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Abstract: This paper develops a dynamic portfolio selection model incorporating economic uncer-
tainty for business cycles. It is assumed that the financial market at each point in time is defined by a
hidden Markov model, which is characterized by the overall equity market returns and volatility.
The risk associated with investment decisions is measured by the exponential Rényi entropy criterion,
which summarizes the uncertainty in portfolio returns. Assuming asset returns are projected by a
regime-switching regression model on the two market risk factors, we develop an entropy-based
dynamic portfolio selection model constrained with the wealth surplus being greater than or equal to
the shortfall over a target and the probability of shortfall being less than or equal to a specified level.
In the empirical analysis, we use the select sector ETFs to test the asset pricing model and examine
the portfolio performance. Weekly financial data from 31 December 1998 to 30 December 2018 is
employed for the estimation of the hidden Markov model including the asset return parameters,
while the out-of-sample period from 3 January 2019 to 30 April 2022 is used for portfolio performance
testing. It is found that, under both the empirical Sharpe and return to entropy ratios, the dynamic
portfolio under the proposed strategy is much improved in contrast with mean variance models.

Keywords: hidden Markov model; entropy; dynamic portfolio optimization; Bayesian analysis;
Sharpe ratio; return to entropy ratio; kernel density estimation

JEL Classification: C12; C13; C32; C61; F31; F37; G11

1. Introduction

The mean variance analysis developed by Markowitz (1952) has been accepted as
a paradigm for portfolio selection. The investment risk is measured by the variance of
portfolio returns, following the normality assumption for asset returns. Not only has
the normality assumption made the implementation of portfolio investment convenient,
but also it has a strong economic theory on which the celebrated Capital Asset Pricing
Model (Sharpe 1964) is founded. However, this mean variance model usually results
in large portfolio turnovers because the underlying data-generating process is far from
normal, which limits its applicability to dynamic investment strategies. The mean variance
analysis also performs poorly in out-of-sample tests, which supports that asset returns
may be asymmetrical or non-normal and a different measure of uncertainty is required to
characterize asset returns over time.

There are two components to consider in portfolio construction: (i) the price dynamics
of the available investment opportunities; (ii) the decision model, which controls the returns
on investment. So, the first step in building a portfolio investment model is to characterize
the return and risk profile of financial instruments. There are good economic reasons why
the equilibrium distribution of asset returns is conditional on the state of the financial
market. The Internet bubble in 2001–2003, the subprime housing loan crisis in 2008–2009,
and the recent COVID-19 pandemic market crash in early 2020, exposed severe limitations
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of the traditional mean variance investment model which ignores the economic strength of
the market.

The key idea for characterizing financial market dynamics using a hidden Markov
model is to resolve the issue of unobserved financial market strength. Financial instruments
often exhibit different risk levels in various market situations. Hidden Markov models
are capable of capturing abrupt changes in a mechanism that generates the data. Usually,
regime categorization is linked to financial market sentiments. However, there is no clear
determination as to whether the financial market is bearish or bullish through direct obser-
vations of the market activities. We sometimes observe a temporary rally in a bear market
and a short period of slump in a bull market. With a hidden Markov model, investors have
a better understanding of the market situation by applying Bayesian analysis to update the
probability distribution of regimes with dynamically observed new information over time.

Many researchers have applied this approach to financial decision-making. Hamilton
(1989) successfully applied a two-regime hidden Markov model to the U.S. GDP data and
characterized the changing pattern of the U.S. economy. Cai (1994), Hamilton and Susmel
(1994), and Gray (1996) used variations of the standard hidden Markov process to describe
the time series behavior of U.S. short-term interest rates. Bekaert and Hodrick (1993)
documented regime shifts in major foreign exchange rates. Schwert (1989) considered that
asset returns may be associated with either high or low volatility which switches over time.
Whitelaw (2000) constructed an equilibrium model in which consumption growth follows a
regime-switching process. Ang and Bekaert (2002) studied an international asset allocation
model with regime shifts. Guidolin and Timmermann (2006, 2008) provided important
economic insights on how investments vary across different market regimes. Tu (2010)
provided a Bayesian framework for making portfolio decisions with regime-switching and
asset pricing model uncertainty. Liu et al. (2011) applied a regime-switching model to
analyze the select sector exchange-traded funds. Ma et al. (2011) constructed a portfolio
selection model to maximize managers’ alpha subject to limited risk exposure in different
regimes. This modeling approach has posed much flexibility in explaining the observed
market behavior and activities.

Individual asset returns and risk are the inputs to a decision model which determines
the proportional investments in assets at each time point. In this paper, we develop a
regime-switching regression model for the prediction of individual asset risk and return
profiles. In a traditional asset pricing model, such as Sharpe (1964), Fama and French
(1993, 2015), Carhart (1997), and Ross (1976), observed asset returns are directly related
to observed risk factors. In a hidden Markov model, asset returns may exhibit entirely
different relationships with the predictors in different regimes. For example, future equity
returns are expected to go up with an increase in the current volatility in support of the idea
of the leverage effect; see Christie (1982), Bekaert and Wu (2000). Furthermore, future equity
returns are expected to go down with an increase in the current volatility level in support
of the idea of the volatility feedback effect; see Whitelaw (1994). In this paper, we assume
that broad equity market returns and market volatility jointly characterize systematic risk.
Individual asset return and risk profiles are established through a switching-regression
model on the two market risk factors of the broad equity market return and volatility.

The decision criterion is as important as characterization of the risk and return profile.
The base risk-return model for the approach in this paper is mean return and return
variance within a specific market regime. An efficient model trades off risk for return with
a portfolio of investments. Variance of portfolio returns has shortcomings as a risk measure,
considering the non-normality of asset returns implied by the hidden Markov model; for a
detailed reasoning, see the example presented in Section 3. A more generic measure for
assessing the risk or “amount of randomness” in portfolio returns is entropy, which is a
well-known concept coming from information theory and originally developed by Shannon
(1948). It quantifies the uncertainty/amount of randomness conveyed by a probability
distribution, embedding all higher-order moments (Cover and Thomas 2006) and taking
the entire probability distribution into consideration when measuring investment risk.
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Entropy has been applied to measuring portfolio risk (Philippatos and Wilson 1972;
Ou 2005; Xu et al. 2011; Usta and Kantar 2011) or to option pricing (Gulko 1999). Similar to
a variance measure, an entropy measure also has the property of translation invariance,
therefore, a target return/risk trade-off should be established (note: the target return is
not necessarily the portfolio mean return under the proposed model in this paper). Our
portfolio is constructed by minimizing entropy rather than the variance of portfolio return.
The particular measure considered in this paper is the exponential Rényi entropy (Rényi
1961). Minimum Rényi entropy portfolios have been studied (Lassance and Vrins 2021).
However, the optimal entropy portfolio in a hidden Markov market setting with controls
on shortfall has not been considered. It will be noted that a target means the return is not a
suitable constraint in a hidden Markov model setting with variance as a risk measure, and
this paper will try to fill the gap with a target mean return being replaced with shortfall
surplus and probability of shortfall constraints.

Another aspect of portfolio selection is the concern of wealth shortfall from a target.
In a mean variance model, if individual asset returns jointly follow a multivariate normal
distribution, the surplus and shortfall are evened out around the target return, with a
shortfall probability of 0.5. However, this is not the case when asset returns are asymmetric
as in the hidden Markov model we introduce in this paper. We impose the constraints that
the wealth surplus is greater than or equal to the shortfall and the probability of shortfall is
less than a target probability level (≤0.5). These constraints have a significant impact on the
investments in individual assets, depending on the overall predicted market strength. The
settings for the target return and shortfall probability are important. In the performance
comparisons with other portfolio selection models, we will discuss how portfolio returns
change by varying the target return and the probability of shortfall.

The rest of the paper is organized as follows. Section 2 discusses a hidden Markov
model for the dynamics of financial indicators and a regime-switching regression model
for security returns. Section 3 discusses the entropy and risk measurement with hidden
Markov models. In Section 4, we develop a dynamic entropy portfolio model with shortfall
surplus and probability of shortfall constraints. Section 5 presents the parameter estimation.
Section 6 analyzes portfolio performance with a varying target return and the probability
of shortfall. Section 7 presents the performance comparisons of the entropy-based model
with other investment strategies. Section 8 concludes the paper.

2. The Basic Financial Market Models

The financial market is a stochastic dynamic process. The state of the market or market
sentiment is defined by the movements of fundamental economic indicators. The dynamics
of asset prices are in turn affected by market sentiment and economic indicators. In this
section, we discuss the structure of the financial market with two basic economic models.
The first model characterizes the dynamics of embedded economic regimes in terms of the
dynamics of fundamental indicators, and the second model defines the rate of return on
assets within regimes through the relationship to indicators/factors. The intention is to
present sound theoretical models for asset returns as well as equations that can be estimated
from market observations.

2.1. A Hidden Markov Model for the Dynamics of Financial Market Regimes

Based on the changing patterns of economic indicators, financial markets are usually
characterized by regimes, such as bullish and bearish, etc. These patterns among the
economic indicators alternate with the economic situations over time. Stock markets
may stay in a bullish regime for some time before moving to another regime at a later
date. For example, during the Internet bubble period of 1998–2002, the stock market was
extremely volatile, while market volatility was relatively low in the period of 2003–2006.
It is highly probable that market sentiment, market volatility, and the non-smooth asset
return processes are regime-dependent. We assume, therefore, that the dynamics of the
financial market strength follow a hidden Markov model.
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Suppose the financial market regimes follow a Markov chain, St, with a finite number
of regimes, say K, and a regime transition probability matrix

P =


P11 P12 · · · P1K
P21 P22 · · · P2K
· · · · · · · · · · · ·
pK1 pK2 · · · pKK


where

Pij = Pr{St = j|St−1 = i}

is the transition probability from regime i at time t − 1 to regime j at time t, which is
independent of time t. The outcome of the regime process at each time is a distribution over
the possible regimes. We assume that the dynamics of the Markov chain are embedded in a
set of financial/economic indicators. Thus, the parameters for the hidden Markov chain can
be estimated using either economic or financial market indicators, through which the prior
and posterior probabilities of the regimes can be calculated under a Bayesian framework.

The Markov chain can be modeled either as observable or hidden. The National Bureau
of Economic Research (NBER) Business Cycle Dating Committee maintains a chronology
of the U.S. economy, which identifies the dates of peaks and troughs that characterize
economic strength into one of two regimes, namely, expansion and contraction. A contrac-
tion is defined as “a significant decline in economic activity spread across the economy,
lasting more than a few months, normally visible in real GDP, real income, employment,
industrial production, and wholesale-retail sales”, and an expansion is defined as the other
way around, depending on the substance of the observed change in important economic
statistics, such as the real GDP and the unemployment rate. However, a period is not
identified as an expansion or contraction unless the economy stays on similar economic
activities for at least six months. In other words, if the economy changes its strength within
less than six months, the regime of the dated period will not change, which creates errors
in identifying regimes and measuring the performance of asset returns under different
economic environments. Another instability is that NBER may retrospectively change a
regime that was categorized as a specific regime in considering its past performance if a
subsequent economic pattern continues for more than six months. With their unstable rules
for the characterization of expansion/contraction regimes, financial security performance
within a regime may be incorrectly measured. Due to such a categorization policy, economic
strength and asset returns might be incorrectly measured over time.

Given these caveats, we consider that the regimes are latent, and a hidden Markov
model is used to characterize the economic strength over time. We assume that the
regimes are embedded in a set of financial market indicators, which jointly follow a hidden
Markov process.

Denote Ft = [F1t, · · · , FNt] the set of selected financial indicators. We assume that Ft
follows a regime-switching first-order autoregressive model:

Ft = ASt + Ft−1BSt + CSt εt, (1)

where εt is a standard multivariate normal random variable, and ASt , BSt , and CSt , are
regime-dependent coefficients of the model (1) given St. Hence, conditional on Ft−1 and
St, the one-period regime-dependent expected value and covariance matrix of Ft are
F̄t,St = ASt + Ft−1BSt and CSt C

>
St

, respectively. It should be noted that model (1) devi-
ates from a standard hidden Markov model in which the “emissions” or the observed
quantities are identically and independently distributed given a specific regime. Our
observations in model (1) are dependent on the one-step-back observations. However,
the estimation process will be the same as that for the standard hidden Markov process,
with the assumption that, for any two time points, s and t, (Ft|Ft−1, St) and (Fs|Fs−1, Ss)
are independent.
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The prior and posterior probabilities of the K regimes at any point in time can be
calculated using Bayesian updating. Let [p1t, · · · , pKt] be the prior probabilities of the K
regimes for time t. The posterior probabilities, [q1t, · · · , qKt], of the regimes at time t are
given by

qkt =
pktφk( ft)

∑K
j=1 pjtφj( ft)

, ∀k = 1, 2, · · · , K,

where the likelihood φk( ft) is the normal density function with mean vector F̄t,k and
covariance matrix CkC>k evaluated at the observation ft for regime k. The prior probabilities
for time t + 1 are given as

pk,t+1 = q1t p1k + q2t p2k + · · ·+ qKt pKk, ∀k = 1, 2, · · · , K.

The above Bayes updating under a time-varying financial market will be applied to dynam-
ically forecasting an asset return/risk profile.

2.2. A Regime-Switching Regression Model for Asset Returns

Financial asset returns reflect the interaction of buying and/or selling activities, which
creates uncertainty or risk in making investment decisions. By modeling the variation in
asset returns, we can obtain insights into general patterns. The quality of the asset pricing
model is an important component of risk. The accuracy of return predictions is strongly
linked to business-cycle fluctuations. There exist a variety of states/regimes in the financial
market, such as Bull, Slump, Bear, and Rally, etc. Based on the existence of regimes, we
assume that the dynamic of financial market regimes follows a stochastic process, with
the transitions between regimes determined by fundamental financial factors. Assuming
current returns reflect available information, a Markov process is proposed for the dynamics
of asset returns. Markov regime-switching models account for both the probability and
the magnitude of future breaks by extracting unobserved information from the underlying
switching process. A combination of predictive regression and regime-switching models
has the potential to significantly improve return predictability (Hammerschmid and Lohre
2018). Ang and Bekaert (2002, 2004) demonstrate the usefulness of regime switching in
the context of asset allocation. Accounting for the regime structure in financial decisions is
important since an investment portfolio designed for a specific market strength can perform
poorly in a different regime.

Suppose that the investment opportunities consist of n risky and one risk-free security.
The one-period logarithmic returns on the risky assets follow a multivariate normal dis-
tribution given that the financial market is in a specific regime. Let Rt = [R1t, · · · , Rnt] be
the returns on the n risky securities from t− 1 to t, which are characterized by a regime-
switching regression model,

Rt − rt = αSt + FtβSt + γSt ξt, (2)

where αSt , βSt , and γSt are regime-dependent parameters, i.e., given St = k, αk is a vector of
length K, βk is a matrix of size m× n, and γk is a diagonal matrix of size n, indicating that the
idiosyncratic risks of the risky securities are uncorrelated. rt is the risk-free return at time t,
and ξt is a standard normal random vector, which is serially independent and uncorrelated
with Ft, given Ft−1. Hence, conditional on the regime at time t and the observation of Ft−1,
the n asset returns jointly follow a multivariate normal distribution:

(Rt − rt|St = k, Ft−1) ∼ MN(µk, σ2
k ),

where

µkt = αk + F̄tβk = αk + (Ak + Ft−1Bk)βk

and

σ2
k = β>k CkC>k βk + γ2

k .

(3)
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Models (2) and (3) imply that the regime-dependent mean returns of the risky securities
are time-varying and depend on the information on the risk factors, while the regime-
dependent covariance matrices are constant over time.

Based on the prior probabilities for regimes at each point in time, the unconditional
returns of the risky securities follow a mixture of normal distributions with a mean vector,

µt =
K

∑
k=1

pktµkt, (4)

and the covariance matrix,

σ2
t =

K

∑
k=1

pkt(σ
2
kt + (µkt − µt)(µkt − µt)

>). (5)

The above calculated (unconditional) mean vector and covariance matrix will be the inputs
to a mean variance model. The estimates calculated from (4) and (5), using HMM regime-
specific estimates for means, covariances and probabilities, are a significant improvement
on the estimates without multiple regimes.

3. Entropy and Risk Measurement

The fundamental concepts in assessing an investment strategy are risk and return.
Risk is associated with uncertainty, and a measure that quantifies the uncertainty of a
random variable X reflected in its distribution is entropy. The entropy measure of a discrete
random variable X, introduced by Shannon (1948), is defined as

H(X) = −
N

∑
i=1

[P(xi) ln P(xi)] = −E[ln(P(X))], (6)

where P(xi) is the probability of X = xi and N is the size of the probability support
{xi}N

i=1 (N can be infinity). Shannon entropy is generally used as a measure of information
uncertainty. The larger the entropy, the more uncertain the X.

For a continuous random variable X, the entropy is naturally extended as

H(X) = −E[ln f (X)] = −
∫ ∞

−∞
f (x) ln f (x)dx, (7)

where f (x) is the density function of X. (7) is usually called differential entropy, which
has many of the properties of discrete entropy. However, unlike the entropy of a discrete
random variable, the differential entropy of a continuous random variable may be infinitely
large, negative or positive (Ash 1965). The entropy of a discrete random variable remains
invariant under a change of variable; however, with a continuous random variable, the
entropy does not necessarily remain invariant.

Shannon entropy is linked to variance—the usual measure of uncertainty. If X is
normally distributed with mean µ and standard deviation σ,

H(X) = 1
2 (1 + ln 2π + ln σ2).

So, the differential entropy analogy of Shannon entropy (Shannon differential entropy) is
determined by the variance, and mean variance analysis is equivalent to a mean entropy
approach if asset returns jointly follow a multivariate normal distribution. This gives us a
hint that we may use entropy to measure a portfolio’s return variability or randomness.

For non-normal distributions, variance alone does not define entropy, so entropy is
preferred as a measure of uncertainty since it takes the entire distribution into considera-
tion. For non-normal distributions, the Shannon differential entropy is computationally
intractable, and we introduce a tractable generalization of Shannon differential entropy.
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In (8), Rényi (1961) proposed a generalization of Shannon entropy with the follow-
ing definition:

Hα(X) :=

{
1

1−α ln E[ f (α−1)(X)] α 6= 1
H(X) α = 1

(8)

whenever the expectation exists. Shannon entropy is recovered as a special case in the
sense that

lim
α→1

Hα(X) = H(X).

The Rényi entropy in (8) has a discrete analogy. If X is a discrete random variable with
distribution (xi, pi), i = 1, . . . , n, the Rényi entropy is

Hd
α =

1
1− α

ln

(
n

∑
i=1

pα
i

)
.

The Rényi entropy of a discrete random variable is non-negative. However, the Rényi
entropy for a continuous random variable (differential entropy) can be negative. Although
the definitions are analogous, the functions have different ranges of values. Tabass et al.
(2016) established that continuous case Rényi entropy is not the limit of Rényi entropy for
discrete approximations. If the discrete approximation to X is X∆, where X∆ = xi on the
interval [i∆, (i + 1)∆] and pi = Pr{X∆ = xi} = f (xi)∆, then

lim
∆→0
{Hd

α(X∆) + ln(∆)} = Hα(X).

So, the limit of Rényi entropy for a quantized approximation of a continuous random
variable does not converge to the differential entropy of a continuous random variable.
Given this caveat, we will confine our entropy analysis to a continuous random variable
with a density function.

It is known that, while the entropy of a discrete random variable is always non-negative
by definition, the entropy of a continuous random variable can be negative. Since a risk
measure is required to be a positive functional, the exponential transform of Rényi entropy
has more natural properties in the context of risk. We denote by Hexp

α the exponential Rényi
entropy, which is

Hexp
α (X) = exp(Hα(X)) = (E[( f (X))α−1])

1
1−α . (9)

Note that exponential Rényi entropy is defined by variance in the normal case. The
exponential Rényi entropy of X ∼ N(µ, σ2) collapses to (Koski and Persson 1992)

Hexp
α (X) = σ

√
2πα

1
α−1 .

Hexp
α (X) is in the form of a power utility function of the probability distribution, and it has

attractive properties.
For a hidden Markov model, the one-period return follows a mixture of normal

distributions and the density function is given as

P(x) = p1φ1(x) + · · ·+ pKφK(x), (10)

where φk(x) is a multivariate normal density function with mean vector µk and covariance
matrix σ2

k , and pk is the probability of regime k, k = 1, 2, · · · , K.
With a normal mixture, the quadratic Rényi entropy Hexp

2 (X) has a closed form
solution, as in Proposition 1. To simplify notation, we will denote Ĥ(X) as the exponential
Rényi entropy with α = 2.
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Proposition 1. The entropy of the mixture normal random variable, X, with a density function
in (10), is given as

Ĥ(X) =

(
K

∑
i,j

pi pjφ(µi − µj, 0, σ2
i + σ2

j )

)−1

, (11)

where φ(µi − µj, 0, σ2
i + σ2

j ) is the normal density function with mean 0 and variance σ2
i + σ2

j
evaluated at µi − µj, i, j = 1, 2, · · · , K.

Proof. See the Appendix A.

The explicit solution for quadratic Rényi entropy has computational advantages since
the general entropy formula is difficult to calculate. It is also intuitively appealing since
Ĥ(X) is composed of the within-regime means and covariances. As a risk measure, it also
satisfies the properties as in Proposition 2.

Proposition 2. Let c be a real constant and X a random variable with a density function (10).
Ĥ(X) satisfies the following properties,

1. Positivity: Ĥ(X) ≥ 0 and the equality holds if X is a constant.
2. Translation-invariance: Ĥ(X + c) = Ĥ(X);
3. Positive-homogeneity: Ĥ(cX) = |c|Ĥ(X).

Proof. The proof of Proposition 2 is straightforward by using the result in Proposition 1.

Using the translation-invariance and positive-homogeneity properties, we can easily
derive that the entropy of a constant equals zero. Unfortunately, the subadditivity for
deviation risk measures does not hold in general for Ĥ(X) with mixture normal distri-
butions as in (10), though it does hold for Ĥ(X) with normal distributions (number of
regimes equals one). For illustration, assume there are two regimes with a prior probability
p = [0.7261, 0.2739]. X has parameters µx = [0.2268, 1.0989] and σx = [0.9095, 0.2112], and
Y has parameters µy = [0.1472, 2.2957] and σy = [0.6627, 0.6179]. The correlation of X
and Y for the two regimes are ρxy = [0.9834, 0.5635]. By Proposition 1, Ĥ(X) = 2.6767,
Ĥ(Y) = 3.7148, and Ĥ(X + Y) = 6.9870. Thus, Ĥ(X + Y) ≥ Ĥ(X) + Ĥ(Y). However,
Rau-Bredow (2019) argued that subadditivity is not always the desired property for mea-
suring financial risk. That is, when two investment positions are merged, the resulting
risk is actually even greater. As examples of subadditivity violation, the celebrated risk
measure, Value-at-Risk (VaR), does not satisfy subadditivity, and the variance measure
does not satisfy subadditivity either. Since we are measuring the randomness of a portfolio
return, not concerning monetary risk, we will ignore the assumption of subadditivity in
developing our portfolio selection model.

4. The Investment Model

The structure for the dynamics of asset prices has been proposed in Section 2, and we
will consider investment decisions based on that structure. An investment decision is a
portfolio Wt = [w1t, · · · , wnt]>, where wit is the proportion of available capital allocated to
risky asset i, i = 1, · · · , n, from time t− 1 to t. The return on the portfolio is

R(Wt) = rt + (Rt − rt)
>Wt,

where rt is the risk-free return and 1−∑n
i=1 wit is the proportion allocated in the risk-free

asset. It is assumed that there are K regimes and, given St = k, the returns on the n risky
assets are multivariate normally distributed with mean vector Mkt and covariance matrix
Vkt. Hence, given regime St = k, R(Wt) is normally distributed with mean

µk(Wt) = rt + (Mkt − rt)
>Wt
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and variance
σ2

k (Wt) = W>t VktWt.

Let PWt(x) be the probability density of the one-period portfolio return, and let pt = [p1t, · · · , pKt]
be the prior probabilities of the regime at t. Then, the density function of one-period portfo-
lio return

PWt(x) = p1tφ1(x; Wt) + p2tφ2(x; Wt) + · · ·+ pKtφK(x; Wt),

where φk(x; Wt) is the normal density function with mean µk(Wt) and variance σ2
k (Wt) for

portfolio weight vector Wt. So the distribution of returns is a mixture of normals.
The reference investment model built on risk and return is mean variance analysis.

With a mean variance analysis, if asset returns are normally distributed, it can be shown
that the optimal solution is such that the target mean return is binding, and the probability
of the portfolio return greater than or equal to the mean is equal to the probability that
the portfolio return is less than or equal to the mean, and both are equal to 1/2. However,
this optimal portfolio property is violated if asset returns are non-normal and the density
function is asymmetric. Therefore, using a target mean constraint is sub-optimal in that case.

If the properties are an important consideration, then a key issue with non-normal
random returns is whether a target mean return is desirable, though it is a convenient
measure of central tendency and it is a linear operator. A disadvantage of the mean of a
quantity is that it is not robust, especially, in the presence of substantial skewness or fat tails
as in the financial data. For example, the probability for a non-normal random outcome to
be around the mean may be an event with a small probability to occur, if the means of the
mixing normals are far apart and/or the component standard deviations are small.

Example 1. Let us use an example to illustrate the problem with a target mean for a mix-
ture of normal return distributions. Suppose there are two regimes with a prior probability of
p = [0.3, 0.7] and the portfolio return R is a mixture of two normal distributions with mixing
parameter p. There are two risky assets, which have a joint normal distribution N(M1, V1) with

M1 = [−0.10, 0.08] and V1 =

[
0.16 −0.01
−0.01 0.09

]
for regime 1 and a joint normal distribution

N(M2, V2) with M2 = [0.15, 0.05] and V2 =

[
0.04 0.02
0.02 0.09

]
for regime 2. Thus, the joint return

distribution of the two assets is given as

P(x) = 0.3 φ(x; M1, V1) + 0.7 φ(x; M2, V2).

The risk-free rate r = 0.03. We can interpret that regime 1 is a bear market and regime 2 is a
bull market. Suppose the target return is τ = 0.06. The mean variance optimal portfolio weight
vector is W = [0.5680, 0.1530]. It can be verified that the shortfall equals 0.1490 and the surplus
equals 0.1299 with a shortfall probability of 0.4656. At optimality, the shortfall is greater than the
surplus, though the shortfall probability is less than 0.5, which is unreasonable. Suppose now the
prior probabilities of regimes p = [0.7, 0.3], which indicates that the strength of the financial market
is reversed, and everything else stays the same. The joint return distribution of the two assets is
given as

P(x) = 0.7 φ(x; M1, V1) + 0.3 φ(x; M2, V2).

To meet the target return level of τ = 0.06, the mean variance optimal portfolio weight vector
changes to W = [−0.3766, 0.2265]. The portfolio shortfall equals 0.1138 and the surplus equals
0.1345 with a shortfall probability of 0.5415. As a result, the shortfall is less than the surplus, but the
probability of shortfall is much greater than the probability of surplus. This is again unreasonable.
In conclusion, the mean and variance trade-off is not the best criterion for portfolio selection with
non-normal and/or asymmetric asset returns.

Considering that the target return and shortfall probability are the quantities of interest,
we will directly constrain them. For a target return τ, α(τ) =

∫ τ
−∞ P(x)dx is the probability
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that portfolio return is less than or equal to τ. We call α(τ) the shortfall probability from
target τ, and the quantity, 1− α(τ) =

∫ ∞
τ P(x)dx, is called surplus probability over target τ.

The quantity, 1
α(τ)

∫ τ
−∞(τ− x)P(x)dx, is called the shortfall below target τ, and the quantity,

1
1−α(τ)

∫ ∞
τ (x− τ)P(x)dx the surplus over target τ.

Given the shortfall probability less than or equal to 0.5, it follows that surplus is greater
than or equal to shortfall implying that the portfolio mean return is greater than or equal to
τ at optimality. We control the shortfall probability being less than some desirable level
and simultaneously guarantee that surplus exceeds the shortfall. With shortfall/surplus
constraints on returns and quadratic (collision) Rényi entropy as the risk measure, the
optimization model for portfolio selection is defined as

min
W

Ĥ(RW) = exp{− ln
∫ ∞

−∞
PW(x)2 dx}

s.t. 1
α(τ)

∫ τ

−∞
(τ − x)PW(x) dx ≤ 1

1−α(τ)

∫ ∞

τ
(x− τ)PW(x) dx∫ τ

−∞
PW(x) dx ≤ Pτ

(12)

where RW is portfolio return for risky asset weighting W and PW(·) is the probability
density function of RW . The first constraint controls the losses in expectation, and the
second one limits the probability of losses to a target level of Pτ , which can be fine-tuned
depending on the prior probability distribution of future regimes and the target return
level τ. As mentioned, if Pτ = 0.5 and portfolio return is normally distributed, the optimal
problem reduces to a typical mean variance model.

As previously stated, the reference for the investment model in (12) is the Markowitz
mean variance model. Major theoretical results have followed from mean variance analysis
including the Capital Asset Pricing Model. The CAPM equation is an equilibrium result
if investment decisions are governed by the mean variance criterion. Is this equilibrium
framework preserved if investors’ risk and return trade-off are based on entropy and return
level? To answer this question, we are providing a simulation using the earlier example to
verify the preservation of the CAPM equilibrium framework.

It is easy to calculate that the mean vector is µ̄ = [0.0750, 0.0590] and the covariance

matrix is V̄ =

[
0.0411 0.0142
0.0271 0.0632

]
. For the mean variance model, the optimal portfolio

weights in the risky assets are

Wm =
(τ − r)V̄−1(µ̄− r)

I>V̄−1(µ̄− r)
.

Let Wq1 and Wq be the optimal portfolio weights in the two risky securities for (i) q1—
the mean entropy model (similar to the mean variance analysis) and (ii) q—the entropy
model (12) with the shortfall probability Pτ = 0.5. Table 1 presents the optimal portfolio
weights in the two risky securities for a range of target levels.

Table 1. Optimal portfolio weights in the risky assets.

τ Wm Wq1 Wq

0.0400 0.1893 0.0510 0.1856 0.0568 0.1140 0.1808
0.0500 0.3787 0.1020 0.3713 0.1136 0.2280 0.3616
0.0600 0.5680 0.1530 0.5569 0.1704 0.3420 0.5424
0.0700 0.7574 0.2040 0.7425 0.2272 0.4560 0.7231
0.0800 0.9467 0.2551 0.9281 0.2839 0.5700 0.9039

Dividing by the total weights of the optimal portfolio, the weights in the risky assets
are the same for the 5 target return levels within each strategy. The optimal weights are
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[0.7878, 0.2122], [0.7657, 0.2343], and [0.3867, 0.6133], for Wm, Wq1, and Wq, respectively.
This is to say that a two-fund separation applies. i.e., investors with different target return
levels find their optimal portfolios of risk-free and risky assets by simply allocating their
wealth to the risk-free asset and a portfolio of the risky assets, which is the same for
all investors.

5. Parameter Estimation

The equations in the financial market have parameters that need to be estimated
so that the portfolio models can be implemented. The parameters to be estimated are
the initial probability distribution of regimes π, and the transition matrix P of regimes,
[Ak, Bk, Ck] in the hidden Markov model (1), and [αk, βk, γk] in the regime-switching
regression model (2).

5.1. The Data

Since the financial market regimes are latent, we employ a hidden Markov modeling
framework for the estimation process using weekly historical data on multivariate eco-
nomic and financial indicators. Edirisinghe and Zhao (2020) used a set of macroeconomic
indicators to characterize the hidden Markov model, and Maclean and Zhao (2022) used
two typical equity market real-time indicators: the S&P 500 index (SPX) and the monthly
CBOE volatility index (VIX). It is expected that the financial market regime dynamics can
be well characterized by these two risk factors. Specifically, the first factor is the equity
excess return, denoted FE, i.e., the weekly logarithmic return on the S&P 500 Return Index
minus the risk-free rate, and the second risk factor is the logarithmic ratio of the weekly
VIX, denoted as FV . Figure 1 depicts the cumulative weekly values of [FE, FV ] for the period
31 December 1998–30 April 2022.

Figure 1. Observed SPX and VIX.

It is observed that SPX and VIX move in opposite directions in 957/1217 weeks with a
sample correlation of −72.10%. There were several major market events in the past three
decades. The Internet bubble in the late 19s and early 20s caused the stock market downturn
in 2001–2002 and then led to a bull market for the period 2003–2007 with an ensuing peak
in October 2007. A subprime mortgage crisis leading to market slowdown started soon
after the boom and continued until June 2009. The European sovereign debt crisis was
in the period from 2011 to 2013. Since then, the equity markets have up-trended, except
for a few months of downturn due to the Greek debt crisis, until 2019. At the onset of the
COVID-19 pandemic, the stock market suffered a major dip in March 2020. Then the stock
market suffered a major drawback due to inflation concerns. Therefore, the pre-December
2018 period provides a representative in-sample data period for HMM-based analysis
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of economic regimes and their transitions. The out-of-sample data period for portfolio
analysis is chosen as 1 January 2019–30 April 2022.

5.2. Estimation of the Hidden Markov Model

Determining the optimal number of states (or regimes) involves the conflicting notions
that more regimes achieve a better fit of the model, while it also leads to poor predictive
power due to overfitting the data. We apply the Bayes Information Criterion (BIC) to
determine the optimal number of regimes,

min
K

BIC(K) = −2L(K) + ρ(K) ln(T) , (13)

where L(K) is the maximized logarithmic likelihood, ρ(K) is the total number of free
parameters and T is the sample length. So there is a trade-off between the likelihood and
the number of parameters.

For the number of factors N and the number of regimes K, the number of free parame-
ters is ρ(K) = 3

2 N(N + 1)K + K2 − 1 based on the regime model (1). It is well known that
the maximum likelihood L(K) monotonically increases with the number of regimes, which
does not help with model selection. With the BIC criterion, an optimal number of regimes
can be derived. Table 2 presents the various model estimation criteria by the number of
regimes with the Expectation-Maximization algorithm (Dempster et al. 1977).

Table 2. Determination of the optimal number of regimes.

Number of Regimes (K) 1 2 3 4 5 6

Number of Parameters (ρ(K)) 9 21 35 51 69 89
Log likelihood (L(K)) 3464.8 3773.6 3855.1 3915.4 3944.4 3968.7

BIC(K) −6867.0 −7401.3 −7467.0 −7476.5 −7409.4 −7319.0

Based on the criterion of minimizing the BIC, the optimal number of financial market
regimes is K = 4. The initial regime distribution is estimated as π = [1, 0, 0, 0] and the
transition probability matrix P is estimated as in (14).

P =


0.6581 0.3115 0.0223 0.0081
0.1170 0.8830 0.0000 0.0000
0.0000 0.0143 0.9525 0.0332
0.0000 0.0000 0.3250 0.6750

. (14)

The transition matrix is diagonally dominant, so the probability to remain in a regime once
the process is in that regime is relatively high. This is consistent with the reality in which a
market regime holds for an extended time. In the long run, the market stays in each of the
regimes with a probability distribution of [0.1590, 0.4647, 0.3378, 0.0385].

With a hidden Markov process, it is found that the categorization method provides
a different regime process compared with the NBER characterization, which may be an
interesting research topic for financial market analysis. Table 3 presents the in-sample
parameter estimation for the hidden Markov model (1).
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Table 3. Coefficient estimates for SPX and VIX in model (1) by regime (31 December 1998–31
December 2018).

Parameter
Single Regime Regime 1 Regime 2 Regime 3 Regime 4

SPX VIX SPX VIX SPX VIX SPX VIX SPX VIX

Ak 0.0002 0.0001 −0.0069 0.0630 0.0048 −0.0208 −0.0004 −0.0096 −0.0221 0.0824

Bk
−0.1433 0.4519 −0.4196 3.3709 −0.1391 0.9142 −0.1313 0.6757 −0.4862 1.4665
−0.0048 −0.1796 −0.0064 −0.0969 0.0008 −0.1553 −0.0145 −0.0683 −0.1177 0.3819

Res. Risk 0.0239 0.1268 0.0217 0.2086 0.0118 0.0883 0.0248 0.0951 0.0662 0.1543

Res. Corr. Coeff. −0.7189 −0.8562 −0.7689 −0.7798 −0.7982

Note: Res. Risk is the standard deviation of SPX and VIX, which equals square root of the diagonal entries of
the covariance matrix CkC>k if St = k, and Res. Corr. Coeff is the correlation of SPX and VIX by the regime. The
regression coefficients: Ak, Bk, and Ck are quite small in scales and different in signs for a single regime case, in
comparison with the regime-switching model by which these coefficients showed very different scales and signs
reflecting the market strength. For example, while Ak is positive for both SPX and VIX for a single regime case, Ak
is negative in Regime 1 and positive in Regime 2 for SPX, and Ak is positive in Regime 1 and negative in Regime 2
for VIX. The estimated coefficients of Bk and Ck also have similar interpretations.

The numbers presented in Table 3 have profound importance in financial research.
The B coefficients are a reflection of the concept of leverage effect and volatility feedback.
In the research literature so far, the focus is on the single regime case in which future asset
return is negatively correlated with current asset return and positively correlated with
current volatility, while future volatility is negatively correlated with current volatility.
With multiple regimes, the concept of leverage effect and volatility feedback is much more
complicated and requires further investigation.

With the information about the HMM dynamics and the observations of SPX and VIX,
we can now label the four regimes of the financial market with terms that we name the
market strength. It is noted that the correlations between SPX and VIX are negative in all
regimes. However, their mean values have different patterns in different regimes, which
provides a basis for us to label these regimes. Since SPX has a positive mean and VIX has
a negative mean with the lowest standard deviation in Regime 2, we can label Regime 2
as Bull. In Regime 3, SPX has a slightly negative mean and VIX has a negative mean with
the second lowest standard deviation, we can label regime 3 as Rally. Similarly, we can
label Regime 1 as Slump and label Regime 4 as Bear. That is, most of the time, the financial
market is in Bull or Rally, with a total of 0.4647 + 0.3378 = 80.25% chance. It is usually true
that SPX and VIX are negatively correlated with a sample correlation of −0.7210 (for the
case of single-regime). However, for a multi-regime model, the correlations between SPX
and VIX are asymmetric and also negative across regimes, with the smallest correlation of
−0.7689 in the Bull with stock prices going up and VIX index going down and the largest
correlation of −0.8562 in the Slump with stock price going down and volatility going up.
Interestingly, the estimated transition probabilities from Bull to Rally and Bear, from Rally
to Slump, and from Bear to Slump and Bull, are extremely small (close to zero), which is
consistent with the financial market observation.

5.3. Estimation of Asset Return Parameters

Investment in ETFs has become a style for both institutional and individual investors,
as they are already diversified portfolios with low management costs compared to standard
mutual funds. Some brokers have removed trading costs completely for some of the popular
ETF funds. The select sector exchange-traded funds (SPDRs), each offering diversification
benefits within each sector: Consumer Discretionary (XLY), Consumer Staples (XLP),
Energy (XLE), Financials (XLF), Health Care (XLH), Industrial Goods (XLI), Basic Materials
(XLB), Technology (XLT), and Utilities (XLU), have drawn a great deal of investor-attention
since their origin in late 1998. Real Estate (XLRE) and Communication Services (XLC) are
two additional select sector ETFs, but they started in 2015 and 2018, respectively. As they
started much later, we use two substitutes, namely Simon Property Group ETF (SPG) for
Real Estate and Verizon Communications (VZ) for Communication Services.
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The weekly asset risk/return profile is estimated using the weekly returns of the
eleven ETFs with the in-sample data. Following the discussion of model (2), the forecast of
the asset return/risk profile can be explicitly expressed with a regime-switching regression
model as below,

Rt − rt = αSt + FE,tβE,St + FV,tβV,St + γSt εt, (15)

where Rt is a vector of weekly returns on the risky securities. αSt , βE,St , βV,St , and γSt are
regime-dependent parameters. εt is a multivariate standard normal random vector, and rt
is the risk-free return from period t−1 to t. With the estimated hidden Markov process (1)
and the posterior probabilities of regimes over time, we apply a weighted least square
method for each of the regimes to estimate the regime-dependent parameters. Table 4
presents the estimates of the return parameters for model (15).

Table 4. Regime-dependent weekly asset return parameters.

Market Factors XLY XLP XLE XLF XLV XLI XLB XLK XLU SPG VZ

Single Regime
α 0.0008 0.0005 0.0006 −0.0002 0.0008 0.0006 0.0006 0.0001 0.0006 0.0019 0.0003
βE 1.0745 0.4858 0.9401 1.4846 0.7345 0.9718 0.9314 1.1436 0.6657 1.1146 0.8170
βV 0.0038 −0.0068 −0.0197 0.0296 −0.0097 −0.0138 −0.0208 −0.0006 0.0168 0.0371 0.0177
γ 0.0138 0.0136 0.0256 0.0194 0.0143 0.0124 0.0205 0.0171 0.0191 0.0291 0.0283

Slump
α 0.0004 0.0015 −0.0024 0.0001 0.0010 0.0003 −0.0014 0.0003 0.0029 0.0028 0.0010
βE 1.0228 0.5522 1.1324 1.2767 0.7785 1.0810 1.2479 1.0726 0.5823 0.9182 0.6674
βV 0.0030 −0.0012 −0.0023 0.0120 −0.0084 −0.0047 0.0014 −0.0017 0.0058 0.0154 −0.0009
γ 0.0083 0.0110 0.0205 0.0112 0.0120 0.0091 0.0145 0.0096 0.0176 0.0252 0.0208

Bull
α 0.0003 0.0002 0.0011 −0.0002 0.0007 0.0005 0.0002 0.0004 0.0006 0.0011 0.0001
βE 1.0753 0.6031 1.0973 1.1615 0.7879 1.0824 1.1969 1.1321 0.5398 0.8343 0.7343
βV −0.0015 0.0009 −0.0066 0.0031 0.0062 −0.0060 −0.0125 −0.0012 0.0059 0.0009 0.0057
γ 0.0077 0.0086 0.0205 0.0098 0.0109 0.0076 0.0129 0.0089 0.0150 0.0229 0.0195

Rally
α 0.0015 −0.0000 0.0009 −0.0000 0.0011 0.0012 0.0017 −0.0005 0.0006 0.0045 −0.0003
βE 1.0769 0.4093 0.6701 1.2005 0.7106 1.0376 0.9763 1.3839 0.6642 0.8262 0.8987
βV 0.0098 −0.0156 −0.0345 −0.0132 −0.0248 0.0075 0.0344 0.0102 0.0217 0.0404 0.0469
γ 0.0194 0.0176 0.0301 0.0241 0.0165 0.0159 0.0274 0.0237 0.0218 0.0309 0.0365

Bear
α 0.0029 −0.0013 0.0013 0.0064 −0.0037 −0.0033 −0.0009 −0.0001 −0.0037 −0.0025 0.0121
βE 1.0177 0.5169 1.0257 1.8253 0.7484 0.8528 0.8672 0.9104 0.7574 1.5481 0.8395
βV −0.0406 0.0004 −0.0576 0.0637 0.0148 −0.0450 −0.0425 −0.0247 0.0469 0.0861 0.0018
γ 0.0235 0.0241 0.0414 0.0466 0.0284 0.0245 0.0316 0.0284 0.0343 0.0562 0.0486

Dynamic optimization depends on the estimated return parameters. In practice, port-
folio managers usually apply a moving window approach to forecasting asset risk/return
profiles. However, this approach may not be stable and beneficial. If we assume the
risk/return profile of an asset is time-varying, we may not rely on a wide window of data
for the estimation purpose. However, a too narrow window of data may not be sufficient
for the significance of the estimates. For simplicity of discussion, we do not update the
parameter estimation for either the hidden Markov model (1) or the asset pricing model (2),
even though it might bring a benefit if these parameters are updated over time.

Based on the estimated parameters in Table 4, we can now calculate the conditional
mean vectors, standard deviations, and correlation coefficients of security returns over
time. As specified in Equation (3), the conditional mean vectors of the security returns are
time-varying, but their conditional covariance matrix is constant given a specific regime.
Table 5 presents the conditional mean returns and standard deviations of the 11 ETFs for
the first week of the out-of-sample period in January 2019, given a regime.
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Table 5. Conditional means and standard deviations of security returns.

Market XLY XLP XLE XLF XLV XLI XLB XLK XLU SPG VZ

Mean (in %)

Single −0.0480 −0.0054 −0.0407 −0.2136 −0.0009 −0.0456 −0.0383 −0.1205 −0.0256 0.0397 −0.0725
Slump −1.0245 −0.4517 −1.4659 −1.2540 −0.8018 −1.1691 −1.4583 −1.1312 −0.2847 −0.5713 −0.6222
Bull 0.4336 0.2455 0.5350 0.4074 0.3512 0.4676 0.4985 0.4628 0.2530 0.4185 0.2722
Rally −0.0994 −0.0819 −0.0310 −0.2670 −0.0297 −0.1201 −0.0779 −0.3711 −0.1101 0.2334 −0.2742
Bear −3.4832 −1.8028 −3.8580 −4.5524 −2.6254 −3.6185 −3.3887 −3.2514 −2.2913 −4.2849 −1.4962

Standard Deviation (in %)

Single 2.8840 1.8267 3.5329 3.8190 2.3343 2.7438 3.1718 3.2259 2.3952 3.7389 3.3519
Slump 2.3244 1.6423 3.2367 2.7964 2.1982 2.6008 3.0548 2.5498 2.1109 3.0523 2.5481
Bull 1.4955 1.1139 2.4475 1.6730 1.4035 1.5238 1.9816 1.6120 1.6184 2.4883 2.1223
Rally 3.2444 2.0973 3.5714 3.9098 2.5576 2.9760 3.4960 4.1098 2.6397 3.5621 4.1179
Bear 7.6206 4.1803 8.5828 12.2387 5.5540 6.6796 7.0280 6.9437 5.6234 10.7994 7.3702

Given a regime, the conditional correlation coefficients of the 11 ETFs are presented in
Table A1 in the Appendix A.

It is noted that the mean returns are all small in magnitude with mixed signs and the
standard deviations are quite large for a single regime market. This is because the returns
are averaged out when there is only one market regime. For the multiple regime market,
the mean security returns are all positive in the Bull regime and negative in the Bear regime,
with the Bull regime having a much smaller risk than the Bear regime. However, the
mean returns in the Slump and Rally regimes have mixed signs, with returns in the Rally
regime being much smaller than those in the Slump regime, indicating different responses
to unconsolidated market strength, in contrast with consolidated Bull and Bear regimes.
The patterns of the volatilities for all securities are similar, with the Bull regime having the
lowest volatility followed by Slump, Rally, and Bear regime.

6. Dynamic Minimum Entropy Portfolio Analysis

The financial market is determined by the parameter estimates from weekly observa-
tions between 31 December 1998–31 December 2018 on the factors (SPX, VIX) and returns on
the 11 SPDRs. It is considered that the observed out-of-sample trajectory of weekly values
between 1 January 2019–30 April 2022 on the factors (SPX, VIX) and returns on the 11 ETFs
is sampled from the estimated market. At the start of out-of-sample week t, a decision is
made on the investments in the 11 ETFs: W = [w1, · · · , w11]

>. The available information
to the decision maker is prior probabilities for the K = 4 regimes and the weekly returns
on assets by the regime. Recall that the prior probabilities and the observed factor values
from the week (t−1) yield posterior regime probabilities at the end of that week, and those
posterior probabilities and the transition probabilities give the prior probabilities for week
t. So the regime priors are dynamically updated each week.

The optimization model for portfolio selection is formulated as Equation (12). The
optimal portfolio W∗(t) = [w∗1(t), . . . , w∗11(t)] will produce actual portfolio returns from the
observed returns on the assets in week t. The constraints in the entropy portfolio model (12)
have specifications for target return and shortfall probability. The model is applied with a
variety of specifications to gauge the effect of the constraints.

6.1. Dynamic Portfolio Returns with Varying Target

It is noted that the risky assets have varying sensitivity to SPX and VIX with different
magnitudes and signs, which create opportunities for constructing an optimal portfolio
with combinations of long and short positions in the risky assets. This is consistent with
one of the hedge fund investment styles, which has become popular among hedge fund
portfolio managers. To make portfolio returns meaningful (without an absolutely large
holding in some of the individual funds), we will set a target return equal to

τ = r + required weekly risk premium,
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where r is the weekly risk-free return calculated from the 3-month LIBOR. To avoid large
portfolio turnovers, the weekly risk premium is set to be small. For simplicity of exposition,
we set the target probability of shortfall to be fixed and equal to 0.5. Figure 2 depicts the
cumulative returns and the total investment in the 11 risky assets.

(a) (b)

Figure 2. Cumulative Portfolio Returns and Net Investment by Target Return. (a) Portfolio returns
by target return; (b) Net investment in the risky asset.

It is shown in Figure 2a that portfolio growth increases with target return, while
it is shown in Figure 2b that the net position of the portfolio weights in the risk assets
are quite volatile as target return increases. Clearly, there is strong evidence of risk and
return trade-off.

6.2. Dynamic Portfolio Returns with Varying Shortfall Probability

As elaborated previously, portfolio growth can change substantially by varying the
maximum shortfall probabilities. It is desirable to control the probability of shortfall.
However, a low probability of shortfall can make the optimization model infeasible if the
required target return is high. With a weekly risk premium of 7 basis points, τ = r + 0.0007,
Figure 3 presents portfolio returns and minimum entropy by shortfall probability at the
level of Pτ = 0.48, 0.49, and 0.50.

(a) (b)

Figure 3. Portfolio Returns and Entropy by Shortfall Probability. (a) Cumulative returns by shortfall
probability; (b) Entropy by Shortfall Probability.

It is observed that the lower the target probability level, the higher the portfolio
entropy. It is also observed that the lower the allowable probability of shortfall, the higher
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the portfolio wealth growth, which clearly indicates the effectiveness of control on the
maximum allowable probability of shortfall.

7. Comparisons with Alternative Portfolio Strategies

In this section, we discuss several investment strategies, which will be compared to the
minimum entropy model. The basic approach with each strategy is to minimize portfolio
risk subject to constraints on the portfolio return. The alternative models with which we
are going to compare are the mean variance model with a single regime, the mean variance
model with multiple regimes, the foresight strategy, minimizing entropy with a target mean
return, and minimizing entropy with shortfall/surplus and shortfall probability constraints.
As a review, these models are listed in Table 6.

Table 6. Alternative Portfolio Models.

Mean Variance

Single Regime Multiple Regimes Foresight Regime

min
W

W>σ2
AW s.t. (µA − r)>W ≥ τ − r min

W
W>σ2

BW s.t. (µB − r)>W ≥ τ − r min
W

W>σ2
k W s.t. (µk − r)>W ≥ τ − r

Entropy: Multiple Regimes

Target return Shortfall/Surplus and Probability of Shortfall

min
W

Ĥ(RW) s.t. (µR − r)>W ≥ τ − r min
W

Ĥ(RW) s.t. Shortfall ≤ Surplus and Probability of shortfall ≤ Pτ

Note: For a single regime market, the mean variance and the entropy with a target return coincide, as minimizing
variance and minimizing entropy yield the same optimal portfolio if returns follow the multivariate normal
distribution. The subscript A is the case with all data from one regime and B is the case of blended mean and
variance estimates as in Formulas (4) and (5) on Page 8.

There are two design features in the alternative models: the asset pricing structure;
the portfolio selection criteria. The mean variance models have the usual setting in which
the portfolio variance is minimized subject to portfolio mean return being greater than or
equal to a target return.

The contrast in pricing is a market with a single regime versus one with multiple
regimes. In the case of a single regime, it is assumed asset returns follow a multivariate
normal distribution. The mean variance analysis is implemented since the mean variance
and mean entropy approaches are equivalent.

For multiple regimes, the basic assumption for a hidden Markov process is that,
conditioned on the regime outcome at any point in time, asset returns follow a multivariate
normal distribution. Each regime is associated with a different probability distribution
for asset returns, which is expected to reduce the overall uncertainty of asset returns.
There are two ways to proceed with switching regimes. Although the regime in the next
planning period is not known, the Markov chain provides a “foresight” for predicting the
future regime of the economy, using the prior probabilities of the regimes. The underlying
data generating process assumes that one of the regimes is going to occur, so we may
want to “guess” the future regime as the one with the highest prior probability, instead
of using an “expected regime” approach. Let k be the most likely regime to occur, i.e.,
k = arg max{Prior Probabilities of Regimes}. This is a variation on the single regime
approach, though the pricing parameter estimates are for regime k. The mean variance
analysis is implemented with the returns for the single inferred regime. The argument here
is that an “expected regime” will not occur, though the averaging over regimes accounts
for the regime uncertainty.

In the case of multiple regimes and expectations over regimes, minimizing variance and
minimizing entropy are different. So, both models subject to a target return are implemented.

For the model of minimizing entropy with a shortfall and surplus constraint, in
addition to replacing the minimization of variance with minimization of entropy, we
replace the usual mean target constraint with two constraints: (i) portfolio shortfall is less
than or equal to the surplus and (ii) the probability of shortfall is less than a specific target
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level. Depending on the asymmetry of fund returns across all regimes, the target level of
the probability can be fine-tuned so that, if the market is in a down regime, the probability
level can be set tighter, so the portfolio will not put a large weight to avoid big losses. It
can be easily proved that, with the constraint that portfolio mean return greater than or
equal to the target return, if the shortfall probability is less than 0.5, the shortfall less than
the surplus constraint will definitely hold. So, it is worth examining how the portfolio
performs when the probability of shortfall is varied.

7.1. Cumulative Portfolio Returns and Net Weighting

Figure 4a,b depict cumulative portfolio returns and net weighting in the risky assets
for the various investment strategies. In the portfolio comparisons, the shortfall probability
is set to be 0.5, and the target return level is set to be the weekly risk-free returns plus
10 basis points.

(a)

(b)

Figure 4. Cumulative Portfolio Returns and Net Weighting. (a) Cumulative returns; (b) Net weighting.

From Figure 4a, the mean variance model with multiple regimes, the foresight strategy,
the minimum entropy with target return, and the minimum entropy with shortfall less
than surplus outperform the mean variance model with a single regime, indicating a
financial benefit of using a hidden Markov model for characterizing the dynamics of the
equity market. The portfolio weight turnover is a concern for portfolio management. The
net portfolio turnovers for all strategies are not so large as the risk premiums are set to
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be 10 basis points. Unexpectedly, it seems that the single-regime model has the highest
portfolio turnover and the worst portfolio growth rate for the out-of-sample period.

7.2. Shortfall–Surplus Effect

The importance of controlling the surplus and shortfall over time was discussed
previously and is a factor in cumulative returns.

7.2.1. Shortfall–Surplus Constraint

Figure 5 depicts the surplus-shortfall constraint binding/slackness.

Figure 5. Constraint Slackness.

From Figure 5, the difference between shortfall and surplus for the single-regime
model and the entropy model with shortfall constraint is always negative as discussed
previously, while those for the mean variance model with a target return, the foresight
strategy, and the entropy model, are changing signs over the sample period. It is also noted
that the constraint has a similar pattern of slackness from Figure 5, and they have a similar
portfolio return pattern from Figure 4a, indicating the importance of imposing the shortfall
and surplus constraint.

7.2.2. Shortfall Probability

From Figure 6, we note that, at optimality, the estimated probability of shortfall for
the single-regime model and the entropy model with shortfall probability constraint are
both less than 0.5 as expected, while the other three models have an estimated shortfall
probability being less than 0.5 some time and greater than 0.5 some other time, due to the
asymmetric distribution of asset returns and in contrast with the single regime in which
the probability of shortfall from the target return is automatically less than 0.5, assuming
the target constraint is binding.
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Figure 6. Shortfall probability.

7.3. Summary of the Alternative Portfolio Performances

In addition to the period-by-period results presented in the figures included in this
section, Table 7 presents the overall results for the alternative portfolio strategies for the
out-of-sample period.

Table 7. Alternative portfolio performances for the out-of-sample period.

Performance Measure
Strategy

S&P 500 Index
S1 S2 S3 S4 S5

Annualized Growth (%) 4.3705 8.6851 6.7876 8.9685 11.5247 24.5146
Sample Std. Dev. (%) 7.2539 7.0201 5.7129 6.9608 8.7455 25.9773

Average Shortfall (%) 0.5972 0.4469 0.3642 0.4463 0.5079 —
Sample Std. Dev. (%) 0.2104 0.1691 0.1586 0.1694 0.1757 —

Average Surplus (%) 0.7435 0.4458 0.3050 0.4472 0.5145 —
Sample Std. Dev. (%) 0.2092 0.1701 0.1365 0.1697 0.1734 —

Average Shortfall Probability 0.3891 0.4998 0.5436 0.5014 0.4922 —
Sample Std. Dev. 0.0606 0.0175 0.0315 0.0247 0.0110 —

Risky Investment Weighting 0.1775 0.2203 0.1988 0.2179 0.2653 —
Sample Std. Dev. 0.1863 0.2140 0.1392 0.2191 0.2064 —

Note: MV Portfolio with Single Regime–S1; MV Portfolio with Multiple Regimes—S2; Foresight Regime—
S3; Minimum Entropy with Target Mean Return—S4; Minimum Entropy with Surplus-Shortfall Constraints
(p = 0.5, τ = r + 0.0010)—S5.

It is shown that the S&P 500 index had the highest annualized growth rate of 24.5146%
with the highest standard deviation of 25.9773%, which indicates that the overall equity
market is volatile in comparison with the alternative strategies. The single regime model
(S1) had the lowest growth rate of 4.3705% with a substantial amount of risk of 7.2539%
compared with other portfolio strategies. The mean entropy model (S4) had a slightly
greater mean growth rate with slightly lower volatility than the mean-variance model (S2),
indicating a much more benefit in terms of risk and return trade-off using entropy as a risk
measure. The foresight regime strategy (S3) has the lowest volatility of 5.7129% among
the alternative portfolio strategies, with a moderate growth rate of 6.7876%. Among all
alternative portfolio strategies, our proposed model (S5) had the highest growth rate of
11.5247% with a volatility of 8.7455%.

It is true that, with a single regime setting, the shortfall is always less than the surplus
and the shortfall probability is always less than or equal to 0.5 for all alternative portfolio
strategies. However, these properties are not preserved when asset returns are not normally
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distributed—such as proposed in this paper with a hidden Markov model as we discussed
with a numerical example in Section 4. For S2, the mean shortfall is 0.4469%, the mean
surplus is 0.4458%, and the shortfall probability is 0.4998%. For S4, the mean shortfall
is 0.4463%, the mean surplus is 0.4472%, and the shortfall probability is 0.5014%. It
is evident that either S2 or S4 violated one of the two properties that a single regime
model S1 preserved. However, strategy S5 is constrained to preserve these two properties
simultaneously. From Table 7, we also observed that the net investment exposures in the
risky assets are quite low for all alternative strategies, ranging from 17.75% to 26.53%.

7.4. Performance Measurement

Portfolio performance is usually measured based on the portfolio’s historical returns.
The most popular criterion is the sample Sharpe ratio which is the average excess return
over the risk-free rate divided by its sample standard deviation, ignoring the return distri-
bution. The Sharpe ratio may be suitable for normal portfolio returns, but it may not be so
informative, as the portfolio return distribution changes over time and follows a mixture
of normal distributions. To accommodate this, we provide a nonparametric approach for
portfolio measurement using kernel density estimation.

Let R = [r1, r2, · · · , rn] be the realized portfolio returns over a sample period. The
following function is the kernel density estimation of the empirical density of the portfolio
return R:

fh(x) =
1

nh

n

∑
i=1

K
(

x− ri
h

)
, (16)

where K is the kernel (a simple density function) and h is the bandwidth (a real positive
number that characterizes the smoothness of the density function). The success of this
nonparametric method depends on the choice of the kernel and the bandwidth h. A too
small bandwidth yields many kinks in the shape of the density, and a too big bandwidth
increases the standard deviation. We choose a Gaussian kernel and the bandwidth selector
developed by Duong and Hazelton (2005) to find the empirical portfolio return distribution.

Table 8 presents the empirical Sharpe ratios and the empirical mean entropy ratios of
the alternative portfolios and the S&P 500 index.

Table 8. The Sharpe and mean entropy ratios.

Portfolio Bandwidth Mean (%) STD (%) Entropy (%) Sharpe Mean-Entropy

MV with Single Regime 0.0134 0.0635 1.6448 5.7519 0.0386 0.0110
MV with Four Regimes 0.0118 0.1307 1.4465 5.0087 0.0903 0.0261
The Foresight Strategy 0.0097 0.1005 1.1865 4.0489 0.0847 0.0248
Minimum Entropy 1 0.0116 0.1348 1.4186 4.9073 0.0950 0.0275
Minimum Entropy 2 0.0141 0.1730 1.7226 6.0304 0.1004 0.0287
S& P 500 Index 0.0387 0.3247 4.7436 15.7551 0.0685 0.0206

Note: Minimum Entropy 1 is the entropy model with a target mean constraint, and Minimum Entropy 2 is
the entropy model with shortfall–surplus constraint and shortfall probability ≤0.5. The Mean and STD are the
portfolio mean return and standard deviation calculated using the empirical portfolio return distribution. Sharpe
is the ratio of the expected excess return divided by STD, and the Mean-Entropy is the ratio of the mean return
and the entropy of a portfolio return.

From Table 8, while the mean return of the S&P 500 Index is the greatest, it also has
the largest standard deviation and entropy. It is shown that under both Sharpe and mean
entropy ratios, the minimum entropy with shortfall–surplus and probability of shortfall
constraints outperforms all other alternative strategies, which is strong evidence that the
hidden Markov process has predictive power. It is worth noting that the foresight strategy
has the smallest entropy and better performance than the single-regime mean variance
model by both the Sharpe and mean entropy ratios, which implies that the hidden Markov
model has a strong predictive power of the financial market strength.
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8. Conclusions

In this paper, we argue that the standard mean variance model may not be a desirable
investment criterion, given the existence of financial market regimes. The focus of this
paper is to introduce an entropy-based portfolio selection model under a hidden Markov
process. In addition to modeling portfolio risk with an exponential Rényi entropy, the main
features of this portfolio selection process are the portfolio control with shortfall–surplus
and probability of shortfall constraints. In contrast with alternative portfolio strategies, the
strong portfolio performance of the entropy-based portfolio model is due to the uncertainty
present in the regime-switching distribution of multi-regime asset returns, after accounting
for the regime-dependent forecast of security returns.

Entropy-based portfolio selection is a relatively new concept, and it is now widely
regarded as an attractive approach to creating portfolios with diverse exposure to a larger
variety of securities. This paper provides a methodologically oriented and quantitatively
rigorous approach to portfolio selection. Using factor models to characterize security
risk/return profiles has been a trend in the investment arena. In this paper, we use the
S&P 500 Return Index and the CBOE Volatility Index to model business cycles, and the
empirical results presented a good fit to the reality with four regimes and compared well to
the business states: Bull, Bear, Rally, and Slump.

The implementation in this paper considered a static approach in which the parameter
estimation was not updated over time. Alternatively, a “dynamic” version may be envis-
aged in which the HMM is used to periodically update both the economic state (regime)
distribution and the asset return parameters. That is, a moving time window of historical
data of several periods may be used to update the asset return parameters prior to the
portfolio rebalancing decision. We think such a dynamic implementation process may lead
to a financial benefit.
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Appendix A

Proof of Proposition 1. Let X be a mixture of multivariate random variable of dimension n
with mixing parameters, pk, and mean vector mk and covariance matrix Vk, k = 1, 2, · · · , K.
Let φk(x) be the density function of multivariate normal random variable with mean vector
mk and covariance matrix Vk.

Lemma A1. ∫
Ω

φi(X)φj(X)dX = φ(mi −mj, 0, Vi + Vj)

where Ω is the n-dimensional Euclidean space and φ(mi−mj; 0, Vi +Vj) is the multivariate density
function with zero mean vector and covariance matrix Vi + Vj evaluated at mi −mj.

Proof. Note that, for any vector A and a positive definite matrix B,

(X− A)>B(X− A) = X>BX− 2A>BX + A>BA.
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Using the Woodbury matrix identity (Guttman 1946), it can be verified that,

(X−mi)
>V−1

i (X−mi) + (X−mj)
>V−1

j (X−mj)

=(X− ∆)>(V−1
i + V−1

j )(X− ∆) + (mi −mj)
>(Vi + Vj)

−1(mi −mj),

where
∆ = (V−1

i + V−1
j )−

1
2 (V−1

i mi + V−1
j mj).

Hence,∫
Ω

φi(X)φj(X)dX = (2π)−n|Vi|−
1
2 |Vj|−

1
2
∫

Ω
exp{− 1

2 ((X−mi)
>V−1

i (X−mi) + (X−mj)
>V−1

j (X−mj))}dX

= (2π)−n|Vi|−
1
2 |Vj|−

1
2
∫

Ω
exp{− 1

2 ((X− ∆)>(V−1
i + V−1

j )(X− ∆) + (mi −mj)
>(Vi + Vj)

−1(mi −mj))}dX

Since ∫
Ω

exp{− 1
2 (X− ∆)>(V−1

i + V−1
j )(X− ∆)}dX = (2π)n/2|V−1

i + V−1
i |

1/2,

we have∫
Ω

φi(X)φj(X)dX = (2π)−n/2|Vi + Vj|−1/2 exp{−1/2(mi −mj)
>(Vi + Vj)

−1(mi −mj)}

= φ(mi −mj, 0, Vi + Vj).

Lemma A1 has been proved.

By definition, the exponential Rényi entropy with α = 2 is

Ĥ(R) =

(∫
Ω
(

K

∑
k=1

pkφk(X))2dX

)−1

=

 K

∑
i=1

K

∑
j=1

pi pj

∫
Ω

φi(X)φj(X)dX

−1

=

 K

∑
i=1

K

∑
j=1

pi pjφ(mi −mj, 0, Vi + Vj)

−1

.

Proposition 1 is proved.

Table A1. Conditional correlation coefficients of security returns.

Market XLY XLP XLE XLF XLV XLI XLB XLK XLU SPG VZ

Single

1.0000 0.5875 0.6025 0.7544 0.6931 0.7828 0.6681 0.7454 0.5276 0.5469 0.4696
1.0000 0.4612 0.5721 0.5297 0.5984 0.5116 0.5682 0.3995 0.4132 0.3560

1.0000 0.5858 0.5440 0.6145 0.5257 0.5829 0.4089 0.4225 0.3645
1.0000 0.6751 0.7623 0.6495 0.7282 0.5190 0.5394 0.4615

1.0000 0.7059 0.6034 0.6703 0.4714 0.4876 0.4201
1.0000 0.6817 0.7570 0.5323 0.5505 0.4743

1.0000 0.6464 0.4532 0.4683 0.4040
1.0000 0.5091 0.5274 0.4533

1.0000 0.3783 0.3233
1.0000 0.3361

1.0000

Slump

1.0000 0.6945 0.7217 0.8556 0.7817 0.8735 0.8214 0.8645 0.5143 0.5269 0.5377
1.0000 0.5753 0.6810 0.6238 0.6965 0.6545 0.6891 0.4093 0.4189 0.4286

1.0000 0.7077 0.6482 0.7238 0.6802 0.7161 0.4253 0.4354 0.4454
1.0000 0.7655 0.8562 0.8059 0.8478 0.5054 0.5187 0.5273

1.0000 0.7851 0.7371 0.7764 0.4600 0.4701 0.4829
1.0000 0.8234 0.8669 0.5146 0.5265 0.5392

1.0000 0.8148 0.4844 0.4961 0.5068
1.0000 0.5095 0.5216 0.5335

1.0000 0.3118 0.3169
1.0000 0.3244

1.0000
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Table A1. Cont.

Market XLY XLP XLE XLF XLV XLI XLB XLK XLU SPG VZ

Bull

1.0000 0.5438 0.4701 0.6926 0.5428 0.7426 0.6488 0.7159 0.3167 0.3376 0.3348
1.0000 0.3481 0.5131 0.4023 0.5499 0.4803 0.5302 0.2347 0.2501 0.2481

1.0000 0.4432 0.3472 0.4756 0.4157 0.4583 0.2025 0.2161 0.2141
1.0000 0.5125 0.7003 0.6115 0.6753 0.2991 0.3185 0.3161

1.0000 0.5485 0.4787 0.5292 0.2348 0.2497 0.2480
1.0000 0.6567 0.7240 0.3199 0.3413 0.3383

1.0000 0.6325 0.2791 0.2981 0.2952
1.0000 0.3088 0.3291 0.3264

1.0000 0.1457 0.1448
1.0000 0.1540

1.0000

Rally

1.0000 0.4309 0.4290 0.6294 0.6084 0.6777 0.4973 0.6542 0.4517 0.3945 0.3670
1.0000 0.2920 0.4248 0.4128 0.4553 0.3314 0.4395 0.3013 0.2617 0.2432

1.0000 0.4234 0.4120 0.4534 0.3294 0.4376 0.2995 0.2598 0.2414
1.0000 0.5996 0.6649 0.4861 0.6418 0.4417 0.3849 0.3579

1.0000 0.6429 0.4681 0.6205 0.4256 0.3698 0.3437
1.0000 0.5250 0.6910 0.4770 0.4165 0.3875

1.0000 0.5068 0.3517 0.3083 0.2870
1.0000 0.4604 0.4020 0.3740

1.0000 0.2798 0.2605
1.0000 0.2289

1.0000

Bear

1.0000 0.7765 0.8332 0.8747 0.8150 0.8850 0.8496 0.8679 0.7456 0.8046 0.7135
1.0000 0.7144 0.7549 0.7026 0.7589 0.7287 0.7455 0.6451 0.6957 0.6142

1.0000 0.8039 0.7494 0.8153 0.7826 0.7991 0.6847 0.7390 0.6564
1.0000 0.7947 0.8542 0.8204 0.8405 0.7323 0.7893 0.6938

1.0000 0.7962 0.7647 0.7828 0.6799 0.7330 0.6456
1.0000 0.8311 0.8487 0.7277 0.7853 0.6973

1.0000 0.8148 0.6990 0.7544 0.6696
1.0000 0.7170 0.7735 0.6850

1.0000 0.6771 0.5929
1.0000 0.6394

1.0000
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