −6.0463 −5.6845
SIC −5.7407 −5.6784 −5.7454 −5.7069 −6.0321 −5.6703

Sample B p values
Q(24) for ηt 0.9927 0.9956 0.8925 0.9421 0.2993 0.9095
Q(24) for ηt

2 0.3098 0.2517 0.3240 0.3789 0.5422 0.9396
Asymmetric tests

Sign bias test 0.6771 0.6401 0.5761 0.7278 0.1495 0.7704
Negative size bias test 0.5874 0.9966 0.2475 0.7804 0.8867 0.7939
Positive size bias test 0.4961 0.0225 0.2318 0.0901 0.2365 0.0050

Joint test 0.4079 0.1190 0.3167 0.1916 0.6733 0.1028
Information criteria

AIC −5.7363 −5.7386 −5.7843 −5.8034 −6.2979 −5.6901
SIC −5.7081 −5.7139 −5.7569 −5.7794 −6.2735 −5.6658
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Table A3. Cont.

(SPOT, OSE) (SPOT, SGX) (SPOT, CME)
Market SPOT OSE SPOT SGX SPOT CME

Panel B: nonlinear ESTECM-EGARCH
Sample A p values

Q(24) for ηt 0.5645 0.4812 0.2366 0.2510 0.9774 0.9307
Q(24) for ηt

2 0.4959 0.4975 0.8622 0.5396 0.2218 0.9683
Asymmetric tests

Sign bias test 0.1673 0.2289 0.8448 0.7068 0.4002 0.1630
Negative size bias test 0.7356 0.3109 0.3163 0.5905 0.9710 0.1784
Positive size bias test 0.4694 0.2216 0.9853 0.1442 0.8180 0.9151

Joint test 0.3598 0.1098 0.7266 0.3381 0.4380 0.3718
Information criteria

AIC −5.7883 −5.7271 −5.7978 −5.7640 −6.0472 −5.7049
SIC −5.7525 −5.7013 −5.7460 −5.7302 −5.9964 −5.6784

Sample B p values
Q(24) for ηt 0.9939 0.9915 0.9082 0.9625 0.4345 0.9174
Q(24) for ηt

2 0.6513 0.6092 0.1932 0.9482 0.6982 0.9889
Asymmetric tests

Sign bias test 0.7307 0.2921 0.6884 0.4560 0.4443 0.7734
Negative size bias test 0.4094 0.4463 0.2956 0.3747 0.5206 0.0864
Positive size bias test 0.3525 0.3495 0.4729 0.3684 0.4858 0.0647

Joint test 0.5887 0.3741 0.6004 0.2642 0.8764 0.2382
Information criteria

AIC −5.7606 −5.7689 −5.8130 −5.8409 −6.3081 −5.7454
SIC −5.7113 −5.7196 −5.7513 −5.7793 −6.2247 −5.7002

Notes: This table shows the evaluation results of the linear ECM-GARCH model (Equations (5), (11), (12)) and
the nonlinear ESTECM-EGARCH model (Equations (7), (11), (13)) for Nikkei spot–futures pairs. The pre-crisis
sample A is 28/06/1996–09/10/2008 (OSE, SGX), 09/01/1997–12/09/2008 (CME); and the post-crisis sample B is
04/11/2008–31/12/2014 (OSE, SGX), 02/12/2008–31/12/2014 (CME). Q(24) is Ljung and Box (1978) Q-statistic
up to order 24. The asymmetric test of Engle and Ng (1993) includes sign bias test, negative size bias test, positive
size bias test, and joint test.

Table A4. Model evaluation for cross-border futures pairs.

(OSE, SGX) (OSE, CME) (SGX, CME)
Market OSE SGX OSE CME SGX CME

Panel A: linear ECM-GARCH
Sample A p values

Q(24) for ηt 0.9782 0.9847 0.9249 0.9662 0.9367 0.9672
Q(24) for ηt

2 0.1350 0.1471 0.3175 0.9046 0.3488 0.9136
Asymmetric tests

Sign bias test 0.7731 0.4478 0.9395 0.8409 0.8483 0.7546
Negative size bias test 0.4631 0.6289 0.4455 0.9578 0.4840 0.9084
Positive size bias test 0.1166 0.2262 0.2303 0.2447 0.3896 0.2739

Joint test 0.0521 0.0598 0.2072 0.3050 0.4550 0.3073
Information criteria

AIC −5.6598 −5.6843 −5.9437 −5.6271 −5.9851 −5.6279
SIC −5.6171 −5.6416 −5.9031 −5.5865 −5.9445 −5.5873

Sample B p values
Q(24) for ηt 0.8260 0.8296 0.6116 0.9865 0.7823 0.9864
Q(24) for ηt

2 0.7003 0.7594 0.8349 0.6058 0.9007 0.6203
Asymmetric tests

Sign bias test 0.6755 0.5554 0.8088 0.3464 0.3284 0.1578
Negative size bias test 0.4975 0.4425 0.5481 0.4620 0.1578 0.2936
Positive size bias test 0.0255 0.0321 0.6175 0.0016 0.8324 0.0007

Joint test 0.0444 0.0546 0.6361 0.0721 0.1038 0.0432
Information criteria

AIC −5.7133 −5.7282 −6.2256 −5.6241 −6.2490 −5.6242
SIC −5.6657 −5.6807 −6.1745 −5.5766 −6.2015 −5.5766
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Table A4. Cont.

(OSE, SGX) (OSE, CME) (SGX, CME)
Market OSE SGX OSE CME SGX CME

Panel B: nonlinear ESTECM-EGARCH
Sample A p values

Q(24) for ηt 0.8606 0.8533 0.8673 0.7066 0.8523 0.7099
Q(24) for ηt

2 0.1790 0.1125 0.1352 0.9711 0.1884 0.9702
Asymmetric tests

Sign bias test 0.2163 0.2861 0.5144 0.9841 0.4697 0.9875
Negative size bias test 0.8691 0.6958 0.7365 0.6144 0.7450 0.6138
Positive size bias test 0.4882 0.4215 0.1865 0.6515 0.8729 0.6640

Joint test 0.4289 0.4913 0.5046 0.8942 0.7558 0.9009
Information criteria

AIC −5.6968 −5.7284 −5.9703 −5.6485 −6.0170 −5.6480
SIC −5.6584 −5.6985 −5.9426 −5.6207 −5.9892 −5.6202

Sample B p values
Q(24) for ηt 0.8439 0.8307 0.3985 0.9734 0.5429 0.9758
Q(24) for ηt

2 0.5630 0.7755 0.8159 0.6326 0.9840 0.8219
Asymmetric tests

Sign bias test 0.7294 0.8447 0.3969 0.1620 0.2565 0.0541
Negative size bias test 0.9428 0.9573 0.2721 0.9598 0.1822 0.1948
Positive size bias test 0.5561 0.7031 0.5831 0.0043 0.5476 0.0064

Joint test 0.8069 0.9378 0.1252 0.1150 0.1660 0.1298
Information criteria

AIC −5.7470 −5.7658 −6.3091 −5.6943 −6.3398 −5.6980
SIC −5.6995 −5.7183 −6.2469 −5.6468 −6.2777 −5.6468

Notes: This table shows the evaluation results of the linear ECM-GARCH model (Equations (5), (11), (12)) and the
nonlinear ESTECM-EGARCH model (Equations (7), (11), (13)) for bilateral Nikkei futures pairs. The pre-crisis
sample A is 17/01/1997–12/09/2008; and the post-crisis sample B is 02/12/2008–30/12/2014. Q(24) is Ljung and
Box (1978) Q-statistic up to order 24. The asymmetric test of Engle and Ng (1993) includes sign bias test, negative
size bias test, positive size bias test, and joint test.
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Figure A1. Spot–futures transition functions. Notes: (a–f) plot the Nikkei spot–futures transition
functions estimated from Equations (8) and (9). T(zt−d) on the vertical axis is plotted against zt−d on
the horizontal axis. For (f) only, since the spot γ is very large in value, the parameters are standardised
by dividing γ (θ) by the sample variance (standard deviation) of zt−d; the estimates of the futures
transition function are multiplied by 106.

Notes
1 Following the existing literature (e.g., Fung et al. 2001; Board and Sutcliffe 1996), we refer to OSE as the home market, and to SGX

and CME as the international markets, irrespective of the investors’ country of origins.
2 Our research also relates to the literature on the impact of exchange-traded funds (ETFs) on liquidity and price discovery. Several

empirical studies show that the introduction of ETFs brings positive effects due to quicker price response to news, lower costs of
ETF trading, and enhanced arbitrage across markets (e.g., Poshakwale et al. 2018; Park and Switzer 1995; Chu and Hsieh 2002;
Duffy et al. 2021; Box et al. 2021); however, other studies report illiquid markets and little improvement in cross-market price
relationships (e.g., Israeli et al. 2017; Hamm 2014; Ackert and Tian 2001). As our data run from 1996 through 2014, and the five
major Nikkei ETFs were introduced gradually over 2001–2009, we did not include them in our analysis.

3 The Globex is the first global futures and options electronic trading system that was developed for the CME; it was introduced
in 1992.

4 Nikkei futures (spot) prices are expressed as indices, which are pure numerical values without regard to currency denomination.
This differs from the actual cost of trading these assets, which is denominated in different currencies (dollars for CME futures;
yen for the other Nikkei futures and spot). Estimates of trading costs should consider exchange rate risks, but actual trading costs
are not required to study the spot–futures price relationships. For this reason, we do not make exchange rate adjustments for
Nikkei prices.

5 SGX investors were given time to adapt to electronic trading in overnight sessions and in a period when both systems were
available for trading. In our analysis we use SGX futures prices on the floor before 1st November 2004 and on the electronic
system since then. Visual inspection and Quandt–Andrews breakpoint test do not suggest any breaks in the SGX price series
around the changeover date.
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6 Nikkei price dynamics are studied in pairs (spot–futures pairs and bilateral futures pairs) for two main reasons. First, increasing
the number of markets to three would increase the number of parameters to be estimated in the ESTECM-EGARCH model to an
unmanageable size. Second, pair-wise estimation makes for more intuitive interpretation of the estimated parameters.

7 Logistic smooth transition ECM (LSTECM) has been used in some studies (e.g., McMillan 2005; Beckmann et al. 2014). The logistic
transition function has the following form: T(zt−d) = {1 + exp[−γ(zt−d − c∗)]}−1, and is monotonically increasing from 0 to 1,
implying that the error correction behaviour is independent of the size of price deviations. LSTECM can allow for asymmetric
adjustments of positive and negative price deviations, but not for the effect of transaction costs. Hence, the LSTECM is deemed
inappropriate for this paper.

8 The error correction term zt−1 should be included in both the middle and outer regimes of a complete ESTECM. In that case,
when γ = 0, Equation (7) reduces exactly to Equation (5). However, we retain zt−1 only in the outer regime, because arbitrage
would be too costly to exploit small price deviations in the middle regime, implying no error correction, while arbitrage should be
profitable for large price deviations in the outer regime, implying the existence of error correction dynamics in the outer regime.
Thus, as γ→ 0, Equation (7) reduces to a linear VAR model without the error correction term.

9 Conditions of consistency and asymptotic normality of the NLS estimates are provided by Klimko and Nelson (1978) and
Tong (1990).

10 Where necessary we use a GARCH (2, 1) model to remove excessive heteroscedasticity.
11 Where necessary we use an EGARCH (2, 1) model to remove excessive heteroscedasticity.
12 The two–step estimation approach of Chan and McAleer (2002) does not affect the consistency and asymptotic normality of the

QML estimates but may incur a loss of efficiency. Joint estimation of the complete ESTECM-EGARCH can be computationally
problematic (Chan and McAleer 2002). For comparability, the ECM-GARCH is also estimated in two steps using ordinary least
squares (OLS) for the ECM and QML for the GARCH. Occasionally the ESTECM-EGARCH model cannot converge under the
t-distribution. In those cases, we assume a normal distribution for the conditional mean and the variance, with which the NLS
(for the mean) is equivalent to maximum likelihood (for the variance).

13 This is based on an initial inspection of the Nikkei price returns and then on Quandt–Andrews breakpoint tests.
14 Results of tests for time effects are available on request. We define outliers as observations that exceed 6 standard deviations

in absolute value from the mean of each series. For spot–futures pairs, we removed 4(OSE), 8(SGX) and 2(CME) outliers; for
futures-futures pairs, we removed 4 outliers.

15 The presence of smooth transition nonlinearity should be tested by the LM-type linearity tests (Table 2).
16 The OSE, SGX trading hours are almost overlapping (Section 2). For simplicity, we only compare the time differences between the

OSE and CME.
17 This also holds when Central Daylight Time (CDT) is observed by the CME in summer. CDT reduces the OSE, CME time

differences to 14 h, so that the OSE settlement price is generated at 1.15 in Chicago on day t under the CDT.
18 We do not report the nonlinear results with the alternative time sequence for CME as it generates poorly conditioned estimates

with excessive residual autocorrelations. This may be due to the nontrading interval that occurs after the OSE overnight session
closes and before the OSE normal session opens, lasting about 6 h, when the CME is open but the other Nikkei markets are all
closed (Figure 2). Matching CME on day t − 1 with the OSE and SGX on day t includes this thinly traded period. When markets
close and reopen, clustered volatilities are often reported in response to news that arrives during the nontrading gap. Such news
in the Nikkei markets can only manifest itself via the CME during the gap when the other markets are closed; and this may vitiate
the ESTECM-EGARCH estimates.

19 Some studies calculate illiquidity using high-frequency data. However, such measure requires intraday trading data that are
unavailable in the Nikkei for long time periods.

20 The contract size is calculated as the contract multiplier by futures index at the close of the previous trading day. Because the
futures price and the trading volume are denominated in the same currency (yen or dollars), Equation (14) is invariant to the
currency of denomination.

21 Results are available on request.
22 Amihud (2002) distinguishes between expected and unexpected illiquidity and reports that expected illiquidity has a positive

effect on excess stock returns, whereas unexpected illiquidity has a negative effect. However, the distinction between expected
and unexpected illiquidity is essentially based on an arbitrary time series model.
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