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Abstract: The conventional functional form of the Constant-Elasticity-of-Substitution (CES) pro-
duction function is a general production function nesting a number of other forms of production
functions. Examples of such functions include Leontief, Cobb–Douglas, and linear production func-
tions. Nevertheless, the conventional form of the CES production specification is still restrictive in
multiple aspects. One example is the fact that the marginal effect of increasing input use always has
to be to increase the variability of output quantity by the conventional construction of this function.
This paper proposes a generalized variant of the CES production function that allows for various
input effects on the probability distribution of output. Failure to allow for this possible input–output
risk structure is indeed one of the limitations of the conventional form of the CES production function.
This limitation may result in false inferences about input-driven output risk. In light of this, the
present paper proposes a solution to this problem. First, it is shown that the familiar CES formulation
suffers from very restrictive structural assumptions regarding risk considerations, and that such
restrictions may lead to biased and inefficient estimates of production quantity and production risk.
Following the general theme of Just and Pope’s approach, a CES-based production-function specifica-
tion that overcomes this shortcoming of the original CES production function is introduced, and a
three-stage Nonlinear Least-Squares (NLS) estimation procedure for the estimation of the proposed
functional form is presented. To illustrate the proposed approaches in this paper, two empirical
applications in irrigation and fertilizer response using the famous Hexem–Heady experimental
dataset are provided. Finally, implications for modeling input-driven production risks are discussed.

Keywords: constant elasticity of substitution; production function; output risk

JEL Classification: C10; C51; D20; Q10

1. Introduction

Modeling production is a task of great importance in economics that may be con-
ducted for many different purposes, such as the investigation of input-driven output risk.
This important task is often carried out through the estimation of production functions.
Production risk is an inseparable part of the production process in many economic sec-
tors, including agriculture, in which context the empirical applications of this paper will
be provided. As such, modeling output risk is an issue of great concern in the realm of
economics. The Constant-Elasticity-of-Substitution (CES) production function is a popular
specification in the estimation of production functions. The original, familiar specification
of CES production function, as introduced by Arrow et al. (1961), is deemed to be a general
specification that nests multiple types of production functions (i.e., Leontief, Cobb–Douglas,
and linear). However, even this general specification of production functions is still restric-
tive in several aspects. This paper proposes a generalized variation of the CES production
function that allows for various input effects on the probability distribution of output.

J. Risk Financial Manag. 2023, 16, 100. https://doi.org/10.3390/jrfm16020100 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm16020100
https://doi.org/10.3390/jrfm16020100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://doi.org/10.3390/jrfm16020100
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm16020100?type=check_update&version=1


J. Risk Financial Manag. 2023, 16, 100 2 of 23

Not allowing for this potential attribute can result in misleading conclusions and false
econometric inferences about input-driven output risk. Therefore, the objective of the
present paper is to investigate the essence of input–output response within the structure
of the stochastic specification of the CES production function and generalize it in such a
way that the resulting generalized CES production function can accommodate any type of
input-driven output risk that may arise in real-world applications.

The generalization that the present paper proposes for the CES production function
has to do with its inherent inflexibility with respect to input-driven output risks. It is
common knowledge that production is a risky process that can involve various types of
risks, including input-driven risks.1 By definition, a production function is a mathematical
relationship that relates the quantity of physical output of a production process to the
quantities of its physical inputs. The deterministic specifications of production functions
do not take into account the risky nature of production processes, since they consider
production processes under certainty. In contrast, the stochastic specifications of production
functions can effectively allow for the risky nature of production processes. Despite this,
even the stochastic specifications of many commonly used production functions do not
allow for flexibly modeling input effects on the probability distribution of output. Just and
Pope (1979) have illustrated this inflexibility for the case of the Cobb and Douglas (1928)
production function. However, the present paper attends to the CES production function,
and it attempts to investigate and overcome a similar shortcoming for the case of the CES
production function.

Arrow et al. (1961) introduced the CES production function for the first time and
used it as a tool to investigate capital–labor substitution and economic efficiency. Uzawa
(1962) used CES production functions to accommodate different elasticities of substitution
in his specification, characterizing the class of production functions for which elasticities
of substitution are all constant. Kmenta (1967) made one of the first and most serious
efforts for the empirical estimation of the CES production function by providing estimation
procedures applicable to the generalized version of the CES function, which allowed for the
possibility of different non-constant returns to scale. Sato (1967) proposed the nested CES
production function by devising a two-level CES production function. De La Grandville
(1989) normalized the CES production function for a macroeconomic application to study
economic growth, indicating that aggregate growth is faster and more sustainable once the
elasticity of substitution between labor and capital is greater. León-Ledesma et al. (2010)
normalized the CES production function and used a Monte Carlo analysis to characterize
the conditions under which the identification of the CES function is viable and robust.

In addition to the usage of the CES specification as a production function, some
scholars have also used the CES specification as a utility function, for example, Baumgärtner
et al. (2013). Henningsen and Henningsen (2011) created an R package called micEconCES
to facilitate the econometric estimation of the CES production and utility functions using the
popular statistical software R. Zeytoon-Nejad et al. (2022) generalized the CES production
function to allow for the inclusion of input thresholds within the structure of the CES
production function. Jo and Miftakhova (2022) made use of the CES production function
with an application in environmental economics, aiming to challenge the assumption of an
exogenous, constant elasticity of substitution. Despite all the developments regarding the
CES production function over its rather long lifetime and history, no one has ever attended
to its risk implications, in particular its built-in construct of input-driven output risk, which
is in fact the main purpose of the present paper.

Accordingly, the main objective of the present paper is to explore econometric possi-
bilities for the CES production-function specification with typical risk implications. Indeed,
this study considers the appropriate specification of the CES production function under
risk and uncertainty. It is argued that the popular CES formulation of stochastic production
functions is very restrictive for many cases in which modeling risk of production in the
production function is of importance. In fact, when the CES production specification does
not allow for various possible input effects on the probability distribution of output, the
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utilization of the CES production function imposes a strong structural assumption about
input effects on the probability distribution of output (i.e., the marginal effect of increasing
input use ∂Var(y)/∂xi must always be to increase the variability of output), where “y”
denotes output and “xi” denotes input i. However, in reality, a reduction in the usage of
some inputs (e.g., insecticides, herbicides, and irrigation in some cases) may cause more
variable production.2

The remainder of this paper will proceed as follows. Section 2 is devoted to providing
background on stochastic production functions in general and on the CES production
function in particular and presenting the shortcoming of this production function with
respect to its inflexibility regarding input effects on the distribution of output. Afterwards,
a more generalized model specification is provided to overcome this deficiency, and the
related estimation procedure is discussed. Section 3 introduces the empirical applications
of the study, describes the data used in the analysis, and elaborates on the application of the
methodology proposed in this paper. In addition, the results of the empirical applications
and estimations are reported and discussed in this section. In Section 4, a conclusion is
drawn, and plans for future research are discussed. Lastly, the paper ends with appendices
to explain the derivations, procedures, estimations, and methods in greater detail.

2. Proposed Model and Estimation Method

Modeling production is an important undertaking in economics. It may be conducted
for different purposes, including, but not limited to, addressing allocative efficiency in
the usage of inputs in production, investigating the scale optimality of a production
process, studying the productivity levels of various inputs over time, and evaluating and
predicting the effects of government policies surrounding production-related regulations.
This important task is often carried out through the estimation of production functions.

Production risk is an inseparable part of the production process in agriculture. As
such, modeling output risk is an economic issue of great concern, because not only does the
level of risk involved in a production process influence the optimal decisions to be made by
economic agents, it may also determine the insurance premiums related to the production
process as well as the interest expenses on the loans to be given to the production process
of interest.

The formal specification of the CES production function is a popular specification
in the estimation of production functions, but it is incapable of accommodating various
types of input-driven output risk. In this section, we elaborate on this shortcoming of the
CES production function and propose a generalized variant of the CES specification that
overcomes this shortcoming.

The problem of examining stochastic facets of production response has been studied
by some scholars in the past. For instance, Just and Pope (1979) have done so for the
case of multiplicative production functions in general and for Cobb–Douglas and Translog
production functions in particular. As another example, Asche and Tveterås (1999) have
done so for the case of linear quadratic functional forms. Nonetheless, thus far, no one has
paid adequate attention to the case of the CES production function. This is true of both
theoretical and empirical studies.

As shown in this paper and particularly in this section, the CES production function,
by construction, suffers from unrealistic structural assumptions concerning input-driven
production risks. As a result of this inconsistency with some real-world phenomena, nearly
all empirical and theoretical studies in which the CES production function is used as a
tool to model the production process make implicit assumptions that increasing inputs
usage always increases output risk. However, in reality, this is not necessarily true. It is
evident that although increasing the quantity of some inputs (such as some fertilizers and
land, ceteris paribus) can increase output risk, there are a number of other inputs (such
as insecticides, herbicides, and irrigated acreage) whose increased quantities can reduce
the level of output risk. To develop a general CES production function that allows for
either of these possibilities, one can take advantage of the seminal estimation approach
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proposed by Just and Pope (1979). According to Just and Pope (1979), to attain such a
generality, an adequate production-function specification should include two separate
functions, one of which specifies the effects of input on the mean of output quantity, while
the other specifies the effects of input use on the variance of output quantity. This section
attends to this shortcoming of the CES production function and proposes a variation of the
CES production function that overcomes the mentioned shortcoming.

In short, this section aims to examine the implications of the original econometric
specification of the CES production function when input-driven output risk is of importance.
In this section, a generalized variation of the CES production function for the estimation
of its stochastic specification is proposed, and its generality in reflecting the risk effects
of input use is illustrated. Finally, the respective estimation procedures are outlined. The
functional form proposed in this paper is sufficiently general to embrace all the implications
of the original CES production function but avoid the above-described shortcoming and
unrealistic assumption that the original CES production-function specification imposes.

The traditional CES production function takes the following generic mathematical form:

y = A

[
∑

i
αixr

i

] 1
r

eε (1)

where y is output quantity, xi is the quantity of input i and is always positive (xi > 0 ∀i), αi is
the share parameter of input i and is always positive (αi > 0 ∀i), A is the level of total factor
productivity or TFP (A > 0), r is a function of the elasticity of substitution (i.e., r = (s− 1)/s,
and s is the elasticity of substitution), and ε is a stochastic disturbance, with E(ε) = 0 and
Var(ε) > 0. Now, the variance of output quantity can be calculated as the following:

V(y) = A2

[
∑

i
αixr

i

] 2
r

V(eε) (2)

Now, one can simply compute the marginal effect of input use on production variabil-
ity as the following:

∂V(y)
∂xi

= 2A2αi

[
∑

j
αjxr

j

] 2
r−1

xr−1
i V(eε) > 0 (3)

Therefore, due to the structure of the CES production function, the marginal effect
of increasing input use always has to be to increase the variability of output quantity as
long as the relevant αi is positive. (Note that when marginal productivity is positive, αi
must be positive.) In practice, employing the commonly used formulation of the CES
production function as reported in Equation (1) has some practical implications that are
not in accordance with some real-world, economic phenomena. Following the example
given by Just and Pope (1979), we consider the policy evaluation of limiting the usage of
pesticides. Given the structure of the CES production-function specification introduced by
Equation (1), a decrease in pesticide usage would imply a necessary reduction in output
variability, according to Equation (3). However, in the real world, a reduction in the amount
of pesticide used may result in more variable production (i.e., production with higher
variance). Other examples of such an inconsistency between the theory produced by the
CES production function and practice in the real world could include using large and fast
harvesting equipment3, applying frost and freeze protection tools (e.g., cloth covers, plastic
covers, chemicals sprays, and smudge pots), and irrigated acreage.

Imposing this structural assumption, which is not necessarily true and overly restric-
tive, may cause some problems when it comes to making optimal decisions and formulating
government policies. By definition, risk aversion is a preference for a sure (certain) outcome
over a lottery with greater or equal expected value. Accordingly, a risk-averse agent is
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one that gains utility as a result of reducing outcome risk (here, “output” risk). However,
in modeling production risk of inputs usage (such as pesticide) that reduces output risk,
the original functional form of the CES production function incorrectly reports increased
output risk, which in turn may result in making incorrect production-related decisions
at an individual level as well as misleading conclusions on government policies about
production-related regulations. To clarify matters and exemplify this issue, think of a
risk-averse farmer. In this case, when the farmer increases the quantity of pesticide, the
variability and risk of production are decreased. Since there is less risk involved now, the
risk-averse farmer should gain some extra utility. However, the CES function, by construc-
tion, incorrectly reports an increase in the variability and risk of production (as Equation (3)
implies), which will be translated as a utility loss associated with the incorrectly reported
higher risk.

Additionally, the marginal effect of input quantity on the variability of marginal
productivity can be investigated both in theory (derived from the CES production function)
and in application (in real-world practices). To this end, the marginal productivity of input
i within the context of the CES production function can be calculated as the following:

∂y
∂xi

= Aαi

[
∑

j
αjxr

j

] 1
r−1

xr−1
i eε (4)

Furthermore, the variance of the marginal productivity of input i can be computed
as follows:

V
(

∂y
∂xi

)
= A2α2

i

[
∑

j
αjxr

j

] 2
r−2

x2(r−1)
i V(eε) (5)

Now, one can simply obtain the marginal effect of input quantity on the variability of
marginal productivity as the following:

∂V
(

∂y
∂xi

)
/∂xi = 2A2α2

i

[
∑

j
αjxr

j

] 2
r−3

x2r−3
i (r− 1)

[
∑
j 6=i

αixr
i

]
V(eε) < 0 (6)

If we assume that the CES production function specified in Equation (1) exhibits
diminishing marginal product with respect to input i (which is a reasonable, conventional
assumption, implying the concavity of the production function, or in fact the concavity of
E(y) in xi), then the marginal effect of increasing input quantity is to necessarily decrease
the variability of marginal productivity, which is not necessarily true in some real-world
practices. In many realistic applications, the marginal effect of increasing input quantity
could be to increase the variability of marginal productivity. A typical example of inputs
of this sort is land, as explained by Just and Pope (1979). It is known that when a farmer
increases the land acreage, ceteris paribus, the variability of the marginal productivity of
land increases. According to Radner and Rothschild (1975), when a farmer operates on a
larger land area, holding the other inputs constant, his or her production is more subject to
adverse weather conditions during vital phases of production such as harvesting (during
which crop is highly sensitive) and planting (during which seeds are highly sensitive).
In brief, the decreasing marginal effect of increasing input quantity on the variability of
marginal productivity is an overly restrictive structural assumption inherent in the original
specification of the CES production function. Thus, it should be generalized somehow in
order that it can accommodate many real-world situations better and more effectively.

To achieve the two important goals mentioned above, a more general stochastic
specification should be proposed that is free of the two a priori restrictions. As Just and
Pope (1979) argue, “the effects of input on output should not be tied to the effects of input
on variability of output a priori”. Following their seminal approach to overcoming such
specification issues, one can work with a sensible production-function specification that
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include two separate functions, one of which specifies the effects of input on the mean of
output quantity, while the other specifies the effects of input use on the variance of output
quantity. As they have shown, such a production-function specification takes the following
generic form:

y = f (X) + h
1
2 (X)ε, E(ε) = 0, V(ε) = 1 (7)

Therefore, after this transformation, E(y) = f (X) and V(y) = h(X).4 As a result, the effects
of input on output and marginal output are no longer tied to the effects of input on the
variability of output and marginal output a priori.5

Following Arrow et al. (1961) and Just and Pope (1979), a generalized version of the
classical CES function with two inputs that allows for different types of input-driven output
risks would take the following functional form:

y = A[α1xr1 + α2zr1 ]
1
r1 + B[β1xr2 + β2zr2 ]

1
2r2 ε (8)

In what follows, an econometric approach will be put forth that outlines how to deal
with the shortcoming characterized in Section 2. This generalization can also be applied
and extended to other generalizations of the CES production function.6

The CES production function is inherently nonlinear in parameters. As such, it cannot
be linearized analytically, and thus, it is impossible to estimate its formal specification
using the common linear estimation methods. Therefore, the CES production function
is often estimated by Nonlinear Least-Squares (NLS) estimation method, or alternatively,
it is approximated by certain approximation methods, such as the so-called “Kmenta
approximation”, as put forth by Kmenta (1967), or “Uebe approximation”, as proposed
by Uebe (2000), which is still a second-order Taylor series expansion but slightly different
from that of Kmenta, both of which can be estimated by linear estimation methods.7 After
all, since our focus in this paper is on the shortcomings of the original CES production-
function specification, and also because the most straightforward way to estimate the CES
production function is often the NLS method using different optimization algorithms,8 we
do not use the approximation methods with linear estimation approaches, and instead we
work directly with the nonlinear CES production-function specifications and estimate them
using the NLS method. The functional form of the CES that is usually estimated by the
NLS method is as follows:

ln(y) = ln(A) +
1
r1

ln[α1(x)r1 + α2(z)r1 ] + ε (9)

As for the generalized variation of the CES production function that allows for input
thresholds, one can likewise use the NLS method for the estimation of the following
functional form:

ln(y) = ln(A) +
1
r1

ln
[
α1(x− b1)

r1 + α2(z− b2)
r1
]
+ ε (10)

As for the generalized variation of the CES production function that allows for the
flexibility of input-driven output risk, we follow Just and Pope (1979)’s approach. If one
considers Equation (7) and those reported in Appendix A, Just and Pope (1979)’s approach
can be summarized through the following three-step estimation procedure:

(1) An NLS regression of yt on f (Xt, α), obtaining α̂.
(2) An NLS regression of (ε̂∗)2 = (yt − f (Xt, α̂))2 on h(Xt, β), obtaining, β̂.
(3) An NLS regression of y∗t = yth−1/2(Xt, β̂) on f ∗(Xt, α) = f (Xt, α)h−1/2(Xt, β̂), ob-

taining α̂.

[Appendix B provides greater details on the specifics of this three-step estimation approach.]
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3. Empirical Results and Discussion

Although production functions such as the CES are per se “technical” relationships
between input quantities and output quantities, adding the above-mentioned real-world
economic component while retaining its conventional desired properties will enrich the eco-
nomic implications of this production function. This paper aims to enhance the economics
of the CES production function by adding this supplementary risk aspect to the standard
form of the CES production function, thereby allowing for the flexibility to account for
different types of input-driven output risks. We allow for this generalization in empirical
applications using several field trials from the famous Hexem and Heady (1978) dataset
that contains experimental data on irrigation and fertilizer response.

This section presents two empirical applications in order to provide empirical support
for the generalization introduced in this paper (i.e., the flexibility of input-driven output
risk) for generalizing the classical CES production function. The well-known Hexem–Heady
experimental dataset is used for our empirical purposes. The Hexem–Heady yield dataset
has been created for several crops through controlled experiments by varying nitrogen
and irrigation over multiple fixed levels and over a few years. These data are useful for
exemplifying the generalization proposed in this paper for three reasons: First of all, there
will not be any problems of multi-collinearity in this dataset. Secondly, there will not be any
problems related to endogeneity in this dataset, as the experimental design is orthogonal.
Third, it will be feasible to concentrate on each input separately when investigating their
risk effects, as it is a controlled experiment. The dataset consists of a cross-section of several
experimental plots over a few years. This dataset was generated with a cross-section of
experimental plots. As the plots of each crop/location were located in the same site, the
plots are very close to each other, so we do not need to specify any dummy variables for
plot. Additionally, the plot attributes were not recorded during the course of data collection,
so it is not even possible to specify plot dummies. However, as plots are impacted by the
same weather-related conditions each year, time effects are very likely to be of importance
in this dataset. Therefore, we need to include year dummies to pick up time effects and
differences across years. We use Hexem–Heady experimental datasets for wheat at Yuma
Mesa, AZ, as well as corn in Colby, KS. Table 1 provides the descriptive statistics of the
variables existing in the above-mentioned datasets.

Table 1. Descriptive Statistics of Variables Used for Estimating CES Production Functions by Just and
Pope’s Approach.

Experiment
Station/Crop

Year(s) Variables Number of
Observations

Mean
Sample Summary Statistics

Standard
Deviation Minimum Maximum

Yuma Mesa, AZ Water 88 25.23 8.66 12.0 42.4
/Wheat 1970–1971 Nitrogen 88 155.68 108.26 0.0 325.0

Yield 88 2207.89 1449.66 479.0 6050.0

Colby, KS Water 88 15.12 5.47 8.2 27.6
/Corn 1970–1971 Nitrogen 88 180.00 139.16 0.0 360.0

Yield 88 6391.16 2292.84 956.0 10,409.0

Note: The measurement units of the variables of interest are as follows water (acre-inches), nitrogen (pounds per
acre), wheat yield (pounds of wheat per acre), and corn yield (pounds per acre of corn grain). Due to the fact
that the CES production-function specification converges to a multiplicative functional form as the parameter r
approaches zero ( r → 0 ), it makes sense to consider nonzero values for input quantities. Hence, 1 was added to
all of the numerical values of nitrogen in the estimations, in order to avoid potential technical issues when the
CES production-function specification converges to a multiplicative form.

In order to estimate the generalized variant of the CES production function that makes
full allowance for different types of input-driven output risks, as explained in Section 2,
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following Arrow et al. (1961) as well as Just and Pope (1979), and considering the specific
features of the dataset of interest, we can estimate the following functional form:

yti = A[α1xti
r1 + α2zti

r1 ]
1
r1 + B[β1xti

r2 + β2zti
r2 ]

1
r2 (εti + ωt) (11)

Just and Pope (1979) have introduced and taken this approach for the first time to
estimate Cobb–Douglas and Translog production functions, while we have used their
approach to estimate CES production functions, which is considered to be a more general
production-function specification. Nobody has thus far applied Just and Pope’s approach to
the CES production function, which per se is considered to be a general production function,
nesting Cobb–Douglas, Leontief, and linear functions as its special cases. Estimating
such a general production function through Just and Pope’s approach will enrich the
CES production specification by generalizing it one step further, in the sense that the
resulting generalized variant of the CES will account for the flexibility of input-driven
output risk, the absence of which is a shortcoming of the classical CES production-function
specification. Additionally, Just and Pope (1979) consider only one input (i.e., fertilizer)
in their production-function specifications, while we consider two inputs (i.e., irrigation
water and nitrogen), each of which could potentially have a different risk implication. We
have done so because we believe that it would be more interesting to see the workings and
applicability of their general approach when more than one input is involved in modeling
the production process of interest.

Equation (11) is, in fact, an equivalent version of Equations (7) and (8) for the CES
production-function specification, although it has been modified to account for the fact that
the data are generated experimentally by a cross-section of time series, where potentially
the same random phenomena (e.g., weather-related variables) have affected all the con-
temporaneous observations. Under such circumstances, time effects can alternatively be
captured through the use of time-dummy variables that represent different time periods.9

For this reason, our model is augmented with a time-dummy variable. Thereby, we no
longer have to deal with the t subscripts, since we have added the time aspect of the data
to the model as a year dummy. Therefore, we end up with the following equation:

yi = AeA1971D1971 [α1xi
r1 + α2zi

r1 ]
1
r1 + BeB1971D1971 [β1xi

r2 + β2zi
r2 ]

1
r2 εi (12)

By using logarithms in a stage-by-stage fashion10, the above equation turns into the
following logged functional form:

ln(yi) = {ln(A) + A1971D1971 +
1
r1

ln[α1xi
r1 + α2zi

r1 ]}+ {ln(B) + B1971D1971 +
1
r2

ln[β1xi
r2 + β2zi

r2 ] + εi} (13)

Henningsen and Henningsen (2011) emphasize that a CES production function must
be consistent with economic theory, so it is desired to assume that the summation of the
factor shares is equal to unity. We make this assumption for its theoretical support as
well as to control the potential exotic behavior of the CES production function due to its
nonlinear nature and the parameter r that exists within the exponent of the function. We
do not impose any other restrictive assumptions in our estimations of the CES production
functions in this section, mainly because a primary aim of the present paper is to generalize
the essentially general production function, i.e., the CES production function.

Following the same estimation procedure as outlined in Section 2 and elaborated
further in Appendix B, we estimated our generalized CES production-function specification.
Table 2 reports the NLS estimates pertaining to the first stage of the estimation procedure
of the generalized CES function for wheat at Yuma Mesa, AZ, as well as corn in Colby, KS.
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Table 2. First-Stage Estimates of the Deterministic Component of Production Modeled by the CES
Specification.

Crop Station
Constant

Term
Year

Dummy Coefficients

ln(A) A1971 r1 Alpha1 Alpha2

Wheat Yuma Mesa, AZ Estimate 3.4554 *** 0.8805 *** 0.4094 0.7840 *** 0.2160 ***
Standard Error (0.0872) (0.1007) (0.2560) (0.0339) (0.0339)

Corn Colby, KS Estimate 5.7330 *** −0.1577 * 0.4441 * 0.8855 *** 0.1145 ***
Standard Error (0.0760) (0.0683) (0.1932) (0.0249) (0.0249)

Asterisks (*, **, and ***) show statistical significance at the 5%, 1%, and 0.1% levels, respectively (i.e., * p < 0.05,
** p < 0.01, *** p < 0.001).

As reported in Table 2, all the estimates are statistically significant and economically
meaningful (even the estimate of r1 for wheat is statistically significant, at a significance
level close to 10%). For both crops, the r parameters are somewhat close to zero, implying
that the elasticity of substitution falls in the neighborhood of 1, indicating that the pro-
duction function is fairly close in form to the case of Cobb–Douglas. More precisely, the
shapes of the estimated CES production functions fall between the Cobb–Douglas and
linear specifications (with 0 < r < 1 or 1 < s < +∞), implying that water and nitrogen are
relative substitutes in both cases. Regarding the factor-share parameters, for both crops,
the share of water is considerably larger than that of nitrogen.

This is indeed the endpoint of the first stage of the estimation procedure. As explained
in Appendix B, when the main objective of the estimation is to gain a general understanding
of solely f (Xt, α) (i.e., the “mean” of output), the end of the first stage can be viewed as the
endpoint of the estimation and analysis. Nonetheless, there are several potential rationales
for proceeding to the second and third stages as well. As outlined by Just and Pope (1979),
such reasons can include the following: (1) learning more about the marginal effect of inputs
use on output risk, (2) performing more reliable hypothesis testing if there is a possibility of
heteroscedasticity, and/or (3) gaining more efficiency in estimation, at least asymptotically. As
one of the primary goals of the present paper is to explore the marginal effects of inputs use
on output risk, we certainly have to proceed to the second and third stages of the estimation
procedure as well; however, we examine the possibility of heteroscedasticity in the dataset
to possibly find additional reasons to proceed to the second and third stages. As reported in
Appendix C and shown in Figures A1–A4, our investigation on heteroscedasticity indicates that
(1) there exists a sizable degree of heteroscedasticity in the data, implying that any statistical
inference based on the results of the related regression model could be imprecise, and more
importantly, (2) the type of the existing heteroscedasticity in most cases is decreasing in inputs,
which cannot be addressed and accounted for accurately when one uses the original CES
production-function specification, as shown and proved in Section 2 by Equation (3). To resolve
these issues, we need to take the analysis to the second and third stages in order to develop
a precise understanding of the true effects of inputs use on output mean and variance, as
proposed by Just and Pope (1979).11

Table 3 contains the NLS estimates of the second-stage estimation of Just and Pope’s
procedure, which investigates the effect of inputs use on the variability (i.e., variance) of
output for the case of wheat production at Yuma Mesa, AZ, as well as corn production in
Colby, KS. As such, the results obtained from the second-stage estimation are not associated
with a regular, classical production function, which is typically concerned mostly with
the mean of output. In other words, the results reported in Table 3 are associated with a
production variability function, and therefore, the usual economic-theoretical conditions that
normally must hold true for any production (mean) function (e.g., positive factor shares)
do not have to necessarily hold true for the production variability function estimated in the
second stage and reported in Table 3.12
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Table 3. Second-Stage Estimates of the Stochastic Component of Production Modeled by the
CES Specification.

Crop Station
Constant

Term
Year

Dummy Coefficients

ln(B) B1971 r2 Beta1 Beta2

Wheat Yuma Mesa, AZ Estimate −6.0578 *** 0.9224 *** −0.2797 1.0430 *** −0.0430 ***
Standard Error (0.0870) (0.0470) (0.3755) (0.0122) (0.0122)

Corn Colby, KS Estimate −4.4035 *** 0.3236 −0.2535 1.0219 *** −0.0219 *
Standard Error (0.3805) (0.1664) (2.3711) (0.0110) (0.0110)

Asterisks (*, **, and ***) show statistical significance at the 5%, 1%, and 0.1% levels, respectively (i.e.,
* p < 0.05, ** p < 0.01, *** p < 0.001).

As mentioned earlier, the results reported in Table 3 are related to production variabil-
ity functions and not related to production (mean) functions. In other words, the classical,
theoretical conditions desired for production functions must hold for an estimation spec-
ification that represents the mean of a production process, while the functions estimated
at the second stage represent the variance of a production process. Therefore, the fact that
the signs of the estimated betas are negative or the magnitudes of betas are greater than
one in some cases is not troubling at all in the second stage. The estimated beta coefficient
(βi) can be interpreted as the marginal effect of input i on output “variability”. As such,
unlike an estimated factor share (αi), which is always assumed to be positive (αi > 0 ∀i) in
the relevant range, estimated beta coefficients can meaningfully be positive or negative. As
shown in Table 3, the marginal effect of water on yield variability for the cases of both wheat
and corn in the related regions is statistically significantly positive, while the marginal effect
of nitrogen use on yield variability for the cases of both wheat and corn has been estimated
to be trivially negative and very close to zero.13 Our results about nitrogen’s effect are in
line with that of Just and Pope (1979)’s empirical application of oats using the well-known
Day dataset, in which the marginal effect of fertilizer use on oats yield variability turned
out to be negative in their estimated Translog production function. The findings reported in
Table 3 can be interpreted as follows. In the datasets of interest, increasing water irrigation
causes the variance of output to increase, while increasing nitrogen use, on average, causes
almost no change in the variance of output. When these results are compared with the
actual data (through a scatterplot that depicts the relationship between the data on inputs
and yield), it becomes apparent that these findings are intuitive and accurate. Figure 1
provides such visual checks.14
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As clearly depicted by Figure 1, for the case of wheat at Yuma Mesa, AZ, the variance
of wheat yield is greater for greater values of water than that for smaller values of water,
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meaning that increasing irrigation water use causes the variance of output to increase.15

However, roughly speaking, the variance of yield is larger for intermediate values of
nitrogen than that for extreme values of it. These two offsetting forces imply that increasing
nitrogen use, on average, causes no significant change in the variance of wheat yield at
Yuma Mesa, AZ. In other words, the two scatterplots above indicate that water has an
increasing effect on the variability of output (i.e., wheat yield) and nitrogen has almost no
effect on the variability of wheat output, both of which are exactly consistent with beta
estimates reported in Table 3.16 Figure 2 provides similar visual checks but for the case of
corn in Colby, KS.
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Figure 2. Scatterplot of Yield versus Input Values for Corn in Colby, KS.

As evidently showed by Figure 2, for the case of corn in Colby, KS, the variance of corn
output quantity is larger for larger values of water than that for smaller values of water,
implying that increasing irrigation water use causes the variance of output to increase.17

However, roughly speaking, the variance of yield is smaller for intermediate values of
nitrogen use than that for very small and very large values of it, causing an hourglass-shaped
heteroscedasticity form. These two opposite effects imply that increasing nitrogen use, on
average, causes no significant change in the variance of corn yield in Colby, KS.18 In sum,
the two scatterplots above indicate that water has an increasing effect on the variability of
corn yield and nitrogen has a trivial, negative effect on the variability of corn yield, both of
which are exactly consistent with beta estimates reported in Table 3.

As explained by the sign determination of Equation (6), the traditional CES, by con-
struction, is not capable of addressing decreasing heteroscedasticity, which is true of nitrogen
for both of the empirical applications of the present paper, although they are slightly neg-
ative. As a result, we need to disjoin the effect of the marginal use of input on the mean
of output from that on the variability of output, as suggested by Just and Pope (1979) and
explained previously. The next step to achieve this goal is to estimate the third stage of Just
and Pope’s approach. Table 4 reports the results of the third-stage estimation.
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Table 4. Third-Stage Estimates of the Deterministic Component of Production Modeled by the
CES Specification.

Crop Station
Constant

Term
Year

Dummy Coefficients

Ln(A) A1971 r1 Alpha1 Alpha2

Wheat Yuma Mesa, AZ Estimate 3.0302 *** 0.6231 *** −5.5546 0.0011 0.9989 ***
Standard Error (0.0656) (0.0696) (4.6459) (0.0060) (0.0060)

Corn Colby, KS Estimate 4.5437 *** 0.1516 ** −1.3264 * 0.0876 0.9124 ***
Standard Error (0.3129) (0.0493) (0.6021) (0.1216) (0.1216)

Asterisks (*, **, and ***) show statistical significance at the 5%, 1%, and 0.1% levels, respectively (i.e., * p < 0.05,
** p < 0.01, *** p < 0.001).

The third-stage estimates have been made such that they account for (1) the het-
eroscedasticity existing in the dataset as well as (2) the inability of the CES production-
function specification to account for decreasing input-driven output risk. As a result, the
estimates are somewhat different from those obtained in the first stage. The differences can
be justified by understanding the fact that the factor-share estimates of the first stage are
obtained in such a way that they contain information about both the mean and variance
of output (i.e., as proxies for output means, they are confounded by the effect of output
variance as well), while the factor-share estimates of the third stage are obtained under
the condition that they contain information only about the net effect of inputs use on
output means and not output variance anymore (i.e., as proxies for output means, they
are no longer confounded by the effect of output variance). This is because the output
variance was separately attended to and addressed in the second stage and before arriving
at the third stage, so that effect was captured in the second-stage estimation and was not
carried over into the third stage. Therefore, it does not make much sense to compare the
results of the first stage and the third stage, and even if one intends to do so, they should
compare the results of the first stage with those from the combined results of the second
and third stage, which corresponds to the production-function specification introduced by
Equations (8) and (12).

Furthermore, it is interesting to compare the standard-error estimates reported in
Tables 2 and 4 (even though they only apply asymptotically). It is readily found that, except
for constant terms, standard-error estimates are, in most cases, greater in Table 4 than in
Table 2. However, the third-stage estimator is asymptotically efficient and thus possesses
lower standard errors (asymptotically) than the first-stage estimator, as elaborated by Just
and Pope (1979). That is to say, the true standard-error estimates reported in Table 2 (of
the first stage) should be larger than those reported in Table 4. In fact, the standard-error
estimates listed in Table 2 are not applicable under the general stochastic specification
used in Table 4 estimates. In spite of this fact, unfortunately, in econometric practice,
it is often the case that econometricians unrealistically assume homoscedasticity when
risk facets of a study are presumed unimportant or information to the contrary is not
readily apparent, as discussed by Just and Pope (1979). The comparison of Tables 2
and 4 demonstrates and exemplifies the possible hazard of assuming homoscedasticity
when such an assumption does not hold true in reality. That is, when Just and Pope’s
approach to modeling production (i.e., Equation (7)) is taken, the conventional practice of
assuming homoscedasticity (which may or may not align with reality) could correspond
to the estimates resulting from the first stage of Just and Pope’s estimation procedure.
However, the resulting statistics from the first stage would be misleading and suggest far
more precision in estimation than what is indeed warranted, as illustrated through the
comparison of Tables 2 and 4. Therefore, employing the original CES production-function
specification in modeling production risk can incorrectly report input-driven output risks,
which in turn may result in making incorrect production-related decisions at an individual
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level as well as misleading conclusions about government production-related policies
and regulations.

4. Summary and Conclusions

The CES production function is one of the most popular production functions in
economics. This is primarily because of the high level of flexibility and generality that it
provides compared to those of other production functions. However, the CES production
function is still restrictive in that its construction allows only for modeling production
contexts in which increasing inputs usage increases output risk. This paper generalizes the
CES production function to allow for the flexibility of input-driven output risk. Accordingly,
the objective of the paper is to investigate input–output response within the structure of
the stochastic specification of the CES production function and generalize it in such a
way that it accommodates various types of input-driven output risk. Not allowing for
catering to various types of input-driven output risk is indeed a shortcoming of the classical
CES production-function specification, which in turn could lead to invalid conclusions
and false inferences about the essence of input-driven output risk. The paper starts with
providing theoretical reasoning and motivations for the generalized variation of the CES
production-function specification to be introduced, and afterwards, it continues with
providing empirical applications and support for the generalization proposed.

It is shown that the familiar CES formulation suffers from very restrictive structural
assumptions regarding risk considerations. As a result, nearly all empirical and theoretical
studies in which the CES production function is used as an instrument to model production
processes make implicit assumptions that increasing inputs usage always increases output
risk. However, in reality, this is not necessarily true. It is further shown that such restrictions
may lead to biased and inefficient estimates of production quantity (i.e., mean) and produc-
tion risk (i.e., variance). Following Just and Pope (1979), a production-function specification
that overcomes this shortcoming of the CES production function (in which the effects of
input on output are no longer tied to the effects of input on variability of output a priori) is
introduced, and a three-stage Nonlinear Least-Squares (NLS) estimation procedure for the
estimation of the proposed functional form is presented. To illustrate the practicability of
this generalization in real-world applications, two empirical applications are provided. Just
and Pope (1979) have illustrated this inflexibility for the case of Cobb–Douglas production
function and have provided empirical applications for production functions with only one
single input. However, the present paper attends to the CES production function, attempts
to investigate and overcome the same shortcoming for the case of the CES production
function, and additionally, considers two inputs (i.e., irrigation water and nitrogen), each of
which could potentially have a different risk implication, in order to better see the workings
and applicability of the approach when more than one input is involved.

As shown in this paper, the estimates from this generalized approach to estimating
the CES specification have been made such that they account for (1) the heteroscedasticity
existing in the dataset as well as (2) the inability of the CES production-function specification
to account for decreasing input-driven output risk. As a result, the estimates are somewhat
different from those obtained from the estimation of the original CES specification, mainly
due to the fact that the factor-share estimates of the first stage are obtained in such a way
that they contain information about both the mean and variance of output (i.e., as proxies
for output means, they are confounded by the effect of output variance as well), while
the factor-share estimates of the third stage are obtained under the condition that they
contain information only about the net effect of inputs use on output means and not output
variance anymore (i.e., as proxies for output means, they are no longer confounded by the
effect of output variance). This is because the output variance was separately attended to
and addressed in the second stage and before arriving at the third stage, so that effect was
captured in the second-stage estimation and was not carried over into the third stage.

Furthermore, the standard-error estimates are compared, leading to the conclusion that
except for constant terms, standard-error estimates are, in most cases, greater than those
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from the original CES specification. However, the third-stage estimator is asymptotically
efficient and thus possesses lower standard errors (asymptotically) than the first-stage
estimator, as elaborated by Just and Pope (1979). That is to say, the true standard-error
estimates of the original CES function should be larger than those estimated through our
generalized CES specification. Therefore, the standard-error estimates resulting from the
original CES specification are not applicable under the general stochastic specification of
the CES production function. Therefore, the resulting statistics from the estimation of the
original CES production-function specification may be misleading, suggesting much more
precision in estimation than what is indeed warranted.

To sum up, we suggest that production modelers who intend to estimate the CES
production-function specification should estimate the generalized variation of the CES
specification proposed in this paper when risk considerations are important and het-
eroscedasticity is troublesome. If neither of the above-mentioned problems is a cause for
concern in the setting of their analyses, then they should use the original CES specification.
Additionally, Moosavian (2019) and Zeytoon-Nejad et al. (2022) have provided a general-
ized variant of the CES production function that accommodates input thresholds within
the structure of the CES production function. In future research, modelers can employ the
joint estimation of both the generalization introduced in this paper and that introduced
by Moosavian (2019) and further discussed by Zeytoon-Nejad et al. (2022) if both of the
aspects mentioned above are of great concern at the same time. Another possible reason
for doing so could be that input thresholds and input-driven output risk can justifiably
be thought of as two interconnected and interdependent aspects, and thus, one may want
to reasonably investigate the two mentioned generalizations simultaneously and jointly.
Zeytoon-Nejad et al. (2022) provide an appendix detailing the technical aspects of such a
joint estimation. Another interesting area for future research can be applying the idea of
a nested CES model to the model proposed in this paper when there are more than two
inputs in order to overcome the technical complications that may arise when more than
two inputs are included in production functions. As an additional suggestion for future
research, the model proposed in this paper can also be applied to the approximation forms
of the CES model such as Translog, which is an approximation of the CES function through
a second-order Taylor expansion.

All in all, although production functions such as the CES are per se “technical” rela-
tionships between input quantities and output quantities, generalizing the CES to allow
for the above-introduced components and real-world economic concepts while retaining
its conventional desired properties will enrich the economic implications of this produc-
tion function. This paper attempted to enhance the “economics” of the CES production
function by adding these supplementary economic aspects to the standard form of the
CES production function. We explored and proposed econometric possibilities for the CES
production-function specification to allow for the flexibility to account for different types
of input-driven output risks.
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Appendix A. The Verification of the Main Properties of Just and Pope’s Approach

As argued by Just and Pope (1979), “the effects of input on output should not be tied
to the effects of input on variability of output a priori”. To achieve such a generality, they
showed that one can work with a production function that in turn contains two separate
functions, as shown in the following:

y = f (X) + h
1
2 (X)ε, E(ε) = 0, V(ε) = 1 (A1)

Now, E(y) = f (X) and V(y) = h(X), and thereby, the effects of input on output
are no longer tied to the effects of input on variability of output a priori. It can easily be
affirmed that ∂V(y)

∂xi
= hi(X), which indicates the fact that the sign of the expression ∂V(y)

∂xi
is

no longer determined a priori, since it can take on any sign depending on the context of
the problem. A similar verification, which has also been provided by Just and Pope (1979),
can be provided for the marginal effect of input quantity on the variability of marginal
productivity as follows:

− ∂y
∂xi

= fi(X) +
1
2

h−
1
2 (X)hi(X)ε (A2)

V(
∂y
∂xi

) =
hi

2(X)

4h(X)
(A3)

∂V( ∂y
∂xi

)

∂xi
=

hi(X)[h(X)hii(X)− hi
2(X)]

2

2h2(X)
(A4)

Hence, the effects of input on variability of “output” and “marginal output” are not
pre-determined anymore, since the signs of the above-mentioned expressions are no longer
determined a priori. Interestingly, this result holds true even if f (X) and h(X) both follow
the same production-function form, say, the CES production-function specification, which
is the case of interest in the present paper. In this case, as an example, even if the estimated
coefficient associated with the ith input turns out to be a negative parameter, then hi(X) < 0,
and as such, the case of a risk-reducing input is exemplified19, which is not feasible to
model with the original CES production-function specification.

It is also important to note that the original CES production function is indeed a special
case of the Just and Pope variation of it (i.e., Equation (A1)). This becomes apparent if one
takes into account the following possibility:

y = f ∗(X)ε∗ = f (X) + h
1
2 (X)ε, E(ε∗) = E(ε) = 0 (A5)

where f (X) ≡ h1/2(X) ≡ f ∗(X)E
(

eε∗
)

and ε ≡ eε∗ − E
(

eε∗
)

. As such, the Just and Pope
variant of the CES production function is simply more general than the original CES
production-function specification.

Appendix B. Details of the Estimation Procedure Associated with Just and Pope’s
Approach

As discussed in Section 2, concerning the generalized variation of the CES production
function that allows for the flexibility of input-driven output risk, we follow Just and Pope
(1979)’s three-step approach. This appendix serves to describe and explain this approach in
brief. For more information on this approach, you can see Just and Pope (1978, 1979). As
argued by Just and Pope (1979) and discussed in Appendix A, to achieve such a generality,
one can work with a production function that contains two separate functions, as shown in
the following:

y = f (X) + h
1
2 (X)ε, E(ε) = 0, V(ε) = 1 (A6)
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In this generalized production function, E(y) = f (X) and V(y) = h(X), and hence,
the effects of input on output are no longer tied to the effects of input on variability of output
a priori. For empirical purposes, suppose both f (X) and h(X) take the same functional
form (of course, with different parameters); for the sake the present paper, say it is the
original CES function. Therefore, the case of f (X) = h1/2(X) is a potential special case that
recovers the original CES production function.

As the first step of this estimation procedure, the following regression model is esti-
mated as a nonlinear, heteroscedastic regression of y on X.

yt = f (Xt, α) + ε∗t , E(ε∗t ) = 0, E(ε∗t ε∗τ) = 0, f or t 6= τ (A7)

where ε∗t = h1/2(X)εt, E(εt) = 0, E(εtετ) = 0, f or t 6= τ. Malinvaud (1970) has shown that
when NLS is applied to the above regression model, it will result in consistent estimators
of α and f (Xt, α).20 This is in fact the end of the first step of the estimation procedure. If
one is interested only in f (Xt, α) (i.e., the “mean” of output), they can stop here. However,
there are multiple reasons for proceeding to the second and third steps as well. As outlined
by Just and Pope (1979), the reasons could include the following: (1) learning more about
the marginal effect of inputs usage on output risk, (2) performing more reliable hypothesis
testing if there is a possibility of heteroscedasticity, and/or (3) gaining more efficiency in
estimation, at least asymptotically.

As the second step of the estimation procedure, using α̂ from the first step (which is a
consistent estimate of α), f (Xt, α) can be consistently estimated by f (Xt, α̂). Therefore, ε∗t
(which is equal to h1/2(X)εt) can be estimated by the following:

ε̂∗t = y− f (Xt, α̂) (A8)

Meanwhile, E[(ε∗t )
2] = E

[
h(Xt, β)ε2

t
]
= h(Xt, β), which suggests (ε∗t )

2 = E[(ε∗t )
2]ut =

h(Xt, β)ut where E[ut] = 1 by the definition of expectation.21 That is to say, β can be
estimated through regressing (ε∗t )

2 on Xt in a nonlinear framework or a linear framework
(since ε̂∗t consistently estimates ε∗t ).

As the third step of the estimation procedure, a weighted NLS regression of yt on
Xt in Equation (A7) with weights h−1/2(Xt, β̂) can achieve asymptotic efficiency in the
estimation of α. That is, an NLS estimate22 of α can be found for the following model23:

y∗t = f ∗(Xt, α) + ε̃t (A9)

where y∗t = yth−1/2(Xt, β̂), and f ∗(Xt, α) = f (Xt, α)h−1/2(Xt, β̂). Just and Pope (1978) have
shown that such an estimator for α is consistent, asymptotically efficient, and unbiased
under some conditions outlined in their paper.

In sum, Just and Pope (1979)’s approach can be summarized in the form of the follow-
ing three-step estimation procedure:

(1) An NLS regression of yt on f (Xt, α), obtaining α̂.
(2) An NLS regression of (ε̂∗)2 = (yt − f (Xt, α̂))2 on h(Xt, β), obtaining, β̂.
(3) An NLS regression of y∗t = yth−1/2(Xt, β̂) on f ∗(Xt, α) = f (Xt, α)h−1/2(Xt, β̂), ob-

taining α̂.

Appendix C. Details of the Estimation Procedure Associated with Just and Pope’s
Approach and Examining the Possibility of Heteroscedasticity in the Dataset

As outlined by Just and Pope (1979) and discussed in this paper earlier, one may want
to take the estimation of a production function to the second and third stages for three
potential reasons, which include (1) learning more about the marginal effect of inputs use
on output risk, (2) performing more reliable hypothesis testing if there is a possibility of
heteroscedasticity, and/or (3) gaining more efficiency in estimation, at least asymptotically.
Since the primary goal of the present paper is to explore the marginal effects of inputs
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use on output risk, we certainly have to proceed to the second and third stages of Just
and Pope’s estimation procedure; however, in this appendix, we examine the possibility
of heteroscedasticity in the dataset to possibly find additional reasons to proceed to the
second and third stages.

We start our preliminary investigations of the necessity of performing the second
stage with a number of visual inspections and then proceed with more formal statistical
examinations to detect any possible heteroscedasticity. In particular, we first examine
whether or not there is any form of heteroscedasticity in the data, and if there is any
visual indication of heteroscedasticity, we then examine more formally the existence of
heteroscedasticity in the data by regressing the squared residuals either on the inputs or on
the predicted output. Figure 1 depicts the squared residuals plotted against the observed
independent variables for the estimated CES model of wheat at Yuma Mesa, AZ.
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Figure A1. Squared Residuals Plotted against Independent Variables for the First-Stage Estimates of
the Deterministic Component of Production Modeled by the CES Specification for Wheat at Yuma
Mesa, AZ.

Figure 1 implies that there is some degree of heteroscedasticity in the data, meaning
that the variance of the error term is not constant, and in fact, it varies with the usages of
inputs. This can easily be seen if one considers an uneven envelope of residuals plotted
against water (in which case it takes an hourglass-shaped heteroscedasticity form) and
nitrogen (in which case it takes a roughly decreasing heteroscedasticity form, meaning that
the variance of the squared residuals tends to decrease as the usage of nitrogen increases).
As a result of these visual indications of heteroscedasticity, further statistical investigations
of heteroscedasticity should be conducted. Table A1 provides the results of regressing the
squared residuals on the independent variables (which is conceptually similar to the general
idea of the Breusch–Pagan (BP) test for heteroscedasticity) for the estimated CES model
of wheat production at Yuma Mesa, AZ, to see if there is any sort of linear relationship
between the variance of the error term and the independent variables.

As reported in Table A1, we can easily see that Prob > F = 0.0003, meaning that we are
more than 99.9% confident that there is a statistically significant linear relationship between
the variance of the error term and the independent variables. This is in fact an undesired
observation, because it shows that the estimated standard errors and empirical significance
levels (i.e., p-values) are unreliable and any statistical inference based on the results of the
related regression model will be imprecise.

Another diagnostic plot that can be utilized to explore the existence of heteroscedastic-
ity is the scatterplot of squared residuals versus the fitted values of the dependent variable.
Figure A2 demonstrates this scatterplot for the estimated CES model of wheat at Yuma
Mesa, AZ.
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Table A1. Results of Regressing the Squared Residuals on the Independent Variables for the Estimated
CES Model of Wheat Production at Yuma Mesa, AZ. (To detect any linear relationship between
the variance of the error term and the independent variables in the first-stage estimates of the
deterministic component of production).

Source SS df MS Number of obs. 88

Model 0.5661 2 0.2831 F(2, 85) 9.1400
Residual 2.6335 85 0.0310 Prob > F 0.0003

R-squared 0.1769

Adj R-squared 0.1576
Total 3.1996 87 0.0368 Root MSE 0.1760

u2 Coefficient Standard Error T P > |t| [95% Confidence Interval]

Water 0.0073 0.0023 3.26 0.0020 0.0029 0.0118
Nitrogen −0.0006 0.0002 −3.50 0.0010 −0.0010 −0.0003
Constant 0.0861 0.0597 1.44 0.1530 −0.0326 0.2047

J. Risk Financial Manag. 2023, 16, x FOR PEER REVIEW 19 of 24 
 

 

As reported in Table A1, we can easily see that Prob > F = 0.0003, meaning that we 
are more than 99.9% confident that there is a statistically significant linear relationship 
between the variance of the error term and the independent variables. This is in fact an 
undesired observation, because it shows that the estimated standard errors and empirical 
significance levels (i.e., p-values) are unreliable and any statistical inference based on the 
results of the related regression model will be imprecise. 

Another diagnostic plot that can be utilized to explore the existence of 
heteroscedasticity is the scatterplot of squared residuals versus the fitted values of the 
dependent variable. Figure A2 demonstrates this scatterplot for the estimated CES model 
of wheat at Yuma Mesa, AZ.  

 
Figure A2. Residuals Plotted against Fitted Values for the First-Stage Estimates of the Deterministic 
Component of Production Modeled by the CES Specification for Wheat at Yuma Mesa, AZ. 

Figure A2 implies that, when one considers the dependent variable to examine 
heteroscedasticity, taken together, there is a trivial degree of decreasing heteroscedasticity 
in the data, meaning that the variance of the error term is almost constant and does not 
change much with yield. This can be seen if one imagines the somewhat even envelope of 
residuals, whose width is almost constant for all values of yield. Despite this, a more 
formal statistical examination for heteroscedasticity could still be conducted for this case. 
Table A2 presents the results of regressing the residuals on the predicted dependent 
variable (i.e., fitted values) as well as the squares of the predicted dependent variable 
(which is conceptually similar to the general idea of the so-called White’s General (WG) 
test24 for heteroscedasticity) for the estimated CES model of wheat production at Yuma 
Mesa, AZ.  

Table A2. Results of Regressing the Squared Residuals on the Predicted Dependent Variable and 
Square of It for the Estimated CES Model of Wheat Production at Yuma Mesa, AZ. (To detect any 
sort of relationship between the variance of the error term and the predicted dependent variable in 
the first-stage estimates of the deterministic component of production). 

Source SS df MS  Number of obs. 88 
Model 0.0521 2 0.0261  F(2, 85) 0.7000 

Residual 3.1475 85 0.0370  Prob > F 0.4975 
         R-squared 0.0163 
     Adj R-squared −0.0069 

Total 3.1996 87 0.0368  Root MSE 0.1924 
u2 Coefficient Standard Error t P > |t| [95% Confidence Interval] 

Pred_lnYield 0.3278 0.8323 0.39 0.6950 −1.3271 1.9828 
Pred_lnYield2 −0.0251 0.0570 −0.44 0.6610 −0.1384 0.0882 

Constant −0.8690 3.0233 −6.88 0.7740 −6.8802 5.1422 

0
.2

.4
.6

.8
u2

6 6.5 7 7.5 8 8.5
lnYield_pred

Figure A2. Residuals Plotted against Fitted Values for the First-Stage Estimates of the Deterministic
Component of Production Modeled by the CES Specification for Wheat at Yuma Mesa, AZ.

Figure A2 implies that, when one considers the dependent variable to examine het-
eroscedasticity, taken together, there is a trivial degree of decreasing heteroscedasticity
in the data, meaning that the variance of the error term is almost constant and does not
change much with yield. This can be seen if one imagines the somewhat even envelope
of residuals, whose width is almost constant for all values of yield. Despite this, a more
formal statistical examination for heteroscedasticity could still be conducted for this case.
Table A2 presents the results of regressing the residuals on the predicted dependent variable
(i.e., fitted values) as well as the squares of the predicted dependent variable (which is
conceptually similar to the general idea of the so-called White’s General (WG) test24 for
heteroscedasticity) for the estimated CES model of wheat production at Yuma Mesa, AZ.

According to the results reported in Table A2, one cannot reject the hypothesis of
no statistically significant relationship between the variance of the error term and the
fitted values and the squared fitted values as a whole.25 After all, although this second
examination implies that the assumption of homoscedasticity cannot be rejected, we still
take analysis to the second and third stages for two reasons: (1) There is an apparent
inconsistency between the two sets of results reported in Tables A1 and A2, and more
importantly, because (2) we are interested in observing the risk implications of the two
inputs (i.e., irrigation water and nitrogen) separately, each of which could potentially have
a different risk implication, which could help us better understand the workings and
applicability of the proposed approach when more than one input is involved.
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Table A2. Results of Regressing the Squared Residuals on the Predicted Dependent Variable and
Square of It for the Estimated CES Model of Wheat Production at Yuma Mesa, AZ. (To detect any sort
of relationship between the variance of the error term and the predicted dependent variable in the
first-stage estimates of the deterministic component of production).

Source SS df MS Number of obs. 88

Model 0.0521 2 0.0261 F(2, 85) 0.7000
Residual 3.1475 85 0.0370 Prob > F 0.4975

R-squared 0.0163

Adj R-squared −0.0069
Total 3.1996 87 0.0368 Root MSE 0.1924

u2 Coefficient Standard Error t P >
|t| [95% Confidence Interval]

Pred_lnYield 0.3278 0.8323 0.39 0.6950 −1.3271 1.9828
Pred_lnYield2 −0.0251 0.0570 −0.44 0.6610 −0.1384 0.0882

Constant −0.8690 3.0233 −6.88 0.7740 −6.8802 5.1422

Figures A3 and A4 as well as Tables A3 and A4 report the same types of diagnostic
plots and statistical examinations and in the same order as reported above, but for the case
of Corn in Colby, KS.
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Figure A3. Squared Residuals Plotted against Independent Variables for the First-Stage Estimates of
the Deterministic Component of Production Modeled by the CES Specification for Corn in Colby, KS.

Figure A3 shows that there is a noticeable degree of decreasing heteroscedasticity,
implying that the variance of the squared residuals tends to decrease as the usages of inputs
increase. As a result of these visual indications of heteroscedasticity, further statistical
investigations of heteroscedasticity are undertaken below. Table A3 provides the results
of regressing the squared residuals on the independent variables for the estimated CES
model of corn production in Colby, KS to find out if there is any sort of linear relationship
between the variance of the error term and independent variables.

The results in Table A3 indicate that there is a statistically significant linear relationship
between the variance of the error term and the independent variables. Hence, the estimated
standard errors are unreliable, and any statistical inference based on the results of the
related regression model will be imprecise.

As an additional diagnostic plot to explore the existence of heteroscedasticity, one can
look at the scatterplot of the squared residuals versus the fitted values of the dependent
variable. Figure A4 demonstrates such a scatterplot for the estimated CES model of corn in
Colby, KS.
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Table A3. Results of Regressing the Squared Residuals on the Independent Variables for the Estimated
CES Production Specification for Corn in Colby, KS. (To detect any linear relationship between
the variance of the error term and the independent variables in the first-stage estimates of the
deterministic component of production).

Source SS df MS Number of obs. 88

Model 0.5033 2 0.2516 F(2, 85) 12.5600
Residual 1.7033 85 0.0200 Prob > F 0.0000

R-squared 0.2281

Adj R-squared 0.2099
Total 2.2066 87 0.0254 Root MSE 0.1416

u2 Coefficient Standard Error t P > |t| [95% Confidence Interval]

Water −0.0043 0.0028 −1.51 0.1340 −0.0099 0.0013
Nitrogen −0.0005 0.0001 −4.46 0.0000 −0.0007 −0.0003
Constant 0.2547 0.0464 5.49 0.0000 0.1624 0.3470
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Figure A4. Residuals Plotted against Fitted Values for the First-Stage Estimates of the Deterministic.
Component of Production Modeled by the CES Specification for Corn in Colby, KS.

Figure A4 suggests that there is a considerable degree of decreasing heteroscedasticity
in the data, meaning that the variance of yield is larger for smaller values of yield than
that for greater values of it. A more formal statistical examination for heteroscedasticity is
performed below. Table A4 provides the results of regressing the residuals on the fitted
values as well as the squared fitted values for the estimated CES model of corn production
in Colby, KS.

The results reported in Table A4 indicate that there is a statistically significant rela-
tionship between the variance of the error term and the dependent variable for the case of
modeling corn production in Colby, KS. Again, this is indeed an undesired observation,
since any statistical inference based on the results of the related regression model will be
imprecise and the associated standard errors and empirical significance levels (i.e., p-values)
are unreliable.

The bottom-line conclusion that can be drawn from all of the preceding diagnostic
examinations is that (1) there exists a sizable degree of heteroscedasticity in the data,
implying that any statistical inference based on the results of the related regression model
could be imprecise, and more importantly, (2) the type of the existing heteroscedasticity in
most cases is decreasing in inputs, which cannot be addressed and accounted for accurately
when one uses the original CES production-function specification, as shown and proven in
Section 2 by Equation (3).
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Table A4. Results of Regressing the Squared Residuals on the Predicted Dependent Variable and
Square of It for the Estimated CES Model of Corn Production in Colby, KS. (To detect any sort of
relationship between the variance of the error term and the predicted dependent variable in the
first-stage estimates of the deterministic component of production).

Source SS df MS Number of obs. 88

Model 0.5185 2 0.2592 F(2, 85) 13.0500
Residual 1.6881 85 0.0199 Prob > F 0.0000

R-squared 0.2350

Adj R-squared 0.2170
Total 2.2066 87 0.0254 Root MSE 0.1409

u2 Coefficient Standard Error t P > |t| [95% Confidence Interval]

Pred_lnYield 0.1736 0.8765 0.20 0.8430 −1.5692 1.9164
Pred_lnYield2−0.0186 0.0520 −0.36 0.7220 −0.1219 0.0848
Constant −0.0079 3.6808 0.00 0.9980 −7.3263 7.3105

Notes
1 Other types of risks associated with the process of production can include the market prices of inputs, the market price of

output, wildfire- and weather-related risks, pests and disease, infrastructure malfunction, risks associated with production-related
regulations and policy shocks, as well as technical and technological risks.

2 As Just and Pope (1979) elaborate, in such circumstances and under risk aversion, “the true utility loss associated with higher risk
(at the lower input level) will be greater than when the risk effect is incorrectly estimated as a reduction in variability”.

3 As Just and Pope (1979) put it, “Consider, for example, overcapitalization in grain harvesting. The use of large (and fast)
harvesting equipment, as opposed to smaller (and slower) equipment, usually leads to less variability of output (because of
random weather conditions which can destroy a ripe crop before harvest”.

4 To see some alternatives to this Just and Pope specification, you can see Just and Pope (1978), which is a comprehensive paper
discussing various aspects of and introducing different alternatives to this particular specification.

5 To verify that this specification has the property that the signs of neither Equation (3) nor Equation (6) are determined a priori
anymore, you can see Appendix A, which verifies this property in great detail.

6 One may want to estimate a generalized variant of the CES production-function specification that incorporates simultaneously
both the generalization proposed in this paper and that introduced in Zeytoon-Nejad et al. (2022), which incorporates input
thresholds within the structure of the CES production function. Zeytoon-Nejad et al. (2022) provide an appendix detailing the
technical aspects of such a joint estimation. They also provide a comprehensive literature review on the CES production function,
as well as the evolution of its different variants and generalizations.

7 Henningsen and Henningsen (2011) provide a longer list of estimation methods that can be applied for the estimation of the CES
function. However, since the other methods have been of less popularity among empirical economists, we do not report them in
this paper. For more information on these methods, you can see Henningsen and Henningsen (2011).

8 The NLS approach routinely works well in many empirical applications with real-world data. However, under some circum-
stances, it does not perform well, primarily due to three potential reasons: (1) non-convergence even after numerous iterations
due to lack of a unique minimum of the sum-of-squares, (2) convergence to a local minimum due to improper choices of initial
values, or (3) generating theoretically nonsensical parameter estimates. In such cases, one should resort to alternative ways of
estimating the CES production function, a list of which is provided in Henningsen and Henningsen (2011).

9 An alternative to time-dummy variables for the purpose of investigating the effects of weather-related variables on all contempo-
raneous observations is to use a variance components procedure. For further discussion of variance components procedures, you
can see Wallace and Hussain (1969), Maddala (1971), and Just and Pope (1979).

10 That is, logarithms are used for the deterministic part separately from those for the stochastic part. This is because the estimations
of the two function components are, in practice, performed in a sequence of stages and separately from one another. In other
words, in none of the stages are both components of the function estimated, and instead, in each stage, only one component of
the function is estimated, as outlined by Just and Pope (1979)’s three-step estimation procedure.

11 As a result, we need to disjoin the effect of marginal use of input on the mean of output from that on the variability of output,
as suggested by Just and Pope (1979). Although they have applied their approach for the case of Cobb–Douglas and Translog
production-function specifications, as they point out in their seminal papers published in 1978 and 1979, the same general
approach can be applied to other production-function specifications such as the CES specification as well.

12 For the second stage, functional forms other than the one employed for the first stage can also be utilized, as explained by Just and
Pope (1978). As a result, for the purpose of the second stage, we could have used functional forms other than the CES specification.
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However, we still preferred to use the CES specification for the sake of consistency, its flexibility, and more importantly, because
of the fact that the focus of the present paper is on the exposition of the many capabilities of the CES specification. After all, as
reasonably pointed out by Griffin et al. (1987), in many production analyses, selecting functional forms in a totally objective
manner is almost impossible, and formalization of the selection process mostly requires deliberate choice and frank presentation.

13 Additionally, and on a related note, the fact that the estimated constant terms (B’s) are negative is not troublesome, either. This is
because these coefficients are no longer interpreted as TFP. Instead, they can be interpreted as the portion of output “variance”
that is not explained by the amount of inputs used in production.

14 These scatterplots differ, in essence, from those provided in Appendix C, in that these ones are drawn using the actual data and
thus represent the heteroscedasticity existing purely in the data. In fact, in the scatterplots presented in Appendix C, the change
in variance could be due to a potential heteroscedasticity inherent in the data and/or a potential misspecification. It is known
that model misspecifications such as wrong functional forms or omitted variables can also produce heteroscedasticity. Under
such circumstances, if the model is specified correctly, the patterns of heteroscedasticity may disappear. Thus, in the scatterplots
presented in Appendix C, the change in variance could be due to a potential heteroscedasticity inherent in the data and/or a
potential misspecification, and as such, those scatterplots are less relevant to our topic of interest, i.e., input-driven output risk,
which is defined as the marginal effect of input use on the variance of output. In contrast, the scatterplots presented here are
more relevant to the study of input-driven output risk, which can directly be observed in these scatterplots regardless of and
separately from a potential problem of misspecification.

15 More precisely, it should be noted that these scatterplots demonstrate the marginal effects of inputs use on output variance
simultaneously with the marginal effects of inputs use on output mean, which prevents one from purely observing the former
effect (i.e., the effect of inputs use on output variance, which is the main purpose of the second stage of Just and Pope’s approach).
As a result, the desired comparisons cannot be absolutely effectively made using these visual checks, since imaging the mean and
its trend while considering variance and its trend at the same time is a hard task to carry out. Despite this, since we find the
provision of these visual checks still valuable, we have included and discussed these comparisons here.

16 The nearly zero marginal effect of nitrogen on the variability of output in this dataset is somewhat noticeable if one looks at the
initially increasing variances of data points in the lower levels of nitrogen and decreasing variances of yield with higher levels of
nitrogen. In fact, these two effects somehow offset each other, and the estimated (net) effect of nitrogen use on the variability of
output becomes close to zero.

17 The increasing effect of water on the variability of output in this dataset is somewhat noticeable if one takes into account the
clustered data points in the low levels of water and the relatively more dispersed data points associated with higher levels of
water irrigation.

18 The nearly zero marginal effect of nitrogen on the variability of output in this dataset is somewhat noticeable if one looks at the
initially decreasing variances of data points in the lower levels of nitrogen and increasing variances of yield with higher levels of
nitrogen. In fact, these two effects somehow offset each other, and the estimated (net) effect of nitrogen use on the variability of
output becomes close to zero.

19 In this paper, the case of risk-reducing input turned out to be true for the case of nitrogen in our empirical applications of wheat
at Yuma Mesa, AZ, and corn in Colby, KS, although the negative estimated coefficients are close to zero. In Just and Pope (1979),
this result turned out to be true for the case of fertilizer in their empirical application of oats using the well-known Day dataset.

20 For more details on this, see Just and Pope (1978).
21 To understand this better, see Hildreth and Houck (1968) and Theil (1971).
22 Although the NLS method is a powerful tool for fitting nonlinear models such as the CES production function, it has some

limitations and weaknesses, too. Zeytoon-Nejad et al. (2022) have discussed such potential limitations of the NLS method as it
may relate to the estimation of the CES production function. It is also important to note that, in general, the choice of the starting
values needed for the optimization algorithms of the NLS method may cause the software to end up with incorrect estimates
due to a convergence to local optima or a possibility of convexity of the objective function of the NLS optimization problem. As
diagnostics tests to rule out this possibility in this study, a very wide range of values (in the domain of theoretically meaningful
ranges of starting values) were tried as the starting value of the NLS optimization algorithms, and the change in that choice did
not change any of the results, indicating that the estimates are the result of the optimization algorithm when meeting global
optima and not local ones.

23 For an extensive discussion of the identification of the CES production function as a nonlinear regression model, and also
to see the mathematical proof of the global identifiability of the Generalized CES (GCES) production function, you can see
Zeytoon-Nejad et al. (2022), in which both of these matters have been comprehensively discussed in the form of two extensive
appendices.

24 The WG test for heteroscedasticity is a flexible test and identifies almost any pattern of heteroscedasticity. It even allows the
independent variable to have a nonlinear effect on the error variance, while the BP test assumes that heteroscedasticity is a linear
function of independent variables.

25 This result is somewhat different from when we considered heteroscedasticity by examining the relationship between the variance
of the error term and the individual inputs. The two scatterplots presented in Figure A1 suggest that one possible reason for
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this apparent inconsistency could be that the two different heteroscedasticity situations existing in the relationship between the
residuals and inputs somehow offset each other, so when one looks at the heteroscedasticity existing in the relationship between
the error term and the dependent variable, taken together, heteroscedasticity is no longer observed, and overall, homoscedasticity
in this case cannot be rejected.
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