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Abstract: Rural locations provide limited economic opportunities, mainly relying on agricultural
activities, with scarce industrial or commercial investment and employment. This has led to higher
risks related to poverty, with a lack of opportunities for education, healthcare, and general services
leading to rural migration. On the other hand, wind energy is growing exponentially in the United
States (US). Rural locations offer very good siting options for wind farms considering the ever-
growing size of their equipment and significant required area. Therefore, wind farms may provide
financial opportunities to local rural communities, reducing poverty risks and improving living
standards. These financial benefits include rental income for landowners, additional tax collection for
public service funding, increased income for school districts, and overall larger local investments.
However, the available data are too coarse, broad, and unconnected, not allowing local communities,
wind developers, and stakeholders a clear panoramic of the benefits that each individual location,
school district, or landowner may receive. This research compiled dispersed big data for its integration
into a large Geographic Information System (GIS). This system is capable of performing analysis to
provide a much better understanding of the actual benefits that the wind industry provides to each
individual rural stakeholder. Data were converted to geospatial layers, when required, to allow for
a fuller comprehension of all factors impacting financial benefits and risks from the wind industry.
Analyses were expanded to evaluate the lease financial benefits for landowners in Texas, applying
the data provided by local and state agencies. The approach developed in this research will allow
for its application in diverse geographical locations to explore additional financial benefits that each
individual rural stakeholder may receive from the wind industry. This will allow local authorities,
landowners, wind developers, and communities to better negotiate for the future expansion of wind
energy, providing all parties involved with significant benefits and allowing the continuous growth
of renewable energy to overcome the damaging effects from climate change.

Keywords: rural financial benefits; rural poverty risks; geospatial analysis; business intelligence; big
data analytics; wind energy

1. Introduction

Economic opportunities in rural communities are very limited (Tickamyer and Duncan
1990). Most activities relate to agriculture, with minimal industrial or large-scale com-
mercial operations (Duncan 1992; Anríquez and Stamoulis 2007). This has accelerated
rural depopulation, with migration to larger cities that offer more attractive economic
opportunities (Deavers 1992; Weber et al. 2005). These factors exacerbate poverty levels
for rural populations, with local governments and school districts having limited revenue
potential to provide services to their communities (Janvry and Sadoulet 2000; Lavalley
2018; Geverdt 2019). Therefore, developing new economic activities for rural communities
that can provide financial benefits for their populations is very important (Tickamyer 2006).
The previous literature has indicated that the wind industry has grown exponentially over
the last two decades, with a significant portion of their activities situated in rural locations
(Groth and Vogt 2014; Wiser et al. 2021b; Shoeib et al. 2022). Diverse reports have claimed
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that this industry provides significant economic benefits to local rural communities derived
from wind industry lease payments, employment, taxes, and capital investment (Greene
and Geisken 2013; Mulvaney et al. 2013a; Song et al. 2016; Jacquet and Fergen 2018).

Wind farms installed in rural locations provide much needed local financial benefits
(Brunner et al. 2022; Shoeib et al. 2022). Taxes from wind turbines provide rural communities
with critical infrastructure projects (Pavlowsky and Gliedt 2021). US school districts with
wind farms in their area receive additional funding to support their educational activities
(Castleberry and Greene 2017; Brunner et al. 2022). The US Department of Energy indicates
that wind farms pay average yearly taxes of more than USD7000 per installed MW (US DE
2020). Wind farms are normally placed in agricultural settings, leasing from local farmers.
Wind turbines only require a fraction of the land and leases allow owners to continue
performing their normal farming activities. Therefore, the payment received from the
leases is additional income to the owners (Reategui and Hendrickson 2011; Schwabe et al.
2017; US DE 2020).

Wind farms also generate local employment opportunities (Blanco and Rodrigues
2009; Shoeib et al. 2021). During the construction phase, a significant number of workers
are needed to develop the facilities (US DE 2020). However, during the operational phase
wind operators continue to employ a number of local workers to perform maintenance and
management activities, providing long term highly paid employment for rural population.
The US Department of Energy has indicated that an important contribution of renewable
energy is the development of well-paying jobs in economically depressed areas (US DE
2020; Loomis et al. 2016; Brunner et al. 2022). Wind energy projects create new jobs in
maintenance, operations, transportation, construction, and manufacturing, employing in
2019 more than 111,000 workers in the US (Marcacci 2019). The US Occupational Outlook
Handbook indicates that Wind Turbine Technicians will grow 68% from 2020 to 2030,
which is much faster than average, with a high median pay of USD56,230 per year for 2020
(BLS 2020). Figure 1 shows state level results for (a) employment and (b) lease payments
for the year 2016 (AWEA 2017; WRI 2017). The temporal and spatial resolution of this
financial data needs to be improved to provide rural and wind stakeholders with relevant
decision-making information.
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Evaluating the distribution of benefits among diverse rural populations is important to
avoid perceptions of the concentration of these advantages on limited number of stakehold-
ers. As granular and higher resolution results are able to show the dispersion of financial
benefits among large number of individual citizens and to the whole community, a better
understanding of current and future positive outcomes can be achieved. Identification and
classification of potential individual and community benefits is relevant to provide objective
assessments for each particular group. The most relevant individual benefit includes rental
income for landowners from turbines installed in their properties. General community ben-
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efits, that encompass all citizens living on those jurisdictions, include increased tax revenue
as a critical component that will provide the potential for improved and expanded public
services. Public improvement projects, undertaken by wind project developers, are also an
important component of these general benefits. Furthermore, the additional investment
and improvement for local public education is one of the most relevant components of the
general financial benefit package in the United States. To better understand the potential
for those benefits and the relevance of performing public outreach on them, a literature
review is presented.

2. Literature Review

The literature exploring the potential financial benefits of wind energy investment in
global rural locations is scarce (Copena and Simón 2018; Delicado et al. 2016; Slattery et al.
2011; Clausen and Rudolph 2020; Brunner et al. 2022). These financial benefits, as reported
by previous studies, may be classified considering the recipient of these benefits (Copena
and Simón 2018). Community benefits comprise increased tax revenue, additional employ-
ment opportunities, local improvement projects, and support for educational institutions
and projects (Mulvaney et al. 2013b). Individual benefits for local communities involve
payments for leases from local property owners to install wind farms. The American Wind
Energy Association (AWEA) reported that in 2018 wind farms paid USD289 million in
leases for landowners, many of them local farmers, for installed wind turbines (Bergen
2020). In regard to community benefits, Kahn reported that counties that have installed
wind turbines experience beneficial financial improvements, with increased quality for
local schools, a decline in property taxes, and even better air quality when compared with
counties with fossil fuels installed plants. These findings indicate that these counties are
investing more in their public schools when compared with non-wind farm counties and
increasing the education quality. Furthermore, local property taxes declined for these
counties, benefiting all their citizens, providing additional financial benefits (Kahn 2013).
The AWEA reported that in 2018 wind farms paid USD761 million in local and state taxes
and they are expected to generate 4.5 million additional jobs by 2030 (Bergen 2020; Brunner
et al. 2022).

Financial benefits have been indicated as one very important factor for wind energy
acceptance by local communities (Rand and Hoen 2017). For Portugal, Delicado et al. found
that direct benefits for municipal authorities created an increased proportion of approved
projects (Delicado et al. 2016). Baxter et al., in a study performed for Ontario, Canada,
reported that fairness in the distribution of financial benefits among community stake-
holders was one of the factors related to higher acceptance levels for wind energy projects
(Baxter et al. 2013). On the other hand, Dimitropoulos et al., reported that for Greece the
lack of proper information and outreach to local communities on the development of wind
projects was one of the most relevant determinants of social opposition (Dimitropoulos and
Kontoleon 2009). Therefore, it has been indicated that the dissemination of information
related to wind farm projects, including benefits, through outreach and the involvement of
local communities significantly increases the social acceptance of these projects (Bristow
et al. 2012).

Benefits provided by wind energy to rural communities in the United States have not
received wide public outreach. A lack of complete information on these benefits has been
shown to foster local social opposition, hindering wind farms’ continuous growth (Groth
and Vogt 2014; Song et al. 2016). Previous studies have indicated that an important factor
increasing social opposition to infrastructure projects is the perception of local communities
not benefiting from the project and not having been consulted in advance concerning
these projects (Hall et al. 2013; Lundheim et al. 2022). In many situations, energy from the
wind is consumed in cities, far away from the installation site. Overhead power lines are
installed to convey wind energy to these remote locations. Rural communities, where wind
is installed, may perceive to receive only hardships without benefits (Song et al. 2016). For
these reasons it is critical to clearly understand and effectively communicate the financial
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benefits provided by the wind industry to local rural communities (Gross 2007; Copena
and Simón 2018; Lundheim et al. 2022).

Moreover, from the global sustainability standpoint, the relevance of incentivizing
the continuous growth of wind energy cannot be overstated. Renewable energy is a
critical component of global projections to significantly reduce humanity’s carbon footprint
(Barthelmie and Pryor 2021; Haces-Fernandez et al. 2022). Wind energy has the advantage of
being commercially viable and financially successful, efficiently competing with traditional
hydrocarbon fuels. In fact, in many locations wind is the most inexpensive electricity
generation form (Haces-Fernandez et al. 2019; Wiser et al. 2021a). Therefore, it is paramount
to continue incentivizing the continuous growth of wind energy. Considering that most of
this growth will occur in rural locations, the relevance of the results from this study are
significant to reduce potential local social opposition that would prevent the expansion of
this renewable energy resource (Haces-Fernandez et al. 2017; Lienhoop 2018).

3. Current State of Knowledge, Novelty, and Scientific Contribution

As indicated in the introduction and the literature review of this study, granular
current data on the financial benefits to rural communities from wind energy characterized
by county, school district, or zip code are not publicly available. This information is in many
cases confidential, outdated, or dispersed across multiple databases. Furthermore, the
literature on the topic is scarce and no models have been developed to assess, characterize,
and optimize current and future potential financial benefits for rural areas. Generating high
resolution results on the potential financial benefits from wind industry to rural locations
in the US is challenging, considering that the data are scattered among a large number of
diverse databases hosted by diverse organizations. Furthermore, information on rental
income from the wind industry to rural property owners is in many cases kept private,
making it difficult to evaluate the financial benefits provided by this industry. Applying a
Geographic Information System to integrate dispersed database information will develop
a powerful tool evaluate the diverse strategies available to incentivize continuous wind
energy growth while benefiting local communities.

Lack of dissemination of these financial growth opportunities hinders the ability
of rural communities to adequately plan and benefit from the continuous expansion of
the wind industry. It prevents local stakeholders from effectively negotiating the most
beneficial leases, tax incentives, and minimum required wind industry local employment
offerings. Not fully understanding the potential financial benefits has caused some rural
communities to have increased social opposition to wind projects. The ultimate outcome
of this research aims to provide local stakeholders with adequate information and data
to promote wind energy growth, maximize potential benefits for local stakeholders, and
advise rural community decision makers on the best strategies to plan future wind projects
development.

Considering the challenges presented by the state of knowledge and the limitations of
existing studies, this research proposes the development of a novel holistic and integrative
method to assess the financial benefits of wind energy to rural locations. The novelty of
this study comprises the integration of disperse and divergent databases into a coherent
assessment tool to provide valuable information to rural communities. Granular data
on rural poverty levels, school districts distribution, county boundaries, individual wind
turbine localization and characteristics, property ownership and distribution, and future
wind farm development and its potential layouts are all integrated in the model. The
scientific contribution is the development of a framework capable of integrating, handling,
processing, and providing analytics results for the assessment of each individual rural
location in terms of its current vulnerability and potential financial benefits from wind
projects. Adequate information on the topic will help rural communities to better negotiate
the development of new wind farms or their repowering projects. This will incentivize wind
energy growth while simultaneously providing rural stakeholders with critical information
to negotiate with developers on the creation of future renewable energy projects on their
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jurisdiction. The proposed method will allow for a better assessment, understanding and
dissemination of information on financial benefits from wind energy to rural communities.

To present this study, the manuscript follows the traditional structure of a research
paper, striving to provide a clear narrative for the readers. The previous three sections
contained the (1) introduction; (2) literature review; and (3) current state of knowledge,
novelty, and scientific contribution. In the following sections the manuscript is structured
in four sections: (4) methods and materials; (5) results; (6) discussion; and (7) conclusion.

4. Methods and Materials

The proposed method to conduct his study involved several operational objectives, as
indicated in Figure 2. The assessment and identification of poverty applying Geographic
Information Systems (GIS) and data analytics was considered as the first objective. This
objective was evaluated by applying macroeconomic metrics with significant granular data
fields and records to provide relevant regional and local results. Identification of rural
areas was performed considering the Rural–Urban Continuum Codes (RUCC) developed
by the US Department of Agriculture (USDA 2020, 2021). Data provided by the US Cen-
sus Bureau for the Small Area Income and Poverty Estimates (SAIPE) Program (USCB
2021) were applied to assess poverty levels at rural locations with an increased resolution.
Macroeconomic county economic activity was assessed through Gross Domestic Product
by county data developed by the Bureau of Economic Analysis from the US Department of
Commerce (BEA 2021). All these macroeconomic and geospatial data were overlaid and
combined to perform a granular identification of poverty levels in rural locations. The
second operational objective on the research was to identify the potential financial benefits
for rural communities from wind energy investment. As indicated by previous studies,
benefits were classified in public and private (Copena and Simón 2018; Slattery et al. 2011;
Mulvaney et al. 2013b; Bergen 2020; Kahn 2013), which are shown in the second and third
columns of Figure 2. The flow chart further enumerates the potential financial benefits from
wind investment for local communities. A novel research methodology was developed, as
part of the third operational objective, to assess and evaluate wind energy financial benefits
for rural locations. The last operational objective of the proposed method involved the
integration and design of community outreach to local stakeholders (individual citizens,
government, school districts and local organization, among others) and wind developers.
Leveraging existing technologies, this information would be integrated into a public and
private online dashboard which will provide useful granular information on the results
from this study. The scope of this manuscript covers poverty assessment for rural locations,
and benefit assessment and calculation considering the lease income for the individual cat-
egory and school districts for the community. This provides a good benchmark to correlate
wind energy potential benefits significantly impacting rural locations with high poverty
levels, justifying the relevance of the study. Results from the research will be developed
into additional research papers that will continue to demonstrate the relevance of the study
and the beneficial financial impact from wind energy investment.
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Big data analytics and Geographic Information Systems (GIS) were implemented to
evaluate the more than 60,000 wind turbines in the US obtained from the U.S Wind Turbine
Database developed by the U.S. Geological Survey (Rand et al. 2022). These data were
combined with the datasets of school districts, obtained from federal and state sources.
Department of Education databases and data for cities, Zip Codes, counties, population, and
economic activity were obtained from the US Census Bureau (USCB 2010, 2019; IES-NCES
2022). To characterize rural locations, the GIS system was overlaid with the Rural–Urban
Continuum Codes (URCC) developed by the US Department of Agriculture, as presented
in Table 1 and Figure 3. The classification indicates the degree of county urbanization
and proximity to metropolitan areas, distinguishing each county by size of population
divided into metro and non-metropolitan locations (USDA 2020). Diverse graphical tools
were utilized in the research to better highlight the financial benefits provided by wind
energy to diverse local stakeholders. Among these charts, the plot box is very useful,
allowing the trend for each particular rural classification to be observed and to include
upper bound outliers. These upper bound outliers represent future investment trends
for counties, school districts, and other local stakeholders. It showcases the magnitude
on which some entities have become leaders in benefiting from renewable energy. Other
stakeholders in lower investment parameters or no investment from wind will be able
to identify these leaders and better appreciate potential benefits. The benefits will be an
important factor to overcome social opposition to this industry, as indicated by previous
research.

Table 1. Description of the nine US county classes from the Rural–Urban Continuum Codes.

Code Rural–Urban Continuum Description

1 Metro-Counties in metro areas of 1 million population or more
2 Metro-Counties in metro areas of 250,000 to 1 million population
3 Metro-Counties in metro areas of fewer than 250,000 population
4 Nonmetro-Urban population of 20,000 or more, adjacent to a metro area
5 Nonmetro-Urban population of 20,000 or more, not adjacent to a metro area
6 Nonmetro-Urban population of 2500 to 19,999, adjacent to a metro area
7 Nonmetro-Urban population of 2500 to 19,999, not adjacent to a metro area

8 Nonmetro-Completely rural or less than 2500 urban population, adjacent
to a metro area

9 Nonmetro-Completely rural or less than 2500 urban population, not
adjacent to a metro area
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The lease rates paid to private owners by wind farm operators are not publicly avail-
able and contracts stipulate that this information should remain confidential. However,
previous reports and the literature have discussed the structure and amount of potential
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lease rates and considering these ranges it is possible to model rental payments apply-
ing diverse structures. An option widely used implies a flat payment per wind turbine
name plate capacity, on the ranges of USD2000–USD5000 per MW per year. However,
USD2000/MW/year was standard before 2000 but as equipment has increased in power
output and size, values are normally in higher ranges (Windustry 2009a; Wiser et al. 2019).
In this research, rates based on the installed capacity of the wind turbines were applied
to the wind farms in the US to assess the financial benefits that may be obtained by rural
property owners. Granular analysis on the potential rental income per property owners for
Texas was performed by integrating into the system the Land Parcels dataset provided by
the Texas Natural Resources Information System (TNRIS 2022).

Annual lease payments for each wing turbine depend on the rent negotiated in the
contract, per MW of NPC, and the size of the wind turbine, as shown in Table 2. Considering
a uniform NPC and lease rate changing the increase for the lowest and highest among
generates a growth of two and a half times between the highest and lowest values. On the
other hand, maintaining the rental rate stable and changing the installed MW for the wind
turbine may cause the annual income to increase sevenfold between the lowest and the
highest values. This indicates the potential significant increase in rental financial benefits
as wind turbine sizes continue to increase in the future.

Table 2. Annual rental income from one wind turbine considering different NPC and negotiated
rental rates (USD/MW).
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The potential for annual rental income for each property depends on the name plate
capacity (NPC) of wind turbines (MW), the negotiated rent per MW, and the number of
turbines in each property, as shown in Table 3. The lowest income corresponds a property
with only one wind turbine, with a range between USD4500 and USD17,500 depending
on the size of the equipment and the negotiated annual rent. The wide range of potential
financial benefits from rent highlights the relevance of proper negotiation on the lease
payment and equipment NPC to maximize income based on the size of the land plot, which
could potentially accommodate a larger number of turbines.

Table 3. Rental income per property considering the negotiated rental agreement (USD/MW), the
NPC of the equipment and the number of installed wind turbines in the land plot.
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5. Results

A US national assessment for rural populations in regard to economic activity and
poverty was generated by the study as a benchmark to evaluate potential financial ben-
efits to these locations from wind energy. Figure 4 provides this US national assessment
classifying counties according to the Rural–Urban Continuum Codes developed by the
US Department of Agriculture (USDA 2020). Poverty data were obtained from the Small
Area Income and Poverty Estimates (SAIPE) Program developed by the US Census Bureau
(USCB 2021). Counties economic activity was evaluated applying the Gross Domestic
Product by County developed by the Bureau of Economic Analysis from the US Depart-
ment of Commerce (BEA 2021). Figure 4a presents the Poverty Estimates for each county
classified according to the USDA Rural–Urban Continuum. For counties in category one,
metro areas of population of more than 1 million, less than 11% of the counties have more
than 15% in poverty. For the remaining categories in the Metro bracket (2 and 3) less than
30% of the counties have more than 15% of their population in poverty levels. On the
other hand, for non-metro counties, more than 35% of them have more than 15% of its
population in poverty and more than 10% of these counties have poverty levels higher
than 20%. Furthermore, only non-metro counties have poverty levels above 30%. Figure 4b
further highlights the lower level of economic activity in rural counties. Almost all rural
counties (categories 4–9) have a GDP of less than USD one million, with 96% of category
8 counties and 98% of category 9 counties in this low level of GDP. In contrast, a large
number of metro counties (categories 1–3) have GDP higher than USD5 million, with 53% of
category 1 counties having this higher level of GDP. This analysis highlights the relevance
of procuring economic opportunities for non-metro rural counties to provide higher living
standards to its population and create local interest in the development of new wind farms.
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To better understand the potential economic impact of wind energy in rural areas
Figure 5 shows the breakdown of the placement of wind turbines across the US classified
according to the USDA Rural–Urban Continuum Codes. Figure 5a showcases that more
than 72% of all wind turbines are placed in rural areas (categories 4–9) while less than 5%
are installed in metro areas of population of more than 1 million (category 1). Furthermore,
more than one third of these turbines in category 1 counties are legacy equipment, installed
before the year 2001, 60% of which are located in California. Therefore, most of the advanced
wind turbines are installed in rural areas, with almost 73% of them located in categories
4–9 areas and 50% installed after the year 2010 in rural placements. The analysis indicates
that the trend to install wind turbines in rural locations is accelerating. This is confirmed
by results in Figure 5b, considering that smaller Name Plate Capacity (NPC) equipment
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was installed at historically earlier times. More than 50% of turbines installed in metro
areas (category 1–3) are smaller than 2 MW NPC and for category 1 it increases to 72% of
all installed equipment. On the other hand, almost 77% of all turbines 2.5 MW NPC or
higher are installed in rural locations (category 4–9) and more than 87% of NPC higher
than 3.5 MW are installed in these locations. Wind turbine placement is being carried out in
greater numbers and for larger NPC in rural locations, benefiting local populations, which
have otherwise limited economic opportunities.
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Wind turbines installed in rural locations increase fixed assets capital investment.
These new assets increase the revenue base, providing additional tax collection for local
counties and income for school districts on which the equipment is located. New em-
ployment opportunities and rental income for local landowners are also derived from
these investments. Figure 6a indicates that more than 560 counties have wind turbines
installed in their jurisdictions. The analysis shows the number of counties that previously
did not have wind turbines installing their first equipment each year and categorized by the
total number of turbines currently installed in each location. The number of new counties
installing wind turbines for the first time shows a linear growth trend with more than 28
new counties being added every new year. Furthermore, the results indicate that counties
with more than 200 wind turbines on average started installing their equipment in 2006
and have on average installed new equipment in at least five different years during the
last twenty years. This showcases how counties that have already wind power in their
territory have incentives for additional equipment installation and new counties are being
added every year, in consideration to the potential benefits this industry provides to local
populations. For school districts in rural areas wind farms represent a significant influx of
resources that help them to provide educational services to many underserved populations.
As shown in Figure 6b there are more than 1200 school districts all across the US with
wind turbines installed in their geographic limits. This equipment provides additional real
estate tax income that benefits the school districts. The chart presents the number of school
districts that have turbines installed for the first time in a particular year with brackets
classifying the total number of wind turbines in that particular district. The growth of
new school districts accepting turbines is significant, with a linear average growth of more
than 66 every year, with 2020 showing an addition of 84 new districts that previously
did not have this equipment installed. Satisfaction with the results after installing the
equipment is reflected by the fact that more than 41% of the school districts have installed
wind turbines in two separate years, 20% in three separate years and 9% in four separate
years. Furthermore, school districts with more than 200 wind turbines represent 5% of this
group but have installed wind turbines on average almost five times during the last twenty
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years. This reflects strong satisfaction by school districts on having turbines in their district
and potential growth to additional untapped school districts territories.
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According to the US Energy Information Administration the average cost for onshore
wind generation capacity has significantly decreased in the last decade across the US. In
2013 the average cost was USD1895 per kW while by 2019 it was USD1391 per kW (EIA
2021). Considering that wind turbine NPC has significantly increased in this same period,
it is relevant to assess the real economic impact from these investments over individual
counties and school districts. The values previously indicated will be considered as lower
and higher limits to perform this assessment. Figure 7a for the highest value and Figure 7b
for the lowest value both indicate the overall initial valuation of installed wind turbines
classified by county USDA category and by installation year. Almost 80% of this value
is installed in rural counties (categories 4–9) while in rural counties category 5–9 most of
the inventory value was installed recently, with more than 70% deployed after 2010 and
more than 50% after 2015. This highlights a trend of wind investment growth in rural
counties. This property increase value in diverse counties implies an expansion on the
taxable base and increase in revenue for both counties and school districts. The previous
literature has indicated that wind energy investment increases the educational quality of
local schools, causes a decline in local taxes, and increases overall living standards and
quality, proportionally to the investments. In this case, for the lower value of equipment
parameter total investment for rural counties would be higher than USD145 billion which
could reach almost USD200 billion if the higher USD/kW value was considered. This
highlights the relevance of wind investments for local communities and the reduction in
social opposition for renewable energy that could be achieved if a wider outreach for this
information was attained.

Plot box and whiskers analyses shown in Figure 8 are useful to assess individual
county investment from wind turbines applying the three ranges evaluated in NPC values.
The overall trend presented in Figure 8a indicates that individual rural counties have each
derived a significant investment from wind equipment. For all rural counties higher than
USDA category five, the average investment is higher than USD0.2 billion, with most of
these counties having a third quartile between USD0.6 and USD1 billion. However, there
are significant number of counties reaching to higher values for the last quartile. Applying
the lowest valuation parameter, almost 8% of all counties have investment higher than
USD1 billion, of which 75% are in rural counties as shown in Figure 8b. The significant
number of outliers in the figures highlights the large number of counties starting to reach
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individual wind energy investments higher than USD1 billion. With this high new taxable
base opportunities and additional county improvement projects, each county will be able
to significantly increase the standard of living of their populations and therefore reduce
poverty levels. Developing outreach material on this recent development will reduce social
opposition not only on the benefited counties but on other counties that have wind energy
potential and may be reluctant to accept these new projects. Becoming aware of the great
relevance of these investments counties without wind power will be more receptive for
renewable energy projects. This will not only reduce local poverty levels but achieve global
sustainability goals, reducing greenhouse gasses emissions and curving climate change.
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Figure 9a indicates that from the more than 1300 School Districts that have wind
turbines installed in their area, many have significant investments in their territory. For
School Districts located in USDA rural categories 5 and higher the ranges between the
second and third quartile is relevant, reaching up to values higher than USD300 million.
Additionally, the fourth quartile reaches values higher than USD500 million and to USD800
million for many of these districts. Figure 9b increases the y-axis resolution to obtain a better
perspective on the fourth quartile ranges and outlier values. Performing a conservative
assessment on the outlier valuation counties, applying the lowest valuation threshold,
it is possible to obtain a better perspective of the significant investment values placed
on School Districts. Of all districts with installed wind turbines, 41% have investments
higher than USD100 million, while 23% higher than USD200 million and almost 6% have
equipment valued higher than USD500 million. The large number of School Districts with
wind energy investments that appear as outliers in the present plot box highlights the very
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good opportunities available to provide additional revenue to improve education in rural
communities. The previous literature has indicated that wind energy investment increases
on each school district the quality of education increases (Kahn 2013), providing very
good arguments to reduce social opposition to these sustainable investments. Therefore,
these opportunities not only decrease rural poverty but improve global sustainable energy
supplies.
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Figure 9. Wind turbine original value installed in different school districts, classified for their county
USDA category. (a) Full range values in y-axis. (b) Limited range values in y-axis to enhance data
visibility.

6. Discussion

A frequently used approach to calculate rent payment for installed wind turbines is
for a fixed yearly sum calculated according to the NPC. The fixed payments range from
USD2000 up to USD5000 per MW of NPC per year (Windustry 2009a). Each landowner is
paid according to the number of wind turbines placed in its property and the capacity of
the equipment. Figure 10a shows the maximum and minimum ranges for wind turbine
yearly rent payments for each area type considering four NPC payment options. The higher
rent payment ranges correspond to location category 6 ranging from USD59 to USD147
million, while all payments higher limit above USD100 million correspond to equipment
placed in rural locations categories 6, 7 and 10. For category 2, which corresponds to
counties in lower population metro areas, there is a high rent payment range, between
USD33 and USD81 million. However, further analysis indicates that a significant portion of
these counties are mostly rural and contain suburbia from middle size cities. For instance,
almost 39% of those payments correspond to rural counties in Texas on the vicinity of the
cities Corpus Christi, Laredo, Lubbock, and Amarillo. The positive financial impact from
rent payments from wind turbines for rural counties is further highlighted in Figure 10b.
More than 80% of urban counties in category 1 and more than 50% of category 2 urban
counties receive less than USD0.3 million of annual rent from wind turbines. On the other
hand, for larger wind turbines rural counties more than 70% of the counties receive annual
rents larger than USD0.3 million and between 35% and 45% of rural counties receive more
than USD1 million of yearly rents. Furthermore, in the larger rent bracket (USD5000 per
MW NPC) more than 22% of category 8 counties and more than 10% of rural counties
categories 5, 6, 7, and 9 receive more than USD3 million in annual rent payments. This
further highlights the financial benefits that rural counties may obtain from the continued
expansion of wind energy applying ever growing equipment.
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Figure 10. Rent payments from wind turbines classified according to location type from the USDA
Rural–Urban Continuum Codes. (a) Yearly total rent payments per location type. (b) Number of
counties classified by ranges of yearly total rent classified and location type.

Figure 11 expands the analysis on the benefits that counties may receive from wind
turbine annual rental payments. The box and whisker plots shown in Figure 11a present an
extended vertical axis range to the maximum potential cumulative yearly rent. This chart
showcases rural counties in categories 2 and 6 receiving potential rental income higher
than USD16 million and USD11 million, respectively. More than 10% of all counties, as
reflected in this chart, have yearly annual rental income from wind turbines higher than
USD3 million and more than 4% higher than USD5 million when considering the rental
bracket of USD5000 per MW NPC. Figure 11b shows a restricted range on the vertical
axis, allowing for a better resolution for the assessment of the financial benefits from this
study. All rural areas indicate a tendency to higher yearly rental income per county, with
counties category 7 showing a significant number of outliers with income higher than
USD2 million and rural counties in categories 5, 6, 8, and 9 extending its whiskers to values
higher than USD3 million in most of the rental brackets, indicating a robust potential to
growth rental income in these rural locations. This analysis is in line with the US global
rental income of USD289 million, reported by AWEA for 2018 paid by the wind industry
to landowners (Bergen 2020). Comparing this rental assessment presented in Figure 10
with reported values the analysis suggest that a significant proportion of existing lease
agreements were potentially negotiated on the lower brackets for rental payments. This
is relevant considering that previous reports have indicated that the lower brackets were
prevalent before the year 2000, but as technology has advanced more rental agreements
have negotiated higher lease rates (Windustry 2009b). This discussion is useful for local
stakeholders to improve negotiation positions and maximize potential rental income for
future wind farm developments. Increasing rental income for rural locations will provide
additional incentive to promote wind energy and therefore reduce social opposition for
these new projects.
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Figure 11. Box and whisker plots displaying variation in annual rent received by counties from wind
turbines considering four potential rental brackets for diverse NPC. (a) Chart with extended vertical
axis ranges. (b) Chart with limited vertical axis range.

To obtain a better understanding of the financial impact from wind turbine rent on
rural property owners, a GIS assessment was performed for Texas applying data obtained
from the Land Parcels dataset provided by the Texas Natural Resources Information System
(TNRIS 2022). This dataset provides diverse information regarding individual properties
collected originally by county appraisal districts. The dataset is continuously expanded
and updated. Currently 12% of the wind turbines in Texas are located in properties not
included in the dataset. An additional 9% of the wind turbines are located in properties that
although included in the dataset do not have the owner’s name. Figure 12a demonstrates
the use of the proposed assessment for Floyd County in Texas overlaying the Land Parcels
dataset with the USWTDB (Rand et al. 2022). The combined shapefile from all land parcels
from the counties with wind turbines indicates that there are 441 wind turbines installed in
193 properties in Taylor County. The characterization of the installed wind turbines per
property is presented in Figure 12b. The highest number of wind turbines installed in one
individual property is eight, all of them with NPC of 2 MW. Only 8% of the properties have
five or more wind turbines, while 65% of the properties with wind turbines have one or two
of them installed on their property. This methodological approach to assess the financial
individual benefits from wind energy as part of the discussion in this study is critical
to better understand the wider benefits distribution among a significant number of the
rural population. Benefits are not just concentrated among community organizations, local
governments, school districts or reduced number of landowners. The analysis showcases
the large number of individual property owners that now and in the future may benefit
from new wind energy projects. This will contribute to reduce social opposition and
increase generation of sustainable energy considering that fairness in the distribution of
financial benefits from wind projects creates higher acceptance levels for these facilities
among local populations (Baxter et al. 2013).

The distribution of wind turbines in diverse land parcels in Texas is presented in Fig-
ure 13 using data from TNRIS (TNRIS 2022). The analysis is performed both for individual
land parcels and for distinctive owners, considering that several contiguous plots or even
dispersed plots in Texas have the same owner. Figure 13a shows that 40% of all parcels have
only one wind turbine installed, while almost 80% have three or less wind turbines. This is
relevant, showing a high dispersion on rental payments benefits among a large number
of properties, potentially providing a wider benefit for rural communities. Figure 13b
supplements the previous analysis, focusing on property owners, considering that several
lots may have diverse owners. This helps to better understand how financial benefits may
be distributed among local landowners. The results indicate that the almost 6000 Texas
land parcels which have wind turbines installed are owned by less than 2900 individual
owners or co-owners. Of these owner or co-owners, 28% have only one turbine installed
on their properties while a little over than 65% have three or fewer turbines. On the other
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hand, almost 320 individual owners or co-owners have more than 10 wind turbines in their
properties, while almost 90 owners have more than 30 turbines installed. These results and
discussion show a high dispersion both for land parcels and diverse owners, potentially
creating expansive distribution on the benefits from wind turbine rent payments. This
increases social acceptance for new wind farms (Baxter et al. 2013). However, it is important
to further discuss that high dispersion may create challenges for wind farm developers,
when negotiating and formalizing leases for a potentially large number of contiguous prop-
erties that will compose the facility. Community organizations or local stakeholders may
attract wind energy new projects by creating bundled property packages, where owners
are ready to provide the same terms to developers and improve opportunities to attract
these investment projects.
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Figure 12. Assessment for wind turbine placement on individual lots applying data from Floyd
County (Texas). (a) Shapefile for individual parcels with corresponding turbines represented as red
points overlaid over each individual parcel. (b) Number of properties with turbines categorized
number of turbines per property classified according to the Name Place Capacity (NPC) of the
turbines with cumulative number of properties represented in the secondary y-axis.
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Figure 13. Assessment on the number wind turbine installed on individual lots in Texas classified
according to (a) distinctive lots on which the number of wind turbines indicated in the x-axis are
installed and (b) the number of different owners in Texas that have the number of wind turbines
indicated in the x-axis installed in their plots.

Figure 14 presents an assessment of potential rental payments for each individual
land parcels in Texas from installed wind turbines. The box plot analysis was performed
considering the four potential rental parameters per year of MW of installed capacity.
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Smaller wind turbines will generate lower payments, which will increase as the equipment
size grows. In Figure 14 the payments are calculated considering individual land parcels.
The first quartile for equipment paying USD2000 per MW the yearly rental payment would
be USD4800 increasing to almost USD14,000 for the third quartile while for the fourth
quartile it would be higher than USD27,000. On the other hand, for the highest payment
bracket (USD5000 per MW) the first quartile would be USD12,000, increasing to USD34,500
on the third quartile and to USD68,000 yearly per property in fourth quartile. It is relevant
to discuss that there is a significant number of outliers beyond the fourth quartile, indicating
properties receiving yearly rents much higher than these values. More than 300 properties
are included in these outliers, with 25% of the outliers receiving more than USD100,000
per year and 7% of the outliers more than USD200,000. Analysis for annual payments
received by owners or co-owners presented in Figure 14b indicate higher payments, as the
same person may own several properties with installed turbines. This further confirms
the relevance of neighboring properties having the potential to be bundled and provide
similar rental conditions for wind farm developers. For the USD2000 per MW bracket the
first quartile is USD6000 while the third and fourth quartile indicate USD20,000 and almost
USD41,000, respectively. For owners receiving USD5000 per MW of installed wind turbine
capacity the first quartile grows to USD15,000, while the third and fourth quartile reached
levels of USD50,000 and USD102,000 yearly rental payments.
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Figure 14. Box plot assessing the annual rent payments from wind turbine installed on individual lots
in Texas considering diverse rental payments (USD/MW) as negotiated by proprietaries, represented
by four different colors. (a) Annual rent payments for distinctive lots. (b) Annual rent payment
considering different owners.

Figure 15 provides a more granular analysis on the distribution of financial benefits
from wind turbine leases for individual properties and owners. The analysis presented
characterizes financial benefits for each of the categories for counties according to USDA
RUCC. Figure 15a shows individual parcels payments under four potential rental agree-
ments per MW of installed capacity (NPC). Based on this analysis it is possible to discuss
that most of the rural counties (4–8) indicate significant financial benefit from turbine
leases. Category 3 high financial benefits represent counties containing a small metro area
with wind equipment in the rural portion of the county. Considering the lower rental
bracket (USD2000 per MW) for all rural counties (except category 5) in the first quartile
income ranges between USD4000 and USD6000 with third and fourth quartiles higher than
USD12,000 and USD22,000, respectively. For the highest rental bracket (USD5000 per MW),
the first quartile consistently exceeds USD10,000, while the third and fourth quartile are
higher than USD30,000 and USD50,000, respectively. In fact, in this higher rental bracket
category 8 reaches almost USD90,000. This further highlights the significant individual
benefits received by rural populations and their potential to reduce social opposition for
new or repowered projects. The results presented in Figure 15b considering income for
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owners or co-owners increases potential rental revenue. Category 5 shows a significant di-
vergence with the analysis evaluating only parcels. On closer analysis the difference relates
to the fact that four proprietors in category 5 counties each own more than ten individual
plots which have wind turbines installed, reaching levels higher than USD140,000 for the
fourth quartile of the highest lease price bracket. For all rural counties there is a significant
annual rental increase in this analysis, owing to the fact that several properties have the
same owners. This highlights that counties, school districts, or landowners may pursue a
strategy to bundle diverse owners’ properties into coherent land packages to incentivize
wind developers on new project developments. Avoiding individual negotiations with
landowners and providing uniform leasing conditions would encourage wind developers
to invest on locations offering these opportunities. Additionally, the previous discussion
helps to better understand wind energy development in rural locations and the financial
benefits received from wind industry leases to rural county landowners.
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To evaluate the financial benefits from future wind farms the study incorporated data
published by ERCOT, identifying potential sites to develop new utility-scale wind farms
in Texas (Rojowsky et al. 2020). More than 31 Gigawatts (GW) of future capacity were
modeled across 148 wind farms distributed across Texas as indicated in Figure 16a. To
evaluate potential financial benefits from lease income derived from these future facilities
this study modeled potential spatial distribution applying GIS analysis. This analysis
considered the installation of 3 MW wind turbines with a diameter of 110 m, which is
one of the current most frequently used models. The map in Figure 16a shows that these
new wind farms will be distributed in 114 counties all across Texas, with the largest
capacity per county reaching almost 750 MW in Potter County, equivalent to 249 future
wind turbines. Almost 83% of these counties will have more than 50 turbines, 43% of
them more than 100 turbines, and 8% more than 150 wind turbines. This showcases the
significant opportunity to provide additional financial benefits through rental income for
property owners. Furthermore, Figure 16b shows that from these future wind turbines
more than 62% will be in rural areas category 4–9 from the USDA RUCC, representing a
significant financial boost for these areas that normally do not have industrial activities in
their jurisdictions. Discussion in this assessment highlights counties that can potentially
benefit from wind energy investments. With this information wind developers and local
stakeholders can take measures for wide outreach on this industry benefits, reducing
potential local opposition and creating structures to support and attract this industry.
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Assessment of potential future income from wind turbine leases is presented in
Figure 17. The assessment and discussions were performed both for county level and
for individual land parcels from data provided by TNRIS (TNRIS 2022). GIS analyses
were performed to ascertain the placement of individual equipment on the properties
on the location of the new wind farm, as indicated by ERCOT (Rojowsky et al. 2020). A
separation of 7 diameters was considered for the design of the wind farms layout with
a cluster distribution surrounding the location of the potential wind farm. A uniform
grid separation was evaluated for the equipment to perform individual parcel placement.
Figure 17a shows that the lease income from future wind farms in Texas could range
between USD62 and USD155 million, depending on the bracket value negotiated for MW
of installed power between developers and owners. However, it is relevant to discuss that
as more advance equipment is installed negotiated rent values tend to the higher bracket
levels, potentially providing owners with revenue closer to the higher payment levels, as
highlighted in previous sections of this study. Furthermore, the results indicate that 88% of
all rental income will be generated in rural counties (USDA RUCC levels 4–9), providing
significant future income to rural property owners. A more detailed perspective on the
potential benefits that individual parcel owners may obtain from these wind farm leases is
provided by Figure 17b. Results indicate that for rural properties that negotiated the lowest
rental bracket (USD2000 per MW) generated yearly rental income on the first quartile is
USD6000, for the third quartile income ranges between USD10,000 and USD30,000; while
for the fourth quartile payments increase to ranges between USD20,000 and USD55,000.
However, if the highest bracket rental level was negotiated (USD5000 per MW) yearly rental
income may increase significantly. On rural properties for the first quartile rental payment
would be USD15,000; for the third quartile values would range between USD30,000 and
USD75,000 while for the fourth quartile rental income would fluctuate between USD45,000
and USD135,000. This provides significant insights to both local stakeholders and wind
energy developers to better understand avenues and strategies to maximize future wind
project developments.

Financial benefits have diverse magnitudes according to the indicators that impact
the different evaluated group of actors, as previously shown in this study. The benefits
for communities, comprising school districts new investments, new rural area investment
projects and tax revenue increase from wind energy are several orders of magnitude larger
than the benefits received by individuals. Among the benefits for individuals such as lease
income, employment, and improvement projects for particular properties, as shown in
Figure 2 the value of each individual benefit is smaller. However, both general types of
financial benefits are very significant for rural populations. Individual benefits aid farmers
and landowners to supplement their income and maintain their operations in financial
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health. Community benefits, which are significantly larger than individual benefits, pro-
vide local stakeholders with the potential to provide better public services, decreasing
poverty levels and increasing overall standard of living. The public communication of this
benefits to rural communities generates the additional benefit of incentivizing the growth
of renewable energy in the United States by reducing local social opposition. This allows
for the fulfillment of sustainability objectives on energy generation while simultaneously
providing significant benefits to rural populations that normally have higher poverty risk
levels.
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7. Conclusions

Lack of economic opportunities in rural communities exacerbates problems related
to poverty, education, employment, and community wellbeing, fomenting migration, and
rural depopulation. Over the last two decades, wind energy has been growing exponentially
in the US and the trend is expected to continue. Most of wind farms are installed in
rural locations, creating opportunities to provide financial benefits for these communities.
However, a lack of high resolution, granular, and compiled data for each rural community
has hindered the potential of benefiting from wind energy continued growth. This research
combined diverse subject matter databases to provide a high-resolution assessment on the
potential benefits that wind energy may provide each rural community.

Results from the research confirmed that rural locations have higher levels of poverty
and general lack of economic opportunities. Wind farms have been growing on these
locations over the last twenty years, providing potential financial benefits. Data were
converted to a geospatial framework to overlay them, showing that the number of wind
farms installed on individual rural counties and school districts has grown significantly.
Furthermore, it showcased that both rural counties and school districts that installed wind
farms earlier in time repeated the investment several times afterwards, showcasing positive
experiences from these locations. Results showcased the significant financial benefits that
counties and school districts are receiving from wind energy. Some counties and school
districts present extraordinarily high financial benefits, highlighting the potential for this
industry to grow in rural locations in the United States. As these financial benefits are
more widely reported, social opposition is expected to decrease, further incentivizing the
development of renewable energy.

Applying geospatial data for land parcels in Texas it was possible to assess benefits
for landowners from wind turbine rental, showing that both individual properties receive
significant income from this activity. Furthermore, as wind industry continues to grow
the placement of future wind farms was identified and geospatial analysis performed
to identify potential individual properties and owners that may receive rental benefits
from these facilities. As wind turbines continue to grow, both in size and in number, the
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rental income will increase, considering that the payment is based both on the Name Plate
Capacity of the equipment and on the number of turbines.

This approach can be applied for other locations, both in the US and all over the
world, providing the relevant geospatial data that can be combined to generate high
resolution assessments. Results from these analyses will be important for local rural
stakeholders, helping them attract and better negotiate wind farms development. On the
other hand, wind operators will receive significant benefits from the assessments provided
by this research, allowing them to have a much better understanding of the expectation of
rural stakeholders and potential placement parcels, helping them to better negotiate lease
agreements, secure permits and avoid creating social opposition. This will help to create a
robust growth for renewable energy, reducing greenhouse gasses emissions and preventing
the most damaging effects from climate change.

Limitations for this study include the availability of data for the assessment of the
diverse metrics to determine the financial benefits from wind energy to rural locations.
As additional information continues to become available from government sources and
industry stakeholders it will be possible to further refine results for their use by local
communities. Future research will include new measures on how much members of the
social opposition could lose by not agreeing to wind turbine investments. A breakdown
on the potential benefits and losses per individual stakeholders or interest groups will be
developed in future research.
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ERCOT Electric Reliability Council of Texas
GIS Geographic Information Systems
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