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Abstract: Blockchain and cryptocurrency are gradually going mainstream with new cryptocurrencies
introduced every single day. The speculative nature of these digital assets expose their prices to large
fluctuations. Trading these crypto-assets necessitate an adequate understanding of this emerging
market as well as adequate tools to model the market risk and efficient allocation of funds. This may
assist crypto investors in taking advantage of the highly volatile aspects of these assets. The portfolio
consider in this study consists of six cryptocurrencies: four traditional cryptocurrencies (BTC, ETH,
BNB and XRP) and two stablecoins (USDT and USDC). We examine the copula particle swarm
optimization (CPSO) portfolio strategy against three other portfolio strategies, namely, the global
minimum variance (GMV), the most diversified portfolio (MDP) and the minimum tail dependent
(MTD). CPSO appears to be a promising strategy during extreme market conditions while GMV seem
favorable during normal market conditions. Most importantly, hedge and safe-havens ability of the
two stablecoins is clearly exhibited with CPSO, while their diversification property is inhibited.

Keywords: cryptocurrencies; copula; particle swarm optimization; differential evolution; CVaR

JEL Classification: C02; G11; G17

1. Introduction

The introduction of Bitcoin in 2009 by an anonymous person or group of people
known as “Satoshi Nakamoto” ignited a technological revolution called blockchain, which
spawned similar tokens, now called “cryptocurrencies”. By design, a blockchain is an
open, distributed ledger able to record transactions efficiently between two parties and in a
permanent and verifiable way. Starting from just one cryptocurrency (Bitcoin) with tokens
valued at less than a cent, at the time of this writing we have around 19,500 cryptocurrencies
with market capitalization reaching USD 1.2 trillion. Recent years have seen an increase
popularity of cryptocurrencies used mostly as financial assets known as cryptoassets. These
new type of assets are known to be highly volatile and these extreme dynamics can results
in dependence shifts and portfolio losses (see, e.g., Bekiros et al. 2015; Brunnermeier 2009;
Florackis et al. 2014; Moshirian 2011). Developing technical tools that can deal with such
underlying properties is contemporary among practitioners and academic community.

On the one hand, we have models developed from technical trading rules and on
the other hand those built from econometrics models. A review has been provided in
(Corbet et al. 2009b) indicating the presence of a gap in the trading dynamics of these new
assets, especially in the performance of trading rules. Using high-frequency trading data,
moving average and the trading range break are tested in (Corbet et al. 2009b) to check if
they hold for the Bitcoin market. The result reveals that the variable-length moving average
has predictive power in cryptocurrency markets and is the most beneficial trading strategy
when trading Bitcoin. While testing trend-following indicators in (Gerritsen et al. 2009),
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the results reveals that trading range breakout displays significant forecasting power for
Bitcoin prices. This is also supported in (Gradojevic et al. 2021) where a combination of
technical analysis with non-linear forecasting models appears to be statistically signifi-
cantly dominant relative to the random walk model on a daily horizon. Furthermore, a
classification tree-based model for return prediction is constructed in (Huang et al. 2019)
and displays strong out-of-sample predictive power for narrow ranges of daily returns
on bitcoin which is in line with the findings in (Nair 2021) illustrating the use of technical
trading indicators as control variables in the extreme value regressions significantly im-
proves the predictive power of models for cryptocurrencies. However, quite opposite to the
previous findings, no predictability for Bitcoin was found in the out-of-sample period while
employing 15,000 technical trading rules from the main five classes of technical trading
rules, see (Hudson and Urquhart 2021).

In this study, we adopt a different approach to trading. Instead of focusing on trading
signals through technical trading rules which looks at each asset individually, we target the
behaviour of of assets collectively in a portfolio. To this end, we look at how capital should
be allocated to minimize risk while maximizing the portfolio return.

Among other models are the class of multivariate GARCH models which rely on
parametric multivariate distribution and are likely to be erroneously specified when the
distribution of all the variables are not the same, as in the case of cryptoassets. This can
be addressed through copula models famous for their ability to describe the dependence
structure (inter-correlation) between random variables. Alongside the multivariate elliptical
copula family (Gaussian copula and t-copula), Vine copula have been introduced with
the ability to model the dependence structure between random variables using a cascade
of bivariate copulas, including asymmetric Archimedean copulas, see (Aas et al. 2009;
Allen et al. 2013; Bedford and Cooke 2001, 2002). The introduction of Vine copula models
is very interesting in the sense that suitable bivariate copulas matching the stylized facts of
the concerned random variables can be used to model their dependence structure. Another
important aspect of these Vine models is their ability to auto-select these bivariate copulas
when modelling the dependence structure. This way, the model learn from the data to
adequately assign bivariate copula to each pair of random variable, so that appropriate
tail dependence coefficients can be computed. We distinguish the regular vine (R-vine)
copula and its two subclasses: the canonical vine (C-vine) and the drawable vine (D-vine).
The statistical inference techniques for these two subclasses can be found in (Aas et al.
2009). In this paper, we will use C-vine copula specification for its flexibility and its ability
to model the dependence around a selected central node (see, e.g., Embrechts et al. 2001;
Fang and Fang 2002).

The problem of portfolio optimization consists of finding the portfolio weights meeting
the investor’s objectives and constraints. In 1952, (Markowitz 1952) developed a parametric
optimization model providing a fundamental basis for portfolio selection termed as stan-
dard portfolio optimization. The constraints taken into account here are full investment
and no-short selling. In practice, portfolio optimization has realistic constraints such as
diversification constraint, transaction cost, portfolio size or any other additional constraints
to suit the needs of the investors. Adding these constraints makes the portfolio optimization
problem too complex to be solved by standard optimization methods, and therefore require
alternative techniques such as heuristic algorithms.

Many meta-heuristic techniques (Chang et al. 2000) such as genetic algorithms, sim-
ulated annealing and tabu search have been used in portfolio optimization to find the
cardinality constrained efficient frontier. Other recent more efficient ones are differential
evolution (DE) and particle swarm optimization (PSO). Although PSO belongs to swarm
intelligence, both DE and PSO can be classified into stochastic optimization algorithms.
DE is a population-based search strategy developed by Storn and Price (Price et al. 2006;
Storn and Price 1997) and found to be more efficient than genetic algorithms and simulated
annealing. It has shown remarkable performance on continuous numerical problems and
optimizing portfolios under non-convex settings, see (Ardia et al. 2011; Krink and Paterlini
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2009ab; Maringer and Oyewumi 2007; Yollin 2009). Similar to DE, PSO is a population
based stochastic optimization technique developed by Kennedy and Eberhart in 1995
(Kennedy and Eberhart 1995). It has become a popular optimization method as it often
succeeds in finding the best optimum by global search in contrast with most common
optimization algorithms. Iwan et al. (2012) realised that generally, in terms of repeatability
(robustness) and the quality of the obtained solutions, DE outperforms PSO. As the cryp-
tocurrency market is still revealing its intrinsic properties in terms of price discovery, this
study aims at first contrasting the performance of PSO against DE in combination with a
copula model.

Given the ability of t-copula to successfully model the tails/extreme events
(Mba et al. 2018) introduced the Copula differential evolution (CDE)-based approac,h
which outperforms the standard DE and exhibits risk control ability. However, t-copula
is symmetric, meaning that it models the lower tail and the upper exactly the same way.
Although the tail of financial returns data are heavy, the heaviness varies from one dataset
to another. So, imposing one type of copula to model the dependence structure between
all assets pairs as in (Mba et al. 2018) may result in inaccurate risk measures. It is on this
ground that this study instead employs the Vine copula, which has the ability to use a
cascade of bivariate copulas to model the dependence structure between pairs of random
variables in a multivariate settings. The Vine copula model is flexible enough to allow to
user to determine list of copulas to be used. This has a great advantage over multivariate
copula such as t copula or Gaussian copula. Inspired by this result, we aim in this paper
to introduce copula particle swarm optimization (CPSO) and contrast its performance to
that of copula differential evolution (CDE) in a portfolio consisting of six top cryptocur-
rencies by market capitalization, namely Bitcoin (BTC), Ethereum (ETH), USDT (Tether),
USDC (USD coin), Binance coin (BNB) and Ripple (XRP). The rest of the paper is organised
as follows: Section 2 presents the mathematical formalism of optimization methods and
portfolio strategies used in this study. Section 3 discusses the empirical findings and the
last Section 4, concludes the work.

2. Mathematical Formalism for Optimization Methods and Portfolio Strategies

The basic Mean-Variance optimization by (Markowitz 1952) can be formulated as in
the Equation (1) below.

min
ω

n

∑
i=1

n

∑
k=1

σikωiωk

subject to
n

∑
i=1

ωi = 1

n

∑
i=1

E[ri]ωi = µp

ωi ≥ 0, i = 1, 2, · · · , n.

(1)

where ωi represents the portfolio weights, ri is the return of asset i and E[ri] its expectation,
σik = cov(ri, rk) is the covariance between ri and rk, µp is the portfolio expected return.

Let ! ∈ Rn be the portfolio vector representing the proportion of wealth invested in
each of the n financial assets. Let r = (r1, · · · , rn) be the vector of returns. Let α ∈ (0, 1)
and f (!, r) be, respectively, a confidence level and a loss function for the portfolio ! and
the return vector r ∈ Rn. Then, the value-at-risk (VaR) function, ξ(!, α) is the smallest
number satisfying ψ(!, ξ(!, α)) = α, where ψ(!, ξ) = Pr[ f (!, r) ≤ ξ] is the probability that
the loss f (!, r) does not exceed the threshold value ξ. Given that VaR does not satisfy
the sub-additivity axiom that should be expected from any sensible risk measure, the
Conditional VaR (CVaR), was introduced by (Rock and Uryasev 2000) as an alternative
measure of risk. It is more appropriate to the loss function of the tail distribution and
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suitable for timeSeries with fat tails than most of the cryptocurrencies. Equation (2) gives
the expression of the CVaR.

ψα(!) = (1− α)−1
∫

f (!,r)>ξ(!,α)
f (!, r)p(r) dr (2)

To avoid complications resulting from the implicitly defined function ξ(!, α),
(Rock and Uryasev 2000) provided an alternative function given by Equation (3).

Fα(!, ξ) = ξ + (1− α)−1
∫

f (!,r)>ξ
[ f (!, r)− ξ]p(r) dr (3)

for which they show that the minimum of CVaR can be found by minimizing Fα(!, ξ) with
respect to (!, ξ).

Given returns data rj for j = 1, · · · , n, the function Fα(!, ξ) defined in Equation (3) can
be approximated by Equation (4)

F̃α(!, ξ) = ξ + [(1− α)n]−1
n

∑
j=1

max{ f j(!)− ξ, 0} (4)

where f j(!) = f (!, rj).
In this study, we intend to solve the CVaR-optimization problem defined in Equation (5)

min
ω

ξ + [(1− α)n]−1
n

∑
i=1

max{ fi(!)− ξ, 0}

subject to ∑n
i=1 ωi = 1

∑n
i=1 E[ri]ωi = µp

ωi ≥ 0, i = 1, · · · , n.

(5)

We intend to find the portfolio that minimizes CVaR under 95% confidence level
subject to the following weight constraints: weights must sum to 1 (∑n

i ωi = 1) and no
short-selling is allowed (ωi ≥ 0).

2.1. GARCH Specifications

Let rt = (r1,t, r2,t, · · · , rd,t) be a d-dimensional vector of random variables. The stan-
dard GARCH is defined by Equation (6):

ri,t = µi,t + εi,t

εi,t = σi,tνi,t (6)

σi,t = ωi,t + αi,tε
2
i,t + βi,tσi,t−1

where σi,t is the conditional variance of the returns series ri,t and νi,t ∼ N(0, 1) the stan-
dardized innovations/residuals which can be assumed to follow a normal, student t,
skewed-student t or any other distribution. Giving the lack of standard GARCH model
to capture the leverage effect, we opted for an asymmetric GARCH, namely GJR-GARCH
introduced in (Glosten et al. 1993) to simulate the dynamics of the conditional variance
given by Equation (7):

σ2
i,t = ωi +

p

∑
j=1

βi,jσ
2
i,t−j +

q

∑
k=1

(
αi,k + γi,kIi,t−k

)
εi,t−k (7)
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where Ii,t−k =

{
1, if εi,t−k < 0;
0, if εi,t−k ≥ 0

. The distribution in this GARCH model is chosen as

skewed-Student t, which is a generalization of the student-t distribution with an additional
parameter to control the skewness. Its density is given by:

d(x; η, λ) =


bc
(

1 +
1

η − 2

(
bx + a
1− λ

)2)− η+1
2

if x > − a
b

bc
(

1 +
1

η − 2

(
bx + a
1 + λ

)2)− η+1
2

if x ≤ − a
b

where a = 4λc
η − 2
η − 1

, b = 1 + 3λ2 − a2, c =
Γ
( η+1

2
)√

π(η − 2)Γ
( η

2
) and Γ is the gamma function.

What is interesting about this density function is that it encompasses a wide range of
conventional densities. For example, when λ = 0, it reduces to student-t distribution; if
λ = 0 and η → ∞, it reduces to the normal distribution. This justifies our choice for skewed
Student-t distribution as margins in the copula model used in this study.

2.2. Copula Particle Swarm Optimization (CPSO)
2.2.1. Particle Swarm Optimization

The behavior of one organism in a swarm is often insignificant but their collective
and social behavior is of great importance. In the PSO method, a swarm of particles
flies through an N-dimensional search space where the position of each particle repre-
sents a potential solution to the optimization problem. Each particle p in the swarm
S = {x1, · · · , xp, · · · , xn} is characterised by its jth dimensional following components:
position xp,j(t), velocity vp,j(t), personal best (pbest) position yp,j(t) and the global best
(gbest) position of the swarm ỹj(t).

Let f be the objective function to be minimized in a d dimensional space. Then, the
personal best position of particle p can be obtained iteratively using Equation (8):

yp,j(t + 1) = yp,j(t + 1) if f (xp(t + 1)) > f (yp(t))

xp,j(t), else (8)

The global best gbest is then given by Equation (9)

ỹ(t) = ygbest(t) = min(y1(t), · · · , yn(t)) (9)

where yi(t) = (yi,1(t), · · · , yi,d(t)).
For each iteration, updating of positions are performed for each particle p ∈ [1, n] and

along each dimensional component j ∈ [1, d] as described by Equation (10):

vp,j(t + 1) = ω(t)vp,j(t) + a1r1,j(t)(yp,j(t)− xp,j(t)) + a2r2,j(t)(ỹj(t)− xp,j(t)) (10)

xp,j(t) = xp,j(t) + vp,j(t + 1))

where ω is the inertia weight, a1 and a2 are the acceleration constants, usually set to 1.49
or 2. r1,j and r2,j are random variables with a uniform distribution. In the first equation
of Equation (10), the first term in the summation is the memory term representing the
contribution of previous velocity, the second term is the cognitive component, which
represents the particle’s own experience, and the third term is the social component,
guiding the particle by the gbest of the particle towards the global best of the swarm so
far obtained.
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2.2.2. Vine-Copula

This subsection describes the characteristics necessary for a function to be a copula, as
well as some of their properties.

Let X = (X1, . . . , Xn) be a vector of n random variables with the following marginal
distributions F1, . . . , Fn, such as Fi(xi) = P(Xi ≤ xi) = ui (the probability that the measure
of Xi be less than xi). Then, the joint distribution function is given by Equation (11)

F(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn). (11)

Definition 1. An n dimensional (n ≥ 2) copula is a function C : In −→ I satisfying the following
properties:

1. C is non-decreasing that is C(0, . . . , xi, . . . , 0) = 0, for all xi ∈ I = [0, 1]
2. C possess one dimensional uniform margins on Ci, that is:

Ci(xi) = C(1, . . . , 1, xi, 1, . . . , 1) = xi for all xi ∈ I. Ci is an invariant non-decreasing
transformation of the marginal.

Copula was introduced in (Sklar 1959) through the following theorem.

Theorem 1. Assume F = (F1, . . . , Fn) is an n dimensional joint distribution function with
marginal distribution function Fi (i = 1, . . . , n). Then there exists a copula C such that for all
xxx = (x1, . . . , xn) ∈ In

F(xxx) = C(F1(x1), . . . , Fn(xn))

If F1, . . . , Fn are continue,then C is unique. Otherwise C is non-unique on In

In addition, if F1, . . . , Fn are distribution function on I and if C is a copula, then the function
F(xxx) = C(F1(x1), . . . , Fn(xn)) is a joint distribution function on In.

The canonical representation of the copula density function is given by Equation (12)

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1, . . . , ∂un
(12)

To obtain the density of the n-dimension distribution F, Equation (13) is used

f (x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))
n

∏
i=1

fi(xi) (13)

where fi is the density of the marginal distribution Fi.
Copula functions constitute an advantageous statistical tool for constructing and

simulating multivariate distributions and therefore modelling the dependence structure.
Multivariate copulas are restricted to Elliptical copula family (Gaussian and t copulas).
Giving the limitations of this copula family in accounting for stylized of financial returns,
Vine copula models which use bivariate conditional copulas as building blocks have
been introduced. Vine models are flexible enough to capture the underlying dependence
and tail dependence structure. In dimension N, a multivariate density is constructed by
N(N − 1)/2 bivariate (conditional) copulas (see, Bedford and Cooke 2001) as building
blocks, thus the name Pair-Copula Construction (PCC) given to this construction process.
For example, let X1, X2 and X3 be three random variables with distribution functions F1, F2
and F3 respectively. The joint density can be decomposed as

f (x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f1(x1)

where
f2|1(x2|x1) = c12(F1(x1), F2(x2)) f2(x2)

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2)) f3|2(x3|x2)
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f3|2(x3|x2) = c23(F2(x2), F3(x3)) f3(x3)

with

F(x|v) =
∂Cx,vj ;v−j{F(x|v−j), F(vj|v−j)}

∂F(vj|v−j)

for every vj of the vector v with v−j = v {vj} in the general case.
As this construction is not unique, all the possible constructions can be illustrated

by a set of nested trees Ti = (Vi, Ei) where Vi are the nodes and Ei the edges. This set of
trees is called a vine. The advantage of Vine copula is its ability and flexibility to model
the dependence structure between time series using a cascade of bivariate copulas, see
(Aas et al. 2009; Allen et al. 2013; Bedford and Cooke 2001, 2002). We distinguish the
Regular vine (R-vine) copula and its two subclasses: the Canonical vine (C-vine) and the
Drawable vine (D-vine). The statistical inference techniques for these two subclasses can be
found in (Aas et al. 2009). In this paper, we will use C-vine copula specification.

2.2.3. Implementation

The Copula Particle Swarm Optimisation (CPSO) method is implemented as follows:

(1) Obtain the standardized residuals di from GJR-GARCH.
(2) Simulate from C-vine copula a sample data si from the standardized residuals di with

skew-student’s t (sst) marginals.
(3) Apply the inverse transformation of sst to si to obtain new data ci.
(4) Solve the optimization problem (14):

(i) Minimum CVaR portfolio using PSO and DE.

arg min
ω

ξ + [(1− α)n]−1
n

∑
i=1

max{ fi(!)− ξ, 0}

subject to ∑n
i=1 ωi = 1

∑n
i=1 E[ci]ωi ≥ 0

ωi ≥ 0, i = 1, · · · , n.

(14)

where α = 0.1 and fi(!) = f (!, ci).
(ii) Global minimum variance portfolio (PGMV).

Let ! = (ω1, · · · , ωN) be the weights vector. Let ¯ = (µ1, · · · , µN) be the
return vector and Σ the positive semi-definite variance–covariance matrix
of the portfolio’s assets. The portfolio return is given by rp = !Tµ and the
portfolio variance σ2

W = !TΣ!. For the global minimum variance portfolio
for a given portfolio return, rp, the optimization problem can be stated as:

arg min
ω

σ2
W = !TΣ!,

!Tµ = rp,
!Ti = 1

where i is a column vector of ones.
(iii) Most diversified portfolio (MDP).

The diversification ratio (DR) is given by Equation (15)

DR!∈Ω =
1√

ρ + CR− ρCR
(15)

where ρ and CR denote the volatility-weighted average correlation and the
volatility-weighted concentration ratio, respectively. The diversification ratio
measure the degree of diversification of a portfolio. The higher the DR, the
more the portfolio is diversified. Portfolio solutions that are characterized by
either a highly concentrated allocation or highly correlated asset returns would
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qualify as being poorly diversified. A most diversified portfolio (MDP) can be
obtained through maximization of DR:

PMDP = arg max
ω∈Ω

DR (16)

(iv) Minimum tail-dependent (MTD) portfolio.
An optimal MDP portfolio is the one which yields the greatest diversification,
by definition. However, this approach is based on the symmetric correlations
between the assets. Akin to the optimization of a global minimum-variance
portfolio, the minimum tail dependent portfolio is determined by replacing the
variance–covariance matrix with the matrix of the lower tail dependence coef-
ficients as returned by TDC. If the limit exists, then the lower tail dependence
coefficient (TDC) is given by Equation (17)

λL = lim
u→0

C(u, u)
u

(17)

where C is the copula of the marginal distributions.

2.3. Copula Differential Evolution (CDE)

DE uses biology-inspired operations of initialization , mutation, recombination, and
selection on a population to minimize an objective function through successive genera-
tions (see Holland 1975). Similar to other evolutionary algorithms, to solve optimization
problems, DE uses alteration and selection operators to evolve a population of candidate
solutions.

Let N denote the population size. To create the initial generation, the optimal guess
for N is made, either by using values input by the user or random values selected between
lower and upper bounds (choosing by the user).

Consider the optimization problem (5) and let ξ + [(1 − α)n]−1 ∑n
i=1 max{ fi(!) −

ξ, 0} = h(!) where ! = {ω1, ω2, · · · , ωn}.
Given the population

ω
g
ki = {ω

g
k1, ω

g
k2, · · · , ω

g
kn

where g is the generation and k = 1, 2, · · · , N. The process is achieved through the
following stages:

(1) Initial population:
The initial population is randomly generated as

ωki = ωL
ki + rand()(ωU

ki −ωL
ki)

where ωL
i and ωU

i represents the lower and upper bounds of ωi, respectively, and
i = 1, 2, · · · , n.

(2) Mutation:
The differential mutation is accomplished as follows: A random selection of three
members of the population !g

r1k, !g
r2k and !g

r3k to create an initial mutant vector parameter

ug+1
k , called donor vector, which is generated as

ug+1
k = !g

r1k + F(!g
r2k − !g

r3k)

where F is the scale vector and k = 1, 2, · · · , N.
(3) Recombination or Cross-Over:

Let !g
ki denotes the target vector. From the target vector and the donor vector, a trial
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vector vg+1
ki is selected as follows

vg+1
ki =

{
ug+1

ki , if rand() ≤ Cp or i = Irand i = 1, 2, · · · , n;
!g
ki, if rand() > Cp and i 6= Irand k = 1, 2, · · · , N

where Irand is a random integer in [1, n] and Cp the recombination probability.
(4) Selection:

At this stage, the target vector is compared with the trial vector and the one with the
smallest function value is the candidate for the next generation

!g+1
ki =

{
vg+1

ki , if h(vg+1
ki ) < h(!g

ki);
!g
ki, Otherwise.

where k = 1, 2, · · · , N.

3. Results and Analysis
3.1. Data and Preliminary Analysis

The data used is composed of the daily returns (100 times the difference in logarithms
of Crypt/USD exchange rates) of the top six cryptocurrencies by market capitalization. The
data was downloaded from Yahoo Finance (https://finance.yahoo.com/cryptocurrencies/,
accessed on the 17 May 2022). It spans the period 8 October 2018 to 15 May 2022 and
consists of the following cryptoassets: Bitcoin (BTC), Ethereum (ETH), USDT (Tether),
USDC (USD coin), Binance coin (BNB) and Ripple (XRP). Table 1 presents a descriptive
statistics of the data used. These assets are leptokurtic with Kurtosis ranging between 13.8
to 50.3, suggesting that large fluctuations are more likely on the fat tails. Except for USDT
and USDC, the remaining four assets returns are left-skewed. We can also see that the
values for JB test are for from zero for all the digital assets. This signals that the data do
not have a normal distribution. To account for all these characteristics, we will use the
Skew-student’s t distribution as distribution in the GARCH model, as well as marginal
distributions in the CVine copula model.

Table 1. Descriptive statistics.

Cryptocurrencies

BTC ETH USDT USDC BNB XRP

Mean 0.118 0.170 0.0002 −0.0002 0.258 −0.007
min −46.500 −55.100 −5.260 −3.720 −54.300 −55.000
max 17.200 23.100 5.340 4.240 52.900 44.500
sd 3.900 5.010 0.403 0.401 5.570 5.910
Kurtosis 17.200 13.800 50.300 25.600 17.100 15.400
Skewness −1.240 −1.280 0.302 0.492 −0.233 −0.120
JB 16,621.000 10,803.000 139,337.000 35,979.000 16,086.000 13,128.000

Notes: “Mean”, “min”, “max” stand for the mean, minimum and maximum of the returns series respectively.
“sd” stands for standard deviation. “JB” stands for the Jarque–Bera test for normality.

Figure 1 below displays the historical returns of the six digital assets. It is evident that
volatility is not constant over time and periods of high volatility are followed by periods of
low volatility. This justifies our choice of the GARCH-type model, famous for in modelling
such stylized facts.

https://finance.yahoo.com/cryptocurrencies/
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Table 1: Descriptive statistics

Cryptocurrencies
BTC ETH USDT USDC BNB XRP

Mean 0.118 0.170 0.0002 −0.0002 0.258 −0.007
min −46.500 −55.100 −5.260 −3.720 −54.300 −55.000
max 17.200 23.100 5.340 4.240 52.900 44.500
sd 3.900 5.010 0.403 0.401 5.570 5.910
Kurtosis 17.200 13.800 50.300 25.600 17.100 15.400
Skewness −1.240 −1.280 0.302 0.492 −0.233 −0.120
JB 16,621.000 10,803.000 139,337.000 35,979.000 16,086.000 13,128.000

Notes: ”Mean”, ”min”, ”max” stand for the mean, minimum and maximum of the returns series
respectively. ”sd” stands for standard deviation. ”JB” stands for the Jarque–Bera test for normal-
ity.

Figure 1: Historical returns

Sep 27 2019 Sep 01 2020 Sep 01 2021

BTC 2019−09−27 / 2022−04−29

−40

−30

−20

−10

  0

 10

−40

−30

−20

−10

  0

 10

abc

Sep 27 2019 Sep 01 2020 Sep 01 2021

ETH 2019−09−27 / 2022−04−29

−40

−20

  0

 20

−40

−20

  0

 20abc

Sep 27 2019 Sep 01 2020 Sep 01 2021

USDT 2019−09−27 / 2022−04−29

−4

−2

 0

 2

 4

−4

−2

 0

 2

 4

abc

Sep 27 2019 Sep 01 2020 Sep 01 2021

USDC 2019−09−27 / 2022−04−29

−2

 0

 2

 4

−2

 0

 2

 4abc

Sep 27 2019 Sep 01 2020 Sep 01 2021

BNB 2019−09−27 / 2022−04−29

−40

−20

  0

 20

 40

−40

−20

  0

 20

 40

abc

Sep 27 2019 Sep 01 2020 Sep 01 2021

XRP 2019−09−27 / 2022−04−29

−40

−20

  0

 20

 40

−40

−20

  0

 20

 40abc

Notes: This figure displays the returns of the six cryptocurrencies from 27/09/2019 to 29/04/2022. It depicts
the fact that the volatility is not constant over time as well as the volatility clustering.

likely on the fat tails. In terms of riskiness, Stellar appears to be the most riskier and
Bitcoin the least risky cryptoassets among the six (See Figure ??). For each of the six
cryptoassets, risk and return seem to be proportional as they all feature on both side of
the diagonal line (See Figure ??): on side, Bitcoin, Ethereum and Monero; on the other
side: Ripple, LiteCoin and Stellar. Moreover, they all display a moderate pairwise positive
correlation. (see Table ??).
To account for the observed characteristics of the returns series in modelling their “true”
dependence, we consider a multivariate t-distribution.

Table 2 displays the Kendall Tau coefficients illustrating the pairwise dependance among
the 6 assets. From this table, we distinguish two groups of assets: the first group consisting
of BTC, ETH, BNB and XRP which are highly positively correlated, the second group

12

Figure 1. Historical returns. Notes: This figure displays the returns of the six cryptocurrencies from
27 September 2019 to 29 April 2022. It depicts the fact that the volatility is not constant over time as
well as the volatility clustering. The vertical red line represents an unusual event which is is the time
which Bitcoin touched an all-time high of around $65,000.

Table 2 displays the Kendall Tau coefficients illustrating the pairwise dependance
among the six assets. From this table, we distinguish two groups of assets: the first group
consisting of BTC, ETH, BNB, and XRP, which are highly positively correlated, the second
group consisting of the stablecoins USDT and USDC. Assets in the first group are weakly
(positively or negatively) correlated to assets in the second group. To model the dependence
structure between these assets, we will employ the C-Vine copula.

Table 2. Kendall Tau correlation coefficients.

BTC ETH USDT USDC BNB XRP

BTC 1 0.633 0.057 −0.027 0.500 0.523
ETH 0.633 1 0.050 −0.026 0.538 0.582

USDT 0.057 0.050 1 0.377 0.024 0.048
USDC −0.027 −0.026 0.377 1 −0.028 −0.016
BNB 0.500 0.538 0.024 −0.028 1 0.471
XRP 0.523 0.582 0.048 −0.016 0.471 1

Notes: This table displays the Kendall tau correlation between all the pairs of assets in the portfolio. Different from
Pearson and Spearman which are nearly equivalent in the way they correlate normally distributed data, Kendall
tau tests the strength of dependence. Kendall tau coefficient is also known as rank correlation coefficient. The
rank correlation examines the correlation between the rankings of X and Y. They are unaffected by any increasing
transformation of X and Y.

As illustrated in Table 3, in modelling the dependence structure with C-vine, the
following bivariate copulas were auto-selected by the model: the Gumbel 90 (G90), the
Survival Gumbel (SG), the t-copula (t), and the SBB6 copulas. The lower tail dependence
coefficients confirm the high level of correlation between assets in the first group as shown
in Table 2. The lower tail dependence coefficient measure the level of dependence during
extreme events. So, if ETH is in distress, BTC, BNB and XRP are likely to follow its trend by
a probability of at least 67%. This suggests also exploring the minimum tail dependence
portfolio strategy. Luckily the assets in the second group (USDT and USDC) are likely not
to follow the same trend, making this portfolio quite diversified in some sense. We will
confirm this later by computing the diversification ratio as well as the concentration ratio of
this portfolio strategy based on the copula PSO. This portfolio approach will be compared
with the classical Global mean-variance portfolio GMVP, the Most diversified portfolio
(MDP) and the Minimum tail dependence portfolio (MTDP).
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Table 3. Bivariate copulas used in the C-vine and the lower tail dependence coefficients.

Pair of Assets Copula Tau Ltd

ETH, USDT t 0.05 0.02
ETH, BNB SBB6 0.55 0.67
ETH, BTC SG 0.63 0.71
ETH, USDC G90 −0.05
ETH, XRP SG 0.59 0.67

Notes: This table displays from the first column to the fourth: the pairs of assets follow by the corresponding
copula in the second column, the Kendall tau coefficients between the pairs in the third column, and the lower tail
dependence coefficients in the last column. “t” stands for t copula; “SBB6” stands for Survival Joe-Gumbel copula;
“SG” stands for Survival Gumbel copula; “G90” stands for Rotated Gumbel 90 degrees.

3.2. Portfolio Optimization

The following R packages are used for solving our optimization problem: DEoptim
developed in (Ardia et al. 2011) and pso developed by Claus Bendtsen (pso: particle swarm
optimization, R package version 1 (3), 2012). Particle swarm optimization (PSO) is an
optimization algorithm popular for its simplicity and efficiency. Differential evolution (DE)
is another popular algorithm comes up as a robust and efficient Evolutionary Algorithm.
Although PSO belongs to swarm intelligence, both DE and PSO can be classified into
stochastic optimization algorithms.

In a PSO process, a swarm of particles navigate through the feasible space and each
of these particles represent a potential solution to the optimization problem. Initially, the
particles are randomly distributed over the feasible space with a random velocity. The
goal here is to converge to the global optimum of the objective function. In this setting, to
achieve the global optimum, each particle keeps track of its position in the feasible space
and its best position/solution (called pbest in Kennedy and Eberhart 1995) achieved so
far. The global best position/solution of the swarm so far achieved is also tracked with
the particle index of the swarm (the so-called gbest in Kennedy and Eberhart 1995). The
journey towards the global optimum consists of discrete time iterations through which the
velocity of each particle in the next iteration is computed by:

(i) The best position of the swarm (position of the particle gbest as the social component);
(ii) The best personal position of the particle (pbest as the cognitive component);
(iii) Its current velocity (the memory term).

One drawback of PSO is that particles are flown through a single point which is
(randomly) determined by the social and cognitive components and this point is not even
guaranteed to be a local optimum (Kiranyaz et al. 2014). As display in Table 4, while
the weights allocation for both algorithms are different, they allocate the highest weights
to USDC and the least weight to BNB. Though they both achieve positive return, CDE
outperforms the CPSO as can be seen from the Sharpe ratio in Table 4.

Table 4. Portfolio weights for CPSO and CDE optimization algorithms.

BTC ETH USDT USDC BNB XRP Sharpe Ratio

CPSO 14.09 19.39 19.60 27.93 4.28 14.71 0.002
CDE 27.00 10.00 15.00 34.00 2.00 12.00 0.005

Notes: This table displays the portfolio weights from the copula Particle Swarm Optimization (CPSO) and the
copula Differential Evolution (CDE) algorithms respectively. The last column displays the Sharpe ratio from the
two optimization algorithms. The weights are given in percentages.

DE has shown efficient convergence to one (presumably global) optimum and has
in general outperformed PSO (see Iwan et al. 2012). This out-performance still persist
even when combined with copula. In the following subsection, we compare the copula
PSO portfolio strategy with three other portfolio strategies, namely the global minimum
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variance (GMV) portfolio, the most diversified portfolio (MDP) and the minimum tail
dependent (MTD) portfolio.

3.3. Portfolio Strategies Comparison

The aim in this subsection is to assess the performance of the CPSO with that of GMV,
MDP and MTD portfolios in terms of diversification ratio, marginal risk contribution, and
portfolio risks.

As displayed in Table 5, for the four portfolios, the weights are concentrated between
USDT and USDC, both belonging to the second group of assets and weakly correlated to
the remaining assets, while GMV, MDP and MTD assign almost the weights to USDT and
USDC, CPSO assigns almost exactly half of these weights to them, respectively. Moreover,
CPSO appears to be less concentrated as compare to the other three strategies. We will
confirm this shortly with the computation of the concentration ratio (CR).

Table 5. Weights allocation for GMV, MDP, MTD and CPSO portfolios.

GMV MDP MTD CPSO

BTC 0.49 2.00 1.15 14.10
ETH 0.58 1.21 1.42 19.40

USDT 47.90 41.20 42.60 19.60
USDC 50.80 51.30 51.00 27.90
BNB 0.31 2.27 1.25 4.28
XRP 0.0002 2.01 2.53 14.70

Notes: This table displays the portfolio weights allocation from the copula particle swarm optimization (CPSO),
the global minimum variance (GMV) portfolio, the maximum diversification portfolio (MDP), the minimum tail
dependent (MTD) portfolio. The weights are given in percentages.

Table 6 presents the contribution to the portfolio risk of each asset in each portfolio.
While the two stablecoins USDT and USDC share the highest contribution to risk in the
first three portfolios (GMV, MDP and MTD), their risk contribution in the CPSO is the
lowest, almost negligeable, with USDC showing a gaining sign. GMV and CPSO appear
to be completely in the opposite end. The safe-haven characteristics of both stablecoins
is clearly observed in the CPSO. What does this mean for an investor? This suggests that
the benefits of the stablecoins as diversifier, hedge and safe havens is conditional to the
portfolio strategy. Hence, investors should look for portfolio strategy that make the most of
these properties such as CPSO strategy.

Table 6. Marginal risk contribution for the 4 portfolio strategies.

GMV MDP MTD CPSO

BTC 0.49 10.30 5.47 20.80
ETH 0.58 8.04 8.94 39.20

USDT 47.90 21.90 25.90 0.06
USDC 50.80 27.20 30.90 −0.17
BNB 0.31 16.70 8.11 8.02
XRP 0.0003 15.70 20.60 32.10

Notes: This table displays the marginal risk contribution per asset and per portfolio. The portfolio involved are
the copula particle swarm optimization (CPSO) portfolio, the global minimum variance (GMV) portfolio, the
maximum diversification portfolio (MDP), the minimum tail-dependent (MTD) portfolio. These marginal risk
contribution are given in percentages.

Looking at the portfolio risks (SD and ES95), from Table 7 it appears that CPSO is the
riskiest portfolio, while GMV is the lowest-risk portfolio. This is not surprising, as the highly
volatile and correlated BTC, ETH, and XRP are the highest contributors to risk in CPSO
portfolio. Moreover CPSO appears to be the least diversified, and is more concentrated
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than the GMV. MDP and MTD stand in the middle in terms of risk, diversification, and
concentration ratios. So, CPSO could be used during extreme market conditions, while
GMV could be used during normal market conditions.

Table 7. Standard deviation (SD), expected shortfall (ES95) at 95% level, diversification ratio (DR),
and concentration ratio (CR) for each portfolio strategy.

GMV MDP MTD CPSO

SD 0.35 0.45 0.42 2.32
ES95 0.27 0.72 0.63 10.20
DR 1.33 1.69 1.68 1.22
CR 0.38 0.19 0.21 0.26

Notes: This table displays for each portfolio: the standard deviation (SD), the expected shortfall at 95%
level (ES95), the diversification ratio (DR) and the concentration ratio (CR). These portfolios are: the copula
particle swarm optimization (CPSO) portfolio, the global minimum variance (GMV) portfolio, the maximum
diversification portfolio (MDP), and the minimum tail-dependent (MTD) portfolio.

4. Conclusions

The portfolios considered in this study consisted of six cryptocurrencies: four tradi-
tional cryptocurrencies (BTC, ETH, BNB and XRP) and two stablecoins (USDT and USDC).
We have examined the copula particle swarm optimization (CPSO) portfolio strategy
against three other portfolio strategies, namely, the Global minimum variance (GMV), the
most diversified portfolio (MDP), and the minimum tail-dependent (MTD). Initially we
compare the performance CPSO against its analog population-based algorithm “copula
differential evolution” (CDE), which shows out-performance ability based on their Sharpe
ratios. While examining the risk contribution of each asset in each portfolio, CPSO appears
to be a promising strategy during extreme market conditions, while GMV seem favorable
during normal market conditions. Most importantly, the hedge and safe-haven ability of
the two stablecoins is clearly exhibited with CPSO, while their diversification property
is inhibited. So, we may ask the following question: can the benefits of the stablecoins
properties as diversifiers, hedges and safe havens be exploited in one portfolio strategy?
In order words, can we have a portfolio strategy in which stablecoins risk contribution is
the lowest, while the diversification remains the highest? This direction of research will be
taken in our next study.
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