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Abstract: In finance, implied volatility is an important indicator that reflects the market situation
immediately. Many practitioners estimate volatility by using iteration methods, such as the Newton–
Raphson (NR) method. However, if numerous implied volatilities must be computed frequently, the
iteration methods easily reach the processing speed limit. Therefore, we emulate the NR method as a
network by using PyTorch, a well-known deep learning package, and optimize the network further by
using TensorRT, a package for optimizing deep learning models. Comparing the optimized emulation
method with the benchmarks, implemented in two popular Python packages, we demonstrate that
the emulation network is up to 1000 times faster than the benchmark functions.

Keywords: graphics processing unit (GPU) accelerated computing; implied volatility; Newton–
Raphson method; PyTorch; TensorRT

1. Introduction

Volatility is the degree of variability in underlying asset dynamics, helping investors
predict future market variability, and is usually divided into historical and implied volatility.
Because historical volatility is obtained from information for a specific period in the past,
this type of volatility lags behind the market situation. Unlike historical volatility, implied
volatility contains only current market information, not past market information (Gatheral
2011). When a sudden shock, such as a financial crisis, occurs, implied volatility is fairly
important in predicting future volatility. See (Hull 2003; Wilmott 2013) for a detailed
explanation of volatility.

When using implied volatility for various purposes, such as estimating parameters of
an option pricing model, it is often necessary to convert a large number of option prices
into implied volatilities in real time. However, iterative methods, such as the bisection
and Newton–Raphson (NR) methods, typically used to obtain implied volatilities, are
unsuitable for calculating numerous implied volatilities due to excessive computation.
Therefore, many studies (Brenner and Subrahmanyan 1988; Chance 1996; Corrado and
Miller 1996; Jäckel 2006; Li 2005; Mininni et al. 2021; Orlando and Taglialatela 2017; Stefanica
and Radoičić 2017) have proposed several formulas to approximate implied volatility. For
example, Brenner and Subrahmanyan (1988); Chance (1996) and Li (2005) employed the
Taylor expansion, Corrado and Miller (1996) utilized the quadratic approximation, and
Mininni et al. (2021) used hyperbolic tangent functions to approximate the implied volatility.

However, increasing the accuracy by using various mathematical methods already
faces a limitation. Thus, in line with various studies (Berg and Nyström 2019; Chen et al.
2018; Li et al. 2020; Raissi and Karniadakis 2018; Raissi et al. 2019; Ramuhalli et al. 2005)
that have supplemented numerical schemes, such as the finite element method, with neural
networks, deep learning methods Kim et al. (2022); Liu et al. (2019) are introduced to im-
prove the accuracy of estimating implied volatility. As in many existing studies estimating
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the implied volatility (e.g., Jäckel (2006, 2015); Kim et al. (2022)), an iteration procedure is
added after the network approximation to attain higher accuracy. This additional iteration
procedure significantly burdens the whole estimation process, though. In the experiments
performed by Kim et al. (2022), for example, the iteration procedure takes considerably
more time compared to the network approximation of implied volatility.

Thus, in this study, we are concerned with further reducing the estimation time
by facilitating the iteration procedure. We develop a graphics processing unit (GPU)
acceleration scheme for the NR method, reducing the computational time for estimating
implied volatilities dramatically. To this end, we apply the so-called neural emulation
technique, which implements an algorithm like a neural network with zero or very few
parameters. This technique enables employing well-known deep learning packages, such
as TensorFlow and PyTorch, to accelerate a scientific procedure. These popular packages
make it straightforward to implement large-scale parallel computation by using GPUs.
Additionally, this approach allows a neural network optimization engine, TensorRT, to
further maximize inference performance. We refer to the network emulating the NR
method as the NR emulation network, and this study has an implication for accelerating
the iteration process through the NR emulation network.

The presented NR emulation network was compared with the benchmarks, imple-
mented widely used two packages, in terms of estimation accuracy and speed to verify
the effectiveness of this study. The test results reveal that the NR emulation network is
up to 1000 times faster than the benchmarks of the two well-known packages, but with
similar accuracy. In other words, the proposed NR emulation network is stable and efficient
enough to be used in estimating numerous implied volatilities in practice.

The background, such as the implied volatility and the NR method, is provided in
the next section. Section 3 fully describes the NR emulation network. The NR network is
compared in terms of accuracy and computation time with the benchmarks in Section 4.
The last section concludes the work.

2. Backgrounds
2.1. Implied Volatility

An option is a contract that trades the right to buy (call option) and sell (put option)
an asset at a predetermined strike price on a maturity date. In addition, options can be
divided into several types depending on the exercise method. If the option can be exercised
only on the expiration date of the contract, it is a European-style option. The Black–Scholes
model (Black and Scholes 1973) is generally used to evaluate European options.

In the Black–Scholes model, the option pricing formula is given by

ccall(St, t; r, σ, K, T) = StN(d1)− Ke−r(T−t)N(d2)

cput(St, t; r, σ, K, T) = Ke−r(T−t)N(−d2)− StN(−d1), (1)

where St is the stock price at t, r denotes the risk-free rate, σ represents the volatility of St, K
and T are the strike price and expiration time of the option, respectively, d1 = 1

σ
√

T−t
{ln St

K +

(r + 1
2 σ2)(T− t)}, d2 = d1 − σ

√
T − t, N(·) denotes the cumulative distribution function

of the standard normal distribution, and ccall and cput indicates the prices for the call and
put options, respectively. Among the variables that influence the option price c, except
for the volatility σ, the other variables St, t, r, K, and T can be provided from the market
information and the option specification, whereas σ must be estimated by using market
data. However, in many cases, the market price cmkt of the option is a known quote because
most options are exchange-traded products, and the corresponding σ is reversely calculated
from the price cmkt. The value of σ computed in this way is called implied volatility σimpl .

In other words, for a given St, r, t, K, T, and cmkt, the implied volatility σimpl is defined
for each option as follows:

cmkt = hr,k,τ(σimpl) := c(St, t; r, σimpl , K, T), (2)
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where k = St/K and τ = T− t. Because hr,k,τ(·) is monotonically increasing, σimpl uniquely
exists as h−1

r,k,τ(cmkt) if cmkt is within an appropriate range. In addition, σimpl is often
considered an alternative indicator of cmkt because σimpl changes in a more stable way than
cmkt.

2.2. Newton–Raphson Iterative Method

The nonlinear Equation (2) must be solved with a numerical scheme for determining
σimpl because h−1

r,k,τ is not found explicitly. An iterative method, such as the bisection or
secant method, is commonly used to determine a solution to the nonlinear equation. In
particular, the NR method, which is an algorithm with a fast convergence rate, is most used
for estimating σimpl .

According to the NR method, the implied volatility σimpl can be obtained in a series of
the following update steps:

σn+1 = σn −
hr,k,τ(σn)− cmkt

hr,k,τ ′(σn)
. (3)

If the initial value σ0 is given within the convergence interval, the NR method con-
verges rapidly to σimpl with a quadratic convergence rate. However, there is a risk of
divergence if σ0 is not given in the convergence interval. Fortunately, the convergence of
the NR method is guaranteed if σ0 is set to σc, as follows (refer to Higham 2004),

σc =

√∣∣∣∣ 2τ (ln k + rτ)

∣∣∣∣, (4)

where σc is the unique inflection point of hr,k,τ , where the option vomma is 0. The first and
second derivatives ∂c

∂σ and ∂2c
∂σ2 of the option price c with respect to σ are called vega υ and

vomma υ′, respectively.

3. Newton–Raphson Emulation Network

This section proposes and describes the NR emulation network emulating the NR
method. The emulation network enables us to obtain numerous implied volatilities in real
time through parallel computing of the GPU and optimizing the computation graphs of the
network.

The NR update (NRU) layer depicted in Figure 1 is designed to emulate the update
step (3) of the NR method. In addition, hr,k,τ of the NRU layer is defined in (2). Therefore,
if the input σn passes through the NRU layer, one step of the NR method is applied to
produce σn+1, which is expected to be closer to σimpl than σn. Additionally, hr,k,τ and h′r,k,τ
depend on the risk-free rate r, the ratio k of the stock price to the strike price, and the
time to maturity τ; thus, the NRU layer also depends on r, k, and τ. In addition, the NRU
layer is also dependent on cmkt. This dependence can also be considered for the NRU layer
to be conditioned on r, k, τ, and cmkt, similar to the conditional generative adversarial
network (Mirza and Osindero 2014).

𝜎𝑛

𝜎𝑛+1

ℎ𝑟,𝑘,𝜏

ℎ′𝑟,𝑘,𝜏

−

÷

𝑐𝑚𝑘𝑡

−

Figure 1. Newton–Raphson update layer.
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The NR emulation network is created by stacking NRU layers as depicted in Figure 2,
which corresponds to the process of repeating the update steps of the NR method. As the
input σ0 for the network, σc in Equation (4) is chosen. This choice ensures that the output
σpred is sufficiently close to σimpl if the emulation network is deep enough (except in the
cases where a too-small σimpl makes σpred diverge because of the limitations of the floating
point number system). Passing through the deep network means performing the update
steps of the NR method many times. In the experiments that follow in the next section, it is
empirically demonstrated that the minimum depth of the NR emulation network should be
eight to guarantee convergence. In other words, when σ0 = σc, there should be at least eight
NRU layers in the network such that |σpred − σimpl | < ε for the machine epsilon ε(≈ 10−6)
of the single-precision floating system.

𝜎0 = 𝜎𝑐
𝑁𝑅𝑈1
𝑙𝑎𝑦𝑒𝑟

𝑁𝑅𝑈2
𝑙𝑎𝑦𝑒𝑟

𝑁𝑅𝑈𝑁−1
𝑙𝑎𝑦𝑒𝑟

𝑁𝑅𝑈𝑁
𝑙𝑎𝑦𝑒𝑟

𝜎𝑁 = 𝜎𝑝𝑟𝑒𝑑⋯

Figure 2. Newton–Raphson (NR) emulation network.

To exploit powerful parallel computing, we implement the NR emulation network with
PyTorch, a well-known deep learning framework, and run it on the GPU. This approach also
allows for optimizing the network with TensorRT to accelerate the inference performance
of the emulation network. In addition, TensorRT is one of the deep learning-related tools
provided by NVIDIA, which can be used to optimize the structure of a network while
converting a dynamic graph of PyTorch into a static graph (https://developer.nvidia.com/
tensorrt, accessed on 1 November 2022). Although it is usual to use neural networks to
identify patterns inherent in data, such a data-learning stage does not exist in this study.

In the next section, we experimentally reveal how accurately and quickly the NR
emulation network derives the implied volatility. We conclude that market prices cmkt of
numerous options can be converted into implied volatilities σimpl in real time.

4. Numerical Tests
4.1. Test Data Description

A testing dataset with one million data points was prepared by generating virtual
option prices cmkt by using the Black–Scholes Formula (1), converting them to the corre-
sponding implied volatilities σimpl . The variables σ, τ, and k involved in generating cmkt
are randomly selected within the ranges as in Table 1 (for convenience, the risk-free rate r
is fixed to 0 to offset its effect). The variables σ, τ, and k are the volatility parameter for the
Black–Scholes model, time to maturity T− t, and ratio St/K of the stock price to exercise
price, respectively.

Table 1. Variable ranges involved in generating the virtual test data. U(a, b) is the uniform distribu-
tion on (a, b).

Variable σimpl τ ln k

Distribution U(0.01, 0.5) U(0.01, 2)
U(− σ2

2 τ −
2σ
√

τ,− σ2

2 τ + 2σ
√

τ)

We set the variable ranges to be as acceptable as possible by considering and reflecting
the real market. Most options in the real market have a time to maturity τ of less than
two years, and typically, the volatility σ does not fall below 1% and does not exceed 50%.

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
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Moreover, the strike price k is set to be within the 95% confidence interval of the distribution
of the stock price Sτ at time τ, and the distribution is obtained from the assumption of
Black and Scholes that ln Sτ follows N(− σ2

2 τ, σ2τ) when S0 = 1 and r = 0.

4.2. Test Results

In this section, we analyze the results of various tests. As benchmarks, we choose the
NR method from the Python package SciPy (https://scipy.org/) (accessed on 1 November
2022) and the implied volatility estimation function from the recently released Python
package py_vollib_vectorized (https://github.com/marcdemers/py_vollib_vectorized)
(accessed on 15 November 2022). We denote the methods of SciPy and py_vollib_vectorized
as SciPy-NR and Vectorized, respectively.

The SciPy-NR method is set to estimate the implied volatility through eight iterations,
so the emulation network is also set to perform the estimation through eight NRU layers.
Eight is the minimum number for both methods to reduce errors to near the machine
epsilon ε (≈ 10−6) of the single-precision floating number system.

The Python package py_vollib_vectorized was released in 2021, and is the latest among
the packages for estimating implied volatility. The package is theoretically based on Jäckel
(2015), and works in parallel on CPU to run faster.

Table 2 reveals that the NR emulation network runs on the GPU to take full advantage
of parallel computing. However, except for expensive Tesla GPUs, ordinary GPUs specialize
in single-precision floating numbers, not double precision. In this study, we do not have a
Tesla GPU; thus, we process the tests based on the single-precision floating number system.
Therefore, for a fair comparison, the benchmark methods are also conducted with the
precision of the single-precision floating numbers.

Table 2. Implementation platform and hardware.

SciPy-NR & Vectorized NR Emulation

Platform SciPy (Python) PyTorch + TensorRT (Python)

Hardware CPU (Intel Xeon Silver 4216) GPU (NVIDIA GeForce RTX
2080)

Table 3 compares the accuracy of each method by using the mean absolute error (MAE),
mean square error (MSE), and mean relative error (MRE) for inferring the implied volatility.
The definitions of MAE, MSE, and MRE are provided as follows:

MAE =
1
L

L

∑
i=1
|σi,pred − σi,impl |, MSE =

1
L

L

∑
i=1

(σi,pred − σi,impl)
2, MRE =

1
L

L

∑
i=1

|σi,pred − σi,impl |
σi,impl

,

where L = 1,000,000, and σi,pred denotes the value derived by the emulation network
to predict σi,impl . Both methods achieve the maximum possible accuracy on the single-
precision floating number system, as the values of MAE and MRE are below ε, and the
value of MSE is below ε2. The SciPy-NR and Vectorized methods tend to infer σimpl 10 times
more accurately than the emulation network, implying that the CPU may achieve higher
precision than the GPU, even if both processing units work on similar single-precision
floating number systems.

Table 3. Implied volatility estimation error.

Error Type SciPy-NR Vectorized NR Emulation

MAE 2.800171 ×10−8 2.890932 ×10−8 2.816055 ×10−7

MSE 1.930116 ×10−15 1.988556 ×10−15 2.949284 ×10−13

MRE 2.155739 ×10−7 2.184584 ×10−7 1.962279 ×10−6

https://scipy.org/
https://github.com/marcdemers/py_vollib_vectorized
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Table 4 presents the computation time consumed for the execution of each method.
The NR emulation network has a very short computation time compared to the SciPy-
NR and Vectorized methods. Additionally, as the number of implied volatility estimates
increases, the emulation network becomes overwhelmed by the SciPy-NR and Vectorized
methods in terms of processing speed. When the number of implied volatility estimates
reaches one million, the running time of the network is about 1000 times shorter than that
of the SciPy-NR method and about 700 times shorter than Vectorized. The computation
times are repeatably measured 100 times, and the average and standard deviation of the
resultant values are written together.

Table 4. Computation times (in milliseconds) for estimating the implied volatility. Each value is
calculated by averaging the values from 100 repetitions, and the corresponding standard deviation is
provided in parentheses.

# of Implied
Volatility Estimates SciPy-NR Vectorized NR Emulation

10,000 14.71 (3.0527) 7.22 (0.5959) 0.4 (0.0182)
100,000 99.07 (4.7911) 72.04 (6.5210) 0.44 (0.01)

1,000,000 1212.64 (11.2775) 754.19 (31.7333) 1.50 (0.0065)

Figure 3 depicts how the MSE changes each time it passes through the NRU layer of
the NR emulation network. The MSE decreases by about 10−1 from the first to third NRU
layers and by about 10−2 from the fourth to sixth NRU layers. In contrast, the seventh
and eighth NRU layers reduce the MSE only slightly because the sixth layer has already
virtually achieved the maximum possible accuracy of the single-precision floating number
system.

Lastly, we demonstrate how the inference value σpred changes while passing through
the NRU layers. Table 5 presents two specific cases: (1) σ = 0.3, τ = 1, and k = 1.5 and (2)
σ = 0.3, τ = 1, and k = 1.3. The emulation network produces virtually the exact outputs
at the seventh and fourth layers for k = 1.5 and k = 1.3, respectively. The outputs are
indistinguishable from the exact implied volatility σimpl on the single-precision floating
number system. These results confirm that the number of NRU layers required to achieve
accurate implied volatility differs individually depending on the option.

1 2 3 4 5 6 7 8
Number of NRU layers passed

10 12

10 10

10 8

10 6

10 4

10 2

M
ea

n 
Sq

ua
re

d 
Er

ro
r

   6.11e-03

   4.4e-04

   1.87e-05

   1.69e-07

   5.27e-11

3.09e-13 2.97e-13 2.83e-13

Figure 3. The degree of MSE change according to the number of NRU layers passed.
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Table 5. Change in the predicted value of the NR neural network according to the number of NRU
layers passed.

σ = 0.3, τ = 1

# of NRU Layers Passed k = 1.5 k = 1.3

0 0.90051656961441 0.72438144683838
1 0.37598699331284 0.32452529668808
2 0.30990260839462 0.30062055587769
3 0.30027109384537 0.30000048875809
4 0.30000036954880 0.30000001192093
5 0.30000007152557 0.30000001192093
6 0.30000016093254 0.30000001192093
7 0.30000001192093 0.30000001192093
8 0.30000001192093 0.30000001192093

5. Conclusions

Implied volatility is critical indicator that reflects expectations about future volatility
and can be obtained by solving a nonlinear equation by using the NR method. However,
it is often necessary to repeatedly estimate numerous implied volatilities. The iterative
method then fails because of a heavy computational burden. Therefore, the NR emulation
network is proposed in this study to resolve the challenge. To develop the network, we
implemented the NR method, like a PyTorch network, and optimized the network with
TensorRT. As a result, the emulation network is up to 1000 times faster than the well-known
benchmarks, showing that the proposed method is stable and efficient enough to be utilized
for computation of numerous implied volatilities in practice.

The purpose of this work is achieved by emulating and optimizing the NR method
without taking a complex mathematical approach, which is a distinctive contribution to
literature compared to the existing results with complicated techniques. Moreover, all
codes are uploaded online for the NR emulation network to be utilized efficiently (https:
//github.com/thix-is/Newton-Raphson-emulation, accessed on 11 November 2022). Our
result implies the possibility to contribute to solving other difficult issues of computational
finance, such as model parameter calibration, due to the recent progress in computing
technology. Therefore, follow-up studies are required to address these problems using the
neural emulation technique.
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