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1 Introduction

Power-law distributions are frequently observed in economic data such as assets, sales, profits,

income of firms, the number of employees, personal income, and so forth (denoted by x). This law

is known as Pareto’s law (Pareto 1897) and the probability density function (pdf) is represented

as

PPL(x) = Cx
−μ−1 for x > xth , (1)

where C is a normalization and the power μ is called Pareto index. In general, the power-law is

valid only in the large scale region (Badger 1980; Montrll and Shlesinger 1983), the threshold of

which is denoted by xth. In the middle scale region below the threshold xth, the pdf allegedly

follows the log-normal distribution:

PLN(x) =
1

x
√
2πσ2

exp

"
− ln

2 (x/x̄)

2σ2

#
x < xth . (2)

Here, x̄ is a mean value and σ2 is a variance. The study for these two distributions is highly

required. Because a large amount of total economic quantities are occupied by a few percent

firms or persons included in the large scale region. At the same time, a large number of firms

or persons exist within the middle scale region.

Recently it is found that these distributions can be explained by laws observed in massive

amount of digitalized economic data. Fujiwara et al. (2003, 2004) point out that the Pareto’s

law can be derived from the law of detailed balance and Gibrat’s law (Gibrat 1932). Along this

line, Ishikawa (2006a, 2007a) shows that the log-normal distribution is also deduced from the

detailed balance and Non-Gibrat’s law. The detailed balance is time-reversal symmetry observed

in the equilibrium system. The Gibrat’s law means that the conditional pdf of the growth rate

is independent of the initial value. On the other hand, the Non-Gibrat’s law describes the

dependence of the initial value. The Gibrat’s law is observed only in the large scale region, and

the Non-Gibrat’s law in the middle scale one.

It is interesting to note that there are two types in growth rate distributions. The form

of the growth rate distribution of profits or income of firms (Fig. 1) is different from that of

assets, sales of firms, the number of employees or personal income (Fig. 2). This difference is

observed not only in the large scale region but also in the middle scale one. The point is that

the difference might be related to the difference between Non-Gibrat’s laws in the middle scale

region. In Fig. 1, the probability of the positive growth decreases and the probability of the

negative one increases as the classification of x increases in the middle scale region (Ishikawa

2006a, 2007a). On the other hand in Fig. 2, the probability of the positive and negative growths

decrease simultaneously as the classification of x increases (Aoyama 2004a, 2004b). This size

dependence in the middle scale region is significant, because a large number of firms or persons

are included in this region.

2



In this study, we propose that the form of the growth rate distribution is determined by the

character of economic data that is calculated by any subtraction or not. By employing sales,

profits and income data of firms, we confirm this suggestion.

2 Firm size distributions

In this section, we review the derivation of Pareto’s law and the log-normal distribution

from the detailed balance and (Non-)Gibrat’s law by employing sales, profits and income data

of Japanese firms.

In Japan, firms having an annual income of more than 40 million yen were announced publicly

as “high-income firms” every year, the number of which is about 70 thousand. The exhaustive

database was published by Diamond Inc. Top 500 thousand sales data of Japanese firms are

available on the database “CD Eyes 50” published by TOKYO SHOKO RESEARCH, LTD.

This data is thought to be approximately exhaustive. In the database, positive and negative

profits data are also included. The number of positive data is about 300 thousand and that of

negative data is about 40 thousand. We exclude the negative data, because they are exclusive

as profits data. The positive data in the middle scale region is not thought to be completely

exhaustive. In order to investigate the consistency between laws in the data, however, we employ

the positive profits data. In this study, we investigate these three databases: high-income data

(database I), high-sales data (database II) and positive-profits data (database III).

2.1 Pareto’s law from the detailed balance and Gibrat’s law

Let firm sizes at the two successive points in time be denoted by x1 and x2. The growth rate

R is defined as the ratio R = x2/x1. The detailed balance and the Gibrat’s law (Gibrat 1932)

are represented as follow.

• Detailed balance
The joint pdf P12(x1, x2) is symmetric under the exchange x1 ↔ x2:

P12(x1, x2) = P12(x2, x1) . (3)

• Gibrat’s law
The conditional pdf of the growth rate Q(R|x1) is independent of the initial value x1:

Q(R|x1) = Q(R) , (4)

where the conditional pdf Q(R|x1) is defined as

Q(R|x1) =
P1R(x1, R)

P (x1)
(5)

by using the pdf P (x1) and the joint pdf P1R(x1, R).
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These laws are confirmed in the databases I — III. In order to compare analyses in the next

section, we investigate firms data which exist in successive three years 2003 (x0), 2004 (x1) and

2005 (x2). In the scatter plot in each database, the detailed balance (3) is obviously confirmed.

Figures 3 — 5 show the time-reversal symmetry under the exchange x1 ↔ x2.
1 The Gibrat’s

law (4) is also confirmed in each database. Figures 6 — 8 show that the conditional pdf of the

growth rate is approximately independent of the initial value, if the initial value is larger than

some threshold xth. Here the pdf for r = log10R defined by q(r|x1) is related that for R by

log10 q(r|x1) = log10Q(R|x1) + r + log10(ln 10) . (6)

Note that the large negative growth is not available if there is a lower bound of the data. This

is notably observed in Figs. 3 and 6 for high-income data I. This is also observed in Figs. 4 and

7 for high-sales data II, however the lower bound is probably obscure.2 The detailed balance

and the Gibrat’s law has been confirmed by employing personal income data in Japan (Fujiwara

et al. 2003), and assets and sales data in France and the number of employees in UK (Fujiwara

et al. 2004).

In the literature (Fujiwara et al. 2003, 2004), Pareto’s law is analytically derived from the de-

tailed balance and the Gibrat’s law. By using the relation P12(x1, x2)dx1dx2 = P1R(x1, R)dx1dR

under the exchange of variable from (x1, x2) to (x1, R), these two joint pdfs are related to each

other

P1R(x1, R) = x1P12(x1, x2) . (7)

From this relation, the detailed balance (3) is rewritten in terms of P1R(x1, R) as

P1R(x1, R) = R
−1P1R(x2, R−1) . (8)

Substituting the joint pdf P1R(x1, R) for the conditional pdf Q(R|x1) defined by Eq. (5), the
detailed balance is expressed as

P (x1)

P (x2)
=
1

R

Q(R−1|x2)
Q(R|x1)

. (9)

By the use of the Gibrat’s law (4), the detailed balance is reduced to

P (x1)

P (x2)
= G(R) , (10)

where we define G(R) ≡ Q(R−1)/(RQ(R)). By setting R = 1 after differentiating Eq. (10) with
respect to R, we obtain the following differential equation

G
0
(1)P (x) = xP

0
(x) , (11)

1 At the same time, the symmetry under the exchange x0 ↔ x1 is also confirmed in each database.
2 These analyses with respect to the Gibrat’s law are also valid in the analyses from 2003 to 2004.
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where x denotes x1. The solution is given by

P (x) = Cx−G
0(1) . (12)

This is identical to the Pareto’s law (1) with G0(1) = μ+ 1. Note that the Gibrat’s law is valid

only in the case that the initial value is larger than some threshold xth.
3 This threshold is

coincident with the threshold in the Pareto’s law.

In order to make the Pareto’s law clear, we consider the cumulative number:

NPL(> x) = NPL(> xth)PPL(> x) = NPL(> xth)

Z ∞
x
dtPPL(t)

= NPL(> xth)

µ
x

xth

¶−μ
for x > xth . (13)

The Pareto’s law is confirmed in the database I — III (Figs. 9 — 11). In Fig. 9 for the pdf of

income, the Pareto’s law holds over about 100 million yen (The number of firms in the region

is about 25 thousand). This corresponds that the Gibrat’s law is observed for n = 2, · · · , 5 in
Fig. 6. In Fig. 10 for the pdf of sales, the Pareto’s law holds over about 200 million yen (The

number of firms in the region is about 315 thousand). This corresponds that the Gibrat’s law

is observed for n = 3, · · · , 20 in Fig. 7. Each threshold comes from the lower bound of the data.

In Fig. 11 for the pdf of profits, the Pareto’s law holds over about 100 million yen (The

number of firms in the region is about 15 thousand). This corresponds to that the Gibrat’s law

is observed for n = 16, · · · , 20 in Fig. 8. This threshold does not come from the lower bound

of the data. For n = 1, · · · , 15, as n increases, the growth rate distributions change under some
law. We call this Non-Gibrat’s law.

2.2 Log-normal distribution from the detailed balance and Non-Gibrat’s law

In the literature (Ishikawa 2006a, 2007a), the log-normal distribution is analytically derived

from the detailed balance and Non-Gibrat’s law. In order to identify the Non-Gibrat’s law in

the middle scale region, we approximate log10 q(r|x1) in Fig. 8 by linear functions of r as follows:

log10 q(r|x1) = c− t+(x1) r for r > 0 , (14)

log10 q(r|x1) = c+ t−(x1) r for r < 0 . (15)

These approximations are not appropriate for n = 1, · · · , 5, therefore we consider the case for
n = 6, · · · , 20. Equations (14) and (15) are expressed as so-called exponential functions:

Q(R|x1) = d R−t+(x1)−1 for R > 1 , (16)

Q(R|x1) = d R+t−(x1)−1 for R < 1 , (17)

where d = 10c/ln 10 . Under these approximations, the detailed balance (9) is reduced to

P (x1)

P (x2)
= R+t+(x1)−t−(x2)+1 (18)

3 If the Gibrat’s law holds for all x1 ∈ [0,∞], then P (x1) cannot be a pdf (Fujiwara et al. 2004).
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for R > 1 case. Interestingly, t±(x) in the approximations (14) and (15) are uniquely fixed under

the detailed balance.

By setting R = 1 after differentiating Eq. (18) with respect to R, we obtain the following

differential equation h
1 + t+(x)− t−(x)

i
P (x) + x P

0
(x) = 0 , (19)

where x denotes x1. The same differential equation is obtained for R < 1 case. Similarly, from

the second and third derivatives of Eq. (18), the following differential equations are obtained:

t+
0
(x) + t−

0
(x) = 0 , t+

0
(x) + x t+

00
(x) = 0 . (20)

The solutions t±(x) are uniquely fixed as

t±(x) = t±(xth)± α ln
x

xth
. (21)

With Eq. (19), t±(x) also uniquely fix the pdf P (x) as

P (x) = Cx−[t+(xth)−t−(xth)+1] e
−α ln2 x

xth for x > xmin . (22)

These analytic results are confirmed in the database III. By applying the linear approxima-

tions (14) and (15) to the data in Fig. 8, the relation between x and t±(x) is obtained (Fig. 12).

Figure 12 shows that t±(x) hardly responds to x for n = 15, · · · , 20. This means that Gibrat’s
law is valid in the large scale region. On the other hand, t+(x) linearly increases and t−(x)

linearly decreases symmetrically with log10 x for n = 6, · · · , 10. This is the Non-Gibrat’s law
(21) derived analytically by the linear approximations (14) and (15).

The Non-Gibrat’s law (21) and the resultant pdf (22) are considered as Gibrat’s law and

Pareto’s law, respectively, for the case α = 0. We take Eqs. (21) and (22) not only in the

middle scale region but also in the large scale one. In this sense, we call Eq. (21) extended-

Gibrat’s law. The parameters are estimated as follows: α ∼ 0 for x > xth, α ∼ 0.14 for

xmin < x < xth, t+(xth) ∼ 2, t−(xth) ∼ 1, xth ∼ 102+0.2(16−1) = 105 thousand (= 100 million)

yen and xmin ∼ 102+0.2(6−1) = 103 thousand (= 1 million) yen. Rigorously, a constant parameter
α must not take different values. In the database, however, a large number of firms stay in the

same region in two successive years. This parameterization is approximately valid for describing

the pdf. This is confirmed in Fig. 13. In this figure “14,800” firms (about 8.3% of the data),

the profits of which is about 91.6% of the total profits in the data, are included in the large

scale region (x ≥ xth). In the middle scale region (xmin ≤ x1 < xth), there are “130,018” firms
(about 73.3% of the data), the profits of which is about 8.3% of the total profits in the database.

Similar analysis is confirmed in the data from 2003 (x0) to 2004 (x1).

3 Firm size displacement distributions

In analyses in the previous section, we have investigated growth rate distributions of income,

sales and profits. There is a noteworthy difference between them. As depicted in Fig. 1, the
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growth rate distributions of profits can be approximated by linear functions (14) and (15). The

validity of the approximations is confirmed by the results. In Fig. 6, these approximations are

also appropriate for the growth rate distributions of income. The growth rate distributions of

sales are, however, hardly approximated by the linear functions. Because the distributions with

curvature have wide tails (Fig. 7) as depicted in Fig. 2. This has been observed in other literature

(Okuyama et al. 1999, Matia et al. 2004 for instance). This aspect has been also observed in

other quantities. In the literature (Fujiwara et al. 2003), the growth rate distributions of

personal income in Japan have wide tails. In the literature (Fujiwara et al. 2004), the growth

rate distributions of assets and sales in France and the number of employees in UK have also

wide tails.

Where this difference between forms of the growth rate distributions comes from? Income

and profits of firms are calculated by a subtraction of total expenditure from total sales at

a rough estimate. The values can be both positive and negative. On the other hand, assets

and sales of firms, the number of employees and personal income are not calculated by any

subtraction. The values cannot be negative. From these facts, we make a simple assumption

that the difference between forms of growth rate distributions comes form a subtraction. In order

to verify this assumption, we investigate the displacement of firm size data. If the assumption is

appropriate, the growth rate distributions of firm size displacement data are approximated by

linear functions.

Firstly, we analyze the displacement of sales data, the number of which is largest in three

databases I — III. In the analysis, we take sales data more than 400 million yen, the value of

which is sufficiently larger than the obscure lower bound of the data (Figs. 4 and 7). These sales

data are in the Pareto’s law region (Fig. 10). Le us consider two displacements v12 = x2−x1 and
v01 = x1 − x0. Here, v12 is the displacement from 2004 (x1) to 2005 (x2) and v01 is from 2003

(x0) to 2004 (x1). The displacements v01 and v12 can be both negative and positive. The data

are classified into following four cases: (v01 > 0, v12 > 0), (v01 > 0, v12 < 0), (v01 < 0, v12 > 0)

and (v01 < 0, v12 < 0).

In each case, distributions of sales displacement growth rate R = |v12/v01| are shown in
Fig. 14. In four cases, no wide tail is not observed as expected. The assumption is valid at least

in this database. The distributions are approximated by linear functions as

log10 q(r||v01|) = c− t+(|v01|) r for r > 0 , (23)

log10 q(r||v01|) = c+ t−(|v01|) r for r < 0 . (24)

Here, we take the absolute value of v because it can be negative. Furthermore, the extended-

Gibrat’s law is approximately confirmed in each case (Fig. 15) as follows:

t±(|v01|) = t±(|vth|)± α ln
|v01|
|vth|

. (25)

The distributions of the sales displacements |v01| and |v12| are shown in Fig. 16, in which
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not only Pareto’s law in the large scale region but also the log-normal distribution in the mid-

dle scale region are observed. Figure 16 represents that Pareto indices for |v01| and |v12| are
approximately same value in each figure. This fact and the extended-Gibrat’s law (25) suggest

that there is the detailed balance under exchange |v01|↔ |v12| in each case.4 The scatter plots

of sales displacements are shown in Fig. 17. In each case, the following detailed balance are

approximately observed:

P12(|v01|, |v12|) = P12(|v12|, |v01|) . (26)

In the sales displacement data, the detailed balance (26) and the extended-Gibrat’s law (25)

are observed. The distribution of the sales displacement data follows, therefore, the Pareto’s

law in the large scale region and the log-normal distribution in the middle scale one:

P (|v|) = Cv−[t+(|vth|)−t−(|vth|)+1] e−α ln
2 |v|
|vth| for |v| > |vmin| . (27)

As the same manner in profits data, we confirm this in Fig. 18. The parameters are estimated

as follows: α ∼ 0 for |v| > |vth|, α 6= 0 for |vmin| < |v| < |vth|, t+(|vth|) − t−(|vth|) ∼ 1,

|vth| ∼ 104+0.5(5−1) = 106 thousand (=1 billion) yen and xmin ∼ 104+0.5(1−1) ∼ 104 thousand
(=10 million) yen. In each case, about 5∼10% data are included in the large scale region and

about 80∼85% data exist within the middle scale one.

Similar phenomena are observed in the database I and II. In the analysis of high-income

displacement in the database I, this phenomenon is confirmed for the case that the growth rate

distribution of firm size has no wide tail and the data is completely exhaustive. In the analysis

of positive-profits displacement in the database II, this phenomenon is also confirmed for the

case that the growth rate distribution of firm size has no wide tail and the data cover the middle

scale region.

4 Conclusion and future issues

In this study, we have shown that firm size signed displacement data follow not only power-

law in the large scale region but also the log-normal distribution in the middle scale one. In the

analyses, we employ three databases: high-income data (database I), high-sales data (database

II) and positive-profits data (database III) of Japanese firms. It is particularly worth noting that

the growth rate distributions of the firm size displacement have no wide tail which is observed

in assets, sales of firms, the number of employees and personal income data. The growth rate

distribution with no wide tail can be linearly approximated. This property is mutually observed

in the firm size displacement, income and profits of firms. From these observations, we conclude

that the quantity calculated by any subtraction has no wide tail in the growth rate distribution

and vice versa.

4 If Pareto indices vary, there is thought to be the detailed quasi-balance (Ishikawa 2006b, 2007b).
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In the firm size displacement data, the detailed balance is also confirmed. This leads the

extended-Gibrat’s law. At the same time, Pareto indices are almost same value in the large scale

regions of two successive displacement data. The detailed balance and the extended-Gibrat’s

law lead the Pareto’s law in the large scale region and the log-normal distribution in the middle

scale one. This is consistently confirmed in the empirical data.

From the growth rate distribution of firm size displacement with no wide tail, it is conceivable

to derive followings analytically or numerically (Tomoyose et al. 2008). (a) The growth rate

distribution of x which cannot be negative (assets, sales of firms, the number of employees and

personal income) has wide tails (Fig. 2). (b) The growth rate of distribution x which can be

negative (profits and income of firms) has no wide tail (Fig. 1). In addition, the difference of

Non-Gibrat’s laws might be clear. In the firm size growth rate distributions with no wide tail

(Fig. 1), the probability of the positive growth decreases and the probability of the negative

growth increases symmetrically as the classification of x increases in the middle scale region.

On the other hand in the firm size distributions with wide tails (Fig. 2), the probability of the

positive and negative growth decrease simultaneously as the classification of x increases.

The data analyses in this study are presumably important for a credit risk management and

so forth, and should be considered in a system of taxation.
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Figure 1: The growth rate distribution of prof-

its or income of firms. The horizontal axis is

the logarithm of the growth rate and the ver-

tical axis is the logarithm of its pdf.

Figure 2: The growth rate distribution of as-

sets, sales of firms, the number of employees

or personal income.

Figure 3: The scatter plot of firms in the database I, the income of which in 2003 (x0), 2004 (x1)

and 2005 (x2) exceeded 4× 104 thousand yen: x0 > 4× 104 and x1 > 4× 104 and x2 > 4× 104.
The number of firms is “40,829”.
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Figure 4: The scatter plot of firms in the database II, the sales of which in 2003 (x0), 2004 (x1)

and 2005 (x2) exceeded 0 yen: x0 > 0 and x1 > 0 and x2 > 0. The number of firms is “406,385”.

Figure 5: The scatter plot of firms in the database III, the profits of which in 2003 (x0), 2004

(x1) and 2005 (x2) exceeded 0 yen: x0 > 0 and x1 > 0 and x2 > 0. The number of firms is

“177,492”.
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Figure 6: Conditional pdfs q(r|x1) of the log income growth rate r = log10 x2/x1 from 2004 to

2005. The data points are classified into five bins of the initial income with equal magnitude in

logarithmic scale, x1 ∈ 4 × [104+0.4(n−1), 104+0.4n] (n = 1, 2, · · · , 5) thousand yen. The data for
large negative growth, r ≤ 4+ log10 4− log10 x1, are not available because of the lower bound of
the high-income data, 4× 104 thousand (= 40 million) yen.

Figure 7: Conditional pdfs q(r|x1) of the log sales growth rate r = log10 x2/x1 from 2004 to

2005. The data points are classified into twenty bins of the initial sales with equal magnitude

in logarithmic scale, x1 ∈ [105+0.2(n−1), 105+0.2n] (n = 1, 2, · · · , 20) thousand yen.
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Figure 8: Conditional pdfs q(r|x1) of the log profits growth rate r = log10 x2/x1 from 2004 to

2005. The data points are classified into twenty bins of the initial profits with equal magnitude

in logarithmic scale, x1 ∈ [102+0.2(n−1), 102+0.2n] (n = 1, 2, · · · , 20) thousand yen.

Figure 9: Cumulative number distributions of income in the database I, the income of which in

2003 (x0), 2004 (x1) and 2005 (x2) exceeded 4×104 thousand yen: x0 > 4×104 and x1 > 4×104

and x2 > 4×104. In the large scale region over about 105 thousand (=100 million) yen, Pareto’s
law is observed. Each Pareto index is estimated to be nearly 1.
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Figure 10: Cumulative number distributions of sales in the database II, the sales of which in

2003 (x0), 2004 (x1) and 2005 (x2) exceeded 0 yen: x0 > 0 and x1 > 0 and x2 > 0. In the large

scale region over about 2 × 105 thousand (=200 million) yen, Pareto’s law is observed. Each
Pareto index is estimated to be nearly 1.

Figure 11: Cumulative number distributions of positive-profits in the database III, the profits

of which in 2003 (x0), 2004 (x1) and 2005 (x2) exceeded 0 yen: x0 > 0 and x1 > 0 and x2 > 0.

In the large scale region over about 105 thousand (=100 million) yen, Pareto’s law is observed.

Each Pareto index is estimated to be nearly 1.
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Figure 12: The relation between the lower bound of each bin x1 ∈ [102+0.2(n−1), 102+0.2n] and
t±(x1). From the left, each data point represents n = 1, 2, · · · , 20. The values are measured by
the least square method in the region 0 ≤ |r| ≤ 2 in Fig. 8.

Figure 13: The pdf of positive-profits in the database III.
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Figure 14: Conditional pdfs q(r||v01|) of the log sales displacement growth rate r = log10 |v12/v01|
for cases (v01 > 0, v12 > 0), (v01 > 0, v12 < 0), (v01 < 0, v12 > 0) and (v01 < 0, v12 < 0). The

number of data is “54,181”, “32,959”, “35,218” and “35,272”, respectively. In each figure, data

points are classified into five bins of the initial sales displacement with equal magnitude in

logarithmic scale, |v01| ∈ [104+0.5(n−1), 104+0.5n] (n = 1, 2, · · · , 5) thousand yen. Here, v12 =
x2 − x1 is the displacement from 2004 (x1) to 2005 (x2) and v01 = x1 − x0 is from 2003 (x0)

to 2004 (x1). Each sales data x0, x1 and x2 exceeded 4 × 105 thousand (=400 million) yen:
x0 > 4× 105 and x1 > 4× 105 and x2 > 4× 105.
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Figure 15: The relation between the lower bound of each bin |v01| ∈ [104+0.5(n−1), 104+0.5n] and
t±(|v01|). In each figure, from the left each data point represents n = 1, 2, · · · , 5. The values are
measured by the least square method in the region 0 ≤ |r| ≤ 2 in Fig. 14.
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Figure 16: Cumulative number distributions of sales displacements for cases (v01 > 0, v12 > 0),

(v01 > 0, v12 < 0), (v01 < 0, v12 > 0) and (v01 < 0, v12 < 0).

19



Figure 17: Scatter plots of sales displacements for cases (v01 > 0, v12 > 0), (v01 > 0, v12 < 0),

(v01 < 0, v12 > 0) and (v01 < 0, v12 < 0).
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Figure 18: The pdf of sales displacement data.
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