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Abstract: The convolution method for the numerical solution of forward-backward stochastic differ-
ential equations (FBSDEs) was originally formulated using Euler time discretizations and a uniform
space grid. In this paper, we utilize a tree-like spatial discretization that approximates the BSDE
on the tree, so that no spatial interpolation procedure is necessary. In addition to suppressing ex-
trapolation error, leading to a globally convergent numerical solution for the FBSDE, we provide
explicit convergence rates. On this alternative grid the conditional expectations involved in the time
discretization of the BSDE are computed using Fourier analysis and the fast Fourier transform (FFT)
algorithm. The method is then extended to higher-order time discretizations of FBSDEs. Numerical
results demonstrating convergence are presented using a commodity price model, incorporating
seasonality, and forward prices.

Keywords: forward-backward stochastic differential equations; numerical solutions; fast Fourier
transform

Mathematics Subject Classification (2000): Primary: 60H10, 65C30; Secondary: 60H30

1. Introduction

A variety of numerical methods for backward stochastic differential equations (BSDEs)
and forward-backward stochastic differential equations (FBSDEs) have been developed
recently. Different applications call for innovative techniques for the efficient resolution of
these systems. In finance and economics BSDEs are used for option pricing and hedging El
Karoui et al. (1997), reflected BSDEs are used for modeling American options El Karoui
et al. (1997), and quadratic BSDEs play an important role in continuous-time recursive
utility Duffie and Epstein (1992) and other utility maximization problems.

Following the establishment of the well-posedness of BSDEs by Pardoux and Peng
(1992) the first numerical procedures to emerge were partial differential equation (PDE)
based methods such as the finite difference approach of Douglas et al. (1996). The PDE
method is mainly devoted to coupled problems as is the spectral method of Ma et al.
(2008). More recent numerical methods based on machine learning (Beck et al. 2019; Han
and Long 2020; E et al. 2017, 2019, 2022) have been applied to the numerical solution of
BSDEs which, given the connections between the theory of PDEs and their representations
as BSDEs, in turn provides solutions to high dimensional PDEs. Spatial discretization
methods were initiated by Chevance (1997) with a quantization approach to conditional
expectations. However, it is only since Zhang (2004) and Bouchard and Touzi (2004) that a
sound time discretization of (decoupled) FBSDEs is available. The quantization approach
was then used in the multidimensional framework of Bally and Pages (2003); Bally et al.
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(2005) and the coupled FBSDE case of Delarue and Menozzi (2006). The theoretical basis
for a multinomial approach for BSDEs was introduced by Briand et al. (2001) and Ma et al.
(2002) and followed in practice by Peng and Xu (2011). Monte Carlo methods are the most
prolific approach for numerical solutions of (F)BSDEs. They include the backward scheme
of Zhang (2004), the Malliavin approach of Bouchard and Touzi (2004) and Crisan et al.
(2010), the least-square regression approach of Gobet et al. (2005) and the iterative schemes
Bender and Denk (2007) and Bender and Zhang (2008).

Additional approaches to numerical solution of BSDEs include the cubature method
Crisan and Manolarakis (2012, 2014), Fourier-cosine expansions Huijskens et al. (2016);
Ruijter and Oosterlee (2015, 2016), and the convolution method Hyndman and Oyono
Ngou (2017). In introducing the convolution method, Hyndman and Oyono Ngou (2017)
developed a local discretization error which includes an extrapolation error. The extrapola-
tion error component is exclusively produced by the fast Fourier transform (FFT) algorithm
and the underlying trigonometric interpolation used to compute conditional expectations.
To improve the performance of the convolution method it is desirable to eliminate the
extrapolation error, and improve the error bound, with an alternative implementation of
the FFT algorithm.

In this paper, we propose an alternative space grid for the convolution method,
instead of the rectangular grid in Hyndman and Oyono Ngou (2017), which eliminates the
extrapolation error, leads to a globally convergent numerical solution for the (F)BSDE, and
provides explicit convergence rates. We also apply the numerical method to the Runge–
Kutta schemes for FBSDEs proposed by Chassagneux and Crisan (2014). The tree-like nature
of the alternative grid avoids extrapolations and leads to a global error bound for the BSDE
approximate solutions. Further, the implementation of the convolution method originally
presented in Hyndman and Oyono Ngou (2017) is simplified by using an alternative
parametric transformation to enforce the necessary periodic boundary conditions.

The paper is organized as follows. Section 2 reviews the explicit Euler time discretiza-
tion of BSDEs, recalls the convolution method of Hyndman and Oyono Ngou (2017) for
computing the necessary conditional expectations, gives a description of an alternative
spatial discretization, and provides a generic implementation of the convolution method on
this grid using the discrete Fourier transform. The section ends with a global error analysis.
Section 3 extends the Fourier interpolation method to higher order time discretizations
of FBSDEs and includes the related global error analysis. Finally, Section 4 presents a
numerical implementation, in the context of a commodity price model, that illustrates the
theoretical results. Section 5 concludes.

2. The Fourier Interpolation Method

In this section, we introduce an alternative grid that removes extrapolation error of
Hyndman and Oyono Ngou (2017), after a quick presentation of the Euler scheme for
FBSDEs. Section 2.4 presents a global error analysis of the Fourier interpolation method on
this alternative grid and under the Euler scheme.

2.1. Time Discretization

Let
(

Ω, P,F , {Ft}t∈[0,T]

)
be a complete filtered probability space generated by a

d−dimensional Wiener process W. We seek a numerical solution to the FBSDE
dXt = a(t, Xt)dt + σ(t, Xt)dWt

−dYt = f (t, Xt, Yt, Zt)dt− Z∗t dWt

X0 = x0, YT = ξ

(1)

The forward drift a : [0, T]×Rd → Rd, the forward volatility σ : [0, T]×Rd → Rd×d,
the driver f : [0, T]×Rd ×R×Rd → R are deterministic functions. The initial condition is
x0 ∈ Rd and the terminal condition takes the Markovian form ξ = g(XT) where g : Rd → R.
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The FBSDE coefficients satisfy Assumption 1 so that existence and uniqueness of the FBSDE
solution (X, Y, Z) is assured.

Assumption 1. There exist positive constants K1, K2 K3, and K4 such that the coefficients of the
FBSDE (1) satisfy

|a(t, x1)− a(t, x2)|+ ‖σ(t, x1)− σ(t, x2)‖2 ≤ K1|x1 − x2| (2)

|a(t, x)|+ ‖σ(t, x)‖2 ≤ K2 (3)

| f (t, x1, y, z)− f (t, x2, y, z)| ≤ K1|x1 − x2| (4)

| f (t, x, y1, z1)− f (t, x, y2, z2)| ≤ K1(|y1 − y2|+ |z1 − z2|) (5)

| f (t, x, y, z)| ≤ K3(1 + |x|+ |y|+ |z|) (6)

for any t ∈ [0, T], x, x1, x2 ∈ Rd, y, y1, y2 ∈ R, z, z1, z2 ∈ Rd.
Moreover σ2 := σσ∗ is (uniformly) invertible, continuous and bounded

‖(σ2(t, x))−1‖2 ≤ K4 (7)

for any t ∈ [0, T], x ∈ Rd.
In addition, the terminal value is square integrable

‖ξ‖2
L2 := E

[
|g(XT)|2

]
< ∞. (8)

Remark 1. Assumption 1 makes no explicit assumption on g except square integrability. More
restrictive assumptions on g, namely that g is twice continuously differentiable, shall be specified
in the main results of Sections 2 and 3 which provide explicit rates of convergence for the Fourier
interpolation algorithms. However, similar to Crisan and Manolarakis (2012), see also Turkedjiev
(2015), it should be possible to consider g non-differentiable using a mollification argument on
the terminal condition.1 However, we shall not follow this approach in this paper so as to keep the
focus on the main contributions which are the overall approach, implementation of the convolution
method on the tree-like grid, developing the Runge–Kutta discretization schemes, and explicit
convergence rates.

The time discretization of the FBSDE (1) on the time partition π = {t0 = 0 < t1 <
. . . < tn = T} consists of the explicit Euler scheme given by

Xπ
0 = x0

Xπ
ti+1

= Xπ
ti
+ a(ti, Xπ

ti
)∆i + σ(ti, Xπ

ti
)∆Wi

Zπ
tn
= 0, Yπ

tn
= ξπ

Zπ
ti
= 1

∆i
E
[
Yπ

ti+1
∆Wi|Fti

]
Yπ

ti
= E

[
Yπ

ti+1
|Fti

]
+ f (ti, Xπ

ti
, E
[
Yπ

ti+1
|Fti

]
, Zπ

ti
)∆i

(9)

with ∆i = ti+1 − ti and ∆Wi = Wti+1 −Wti . Under an additional Lipschitz condition on the
function g we have, from Zhang (2004) and Bouchard and Touzi (2004), that the quadratic
discretization error

E2
π := max

0≤i<n
E

[
sup

t∈[ti ,ti+1]

∣∣∣Yt −Yπ
ti

∣∣∣2]+ n−1

∑
i=0

E
[∫ ti+1

ti

∣∣∣Zs − Zπ
ti

∣∣∣2ds
]

(10)

is of first-order in time, i.e.,
E2

π = O(|π|) (11)

where
|π| = max

i
∆i. (12)
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Following Hyndman and Oyono Ngou (2017) and Oyono Ngou (2014), the approx-
imate solution ui and the approximate gradient u̇i at time node ti, i = 0, 1, . . . , n− 1, are
given by

ui(x) = ũi(x) + ∆i f (ti, x, ũi(x), σ(ti, x)u̇i(x)) (13)

σ(ti, x)u̇i(x) =
1
∆i

E
[
Yπ

ti+1
σ(ti, Xπ

ti
)∆Wi|Xπ

ti
= x

]
=

1
∆i

∫
Rd
(y− ∆ia(ti, x))ui+1(x + y)hi(y|x)dy (14)

where the intermediate solution ũi is given by

ũi(x) = E
[
Yπ

ti+1
|Xπ

ti
= x

]
=
∫
Rd

ui+1(y + x)hi(y|x)dy, (15)

un = g and hi is a Gaussian density

hi(y|x) = (2π)−
d
2 ‖∆iσ

2(ti, x)‖−
1
2

2 exp
(
− 1

2∆i
y∗(σ2(ti, x))−1y

)
, (16)

and where y = y− ∆ia(ti, x) with characteristic function

φi(ν, x) = exp
(

i∆iν
∗a(ti, x)− 1

2
∆iν
∗σ2(ti, x)ν

)
. (17)

Let F and F−1 denote the Fourier transform operator and the inverse Fourier transform
operator, respectively,

F[θ](ν) =
∫
Rd

e−ix∗νθ(x)dx (18)

F−1[θ](x) =
1

(2π)d

∫
Rd

eiν∗xθ(ν)dν. (19)

The density function hi and the characteristic function φi satisfy the relations

hi(y|x) =
1

(2π)d

∫
Rd

e−iν∗yφi(ν, x)dν (20)

yhi(y|x) = −
1

(2π)d

∫
Rd

e−iν∗yi∇νφi(ν, x)dν

= ∆ia(ti, x)hi(y|x) +
∆iσ
∗(ti, x)

(2π)d

∫
Rd

e−iν∗y iνφi(ν, x)dν (21)

Using the relationships between the characteristic function and the density function
(20) and (21) leads to the representation

ũi(x) = F−1[F[ui+1](ν)φi(ν, x)](x) (22)

u̇i(x) = σ∗(ti, x)F−1[F[ui+1](ν)iνφi(ν, x)](x) (23)

for Equations (14) and (15) under integrability condition on the approximate solution ui+1.
In the sequel, we restrict the analysis to the one-dimensional case with d = 1.

2.2. Space Discretization

The space discretization is performed on a tree-like grid using three parameters: the
increment length l > 0, the even number N ∈ N∗ of space steps on the increment length,
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and the initial number N0 ∈ N of increment intervals. Hence, the space step is constant and
uniform on the grid

∆x =
l
N

. (24)

At the time node ti, i = 0, 1, . . . , n, the space domain is restricted on an interval of
length Nil centred at x0 and discretized uniformly with Ni N space steps where

Ni = N0 + i (25)

giving the nodes

xik = x0 −
Nil
2

+ k∆x, k = 0, 1, . . . , Ni N. (26)

In particular, the relation

xik = xi+1,k+ N
2

, k = 0, 1, . . . , Ni N. (27)

holds since the restricted interval at each time node is obtained by evenly increasing the
previous one with an interval of length l. If N0 = 0 then the space grid at mesh time t0 is
composed of the single point

x00 = x0. (28)

Figure 1 gives examples of alternative grids.

P. Oyono Ngou & C. Hyndman Fourier interpolation method for FBSDEs August 26, 2022

Figure 1: Examples of alternative grids
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2.3 Implementation
In order to compute numerical approximations of equations (2.22) and (2.23) at time node ti, i = 0, 1, . . . , n−1,
we introduce the generic functions θi : R → R, ψ : R2 → C and θi+1 : R → R such that

θi(x) = F−1 [F[θi+1](ν)ψ(ν, x)] (x). (2.31)

We assume that the function θi+1 satisfies the periodicity boundary value equalities of Assumption 2.2.

Assumption 2.2. The generic function θi+1 satisfies

θi+1 (xi+1,0) = θi+1

(
xi+1,NNi+1

)
(2.32)

∂θi+1

∂x
(xi+1,0) =

∂θi+1

∂x

(
xi+1,NNi+1

)
. (2.33)

Hence, the Fourier integral

F[θi+1](ν) =

∫ ∞

−∞
e−iνxθi+1(x)dx (2.34)

is restricted on the interval [x0− Ni+1l

2
, x0+

Ni+1l

2
] = [xi+1,0, xi+1,NNi+1 ] and discretized using the grid points

{xi+1,k}Ni+1N

k=0 with a quadrature rule with weights {wk}Ni+1N

k=0 . As to the inverse Fourier integral of equation
(2.31) we restrict it on the interval [−L

2
, L

2
] and discretize it with lower Riemann sums at the Fourier space grid

point {νi+1,k}Ni+1N

k=0 .
Let D and D−1 denote the discrete Fourier transform and the inverse discrete Fourier transform respectively

D[{x}N−1
i=0 ]k =

1

N

N−1∑

j=0

e−ijk 2π
N xj (2.35)

D−1[{x}N−1
i=0 ]k =

N−1∑

j=0

eijk
2π
N xj . (2.36)

Then the discretization procedure leads to the approximation

θi(xi+1,k) ≈ (−1)kD−1
[
{ψ(νi+1,j , xi+1,k)D[θi+1]j}Ni+1N−1

j=0

]
k

(2.37)

where
D[θi+1]j = D

[
{(−1)sw̃sθi+1(xi+1,s)}Ni+1N−1

s=0

]
j

(2.38)

5

Figure 1. Examples of alternative grids.

The convolution relations of Equations (22) and (23) call for a discretization of the
Fourier space as well. At each mesh time ti, i = 1, 2, . . . , n, the Fourier space is restricted
on an interval of length L centred at zero (0) and discretized with Ni N space steps. The
equidistant nodes are thus of the form

νik = −
L
2
+ k∆νi, k = 0, 1, . . . , Ni N (29)

where ∆νi =
L

Ni N
. The Nyquist relation2 holds whenever L is such that

Ll = 2πN. (30)



J. Risk Financial Manag. 2022, 15, 388 6 of 32

2.3. Implementation

In order to compute numerical approximations of Equations (22) and (23) at time node
ti, i = 0, 1, . . . , n − 1, we introduce the generic functions θi : R → R, ψ : R2 → C and
θi+1 : R→ R such that

θi(x) = F−1[F[θi+1](ν)ψ(ν, x)](x). (31)

We assume that the function θi+1 satisfies the periodicity boundary value equalities of
Assumption 2.

Assumption 2. The generic function θi+1 satisfies

θi+1(xi+1,0) = θi+1
(

xi+1,NNi+1

)
(32)

∂θi+1

∂x
(xi+1,0) =

∂θi+1

∂x
(

xi+1,NNi+1

)
. (33)

Hence, the Fourier integral

F[θi+1](ν) =
∫ ∞

−∞
e−iνxθi+1(x)dx (34)

is restricted on the interval [x0 − Ni+1l
2 , x0 +

Ni+1l
2 ] = [xi+1,0, xi+1,NNi+1 ] and discretized

using the grid points {xi+1,k}
Ni+1 N
k=0 with a quadrature rule with weights {wk}

Ni+1 N
k=0 . As

to the inverse Fourier integral of Equation (31) we restrict it on the interval [− L
2 , L

2 ] and

discretize it with lower Riemann sums at the Fourier space grid point {νi+1,k}
Ni+1 N
k=0 .

Let D and D−1 denote the discrete Fourier transform and the inverse discrete Fourier
transform, respectively

D[{x}N−1
i=0 ]k =

1
N

N−1

∑
j=0

e−ijk 2π
N xj (35)

D−1[{x}N−1
i=0 ]k =

N−1

∑
j=0

eijk 2π
N xj. (36)

Then the discretization procedure leads to the approximation

θi(xi+1,k) ≈ (−1)kD−1
[{

ψ(νi+1,j, xi+1,k)D[θi+1]j
}Ni+1 N−1

j=0

]
k

(37)

where
D[θi+1]j = D

[
{(−1)sw̃sθi+1(xi+1,s)}

Ni+1 N−1
s=0

]
j

(38)

and the weights {w̃}Ni+1 N−1
k=0 are given by

w̃k = wk + wNi+1 Nδk,0. (39)

where δ stands for the Kronecker delta. The relation of Equation (27) allows us to write

θi(xik) ≈ (−1)k+ N
2 D−1

[{
ψ(νi+1,j, xik)D[θi+1]j

}Ni+1 N−1
j=0

]
k+ N

2

(40)

for k = 0, 1, . . . , Ni N.
In Equation (40), the generic function ψ depends on the space node xik. If the re-

lation generalizes for all space nodes xik, k = 0, 1, . . . , Ni N, the function values θi(xik),
k = 0, 1, . . . , Ni N, can not be computed with a single direct FFT procedure. Instead, a
separate FFT procedure using the values of the generic function ψ at xik is needed to
compute the function value θi(xik). Nonetheless, the vector-matrix representation of the
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FFT procedure in Equation (40) allows the computation of all function values θi(xik) with a
matrix multiplication. In the vector-matrix representation, Equation (40) is

θi(xik) = (−1)k+ N
2 F̂k+ N

2
Ψ(xik)D[θi+1]

where F̂k+ N
2

is the (k + N
2 )th row of the Ni+1N dimension inverse FFT matrix F̂ and Ψ(xik)

is the Ni+1N dimension diagonal matrix built with the values {ψ(νi+1,j, xik)}
Ni+1 N−1
j=0 . Let

Θ(i) be the Ni N dimension vector of the function values θi(xik) such that

Θ(i)
1+k = θi(xik) (41)

for k = 0, 1, . . . , Ni N. The matrix representation gives

Θ(i) = Ψ̂(i)D[θi+1] (42)

where Ψ̂(i) is the (Ni N + 1)× Ni+1N matrix such that

Ψ̂(i)
1+k,1+j = (−1)k+ N

2 ω̄
j(k+ N

2 )
i ψ(νi+1,j, xik) (43)

with ω̄i = ei2π(Ni+1 N)−1
, k = 0, 1, . . . , Ni N and j = 0, 1, . . . , Ni+1N − 1.

The requirements of Assumption 2 can easily be satisfied. Given a function η : [a, b]→
R and η ∈ C1, if we consider the transformation

ηα,β(x) = η(x) + αx2 + βx (44)

then the parameters α and β can be chosen such that the transform function and its deriva-
tive have equal values at the boundaries of any interval. The following lemma gives
a method to select the coefficients α and β for the transform of Equation (44) such that
Assumption 2 holds in general.

Lemma 1. Suppose the real function η ∈ C1[a, b] is differentiable and let ηα,β be its transformed
function as defined in Equation (44). Then

α =
∂η
∂x (a)− ∂η

∂x (b)
2(b− a)

, (45)

β =
η(a)− η(b)
(b− a)

− α(b + a) (46)

solve the system of linear equations defined by{
ηα,β(a) = ηα,β(b)
∂ηα,β

∂x (a) = ∂ηα,β

∂x (b).
(47)

Proof. The second equation of the system (47) gives Equation (45) in a straightforward
manner. Equation (46) is given by the first equation of the system.

Hence, the numerical discretization may be applied on the transformation uα,β
i+1 at time

node ti but a correction must be performed so to recover the values of the intermediate
solution ũi and the approximate gradient u̇i. The next theorem gives the representation
under the transform of Equation (44).



J. Risk Financial Manag. 2022, 15, 388 8 of 32

Theorem 1. Let uα,β
i+1 be the alternative transform defined in Equation (44) of the approximate

solution ui+1. Then the intermediate solution ũi and the approximate gradient u̇i in Equations (22)
and (23) satisfy

ũi(x) = F−1[F[uα,β
i+1](ν)φ(ν, x)](x)− α[(x + ∆ia(ti, x))2 + ∆iσ

2(ti, x)]

− β(x + ∆ia(ti, x)) (48)

u̇i(x) = σ(ti, x)F−1[F[uα,β
i+1](ν)iνφ(ν, x)](x)− σ(ti, x)[2α(x + ∆ia(ti, x)) + β]. (49)

Proof. The proof follows the steps of Theorem 3.1 of Hyndman and Oyono Ngou (2017)
using the transformation introduced in Equation (44) and the relations (20) and (21) between
the density function hi and the characteristic function φi.

Algorithm 1 details the numerical procedure on the space grid and produces numerical
solutions {uik}

Ni N
k=0 , {ũik}

Ni N
k=0 and {u̇ik}

Ni N
k=0 for the approximate solution ui, the intermediate

solution ũi and the approximate gradient u̇i, respectively, i = 0, 1, . . . , n − 1. We next
consider error estimates under the alternative discretization.

Algorithm 1 Fourier Interpolation Method on Alternative Grid

1. Discretize the restricted real space [x0− Nn l
2 , x0 +

Nn l
2 ] and the restricted Fourier space

[− L
2 , L

2 ] with NnN space steps so to have the real space nodes {xnk}Nn N
k=0 and {νnk}Nn N

k=0
2. Value un(xnk) = g(xnk)
3. For any i from n− 1 to 0

(a) Compute α and β defining the transform of Equation (44), such that

θi+1 = uα,β
i+1 (50)

and θi+1 satisfies the boundary conditions of Equations (32) and (33).
(b) Compute θi(xik) through Equation (40) for k = 0, 1, . . . , Ni N with

ψ(ν, x) = φi(ν, x) (51)

and retrieve the values ũik as

ũik = θi(xik)− α[(xik + ∆ia(ti, xik))
2 + ∆iσ

2(ti, xik)]

− β(xik + ∆ia(ti, xik)). (52)

(c) Compute θi(xik) through Equation (40) for k = 0, 1, . . . , Ni N with

ψ(ν, x) = iνσ(ν, x)φi(ν, x) (53)

and retrieve the values u̇ik as

u̇ik = θi(xik)− σ(ti, xik)[2α(xik + ∆ia(ti, xik)) + β]. (54)

(d) Compute the values uik as

uik = ũik + ∆i f (ti, xik, ũik, u̇ik) (55)

for k = 0, 1, . . . , Ni N through Equation (13).
(e) Update the real space grid with Equation (27) and the Fourier space grid by

discretizing the interval [− L
2 , L

2 ] with Ni N space steps so to have the real space
nodes {xik}

Ni N
k=0 and {νik}

Ni N
k=0 .
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2.4. Spatial Discretization Error Analysis

Let {uik}
Ni N
k=0 , {ũik}

Ni N
k=0 and {u̇ik}

Ni N
k=0 denote the numerical solutions obtained from

the convolution method at time node ti given the solution ui+1 at time ti+1. For the Fourier
interpolation method on the alternative grid, we defined the local discretization error as

Eik := |ui(xk)− uik|+ |u̇i(xk)− u̇ik| (56)

for i = 0, 1, . . . , n− 1 and k = 0, 1, . . . , Ni N.

Theorem 2. Suppose that the driver is f ∈ C1,2([0, T]×R3), the terminal condition is g ∈ C2(R),
and Assumption 1 is satisfied. Then the convolution method yields a local discretization error of
the form

Eik = O(∆x) +O
(

e−K|∆i |−1l2
)

(57)

for some constant K > 0 on the alternative grid and under the trapezoidal quadrature rule
with weights

wj = 1− 1
2
(δj,0 + δj,Ni+1 N).

Proof. We suppose the solution ui+1 at time ti+1 is known. The solution ui+1 ∈ C2 is twice
differentiable since f ∈ C1,2 and g ∈ C2. Furthermore, ui+1 is square integrable with respect
to the Gaussian density.

By Theorem 1, we limit ourselves to the case where

ui+1

(
x0 −

Ni+1l
2

)
= ui+1

(
x0 +

Ni+1l
2

)
∂ui+1

∂x

(
x0 −

Ni+1l
2

)
=

∂ui+1

∂x

(
x0 +

Ni+1l
2

)
so that the coefficients of the transform are α = β = 0. Let Ti be the Fourier polynomial
interpolating ui+1 on

[
x0 − Ni+1l

2 , x0 +
Ni+1l

2

]
. Then

Ti(x) :=

Ni+1 N
2 −1

∑
k=− Ni+1 N

2

dje
ik 2π

Ni+1 l x
(58)

= ui+1(x) +O(∆x), ∀x ∈
[

x0 −
Ni+1l

2
, x0 +

Ni+1l
2

]
(59)

where
(−1)j− Ni+1 N

2 d
j− Ni+1 N

2
= D[ui+1]j, j = 0, 1, . . . , N1+i N − 1 (60)

when using the trapezoidal quadrature rule. We have that

ũi(xik) =
∫
|y|≤ l

2

ui+1(xik + y)hi(y|xik)dy +
∫
|y|> l

2

ui+1(xik + y)hi(y|xik)dy.

Note that∫
|y|> l

2

hi(y|xik)dy = P
[
|∆Xπ

i | >
l
2
|Xπ

ti
= xik

]
= P

[∣∣∣∣ ∆Xπ
i

σ(t, xik)
√

∆i

∣∣∣∣2 >
l2

4σ2(ti, xik)∆i
|Xπ

ti
= xik

]
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and that the random variable
(

∆Xπ
i

σ(t,xik)
√

∆i

)2
has a non-central chi-square distribution with 1

degree of freedom and non-centrality parameter λ =
(

a(ti ,xik)
σ(ti ,xik)

)2
∆i. Then for some constant

K > 0 which is inversely proportional to ∆i we have∫
|y|> l

2

ui+1(xik + y)hi(y|xik)dy = O
(

e−Kl2
)

by the Cauchy-Schwarz and Chernoff inequalities since the solution ui+1 is square inte-
grable. Hence

ũi(xik) =
∫
|y|≤ l

2

ui+1(xik + y)hi(y|xik)dy +O
(

e−Kl2
)

=
∫
|y|≤ l

2

Ti(xik + y)hi(y|xik)dy +O(∆x) +O
(

e−Kl2
)

(by Equation (59))

=
∫
R

Ti(xik + y)hi(y|xik)dy +O(∆x) +O
(

e−Kl2
)

(by Chernoff inequality, since Ti is bounded)

=
∫
R

Ni+1 N
2 −1

∑
j=− Ni+1 N

2

dje
ij 2π

Ni+1 l (xi,k+y)
hi(y|xik)dy +O(∆x) +O

(
e−Kl2

)

=

Ni+1 N
2 −1

∑
j=− Ni+1 N

2

dje
ij 2π

Ni+1 l xi,k φi

(
j

2π

Ni+1l
, xik

)
+O(∆x) +O

(
e−Kl2

)

= (−1)k+ N
2

Ni+1 N−1

∑
j=0

φ(νi+1,j, xik)D[ui+1]je
i 2π

Ni+1 N j(k+ N
2 )

+O(∆x)

+O
(

e−Kl2
)

(by Equation (60) when using the trapezoidal quadrature rule)

= ũik +O(∆x) +O
(

e−Kl2
)

.

Similar techniques show that

u̇i(xk) = u̇ik +O(∆x) +O
(

e−Kl2
)

(61)

where K > 0 is inversely proportional to ∆i. The Lipschitz property of the driver f
completes the proof.

As expected, the alternative discretization improves the local error bound by elimi-
nating extrapolation errors in Hyndman and Oyono Ngou (2017). The result of Theorem 2
establishes the consistency of the convolution method with respect to the approximate
functions ui and gradients u̇i. Furthermore, the absence of extrapolation errors in the local
discretization allows us to develop a tighter bound for the global discretization error. The
following corollary proves helpful when deriving the global discretization error bound.

Corollary 1. Under the conditions of Theorem 2, there is C > 0 such that

sup
i,k

Ei,k = O(∆x) +O
(

e−C|π|−1l2
)

. (62)

We define the global error as

El,∆x := sup
i,k

eik + sup
i,k

ėik (63)
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where

eik =
∣∣un−i(xk)− un−i,k

∣∣ (64)

ėik =
∣∣u̇n−i(xk)− u̇n−i,k

∣∣ (65)

for i = 1, . . . , n with e0,k = ė0,k = 0. The next theorem describes the stability and conver-
gence properties of the convolution method.

Theorem 3. Suppose the conditions of Theorem 2 are satisfied. If the space discretization is such that

sup
i

max

 K
1
2
4 ∆x
√

2π∆i
,

K4∆x
π∆i

 ≤ 1 (66)

then the Fourier interpolation method is stable and the global discretization error El,∆x satisfies

El,∆x = O(∆x) +O
(

e−C|π|−1l2
)

(67)

where C > 0 and K4 is the upper bound of Equation (7).

Proof. Let us first notice that

eik ≤ En−i,k +
∣∣un−i,k − un−i,k

∣∣
≤ En−i,k + (1 + ∆iK)

∣∣ũn−i,k − ũn−i,k
∣∣+ ∆iK

∣∣u̇n−i,k − u̇n−i,k
∣∣ (68)

where K > 0 is the Lipschitz constant of the driver f . Furthermore, we have that

ėik ≤ En−i,k +
∣∣u̇n−i,k − u̇n−i,k

∣∣. (69)

Furthermore, the construction of the Fourier interpolation method gives

∣∣ũi,k − ũi,k
∣∣ ≤ ∣∣∣∣D−1

[{
φ(νi+1,j, xik)D[ui+1 − ui+1,s]j

}Ni+1 N−1
j=0

]
k+ N

2

∣∣∣∣
≤ 1

Ni+1N

(
Ni+1 N−1

∑
j=0

∣∣φ(νi+1,j, xik)
∣∣) sup

k

∣∣ui+1(xik)− ui+1,k
∣∣

(using the matrix-vector representation of DFTs)

≤ 1
Ni+1N

(
Ni+1 N−1

∑
j=0

∣∣φ(νi+1,j, xik)
∣∣) sup

k
en−i−1,k

≤ (∆νi+1)
−1

Ni+1N

(∫
R
|φ(ν, xik)|dν

)
sup

k
en−i−1,k

≤
K

1
2
4 ∆x

(2π∆i)
1
2

sup
k

en−i−1,k (70)
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where the last inequality holds by Assumption 1. Similarly,

∣∣u̇i,k − u̇i,k
∣∣ ≤ ∣∣∣∣D−1

[{
ψ(νi+1,j, xik)D[ui+1 − ui+1,s]j

}Ni+1 N−1
j=0

]
k+ N

2

∣∣∣∣
≤ 1

Ni+1N

(
Ni+1 N−1

∑
j=0

∣∣iνi+1,jφ(νi+1,j, xik)
∣∣) sup

k
en−i−1,k

(using the matrix-vector representation of DFTs)

≤ (∆νi+1)
−1

Ni+1N

(∫
R
|νφ(ν, xik)|dν

)
sup

k
en−i−1,k

≤ K4∆x
π∆i

sup
k

en−i−1,k. (71)

The inequalities of Equations (68), (70) and (71) lead to

ei,k ≤ C0Ei,k + (1 + 2∆iK)max

 K
1
2
4 ∆x
√

2π∆i
,

K4∆x
π∆i

 sup
k

ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)max

 K
1
2
4 ∆x
√

2π∆i
,

K4∆x
π∆i

 sup
k

ei−1,k

where C0 > 0 and K > 0 is the Lipschitz constant of the driver f . Consequently,

sup
k

ei,k ≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)max

 K
1
2
4 ∆x
√

2π∆i
,

K4∆x
π∆i

 sup
k

ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK) sup
k

ei−1,k (72)

since

sup
i

max

 K
1
2
4 ∆x
√

2π∆i
,

K4∆x
π∆i

 ≤ 1

and the Gronwall’s Lemma yields

sup
k

ei,k ≤ C0e2TK sup
i,k

Ei,k (73)

from the inequality of Equation (72) for i = 0, 1, . . . , n knowing that e0,k = 0. The last
equation establishes the stability of the Fourier interpolation method for the approximate
solution ui since its error at any time step is absolutely bounded.

The inequalities of Equations (69), (71) and (73) lead to

sup
k

ėi,k ≤
(

C1 +
∆x
π∆i

C0e2TK
)

sup
i,k

Ei,k

≤
(

C1 + C0e2TK
)

sup
i,k

Ei,k (74)

for a positive constant C1 > 0. Hence, the convolution method is also stable for the
approximate gradient u̇i. The result of Equation (67) follows by taking the supremum on
the left hand sides of Equations (73) and (74) over time steps and applying Corollary 1.

As for most explicit methods for PDEs, the convolution method requires a stability
condition as described in Equation (66). In general, Theorem 3 shows that the convolution
method converges when the space discretization is relatively as fine as the time discretiza-
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tion. Other numerical methods for BSDEs, and particularly Monte Carlo based methods,
have a stability and convergence condition. Indeed, error explosion occurs for fine time
discretizations in the backward methods of Gobet et al. (2005) and Bouchard and Touzi
(2004). In order to maintain stability and convergence, the space discretization has to be
refined by increasing the number of simulated paths.

3. Higher Order Time Discretization for FBSDEs

In this section, we discuss further extensions of the Fourier interpolation method on the
alternative grid. In particular, we apply the Fourier interpolation method to Runge–Kutta
schemes for FBSDEs proposed by Chassagneux and Crisan (2014). Rather than computing
the numerical approximation (Yπ

ti
, Zπ

ti
) recursively backward in time for i = 0, . . . , n the

Runge–Kutta method introduced in Chassagneux and Crisan (2014) for decoupled FBSDEs
uses p intermediate stages implemented between time partition points.

3.1. Runge–Kutta Schemes

The FBSDE of Equation (1) is discretized on the time partition π. Following Definition 1.1
of Chassagneux and Crisan (2014) let q ∈ N∗, we consider the q-stage Runge–Kutta scheme
giving the following numerical solution at mesh time ti

Zπ
ti
= Eti

[
Hϕ1

ti ,∆i
Yπ

ti+1
+ ∆i

q

∑
j=1

β j H
ϕ1
ti ,(1−γj)∆i

f (ti,j, Xπ
ti,j

, Yπ
i,j, Zπ

i,j)

]
(75)

Yπ
ti
= Eti

[
Yπ

ti+1
+ ∆i

q+1

∑
j=1

αj f (ti,j, Xπ
ti,j

, Yπ
i,j, Zπ

i,j)

]
(76)

for a set positive coefficients {γj}
q+1
j=1 such that 0 = γ1 < . . . < γq+1 = 1. The intermediate

solutions {(Yπ
i,j, Zπ

i,j)}
q
j=2 take the form

Zπ
i,j = Eti,j

[
H

ϕj
ti,j ,γj∆i

Yπ
ti+1

+ ∆i

j−1

∑
k=1

β jk H
ϕj
ti,j ,(γj−γk)∆i

f (ti,k, Xπ
ti,k

, Yπ
i,k, Zπ

i,k)

]
(77)

Yπ
i,j = Eti,j

[
Yπ

ti+1
+ ∆i

j

∑
k=1

αjk f (ti,k, Xπ
ti,k

, Yπ
i,k, Zπ

i,k)

]
(78)

where
ti,j = ti + (1− γj)∆i, 1 ≤ j ≤ q + 1 (79)

with (Yπ
i,1, Zπ

i,1) = (Yπ
ti+1

, Zπ
ti+1

), (Yπ
i,q+1, Zπ

i,q+1) = (Yπ
ti

, Zπ
ti
) and terminal condition

(Ytn , Ztn) = (g(XT), σ∗(T, XT)∇g(XT)). (80)

The coefficients {αj}
q+1
j=1 , {β j}

q
j=1, {αjk : 1 ≤ j ≤ q, 1 ≤ k ≤ j} and {β jk : 1 ≤ j ≤ q, 1 ≤

k < j} are all positive and satisfy

q+1

∑
j=1

αj = 1 (81)

β jj = 0, 1 ≤ j ≤ q, (82)
j

∑
k=1

αjk =
j−1

∑
k=1

β jk = γj, 1 < j ≤ q. (83)
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Let Bm denote the set of continuous and bounded functions on [0, 1] such that

Bm :=
{

φ ∈ Cb :
∫ 1

0
skφ(s)ds = δ0,k, k ≤ m and k, m ∈ N∗

}
. (84)

The stochastic coefficient Hϕ
t,∆ with t ∈ [0, T) and ∆ > 0 is defined as

Hϕ
t,∆ :=

1
∆

∫ t+∆

t
ϕ

(
s− t

∆

)
dWs (85)

with ϕ ∈ Bm for some m ∈ N∗.
The above definitions give the q−stage Runge–Kutta and the method has a number of

advantages. The global error of the q−stage Runge–Kutta scheme Eπ is defined as

E2
π := max

0≤i<n
‖Yti −Yπ

ti
‖2

L2 +
n−1

∑
i=0

∆i‖Zti − Zπ
ti
‖2

L2

= max
0≤i<n

E
[∣∣∣Yti −Yπ

ti

∣∣∣2]+ n−1

∑
i=0

∆iE
[∣∣∣Zti − Zπ

ti

∣∣∣2] (86)

and is hence weaker than the error Eπ considered for the Euler scheme. Nonetheless, the
global error Eπ is easier to handle since it is strongly related to the local time discretization
error which simplifies the theoretical study in Chassagneux and Crisan (2014).

The scheme can be represented by the following tableau

γ1 α1,1 0 . . . 0 0 β1,1 0 . . . 0
γ2 α2,1 α2,2 . . . 0 0 β2,1 β2,2 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
γq αq,1 αq,2 . . . αq,q 0 βq,1 βq,2 . . . βq,q

γq+1 α1 α2 . . . αq αq+1 β1 β2 . . . βq

One can observe that if αq+1 = 0 and αjj = 0, 1 < j ≤ q, then the q-stage Runge–
Kutta scheme is explicit. Otherwise, the scheme is implicit. For instance, the Runge–Kutta
schemes with tableau

0 0 0 0
1 0 1 1

and the scheme with tableau

0 0 0 0
1 1

2
1
2 1

known as the Crank-Nicolson scheme constitute 1−stage implicit Runge–Kutta schemes.
The only 1−stage explicit Runge–Kutta scheme admits the tableau

0 0 0 0
1 1 0 1

In Chassagneux and Crisan (2014), the implicit and the explicit 1−stage Runge–Kutta
schemes are shown to be at least one-half ( 1

2 ) order convergent. The Crank-Nicolson
scheme, already studied in Crisan and Manolarakis (2014), presents a first-order of con-
vergence. Notice that the Euler schemes used in the previous section are not 1−stage
Runge–Kutta schemes since they do not lead to any consistent tableau. Nonetheless, their
structure is equivalent to the explicit 1−stage Runge–Kutta scheme and both schemes
display the same half ( 1

2 ) order of convergence. The following tableau gives a example
of explicit 2-stage Runge–Kutta schemes of first-order of convergence for γ2 ∈ (0, 1] and
β1 ∈ [0, 1].
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0 0 0 0 0 0
γ2 γ2 0 0 γ2 0
1 1− 1

2γ2
1

2γ2
0 β1 1− β1

3.2. Further Simplification

From the q-stage Runge–Kutta scheme for BSDEs, one notices that we have at least 2q
conditional expectations to compute at each time step. These conditional expectations can
be simplified and made more suitable for numerical implementation if we consider a rea-
sonable time discretization of the forward SDE. Hence, we make the following assumption.

Assumption 3 (Forward process discretization). The following are assumed throughout
this section.

1. The forward SDE is discretized with the piecewise constant process Xπ such that for
t ∈ [ti, ti+1) we have Xπ

t = Xπ
ti

pathwise.
2. The forward SDE time discretization with global error EX,π is of order m > 0, i.e.,

E2
X,π := max

0≤i≤n
‖Xti − Xπ

ti
‖2

L2 = O(|π|2m). (87)

3. The forward SDE time discretization admits the conditional characteristic functions φi :
Rd ×Rd → C

φi(ν, x) = E
[

eiν∗
(

Xπ
ti+1
−Xπ

ti

)
|Xπ

ti
= x

]
(88)

and Φi,j : Rd ×Rd → Cd

Φi,j(ν, x) = E
[

H
ϕj
ti,j ,γj∆i

eiν∗
(

Xπ
ti+1
−Xπ

ti

)
|Xπ

ti
= x

]
(89)

for 0 ≤ i < n and 1 < j ≤ q + 1 with ϕq+1 = ϕ1.
4. There are positive constants p0, q0, s0 ,K0 and C0 > 0 such that

max

(
inf

s∈R+
d

e−s∗tφi(is, x), inf
s∈R+

d

e−s∗tφi(−is, x)

)
≤ e−K0∆

−s0
i |t|q0 , (90)

∀t ∈ R+
d , hence the discrete version of the forward process has conditional exponential

moments. In addition,∫
Rd
|φi(ν, x)|dν + max

1<j≤q+1

∫
Rd

∣∣Φi,j(ν, x)
∣∣dν ≤ C0∆−p0

i . (91)

Itô-Taylor expansion based schemes are an example of SDE discretization satisfying
the conditions of Assumption 3. A more complete presentation of these schemes can be
found in Kloeden and Platen (1992). The next theorem gives a simplification of the BSDE
time discretization expressions.

Theorem 4. Under Assumption 3 (1), the solution of the q-stage Runge–Kutta scheme satisfies

{(Yπ
i,j, Zπ

i,j)}
q+1
j=2 ∈ Fti (92)
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for 0 ≤ i < n. Consequently, we can write

Zπ
i,j = Eti

[
H

ϕj
ti,j ,γj∆i

(
Yπ

ti+1
+ ∆iβ j,1 f (ti+1, Xπ

ti+1
, Yπ

ti+1
, Zπ

ti+1
)
)]

(93)

Yπ
i,j = Eti

[
Yπ

ti+1
+ ∆iαj,1 f (ti+1, Xπ

ti+1
, Yπ

ti+1
, Zπ

ti+1
)
]

+ ∆i

j

∑
k=2

αjk f (ti,k, Xπ
ti

, Yπ
i,k, Zπ

i,k) (94)

for 0 ≤ i < n and 1 < j ≤ q + 1 where ϕq+1 = ϕ1, βq+1,1 = β1 and αq+1,k = αk.

Proof. Clearly (Yπ
i,q+1, Zπ

i,q+1) = (Yπ
ti

, Zπ
ti
) ∈ Fti from Equations (75) and (76). For 1 < j ≤ q

and 0 ≤ i < n, we have

Yπ
i,j = E

[
Yπ

ti+1
+ ∆i

j

∑
k=1

αjk f (ti,k, Xπ
ti,k

, Yπ
i,k, Zπ

i,k) |X
π
ti,j

]
(starting from Equation (78))

= E

[
Yπ

ti+1
+ ∆i

j

∑
k=1

αjk f (ti,k, Xπ
ti,k

, Yπ
i,k, Zπ

i,k) |X
π
ti

]
(by Assumption 3 since ti,j ∈ [ti, ti+1))

= Eti

[
Yπ

ti+1
+ ∆i

j

∑
k=1

αjk f (ti,k, Xπ
ti,k

, Yπ
i,k, Zπ

i,k)

]

so that Yπ
i,j ∈ Fti . Similar arguments also show that Zπ

i,j ∈ Fti starting from Equation (77).

Since{(Yπ
i,j, Zπ

i,j)}
q+1
j=2 ∈ Fti , we naturally get Equation (94) from Equations (78) and

(76). In addition, knowing that

Eti

[
H

ϕj
ti,j ,(γi−γk)∆i

]
= 0 , 1 < k < j (95)

leads to Equation (93) from Equations (77) and (75).

As a consequence of Assumption 3, if the q−stage Runge–Kutta scheme and the
forward SDE time discretization are of order m > 0 then error of the FBSDE numerical
solution defined as EX,π + Eπ is of order m. We must hence choose the Runge–Kutta scheme
and the SDE scheme accordingly.

3.3. Fourier Representation

Following Theorem 4, the intermediate solutions {(ui,j, u̇i,j)}
q+1
j=2 at mesh time ti,

0 ≤ i < n, are given by

u̇i,j(x) = E
[

H
ϕj
ti,j ,γj∆i

ũi+1(Xπ
ti+1

, β j,1)|Xπ
ti
= x

]
(96)

ui,j(x) = E
[
ũi+1(Xπ

ti+1
, αj,1)|Xπ

ti
= x

]
+ ∆i

j

∑
k=2

αjk f (ti,k, x, ui,k(x), u̇i,k(x)) (97)

for 1 < j ≤ q + 1 with ϕq+1 = ϕ1, βq+1,1 = β1 and αq+1,k = αk. The approximate solution
ui and approximate gradient u̇i at mesh time ti, 0 ≤ i < n, are then

ui(x) = ui,q+1(x) (98)

u̇i(x) = u̇i,q+1(x) (99)

with
ũi+1(x, α) = ui+1(x) + ∆iα f (ti+1, x, ui+1(x), u̇i+1(x)) (100)
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and

un(x) = g(x) (101)

u̇n(x) = σ∗(T, x)∇g(x). (102)

In this setting, we have that

ui,j(x) = E
[
ũi+1(Xπ

ti+1
, αj,1)|Xπ

ti
= x

]
+ ∆i

j

∑
k=2

αjk f (ti,k, x, ui,k(x), u̇i,k(x)) (103)

Note that

E
[
ũi+1(Xπ

ti+1
, αj,1)|Xπ

ti
= x

]
= Ex

ti

[
1

(2π)d

∫
Rd

eiν∗Xπ
ti+1F

[
ũi+1(., αj,1)

]
(ν)dν

]
=

1
(2π)d

∫
Rd

Ex
ti

[
eiν∗Xπ

ti+1

]
F
[
ũi+1(., αj,1)

]
(ν)dν (using Fubini’s theorem)

=
1

(2π)d

∫
Rd

eiν∗xφi(ν, x)F
[
ũi+1(., αj,1)

]
(ν)dν. (104)

Therefore, by (103) and (104), we have

ui,j(x) = F−1[F[ũi+1(., αj,1)
]
(ν)φi(ν, x)

]
(x)

+ ∆i

j

∑
k=2

αjk f (ti,k, x, ui,k(x), u̇i,k(x)) (105)

whenever ũi+1(., α) is Lebesgue integrable.
As to the intermediate solutions u̇i,j, 0 ≤ i < n and 1 < j ≤ q + 1, we have

u̇i,j(x) = E
[

H
ϕj
ti,j ,γj∆i

ũi+1(Xπ
ti+1

, β j,1)|Xπ
ti
= x

]
= Ex

ti

[
H

ϕj
ti,j ,γj∆i

1
(2π)d

∫
Rd

eiν∗Xπ
ti+1F

[
ũi+1(., β j,1)

]
(ν)dν

]
=

1
(2π)d

∫
Rd

Ex
ti

[
H

ϕj
ti,j ,γj∆i

eiν∗Xπ
ti+1

]
F
[
ũi+1(., β j,1)

]
(ν)dν (using Fubini’s theorem)

=
1

(2π)d

∫
Rd

eiν∗xΦi,j(ν, x)F
[
ũi+1(., β j,1)

]
(ν)dν

= F−1[F[ũi+1(., αj,1)
]
(ν)Φi,j(ν, x)

]
(x) (106)

for an integrable function ũi+1(., α).
Even if the expressions in Equations (105) and (106) appear too general, they are

implementable with the Fourier interpolation method for d = 1 in various particular cases.
One can retrieve the characteristics φi and Φi,j and also perform the corrections due to the
transform of Equation (44) for many SDE time discretizations. The following lemma helps
in retrieving the conditional characteristics.

Lemma 2. The conditional characteristics Φi,j are

Φi,j(ν, x) = Ex
ti

[
H∗i,jiνeiν∗

(
Xπ

ti+1
−Xπ

ti

)]
(107)

with

Hi,j =
1

γj∆i

∫ ti+1

ti,j

DsXπ
ti+1

ϕj

(
s− ti,j

γj∆i

)
ds (108)

where DsXπ
ti+1

is the Malliavin derivative of Xπ
ti+1

given Xπ
ti
= x.
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Proof. The lemma is proved by applying the duality formula and the chain rule succes-
sively to Equation (89).

3.3.1. Half-Order Itô-Taylor Schemes

The Euler scheme constitutes the main example of half-order Itô-Taylor scheme
with step

Xπ
ti+1

= Xπ
ti
+ a(ti, Xπ

ti
)∆i + σ(ti, Xπ

ti
)∆Wi.

In addition, we have that Ds∆i = 0d×1 and Ds∆Wi = Id×d for s ∈ (ti, ti+1) where 0 and I
are the zero matrix and the identity matrix, respectively. Hence,

DsXπ
ti+1

= σ(ti, Xπ
ti
)

so we get, from Equation (107), that

Φi,j(ν, x) = σ∗(ti, x)iνEx
ti

[
eiν∗

(
Xπ

ti+1
−Xπ

ti

)]
(since ϕj ∈ B0),

= σ∗(ti, x)iνφi(ν, x). (109)

The conditional characteristic function is explicitly given by

φi(ν, x) = exp
{

∆i

(
iν∗a(ti, x)− 1

2
ν∗σ2(ti, x)ν

)}
(110)

since the increment has a Gaussian distribution.
Equations (105) and (106) along with the characteristics of Equations (110) and (109)

define the Fourier method under half-order Itô-Taylor schemes and the method is imple-
mentable in one dimension (d = 1) with the procedure given in Section 2.3. The following
theorem generalizes the result of Theorem 1 to Runge–Kutta schemes under half-order
Itô-Taylor schemes.

Theorem 5. Let ũα,β
i+1(., y) be the alternative transform defined in Equation (44) of the approximate

solution ũi+1(., y). Then the intermediate solutions ui,j and u̇i,j in Equations (105) and (106) satisfy

ui,j(x) = F−1[F[ũα,β
i+1(., αj,1)](ν)φi(ν, x)](x)

− α[(x + ∆ia(ti, x))2 + ∆iσ
2(ti, x)]− β(x + ∆ia(ti, x))

+ ∆i

j

∑
k=2

αjk f (ti,k, x, ui,k(x), u̇i,k(x)) (111)

u̇i,j(x) = σ(ti, x)F−1[F[ũα,β
i+1(., β j,1)](ν)iνφi(ν, x)](x)

− σ(ti, x)[2α(x + ∆ia(ti, x)) + β]. (112)

under a half-order Itô-Taylor scheme when d = 1.

3.3.2. First-Order Itô-Taylor Schemes

Consider the first-order scheme

Xπ
ti+1

= Xπ
ti
+ a(ti, Xπ

ti
)∆i + σ(ti, Xπ

ti
)∆Wi + σ2(ti, Xπ

ti
)
∫ ti+1

ti

∫ t

ti

dWudWt.

Then knowing that

Ds

∫ ti+1

ti

∫ t

ti

dWudWt = D(∆Wi), (113)
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using the fundamental theorem of calculus where D(x) is the diagonal matrix composed
with the elements of x, for s ∈ (ti, ti+1), the Malliavin derivative of the discretized forward
process is given by

DsXπ
ti+1

= σ(ti, x) + σ2(ti, x)D(∆Wi). (114)

Equation (107) leads to

Φi,j(ν, x) = σ∗(ti, x)iνEx
ti

[
eiν∗

(
Xπ

ti+1
−Xπ

ti

)]
+ Ex

ti

[
D(∆Wi)σ

2(ti, x)iνeiν∗
(

Xπ
ti+1
−Xπ

ti

)]
(since ϕj ∈ B0)

= σ∗(ti, x)iνφi(ν, x) + Ex
ti

[
D(σ2(ti, x)iν)∆Wie

iν∗
(

Xπ
ti+1
−Xπ

ti

)]
= (I−D(σ2(ti, x)iν)∆i)

−1σ∗(ti, x)iνφi(ν, x) (115)

since

Ex
ti

[
∆Wie

iν∗
(

Xπ
ti+1
−Xπ

ti

)]
= σ∗(ti, x)∆iEx

ti

[
iνeiν∗

(
Xπ

ti+1
−Xπ

ti

)]
+ D(σ2(ti, x)iν)∆iEx

ti

[
∆Wie

iν∗
(

Xπ
ti+1
−Xπ

ti

)]
using the duality formula, so that

Ex
ti

[
∆Wie

iν∗
(

Xπ
ti+1
−Xπ

ti

)]
= ζi(ν, x)∆iσ

∗(ti, x)Ex
ti

[
iνeiν∗

(
Xπ

ti+1
−Xπ

ti

)]
= ζi(ν, x)∆iσ

∗(ti, x)iνφi(ν, x)

with
ζi(ν, x) = (I−D(σ2(ti, x)iν)∆i)

−1. (116)

As to the conditional characteristic φi, it can be easily derived as

φi(ν, x) = det(ζi(ν, x))
1
2 exp

(
1
2

iν∗ζ−1
i (ν, x)1d×1 + iν∗κi(x)

)
(117)

where
κi(x) = a(ti, x)∆i −

1
2
(σ2(ti, x)∆i + 1)1d×1

knowing that Xπ
ti+1
− Xπ

ti
, given Xπ

ti
= x, is an affine function of a multivariate non-central

χ2 random variable with 1 degree of freedom and non-centrality parameters 1.
Equations (105) and (106) along with the expressions in Equations (115) and (117)

characterize the method under first order discretizations on the forward process. The
procedure introduced in Section 2.3 allows us to do the necessary computations given the
characteristics φi and Φi,j and using the following theorem.

Theorem 6. Let ũα,β
i+1(., y) be the alternative transform defined in Equation (44) of the approximate

solution ũi+1(., y). Then the intermediate solutions ui,j and u̇i,j in Equations (105) and (106) satisfy
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ui,j(x) = F−1[F[ũα,β
i+1(., αj,1)](ν)φi(ν, x)](x)

− α

[
(x + ∆ia(ti, x))2 + ∆iσ

2(ti, x) +
1
2

∆2
i σ4(ti, x)

]
− β(x + ∆ia(ti, x)) + ∆i

j

∑
k=2

αjk f (ui,k(x), u̇i,k(x)) (118)

u̇i,j(x) = σ(ti, x)F−1[F[ũα,β
i+1(., β j,1)](ν)iνζi(ν, x)φi(ν, x)](x)

− σ(ti, x)
[
2α
(

x + ∆ia(ti, x) + ∆iσ
2(ti, x)

)
+ β

]
(119)

under a first-order Itô-Taylor scheme when d = 1.

Proof. By the definition of the alternative transform, we must have that

ui,j(x) = F−1[F[ũα,β
i+1(., αj,1)](ν)φi(ν, x)](x)− Ex

ti

[
α(Xπ

ti+1
)2 + βXπ

ti+1

]
+ ∆i1{j>2}

j−1

∑
k=2

αjk f (ui,k(x), u̇i,k(x)). (120)

Notice that
Ex

ti

[
Xπ

ti+1

]
= x + ∆ia(ti, x) (121)

and

Ex
ti

[
(Xπ

ti+1
)2
]
= Ex

ti

[
Xπ

ti+1

]2
+ Varx

ti
[Xπ

ti+1
]

= (x + ∆ia(ti, x))2 + Ex
ti

[(
σ(ti, x)∆Wi + σ2(ti, x)

∫ ti+1

ti

∫ t

ti

dWudWt

)2
]

= (x + ∆iσ(ti, x))2 + ∆iσ
2(ti, x) +

1
2

∆2
i σ4(ti, x). (122)

Equations (120)–(122) lead to the expression for ui,j in Equation (118).
The definition of the alternative transform also requires

u̇i,j(x) = σ(ti, x)F−1[F[ũα,β
i+1(., β j,1)](ν)iνζi(ν, x)φi(ν, x)](x)

− Ex
ti

[
H

ϕj
ti,j ,γj∆i

(α(Xπ
ti+1

)2 + βXπ
ti+1

)
]

= σ(ti, x)F−1[F[ũα,β
i+1(., β j,1)](ν)iνζi(ν, x)φi(ν, x)](x)

− σ(ti, x)Ex
ti

[
2α(Xπ

ti+1
) + β

]
− σ2(ti, x)Ex

ti

[
∆Wi

(
2α(Xπ

ti+1
) + β

)]
(using the duality formula)

= σ(ti, x)F−1[F[ũα,β
i+1(., β j,1)](ν)iνζi(ν, x)φi(ν, x)](x)

− σ(ti, x)
[
2α
(

x + ∆ia(ti, x) + ∆iσ
2(ti, x)

)
+ β

]
(123)

using the duality formula once again.

The implementation of higher order time discretization for FBSDEs on the alterna-
tive grid is described in the following algorithm. Algorithm 2 produces the numerical
intermediate solutions {ui,j,k}

Ni N
k=0 , {ũi,j,k}

Ni N
k=0 and {u̇i,j,k}

Ni N
k=0 at time step ti, 0 ≤ i < n and

stage j, 1 ≤ j ≤ q + 1 for the approximate solution ui, the intermediate solution ũi and the
approximate gradient u̇i, respectively, i = 0, 1, . . . , n− 1.
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Algorithm 2 Fourier Interpolation Method on Alternative Grid for q-stage Runge–Kutta
schemes

1. Discretize the restricted real space [x0− Nn l
2 , x0 +

Nn l
2 ] and the restricted Fourier space

[− L
2 , L

2 ] with NnN space steps so to have the real space nodes {xnk}Nn N
k=0 and {νnk}Nn N

k=0
2. Value un(xnk) = g(xnk)
3. For any i from n− 1 to 0

(a) For any j, 1 < j ≤ q + 1

i. Compute α and β defining the transform of Equation (44), such that

θi+1 = ũα,β
i+1(., αj,1) (124)

and θi+1 satisfies the boundary conditions of Equations (32) and (33).
ii. Compute θi(xik) through Equation (40) for k = 0, 1, . . . , Ni N with

ψ(ν, x) = φi(ν, x) (125)

and retrieve the values ũi,j,k with the appropriate correction.
iii. Compute α and β defining the transform of Equation (44), such that

θi+1 = ũα,β
i+1(., β j,1) (126)

and θi+1 satisfies the boundary conditions of Equations (32) and (33).
iv. Compute θi(xik) through Equation (40) for k = 0, 1, . . . , Ni N with

ψ(ν, x) = Φi,j(ν, x) (127)

and retrieve the values u̇i,j,k with the appropriate correction.
v. Compute the values ui,j,k as

ui,j,k = ũi,j,k + ∆i

j

∑
s=2

αjs f (ti,s, xi,k, ui,s,k, u̇i,s,k) (128)

for k = 0, 1, . . . , Ni N through Equation (13).
vi. Update the real space grid with Equation (27) and the Fourier space

grid by discretizing the interval [− L
2 , L

2 ] with Ni N space steps so to
have the real space nodes {xik}

Ni N
k=0 and {νik}

Ni N
k=0 .

(b) Set ui,k = ui,q+1,k and u̇i,k = u̇i,q+1,k

Algorithm 2, as compared to Algorithm 1, contains intermediate solutions between
time discretization points, resulting from the the intermediate stages of the Runge–Kutta
method of Chassagneux and Crisan (2014). These intermediate solutions are computed
using the Fourier interpolation method on the alternative grid presented in Section 2. We
close this section by examining the spatial discretization error.

3.4. Spatial Discretization Error Analysis

We denote by {ui,j,k}
Ni N
k=0 and {u̇i,j,k}

Ni N
k=0 the intermediate numerical solutions obtained

at time step ti, i = 0, 1, . . . , n− 1 and stage j, 1 < j ≤ q + 1, from the Fourier interpolation
method on the alternative grid when using a q−stage Runge–Kutta scheme. In addition,
{ui,j,k}

Ni N
k=0 and {u̇i,j,k}

Ni N
k=0 are the intermediate numerical solutions obtained at the inter-
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mediate stage j, 1 < j ≤ q + 1, of time step ti given the exact solutions ui+1 and u̇i+1 at ti+1.
We have from the notation previously used that the numerical solutions at ti write

ui,k = ui,q+1,k (129)

u̇i,k = u̇i,q+1,k (130)

and are computed from the intermediate solutions {ũi,k}
Ni N
k=0 , 0 < i ≤ n where

ũn,k = ũn(xn,k). When the exact solutions ui+1 and u̇i+1 are known at ti+1, we also write

ui,k = ui,q+1,k (131)

u̇i,k = u̇i,q+1,k. (132)

The local (space) discretization error has the form

Eik :=
∣∣ui(xk)− ui,k

∣∣+ ∣∣u̇i(xk)− u̇i,k
∣∣ (133)

for i = 0, 1, . . . , n− 1 and k = 0, 1, . . . , Ni N. The next theorem gives a description of the
local (space) discretization error bound.

Theorem 7. Suppose that the driver f ∈ C1,2([0, T]×R2) and the terminal condition g ∈ C2(R)
and Assumptions 1 and 3 are satisfied, then the Fourier interpolation method yields a local space
discretization error of the form

sup
i,k

Eik = O(∆x) +O
(

e−K∆
−s0
i lq0

)
(134)

for some constant K > 0 on the alternative grid and under the trapezoidal quadrature rule for any
explicit q-stage Runge–Kutta scheme.

Proof. We follow the steps in the proof of Theorem 2. The truncation error when computing
the numerical solutions u̇i,j,k is

Exik
ti

[
H

ϕj
ti,j ,γj∆i

ũi+1(ti+1, Xπ
ti+1

; β j,1)1|∆Xπ
i |> l

2

]
< KExik

ti

[(
H

ϕj
ti,j ,γj∆i

)4
] 1

4
Exik

ti

[
1|∆Xπ

i |> l
2

] 1
4

(using Cauchy-Schwarz inequality twice since ũi+1(ti+1, Xπ
ti+1

; .) is sq. int.)

< K∆−
1
2

i Exik
ti

[
1|∆Xπ

i |> l
2

] 1
4 (since H

ϕj
ti,j ,γj∆i

is of Gaussian distribution)

≤ K∆−
1
2

i

(
inf
s>0

e−s l
2 φi(−is) + inf

s>0
e−s l

2 φi(is)
) 1

4
(by Chernoff’s inequality)

< K∆−
1
2

i e−K0∆
−s0
i lq0 (by Assumption 3)

< Ke−C∆
−s0
i lq0 .

The Fourier interpolation leads to a first-order space discretization error when com-
puting the numerical solutions u̇i,j,k since the driver f and the terminal condition g are
twice differentiable.

The same statements hold for the numerical solutions ui,2,k using similar arguments.
By recursion and using the Lipschitz property of the driver f , the statements hold for
ui,j,k, 1 < j ≤ q + 1. Since the time step ti and the space node xik are arbitrary, the space
truncation and discretization error bounds hold for any i and k.
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Locally, the truncation error remains spectral. Nonetheless, it is of a unspecified index
q0 in this general setting where the conditional characteristic function φi is itself unspecified.
For higher order time discretizations, one can expect q0 ≤ 2 since the forward process
increment Xπ

ti+1
− Xπ

ti
has a heavy tail distribution. Indeed, the Gaussian distribution of

forward process increments and the quadratic exponential form of their characteristic
functions were the main reason for the spectral convergence of index 2 of the truncation
error in Section 2.4. The space discretization error though is unchanged with first-order
due to the second-order differentiability of the BSDE coefficients. However, the Fourier
interpolation produces a space discretization error with a higher order when the driver
f and the terminal function g have the required smoothness. In general, if f ∈ Cm+1

b and
g ∈ Cm+1

b , we can expect a space discretization error of order m which is the convergence
order of the underlying Fourier interpolation.

We now turn to the global space discretization error defined as in Equation (63). The
next theorem gives its error bound.

Theorem 8. Suppose the conditions of Theorem 7 are satisfied. If the discretization is such that

sup
i

{
C0∆x
π∆p0

i

}
≤ 1 (135)

then the Fourier interpolation method is stable and yields a global discretization error El,∆x of
the form

El,∆x = O(∆x) +O
(

e−K|π|−s0 lq0
)

(136)

where K > 0 for any explicit q-stage Runge–Kutta scheme.

Proof. From the definition of the global space discretization error, we may write

eik ≤ En−i,k +
∣∣un−i,k − un−i,k

∣∣ (137)

ėik ≤ En−i,k +
∣∣u̇n−i,k − u̇n−i,k

∣∣. (138)

Assume that the boundary values of the function ũi+1 and the sequence ũi+1,s are
matched on the alternative grid so that we do not have to treat the alternative transform.
Under an explicit q−stage Runge–Kutta scheme, we have∣∣∣u̇i,j,k − u̇i,j,k

∣∣∣ = ∣∣∣∣D−1
[{

Φi,j(νi+1,m, xik)D[ũi+1 − ũi+1,s]m
}Ni+1 N−1

m=0

]
k+ N

2

∣∣∣∣
≤

∑
Ni+1 N−1
m=0

∣∣Φi,j(νi+1,m, xik)
∣∣

Ni+1N
sup

k

∣∣ũi+1(xik, β1,j)− ũi+1,k
∣∣

≤ ∆x
2π

(∫
R

∣∣Φi,j(ν, xi,k)
∣∣dν

)
sup

k

∣∣ũi+1(xik, β1,j)− ũi+1,k
∣∣

≤ C0∆x
2π∆p0

i
sup

k

∣∣ũi+1(xik, β1,j)− ũi+1,k
∣∣ (using Assumption 3)

≤ C0∆x
2π∆p0

i
(1 + ∆iK) sup

k
en−i−1,k +

C0∆x
2π∆p0

i
∆iK sup

k
ėn−i−1,k

(since f is Lipschitz and β1,j is bounded)

≤ C0∆x
2π∆p0

i
(1 + ∆iK) sup

k
en−i−1,k +

C0∆x
2π∆p0

i
(1 + ∆iK) sup

k
ėn−i−1,k. (139)
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Similarly, we get

∣∣ui,2,k − ui,2,k
∣∣ ≤ ∣∣∣∣D−1

[
{φi(νi+1,m, xik)D[ũi+1 − ũi+1,s]m}

Ni+1 N−1
m=0

]
k+ N

2

∣∣∣∣
≤ ∆x

2π

(∫
R

∣∣φi(ν, xi,k)
∣∣dν

)
sup

k

∣∣ũi+1(xik, α1,2)− ũi+1,k
∣∣

≤ C0∆x
2π∆p0

i
sup

k

∣∣ũi+1(xik, α1,2)− ũi+1,k
∣∣ (using Assumption 3)

≤ C0∆x
2π∆p0

i
(1 + ∆iK) sup

k
en−i−1,k +

C0∆x
2π∆p0

i
(1 + ∆iK) sup

k
ėn−i−1,k

so that we get

∣∣∣ui,j,k − ui,j,k

∣∣∣ ≤ C0∆x
2π∆p0

i
(1 + ∆iK)

[
sup

k
en−i−1,k + 2 sup

k
ėn−i−1,k

]
(140)

recursively for 1 < j ≤ q + 1 using the Lipschitz property of the driver f and the
boundedness of the Runge–Kutta coefficients. Equations (137) and (138) combined with
Equations (140) and (139) lead to

sup
k

ei,k + sup
k

ėi,k ≤ 2 sup
i,k

Eik +
C0∆x
π∆p0

i
(1 + ∆n−iK)

(
sup

k
ei−1,k + sup

k
ėi−1,k

)

≤ 2 sup
i,k

Eik + ζ(1 + ∆n−iK)

(
sup

k
ei−1,k + sup

k
ėi−1,k

)

where

sup
i

{
C0∆x
π∆p0

i

}
≤ ζ ≤ 1.

Gronwall’s Lemma then yields

sup
k

ei,k + sup
k

ėi,k ≤ 2eTK sup
i,k

Eik (141)

so that the scheme is stable. The result of Equation (136) follows by taking the supremum
on the left hand side of Equation (141) over time steps and applying Theorem 7.

In this general case, the global discretization error maintains the structure of the
local discretization error under a stability condition. Equation (135) indicates that the
space discretization has to be relatively as fine as the time discretization to ensure stability.
Hence, stability can always be reached for any time discretization by refining the space
discretization. However, the structure of the characteristic functions φi and Φij determines
the relative refinement needed for the space discretization.

4. Numerical Results

We test the convergence properties of the Fourier interpolation method on Runge–
Kutta schemes with a problem of commodity derivative pricing under a model proposed
by Lucia and Schwartz (2002). We shall test the method’s convergence and behaviour on
smooth and unbounded FBSDE coefficients.

The commodity spot price X is defined by

Xt = eS(t)+Vt (142)
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where the deterministic function S : R+ → R represents the seasonality component of the
commodity and V is the price diffusion following an Ornstein-Uhlenbeck process according
to the Vašı́ček (1977) model

dVt = −κVtdt + σdWt. (143)

As indicated by Lucia and Schwartz (2002), the commodity spot price X satisfies the
stochastic differential equation

dXt = κ(θ(t)− ln Xt)Xtdt + σXtdWt (144)

where

θ(t) =
1
κ

(
σ2

2
+

dS
dt

(t)
)
+ S(t). (145)

We consider the commodity price as our forward process through equation (144).
When the risk-free rate r and the market price of risk λ are both constant, the forward

(or future) price Ft,T := Yt = u(t, Xt) with maturity T > 0 at time t < T is given by

Yt = EQ
t [XT ]

= exp
(

S(T) + (ln Xt − S(t))e−κ(T−t) − σλ

κ
h(T − t, κ) +

σ2

4κ
h(T − t, 2κ)

)
(146)

with
h(τ, κ) = 1− e−κτ (147)

where the expectation is taken under the equivalent risk measure Q. It can be shown that
the forward price solves a BSDE with linear driver

f (t, x, y, z) = −λz (148)

and terminal condition
g(x) = x. (149)

Options on forward contracts can also be represented in form of BSDEs in this spot
price model but we limit our analysis to forward price estimation. From Equation (146) the
control process (or equivalently the forward price delta) is given by

Zt = σXt∇u(t, Xt)

= σe−κ(T−t)u(t, Xt). (150)

That is, we wish to use the results of Sections 2 and 3 to numerically solve the FBSDE

dXt = κ(θ(t)− ln Xt)Xtdt + σXtdWt

−dYt = −λZtdt− ZtdWt

X0 = x0, YT = XT

and compare our numerical solutions under different discretization schemes to the explicit
solution given by Equations (146) and (150).

The adjustment speed of the diffusion process is κ = 1.5 and the volatility of the
diffusion is set to be σ = 0.065. The seasonality component is given by

S(t) = ln P̄ + 0.05 sin(2πt) (151)

and the initial spot price by
X0 = P̄eV0 = 0.95P̄ (152)

where we normalize the real value3 of the commodity P̄ = 1. Furthermore, the maturity of
the forward contract is T = 0.25 and we suppose a market price of risk of λ = 0.25.
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The FBSDE is solved on an alternative grid centred at X0 with a uniform time mesh.
For a given number of time steps n and the initial number N0 = 1 of intervals, the length of
an increment interval is set as

l =
1.8

N0 + n
(153)

so that the truncated interval at time tn has length 1.8. This restriction keeps the space
nodes in the upper half plane knowing that the commodity price is a positive process.
Moreover, the number of space steps on an increment interval is N = 2.

We numerically solve the BSDE with the explicit 1−stage Runge–Kutta scheme of
half-order and an explicit 2−stage Runge–Kutta scheme of first-order. Under the explicit
1−stage scheme, the commodity price is discretized with an Euler scheme whereas a
Milstein scheme is used for the forward process X under the explicit 2−stage Runge–Kutta
scheme. In addition, we use an explicit 2−stage Runge–Kutta scheme with tableau

0 0 0 0 0 0
2
3

2
3 0 0 2

3 0
1 1

4
3
4 0 1 0

Under both FBSDE discretizations, we compute two different types of error. The first
error ETrue evaluates the maximal absolute error of the numerical solution with respect to
the true solution

ETrue = max
0≤i<n

max
0≤k≤NNi

|u(ti, xik)− uik|+ max
0≤i<n

max
0≤k≤NNi

|u̇(ti, xik)− u̇ik| (154)

where
u̇(t, x) = σx∇u(t, x) = σe−κ(T−t)u(t, x). (155)

The second error ESim is a simulation error. Given the numerical solution {Xπ
ti ,j
}m

j=1,
i = 0, 1, . . . , n− 1 with m > 0 simulated paths for the forward process, we compute the
numerical solution {(yti ,j, zti ,j)}

m
j=1 of the backward processes by linearly interpolating the

simulated paths through the BSDE numerical solutions {uik}
Ni N
k=0 and {u̇ik}

Ni N
k=0 at each time

step ti. The error ESim can be written as

ESim =
1
m

m

∑
j=1

max
0≤i<n

∣∣∣u(ti, Xπ
ti ,j)− yti ,j

∣∣∣+(n−1

∑
i=0

∆i(u̇(ti, Xπ
ti ,j)− zti ,j)

2

) 1
2
.

We systematically use m = 1000 paths. Even if the errors ETrue and ESim may be of
the same order, they are interpreted differently. The error ETrue gives the behaviour of the
maximal approximation error on the grid whereas ESim gives the behaviour of the error on
the relevant part of grid when solving the FBSDE numerically. Figure 2 displays the errors
under the explicit 1−stage Runge–Kutta scheme with n ∈ {5, 10, 20, 50, 100} and Figure 3
shows the errors under the explicit 2−stage scheme.

The error graphs of Figures 2 and 3 look almost identical and confirm that the 2−stage
scheme is of first order and the 1−stage scheme of (at least) half-order. The extra-efficiency
of the 1−stage scheme may be attributed in this particular case to the simplicity of the
driver f and the terminal condition g.
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Figure 2. Log-log plot of errors using the 1-stage Runge–Kutta scheme. The sample standard
deviation of the error ESim was less than 2× 10−6 for all time discretizations.

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

Time step (∆)

E
rr

o
r

 

 

Approximation error (E
True

)

Simulation error (E
Sim

)

Half order convergence

First order convergence

Figure 3. Log-log plot of errors using the 2-stage Runge–Kutta scheme. The sample standard
deviation of the error ESim was less than 2× 10−6 for all time discretizations.

In Figure 4, we present the absolute errors along the simulated paths for the BSDE
solution. One notices that the maximal errors occur at the initial time t0 = 0 for the forward
price (Yt) and at maturity T = 0.25 for the control process (Zt). Nonetheless, the simulation
errors are of the same order (10−4) for both processes. This information is confirmed by the
contour plot of Figure 5 not only along the simulated paths but on the entire grid.
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Figure 4. Simulation errors using the 2-stage Runge–Kutta scheme. The numerical solution is
obtained on a time mesh with n = 100 time steps and returns an forward price of 1.0121 and initial
value of 0.0453 for the control process. The exact values are 1.0123 and 0.0452, respectively.
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Figure 5. Contour plot of errors using the 2-stage Runge–Kutta scheme. The numerical solution is
obtained on a time mesh with n = 100 time steps and returns an forward price of 1.0121 and initial
value of 0.0453 for the control process. The exact values are 1.0123 and 0.0452, respectively.

Moreover, the contour plot gives indication on the source of errors. Indeed, Figure 5
shows that the maximal errors mainly occur for the upper space node values on the alter-
native grid and they decrease for lower space node values. This is due to the unbounded
nature of the spot price process coefficients. Since the volatility of the spot price is a positive
and increasing function of the spot price4, higher spot price values lead to higher local
volatility. Hence, the fixed length of increment interval l may not be sufficiently large to
ensure accuracy for higher space node values. In general, the phenomenon is amplified
with the magnitude of the forward process coefficients as illustrated in the contour plot of
Figure 6 where we choose a higher value for the volatility σ and keep the other parameters
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unchanged. Similar results can be obtained by selecting a higher value for the speed of
adjustment κ as shown in Figure 7.
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Figure 6. Errors using the 2-stage Runge–Kutta scheme with σ = 0.08. The numerical solution is
obtained on a time mesh with n = 100 time steps and returns an forward price of 1.0115 and initial
value of 0.0558 for the control process. The exact values are 1.0119 and 0.0556, respectively.
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Figure 7. Errors using the 2-stage Runge–Kutta scheme with κ = 3. The numerical solution is
obtained on a time mesh with n = 100 time steps and returns an forward price of 1.0238 and initial
value of 0.0316 for the control process. The exact values are 1.0257 and 0.0315, respectively.

We end this section with an efficiency study of our schemes. Using the parameters
initially given, the BSDE is solved on a uniform time grid with n ∈ {10, 20, 40, 50, 60, 80, 100}
time steps and N ∈ {2, 22, 23, 24} space steps and value the computation time. Figure 8
displays the results. First note that since the Fourier interpolation method performs matrix
multiplications, it is much slower than the convolution method of Hyndman and Oyono
Ngou (2017).
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Figure 8. CPU time (in seconds) of Runge–Kutta schemes.

As shown in Figure 8, the computation time of Fourier interpolation method increases
with the number of time steps leading to a trade-off between computation speed and
accuracy. The exponential nature of the curves suggests that preference has to be given to
the coarsest time discretization providing a satisfactory level of accuracy. Similarly, the
computation time also increase drastically with the number N of space steps. Coarse space
grids insuring accuracy are hence also preferable. Since a total number of 2q conditional
expectations are computed under a q-stage Runge–Kutta scheme, we can expect the 1-stage
scheme to run twice as fast as the 2-stage scheme. This is confirmed on Figure 8, especially
when looking at the computation times for n = 100.

5. Conclusions

In order to solve the problem of extrapolation errors in the initial implementation of
the convolution method, we proposed an alternative space discretization. The new tree-like
space grid naturally allows the usage of the FFT algorithm when computing the conditional
expectation included in the underlying explicit Euler scheme. The error analysis shows
that both the alternative grid and the (alternative) transform suit the periodic nature of
the FFT algorithm and help in producing a stable, consistent and globally convergent
numerical procedure for the FBSDE approximate solutions. The second part of the paper
deals with the implementation of the Fourier interpolation method with higher order
time discretizations of FBSDEs. When the forward process increments admit conditional
characteristic functions satisfying certain regularity conditions, it was shown that the
method is also consistent, conditionally stable and globally convergent under Runge–Kutta
schemes for FBSDEs. A challenging area of research is the implementation of the methods
of this paper in multidimensional and jump cases.
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4 See Equation (144).
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