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Abstract: In some applications of supervised machine learning, it is desirable to trade model com-
plexity with greater interpretability for some covariates while letting other covariates remain a “black
box”. An important example is hedonic property valuation modeling, where machine learning
techniques typically improve predictive accuracy, but are too opaque for some practical applications
that require greater interpretability. This problem can be resolved by certain structured additive
regression (STAR) models, which are a rich class of regression models that include the generalized
linear model (GLM) and the generalized additive model (GAM). Typically, STAR models are fitted by
penalized least-squares approaches. We explain how one can benefit from the excellent predictive
capabilities of two advanced machine learning techniques: deep learning and gradient boosting.
Furthermore, we show how STAR models can be used for supervised dimension reduction and
explain under what circumstances their covariate effects can be described in a transparent way. We
apply the methodology to residential land and structure valuation, with very encouraging results
regarding both interpretability and predictive performance.

Keywords: land and structure valuation; machine learning; structured additive regression; gradient
boosting; deep learning; interpretability; transparency; hedonic modeling

1. Introduction

Machine learning (ML) techniques—such as artificial neural networks, random forests,
and gradient boosting—can be more accurate than standard approaches—such as ordi-
nary least squares—because they automatically learn relevant nonlinearities, transfor-
mations, and high-order interactions among the independent variables. These model-
ing techniques are increasingly being applied to house price modeling. Examples in-
clude Worzala et al. (1995), Din et al. (2001), and Zurada et al. (2011) for neural networks,
Yoo et al. (2012) for random forests, Kagie and Wezel (2007) and Sangani et al. (2017) for
boosting, and many contributions to the machine learning competition platform kaggle.com.
Machine learning techniques generally yield more accurate predictions than standard lin-
ear models.

While ML techniques can be powerful predictive tools, they are often considered
black boxes due to their limited interpretability (Din et al. 2001; Mayer et al. 2019). In some
applications, this is particularly problematic due to a need for transparency in describing
the effects of certain covariates. For example, in the case of hedonic modeling of house
prices, it is desirable to identify the effects of some features, while others do not require
individual interpretation. Specifically, there is often a need to explicitly measure the effects
of structural (or building) characteristics, while locational attributes can be considered as a
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group. This is the case, for example, when appraising properties for taxation or mortgage
underwriting purposes. Moreover, there is typically collinearity among locational attributes,
making it difficult to identify their separate effects in any case. This paper demonstrates
machine learning techniques with restricted complexity that allow for transparency with
respect to a subset of the covariates while also achieving excellent predictive results. We
apply the methods to house price valuation in South Florida and Switzerland. We believe
that this is the first application of these techniques to the problem of real estate valuation.

The model structure considered in this article is described in Hothorn et al. (2010).
There, a distributional property ξ of a response variable Y is represented as a function f of
input features X = (X(1), . . . , X(q)) in the structured form

ξ(Y | X = x) = f (x) =
p

∑
j=1

f j(x), (1)

where each additive component f j(x) uses a subset of the q covariates. Such models can
be viewed as a generalization of structured additive regression (STAR) models; see, e.g.,
Chapter 9 in Fahrmeir et al. (2013). Throughout this article, for the sake of simplicity, we
also call them STAR models.

Important special cases of (1) are the generalized linear model (GLM, Nelder and
Wedderburn 1972):

g(E(Y | X = x)) = β0 + β1x(1) + · · ·+ βpx(p)

and the generalized additive model (GAM) without interactions (Hastie and Tibshirani
1986, 1990; Wood 2017)

g(E(Y | X = x)) = β0 + f1(x(1)) + · · ·+ fp(x(p)). (2)

The property ξ is implied by specifying a loss function ρ relevant to the problem
at hand. Important examples are the squared error loss (ξ = E), the absolute error loss
(ξ = Median), and the log loss associated with the negative log-likelihood of the Bernoulli
distribution (ξ = logit ◦E).

Having access to training data (yi, xi) with optional case weights wi, the task to
estimate f j with functions f̂ j amounts to minimizing the average weighted loss over the
training data, i.e., solving the task

( f̂1, . . . , f̂p) = arg min
( f1,..., fp)

n

∑
i=1

wiρ

(
yi,

p

∑
j=1

f j(xi)

)
(3)

subject to algorithmic constraints; see Hothorn et al. (2010) for details.
Different algorithms exist for solving the optimization task (3), each with its own

characteristics and limitations. Traditional options include penalized iteratively reweighted
least squares (Wood 2017), Bayesian optimization (Umlauf et al. 2012), and model-based
gradient boosting or “mboost” (Bühlmann and Hothorn 2007). The latter uses component-
wise gradient boosting, where each component represents a base learner chosen from a rich
set of possibilities, including (penalized) least squares for linear effects and fixed or random
categorical effects, (penalized) B-splines for smooth effects and two-dimensional interaction
surfaces, and decision trees for representing the effects of any number of features. During
each gradient update, the component with the best loss improvement is multiplied by
the specified learning rate and added to the current prediction function. The algorithm
“mboost” is implemented in the R package mboost; see, again, Hothorn et al. (2010).

In the next section, we show how STAR models in the form of (1) can also be fitted with
deep learning, as well as with the high-performance gradient boosting implementations
of XGBoost (Chen and Guestrin 2016) and LightGBM (Ke et al. 2017). Additionally, we
discuss the possibility of using STAR models for supervised dimension reduction, e.g.,
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to compress the information represented by a large set of locational features, and we
explain under what circumstances feature effects can be transparently described, including
the effects of certain multivariate components. The following two sections apply these
ideas to the data from Florida and Switzerland, respectively. A final section discusses our
conclusions.

2. Methodology
2.1. STAR Models and Deep Learning

Recently, owing to the flexibility of implementations such as TensorFlow (see
Abadi et al. 2016), deep learning approaches can also be used for fitting STAR models. In
Agarwal et al. (2021), neural additive models are discussed. Such models use sub-networks
to represent each input variable X(j) with a smooth function f ′j and connect their output
nodes directly to the response Y, which is possibly transformed by a non-linear activation
function g−1; see Figure 1a for an illustration. A neural additive model thus allows the
fitting of additive models of the form

ξ(Y | X = x) = β0 +
p

∑
j=1

β j f ′j (x(j))︸ ︷︷ ︸
f j(x(j))

,

in line with (2). To fit a STAR model in the general case of (1) through deep learning, we
need to slightly generalize the structure of the neural additive model to allow the sub-
networks to use as input all covariates used in component f j; see Figure 1b for a schematic
example with the equation

ξ(Y | X = x) = β0 + β1x(1) + β2 f ′2(x(2))︸ ︷︷ ︸
f2(x(2))

+ β3 f ′3(x(3), . . . , x(q))︸ ︷︷ ︸
f3(x(3),...,x(q))

.

Related models are discussed in Rügamer et al. (2021) in an even more general context
of multivariate ξ, allowing for modeling of the full conditional distribution of Y.

(a) (b)

Figure 1. (a) Neural additive model. (b) STAR model with one linear component, one smooth
component of a single covariate, and one smooth component of multiple covariates.

2.2. STAR Models and Gradient Boosting

Tree-based gradient boosting machines (Friedman 2001) belong to the best performing
ML algorithms for tabular data, and major implementations, such as XGBoost (Chen
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and Guestrin 2016), LightGBM (Ke et al. 2017), and CatBoost (Prokhorenkova et al. 2018),
dominate corresponding ML competitions (see Arik and Pfister 2019). It is well known
that such models can be used to learn additive models of the form (2) by using tree stumps
(trees with a single split) as base learners; see Lou et al. (2012) or Nori et al. (2019). Allowing
more splits in the trees would introduce interaction effects, leading to non-additive models.

However, it is less known that some modern implementations of gradient boosting are
actually able to non-parametrically fit STAR models of the form (1). The solution is based
on imposing so-called feature interaction constraints, an idea that goes back to Lee et al. (2015).
Their approach was implemented in 2018 in XGBoost, and, on our request, (Mayer 2020) in
LightGBM in 2020 as well. Interaction constraints are specified as a collection of feature
subsets X1, . . . ,Xp, where each Xj specifies a group of features that are allowed to interact.
Algorithmically, the constraints are enforced by the following simple rule during tree
growth: At each split, the set of split candidates is the union of those Xj that contain all previously
used split variables of the current branch.

Consequently, each tree branch uses features from one feature setXj only. Its associated
prediction on the scale of ξ contributes to the component f j of an implicitly defined STAR
model of the form (1), where each model component f j uses feature subset Xj as specified
by the constraints.

An important type of constraint is feature partitions, i.e., disjoint feature sets Xj. They
include the special case of the collection of singletons {X(1)}, . . . , {X(p)} that would pro-
duce an additive model of the form (2). For partitions, by the above rule, the first split
variable of a tree determines the feature set Xj to be used throughout that tree. Figure 2
illustrates a simple example of such a model with the following equation:

E(Price of house) = f1(Living area)

+ f2(Distance to center, Distance to rail, Distance to ocean).

The corresponding constraints form a feature partition specified by

X1 = {Living area} and

X2 = {Distance to center, Distance to rail, Distance to ocean}.

Figure 2. Schematic view of three boosted trees with interaction constraints, representing a STAR
model being additive in a living area and in a group of locational variables.

In the two programming languages R and Python, interaction constraints for XGBoost
and LightGBM are specified as part of the parameter list passed to the corresponding train
method. Table 1 shows how to specify the interaction_constraints parameter for an
example with covariates A, B, C, and D and interaction constraints {A} and {B, C, D}
corresponding to a model as in Figure 2.
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Table 1. Specifying the interaction_constraints parameter.

XGBoost LightGBM

R list(0, c(1, 2, 3)) list(’A’, c(’B’, ’C’, ’D’))
Python ’[[0], [1, 2, 3]]’ [[0], [1, 2, 3]]

XGBoost and LightGBM offer different loss/objective functions. These specify the
functional ξ to be modeled; see Table 2 for some of the possibilities.

Table 2. Important losses and functionals ξ and how their corresponding objectives are specified in
XGBoost and LightGBM.

Loss ξ XGBoost LightGBM

Squared error E "reg:squarederror" "mse"
Log loss logit ◦E "binary:logistic" "binary"

Absolute error median - "mae"
Quantile loss p-quantile - "quantile"
Poisson loss log ◦E "count:poisson" "poisson"
Gamma loss log ◦E "reg:gamma" "gamma"
Tweedie loss log ◦E "reg:tweedie" "tweedie"

Huber-like loss M-estimator "reg:huber" "huber"
Cox neg. log-lik log ◦ hazard "survival:cox" -

Remark 1.
• At the time of writing and until at least XGBoost version 1.4.1.1, XGBoost respects only

non-overlapping interaction constraint sets Xj, i.e., partitions. LightGBM can also deal with
overlapping constraint sets.

• Boosted trees with interaction constraints support only non-linear components, unlike, e.g.,
deep learning and component-wise boosting, both of which allow a mix of linear and non-linear
components. See Remark 4, as well as our two case studies, for a two-step procedure that would
linearize some effects fitted by XGBoost or LightGBM, thus overcoming this limitation.

• Feature pre-processing for boosted trees is simpler than for other modeling techniques. Missing
values are allowed for most implementations, feature outliers are unproblematic, and some
implementations (including LightGBM) can directly deal with unordered categorical vari-
ables. Furthermore, highly correlated features are only problematic for interpretation, not for
model fitting.

• Model-based boosting “mboost” with trees as building blocks is an alternative to using XGBoost
or LightGBM with interaction constraints.

2.3. STAR Models and Supervised Dimension Reduction

Since STAR models (including GAMs with two-dimensional interaction surfaces)
typically use only a small subset of (interacting) features per component, the keyword
“dimension reduction” rarely appears in connection with this type of model. However, a
strength of tree-based components (e.g., trees as base learners in model-based boosting
“mboost” or the approach via interaction constraints) and deep learning is that some
components can use even a large number of interacting features. Such components serve
as one-dimensional representations of their features, conditional on the other features. The
values of such components (or sometimes of sums of multiple components) might be used
as derived features in another model or analysis. Thus, STAR models offer an effective way
to perform (one-dimensional) supervised dimension reduction. Note that, by supervised,
we mean that the dimension reduction procedure uses the response variable of the model.
Some examples illustrate this.
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Example 1.

1. House price models with additive effects for structural characteristics and time (for maximal
interpretability) and one multivariate component using all locational variables with complex
interactions (for maximal predictive performance). The model equation could be as follows:

E(log(Price) | X = x) = f1(x(1)) + · · ·+ fp−2(x(p−2))︸ ︷︷ ︸
additive building characteristic effects

+ fp−1(x(p−1))︸ ︷︷ ︸
time effect

+ fp(x(p), . . . , x(q))︸ ︷︷ ︸
complex locational effects

.
(4)

Component fp provides a one-dimensional representation of all locational variables. We will
see an example of such a model in the Florida case study.

2. This is similar to the first example, but adding the date of sale to the component with all
locational variables, leading to a model with time-dependent location effects. The component
depending on locational variables and time represents those variables by a one-dimensional
function. Such a model will be shown in the Swiss case study below.

In the above examples, the feature subsetsXj used by components f j are non-overlapping,
i.e., are partitions. For a STAR model f of the general form (1), where features might appear
in multiple components, we can extend the above idea of dimensionality reduction.

Definition 1 (Purely additive contributions and encoders). Let X ′ be a feature subset of
interest and f̂ j the fitted additive components of a STAR model

ξ(Y | X = x) = f (x) = ∑ f j(x)

as in Equation (1). The contribution of X ′ to the predictor f̂ (x) is given by the partial predictor

f̂ J(X ′)(x) := ∑
j∈J(X ′)

f̂ j(x),

where J(X ′) := {j : X ′ ∩ Xj 6= ∅} denotes the index set of components using features in X ′.
Furthermore, we call f̂ J(X ′)(x) a purely additive contribution or encoder of X ′ if

⋃
J(X ′) Xj ⊆ X ′,

i.e., if f̂ J(X ′)(x) depends solely on features in X ′. In this case, we say that X ′ has a purely additive
contribution or X ′ is encodable and write the encoder as f̂ J(X ′)(x′), where x′ are values of the
feature vector X′ corresponding to X ′.

Remark 2.

• From the above definition, it directly follows that the purely additive contribution f̂ J(X ′)(x′)
of a (possibly large) set of features X ′ provides a supervised one-dimensional representation of
the features in X ′, optimized for predictions on the scale of ξ and conditional on the effects of
other features.

• For simplicity, we assume that each model component is irreducible, i.e., it uses only as many
features as necessary. In particular, a component additive in its features would be represented
by multiple components instead.

• The encoder f̂ J(X ′)(x′) of X ′ is defined up to a shift, i.e., f̂ J(X ′)(x′) + c for any constant c is
an encoder of X ′ as well. If c is chosen so that the average value of the encoder is 0 on some
reference dataset, e.g., the training dataset, we speak of a centered encoder.

Example 2. Consider the fitted STAR model

f̂ (x) = f̂1(x(1), x(2)) + f̂2(x(1), x(3)) + f̂3(x(2), x(3)) + f̂4(x(4), x(5), x(6)).
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Following the above definition, we can say:

1. Let X ′ = {X(1), X(2), X(3)}. Then,

f̂ J(X ′)(x(1), x(2), x(3)) = f̂1(x(1), x(2)) + f̂2(x(1), x(3)) + f̂3(x(2), x(3))

is a purely additive contribution of X ′.
2. Due to interaction effects, the singleton {X(1)} and {X(1), X(2)} are not encodable.
3. Let X ′ = {X(4), X(5), X(6)} and x′ = (x(4), x(5), x(6)). Then,

f̂ J(X ′)(x′) = f̂4(x′)

is an encoder of X ′.
4. The fitted model f̂ (x) is an encoder of the set of all features. This is true for STAR models

in general.

Next, we consider the fitted STAR model

f̂ (x) = f̂1(x(1)) + f̂2(x(2)) + f̂3(x(3), x(4), x(5)).

Here, the feature sets {X(1)}, {X(2)}, and {X(3), X(4), X(5)} form a partition. As a direct
consequence of Definition 1, each feature set (and all its possible unions) of a partition is encodable.
This property will implicitly be used in both of our case studies.

Depending on the implementation of the STAR algorithm, it might be possible to
directly extract the encoder of a feature set X ′ from the fitted model. A procedure that
works independently of the implementation is described in the following Algorithm 1,
which requires only access to the prediction function f̂ (x) on the scale of ξ.

Algorithm 1 Encoder extraction

1. Assert that X ′ is encodable.

2. Let h be the mapping that extends x′ to x, padding the remaining vector components

by arbitrary but fixed values. As a direct consequence of Definition 1, the predictor

f̂ (h(x′)) (5)

agrees with the encoder f̂ J(X ′)(x′) up to a shift and, thus, serves as an (uncentered)

encoder of feature set X ′.

3. Depending on the application, the centered encoder

f̂ c
J(X ′)(x′) := f̂ (h(x′))− c (6)

is easier to interpret, where

c =
n

∑
i=1

wi f̂ (h(x′i))/
n

∑
i=1

wi

is the (possibly weighted) average value of the predictions f̂ (h(x′i)) and x′i , i =

1, . . . n, denote observed values of x′ (with optional case weights wi) in some refer-

ence dataset, e.g., the training set.



J. Risk Financial Manag. 2022, 15, 193 8 of 24

Remark 3 (Raw scores and boosting). By default, predictions of XGBoost and LightGBM are on
the scale of Y. If the functional ξ includes a link function (e.g., log or logit), one can obtain predictions
on the scale of ξ via the argument outputmargin (XGBoost) or rawscore (LightGBM) of their
predict method. This is relevant for the application of Algorithm 1 and also for interpretation of
effects, as in Section 2.4.

The values of a (possibly centered) encoder of a feature set X ′ can be used as a one-
dimensional representation of X ′ for subsequent analyses, e.g., as a derived covariate in a
simplified regression model. In the case studies below, we will see that this approach pro-
duces models with an excellent trade-off between interpretability and predictive strength.

Example 3. For instance, after fitting the STAR model (4) of Example 1 with XGBoost, we
could extract the (centered) purely additive contribution f̂ c

J(X ′) of all location covariates X ′ using
Algorithm 1 and calculate a subsequent linear regression of the form

E(log(Price) | X = x) = β0 + β1x(1) + · · ·+ βp−2x(p−2)︸ ︷︷ ︸
building characteristic effects

+ g(x(p−1))︸ ︷︷ ︸
time effects

+ βp f̂ c
J(X ′)(x′)︸ ︷︷ ︸

locational effects

,

(7)

where x′ = (x(p), . . . , x(q)) represent the values of the locational variables. The main difference
with the initial XGBoost model is that the effects of the building characteristics are now linear.

Remark 4 (Modeling strategy). The workflow in the last example is in line with the following
general modeling strategy. Groups of related features (for instance, a large set of locational variables)
are sometimes difficult to represent in a linear regression model. How should the features be
transformed? What interactions are important? How should one deal with strong multicollinearity?
These burdens could be delegated to an initial STAR model of suitable structure. Then, the model
components representing such feature groups would be extracted and plugged as high-level features
into a subsequent linear regression model. This allows one, e.g., to linearize some additive effects of
a fitted boosted trees model with interaction constraints.

Encoders are also helpful for interpreting effects in general STAR models, as will be
explained in the next section.

2.4. Interpreting STAR Models

In this section, we provide some information on how to interpret effects of features and
feature sets in general STAR models (1), with a special focus on simple, fully transparent
descriptions. These techniques will be used later in the case studies.

One of the most common techniques to describe the effect of a feature set X ′ in
an ML model is the partial dependence plot (PDP) introduced in Friedman (2001). It
visualizes the average partial effect ofX ′ by taking the average of many individual conditional
expectation profiles (ICE, see Goldstein et al. 2015). The ICE profile for the ith observation
with observed covariate vector xi and feature set X ′ is calculated by evaluating predictions
f̂ (x) over a sufficiently fine grid of values for vector components corresponding to X ′,
keeping all other vector components of xi fixed. The stronger the interaction effects from
other features, the less parallel the ICE profiles across multiple observations are. Thus, a
visual test for additivity can be performed by plotting many ICE profiles and checking if
they are parallel (see Goldstein et al. 2015). Conversely, if all ICE profiles of X ′ are parallel,
X ′ is represented by the model in an additive way. In that case, a single ICE profile (or the
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PDP) serves as a fully transparent description of the effect of X ′ in the sense that it is clear
how X ′ acts on f̂ (x) globally for all observations ceteris paribus.

Studying ICE and PDP plots is not only interesting for interpreting feature effects in
complex ML models. Along with other general-purpose tools from the field of explain-
able ML (see, e.g., Biecek and Burzykowski 2021; Molnar 2019), they can also be used to
interpret models of restricted complexity, such as linear regression models, GAMs, or
STAR models. There, they serve as (feature-centric) alternatives to partial residual plots
(Wood 2017) that are frequently used to visualize effects of single model components. Note
that, up to a vertical shift, partial residual plots coincide with ICE curves for features that
appear in only one (single-feature) component.

In the context of STAR models, from Definition 1, it is easy to see that, for a feature
set X ′ that has a purely additive contribution, ICE profiles of X ′ are parallel across all
observations, and their values correspond to values of the encoder f̂ J(X ′)(x′) evaluated
over the domain of x′ (up to an additive constant). This includes centered or uncentered
encoders as extracted by Algorithm 1. In fact, Algorithm 1 differs from the calculation of
ICE profiles only in terms of technical details.

Thus, the effects of an encodable feature set X ′ can be described in a simple yet
transparent way by, e.g., showing one ICE profile, the PDP, or by evaluating its encoder
over the domain of x′. This is a major advantage of STAR models over unstructured ML
models, where transparent descriptions of feature effects are unrealistic due to complex
high-order interactions.

However, since it is difficult to describe ICE/PDP/encoders of more than two fea-
tures, this concept is limited from a practical perspective to feature sets with only one or
two features.

Remark 5.

• To benefit from additivity, effects of features in STAR models are typically interpreted on the
scale of ξ.

• ICE profiles and the PDP can be used to interpret effects of non-encodable feature sets as well.
Due to interaction effects, however, a single ICE profile or a PDP cannot give a complete
picture of such an effect.

• In this paper, we describe feature effects by ICE/PDP/encoders. For alternatives, see Molnar
(2019) or Biecek and Burzykowski (2021).

We have mentioned that describing multivariable ICE/PDP/encoders of more than
two features is difficult in practice. However, depending on the modeling situation, it is not
uncommon that a possibly large, encodable feature set X ′ represents a low-dimensional
feature set X ′′ with mapping X′ = φ(X′′). Here, X′ and X′′ denote feature vectors corre-
sponding to feature sets X ′ and X ′′. In this case, the ICE/PDP/encoder can be evaluated
over values of X′′ to provide, again, a fully transparent description of the effects of X′′ and
X′. Thus, instead of using the encoder f̂ c

J(X ′)(x′) with high-dimensional x′, we would use

the equivalent encoder f̂ c
J(X ′)(φ(x′′)) with low-dimensional x′′ to describe the effects of

feature set X ′ (or X ′′), even if we cannot exactly describe the effects of single features in X ′.
We have seen three such situations in Example 1: The full set of location variables can

represent low-dimensional features, such as:

• The administrative unit (a one-dimensional feature).
• The address (also a one-dimensional feature).
• Latitude/longitude (a two-dimensional feature).

Similarly, time-dependent location effects could represent the two features “administrative
unit” and “time”.

We use this projection trick in both of our case studies in Sections 3 and 4 to describe
multivariate location effects.
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3. Case Study 1: Miami Housing Data

To apply the above methods, we consider two case studies involving hedonic house
price models. Hedonic models are widely used in the context of real estate valuation,
especially for residential properties (Malpezzi 2003). Such models apply information about
a sample of properties that transacted to estimate models that are then used to predict the
values of out-of-sample properties that did not transact. The dependent variable is the
price of the properties and the independent variables are a set of physical and locational
attributes. Hedonic models are a valuable tool for property tax appraisers, mortgage
underwriters, valuation firms, and regulatory authorities. Popular online resources, such
as Zillow.com in the United States, rely on such models to provide regularly updated
estimates of property values. Various studies have successfully applied machine learning
techniques to hedonic models (e.g., Mayer et al. 2019; Wei et al. 2022), but interpretability
remains an issue.

3.1. Data

This case study uses information on 13,932 single-family homes sold at arm’s length
in Miami in 2016. The data are collected by county property tax appraisers and distributed
for research purposes by the Florida Department of Revenue. Aside from sale price and
time, the dataset contains five building characteristics and eight locational variables; see
Table 3 for definitions of the variables and Figures 3–6 for a descriptive analysis.

Table 3. Variables used in the Miami case study.

Variable Name Symbol Meaning

log_price Y Logarithmic sale price in USD
month_sold T Sale month in 2016 (1: January, . . . , 12: December)
log_living S(1) Living area in logarithmic square feet
log_land S(2) Land area in logarithmic square feet
log_special S(3) Logarithmic value of special features (e.g., swimming pool)
age S(4) Age of the structure when sold
structure_quality S(5) Measure of building quality (1: worst, 5: best)
s_dist_highway R(1) Square root of distance to nearest highway in 1000 ft
s_dist_rail R(2) Square root of distance to nearest rail line in 1000 ft
dist_ocean R(3) Distance to ocean in 1000 ft
log_dist_water R(4) Logarithmic distance in 1000 ft to nearest body of water
s_dist_center R(5) Square root of distance to central business district in 1000 ft
s_dist_sub R(6) Square root of distance to nearest subcenter in 1000 ft
latitude R(7) Latitude
longitude R(8) Longitude



J. Risk Financial Manag. 2022, 15, 193 11 of 24

structure_quality

month_sold

1 2 3 4 5

1 2 3 4 5 6 7 8 9 101112

0

500

1000

0

2000

4000

6000

8000

value

C
ou

nt

(a)

s_dist_center s_dist_sub

s_dist_rail dist_ocean log_dist_water

log_special age s_dist_highway

log_price log_living log_land

2.5 5.0 7.510.012.5 2.5 5.0 7.510.0

0 2 4 0 20 40 60 80 0 1 2 3 4

0 4 8 12 0 25 50 75 100 0 2 4 6

11 12 13 14 15 7.0 7.5 8.0 8.5 7 8 9 10 11

value

(b)

Figure 3. (a) Bar plots of discrete variables. (b) Histograms of transformed continuous variables,
except latitude/longitude.

The set of locational variables corresponding to the feature vector R = (R(1), . . . , R(8))
is denoted byR. Furthermore, observed values of any feature or feature vector are denoted
by lowercase letters, such as s(1) or r.
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Figure 5. (a) Association between discrete variables and the response log_price (boxplots). (b) Log-
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Figure 6. Logarithmic heatmaps between the response log_price and the continuous variables
(except latitude and longitude).

3.2. Models

To illustrate the methods discussed in the previous sections, we consider six models:

1. OLS: Linear regression benchmark with maximal interpretability.
2. XGB (unconstrained): XGBoost benchmark for maximal performance.
3. XGB STAR: XGBoost STAR model for high interpretability and performance.
4. OLS with XGB loc: Linear model with location effects derived from XGB STAR.
5. NN STAR: Deep neural STAR model.
6. mboost STAR: mboost STAR model.
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Details for each model are given below. Before fitting the models, the dataset was
randomly split into 80% training and 20% test observations. The test dataset was used
solely for evaluating the performance of the models, not for tuning them.

As a simple benchmark with maximal interpretability, we consider the OLS regression
with time dummy effects g

E(Y) = β0 + β1s(1) + · · ·+ β5s(5) + β6r(1) + · · ·+ β11r(6) + g(t)

fitted with R function lm(). This model does not use latitude/longitude, as there is no
obvious way to represent them in this case.

To get a rough benchmark of the maximally achievable model performance, we
consider the unconstrained XGBoost model, XGB (unconstrained), with learning rate 0.1.
Its most relevant hyper-parameters (including tree depth, ridge and lasso regularization,
and column and row subsampling) were tuned on the training data by a randomized search
using five-fold cross-validation. A suitable number of trees (469) was chosen by early
stopping on the cross-validation score. After tuning, the model was refitted on the full
training data. The calculations were made with the R package xgboost (Chen et al. 2021)
using squared error loss.

The next model considered (XGB STAR) is a STAR model fitted with XGBoost and
interaction constraints to enforce time and building characteristic effects to be additive.
Only the locational factors are allowed to interact with each other. The structured model
equation follows the form of Equation (1):

E(Y) = f1(s(1)) + · · ·+ f5(s(5)) + f6(r) + f7(t).

In this way, the feature sets corresponding to the model components form a partition, which
holds for all STAR models used in our case studies. Using the same learning rate and
tuning strategy as the unconstrained XGBoost model, the cross-validated optimal number
of trees (1583) was clearly higher to compensate for the additivity constraints.

From the XGB STAR model, we extracted the centered encoder f̂ c
J(R)(r) using Algo-

rithm 1. The values of this function represent the combined effect of all location variables,
which we plugged as a derived feature into the OLS with XGB loc regression:

E(Y) = β0 + β1s(1) + · · ·+ β5s(5) + β6 f̂ c
J(R)(r) + g(t),

as outlined in Remark 4. This model can be viewed as a smoothed, linearized version of
the XGB STAR model.

The remaining two models show alternative ways to fit a STAR model. Like the
OLS with XGB loc model, they are constrained to have linear effects for the building
characteristics. The first of these models is a neural network (NN STAR) with the equation

E(Y) = β0 + β1s(1) + · · ·+ β5s(5) + β6 f ′(r)︸ ︷︷ ︸
f (r)

+ β7g′(t)︸ ︷︷ ︸
g(t)

,

which is depicted in Figure 7. The architecture of the location sub-network (three hidden
layers having 12-6-3 non-intercept nodes and hyperbolic tangent activations), the learning
rate (0.003), and the number of epochs (105) were chosen by simple validation on the
training data. As a loss function, the squared error was used. The model has 231 parameters,
most of which are used to represent the location sub-network. Time is represented by an
embedding layer. We used the R package keras (Allaire and Chollet 2021) to fit the model
via TensorFlow. This model serves as alternative to XGB STAR, but is not expected to be as
accurate for a sample of this size. Following the recommendation in LeCun et al. (2012),
we scaled numeric input features to a common scale in order to improve the convergence
properties.
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Figure 7. Architecture of the neural network STAR model of Miami house prices.

Remark 6. Neural networks are often biased in the sense that their average prediction on the
training data is different from the corresponding average response; see Wüthrich (2020) for ways to
address this. We skipped this calibration step for simplicity.

The last model considered (mboost STAR) is a model-based booster fitted with the R
package mboost (Hothorn et al. 2021):

E(Y) = β0 + β1s(1) + · · ·+ β5s(5) + f (r) + g(t).

Per boosting round, the locational variables R are represented by a decision tree, while
the other variables are fitted by linear functions via unpenalized least squares (time T is
internally dummy encoded). The main tuning parameter, the number of boosting rounds,
was chosen by five-fold cross-validation and amounted to 1022 rounds at a learning rate
of 0.1. The tree depth was set to five in order to allow for a flexible representation of the
location variables comparable to the XGBoost models.

3.3. Results

The models were evaluated on the 20% test data and interpreted using the flashlight
package (Mayer 2021).

3.3.1. Performance

Model performance is measured by out-of-sample root mean square error and R-
squared (Table 4). The constrained, highly structured XGBoost STAR model performs
almost as well as the unconstrained, fully flexible XGBoost model, which is remarkable: By
sacrificing only 0.2 percentage points of out-of-sample R-squared, we were able to create a
transparent model (see figures below), avoiding the typical trade-off between performance
and interpretability. The OLS with XGB loc model provides a model that is even simpler to
interpret, here at the cost of one percentage point of R-squared. The other STAR models
perform worse, but, as usual, such comparisons must be undertaken with care due to the
different tuning techniques and different structures of the model components. Thus, we
purposely do not show the p values for pairwise comparisons of performance.
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Table 4. RMSE and R-squared evaluated on the Miami hold-out dataset.

Model RMSE R-Squared

OLS 0.252 0.799
XGB (unconstrained) 0.132 0.945

XGB STAR 0.134 0.943
OLS with XGB loc 0.145 0.933

NN STAR 0.182 0.895
mboost STAR 0.159 0.920

3.3.2. Effects of Single Variables

As outlined above, feature effects in general ML models can be described by ICE
curves (Goldstein et al. 2015). Figure 8 shows such curves for the living area. One curve
explains how the predicted logarithmic price of a selected house changes for different
values of the living area, keeping all other feature values fixed. As expected, the curves are
parallel for all models that are additive in the living area, which is the case for all models
except the unconstrained XGBoost model. For these models, the effect of the living area
can thus be described in a fully transparent way by studying a single ICE curve. The same
holds for each other building characteristic and time.

For the mboost model, the deep neural net, and the two linear regressions, the curves
are linear, leading to maximum interpretability. In these cases, the effect of the living area
could be described by a single number, namely, the slope of any ICE curve, which equals
the corresponding model coefficient.

OLS with XGB loc NN STAR mboost STAR

OLS XGB (unconstrained) XGB STAR
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Figure 8. ICE curves for log_living. All curves are parallel and simple to interpret, except for the
unconstrained XGBoost model.

A completely different picture emerges for log_dist_water (Figure 9). The ICE curves
of this location variable are parallel only for the oversimplified OLS model. The other
models allow this feature to interact with other features, leading to non-parallel curves.
Using the terminology discussed above, the feature set {log_dist_water} is not encodable
for these models. Consequently, a single ICE curve or a PDP cannot provide a complete
description of its modeled effects. We will, however, show that the combined effect of all
location features can be described transparently by a single visualization.
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Figure 9. ICE curves for the locational variable log_dist_water show non-additive effects, except
for the OLS regression.

3.3.3. Interaction Effects

The field of explainable ML offers different ways to study interaction effects; for
instance, multidimensional ICE curves or Friedman’s H measure of interaction strength
(Friedman and Popescu 2008), which we consider here. Figure 10 shows H for selected
variable pairs. A value of 0 means that there are no interactions, while higher values
represent stronger interactions relative to the two corresponding main effects. The results
in Figure 10 suggest that all STAR models have been correctly specified. For instance, the
interaction strength between the living area and latitude is 0 for all models, except for the
unconstrained XGBoost model.

OLS with XGB loc NN STAR mboost STAR

OLS XGB (unconstrained) XGB STAR
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Figure 10. Friedman’s H measure of interaction strength for selected variable pairs. The STAR models
appear to be correctly specified.
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3.3.4. Supervised Dimension Reduction and Location Effects

As noted in the discussion of the methodology, STAR models can sometimes be used
for supervised dimensionality reduction. For the STAR models in this case study, this
is done by representing all location variables R with a single model component. Once
fitted, the values of that component serve as a one-dimensional representation of the set
of locational variables. We used Algorithm 1 to extract centered encoders of R from each
of the three explicit STAR models. To illustrate the workflow of Remark 4, the encoder of
XGBoost STAR was subsequently plugged as a derived feature into the simplified OLS
with XGB loc model, with excellent results (see above).

Furthermore, since there is a trivial mapping from the two features of latitude and
longitude to the encodable set of location features R, we were able to use the projection
trick described above to provide a fully transparent description of the combined location
effects. To do so, we visualized as heatmaps the values of the centered encoders of the three
STAR models (XGB STAR, NN STAR, and mboost STAR) over all latitude/longitude pairs
appearing in the full dataset (Figure 11).

Since the model response is logarithmic, the values of the centered encoders can be
interpreted as relative location effects. For example, a location with value 0.2 would be
about 20% above the average price level of Miami. The results in Figure 11 look highly
plausible. Due to its superior performance, the relative price map produced by the XGBoost
STAR model shows slightly more pronounced effects, e.g., very high prices for the exclusive
area Key Biscayne.

XGBoost Neural net mboost

−0.5
0.0
0.5
1.0
1.5

Relative effect

Figure 11. Relative location effects extracted from the three STAR models: XGB STAR, NN STAR, and
mboost STAR.

4. Case Study 2: Swiss Housing Data
4.1. Data

Our second case study uses a rich geocoded dataset covering over 67,000 houses sold
at arm’s length between 2010 and 2021 in Switzerland. It was provided by the Informations-
und Ausbildungszentrum für Immobilien AG (IAZI), a Swiss company specializing in
property valuation. The median house has 5.5 rooms, 150 m2 of living area, and a lot size
of 576 m2, and was 34 years old at transaction time. For confidentiality reasons, the sales
prices were multiplied by a fixed, unknown constant.

The aim of this second case study is to derive models for the median logarithmic sales
price, conditional on the following 90 features:

• Twelve pre-transformed property characteristics (logarithmic living area, number of
rooms, age, etc.) represented by the feature vector S = (S(1), . . . , S(12)).

• Transaction time (year and quarter) T.
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• A set of 25 untransformed locational variables mostly available at the municipal level,
such as the average taxable income or the vacancy rate.

• Latitude and longitude.
• For 25 points of interest (POIs), such as schools, shops, or public transport, their

individual counts within a 500 m buffer.
• The distance from the nearest POI of each type to the house (maximum 500 m).

The feature set containing time T and all 77 locational variables is denoted asR and
the corresponding feature vector as R. As usual, we denote observed values of features by
lowercase letters.

4.2. Models

Our house price models have the structure

Median(Y | S = s, R = r) = f (s, r),

where the response Y equals the logarithmic sales price. More specifically, we consider
these three models:

1. LGB (unconstrained): LightGBM benchmark for maximum performance. Hyper-
parameter tuning was done by stratified five-fold cross-validation, using a learning
rate of 0.1 and systematically varying the number of leaves, row and column subsam-
pling rates, and L1 and L2 penalization. As for the XGBoost models in the first case
study, the number of trees (1918) was chosen by early stopping on the cross-validation
score. The model was fitted with the R package lightgbm (Ke et al. 2021), using the
absolute error loss in order to provide a model for the conditional median (Table 2).

2. LGB STAR: LightGBM STAR model for high interpretability and performance. This is
built similarly to the first model (with 2225 trees), but with additive effects for building
variables enforced by interaction constraints. Locational variables and transaction
time were allowed to interact with each other. This leads to a model of the form

Median(Y) =
12

∑
j=1

f j(s(j)) + f13(r).

3. QR with LGB loc: Linear quantile regression (Koenker 2005) with time-dependent
location effects derived from LGB STAR model, using Algorithm 1 to extract the
centered encoder f̂ c

J(R). The model equation is thus

Median(Y) = β0 +
12

∑
j=1

β j(s(j)) + β13 f̂ c
J(R)(r)

and can be viewed as a linearized LightGBM quantile regression model. The model
was fitted with the R package quantreg (Koenker 2021).

For the sake of brevity, we do not consider deep learning and mboost in this case
study. The models were tuned and trained on 80% of all observations and evaluated on the
remaining 20%. The data split and the cross-validation folds (for tuning LightGBM) were
created by stratification on ten quantile groups of the response variable to improve balance
across subsamples.

4.3. Results
4.3.1. Performance

As in the first case study, the model performance is evaluated on the independent test
dataset. In line with the aim of modeling a conditional median, the relevant performance
measure will now be the mean absolute error (MAE), while the RMSE is added for informa-
tion only. Table 5 shows that the constrained, highly interpretable LightGBM STAR model
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performs only slightly worse than the unconstrained model. The loss in performance of
the linear quantile regression with the LightGBM encoder is larger, but still surprisingly
small. It could be improved by adding non-linear terms. An MAE of 0.168 implies, thanks
to the logarithmic response, that the average relative appraisal error of the LightGBM STAR
model is about 16.8%.

Table 5. MAE and RMSE evaluated on the Swiss hold-out dataset.

Model MAE RMSE

LGB (unconstrained) 0.165 0.255
LGB STAR 0.168 0.259

QR with LGB loc 0.174 0.266

4.3.2. Effects of Additive and Non-Additive Features

Figure 12 shows ICE curves of the logarithmic surface area for a small random sample
of properties. As expected, the unconstrained model shows non-parallel curves, and thus,
its feature effects are difficult to interpret. In contrast to this behavior, the curves for the
LightGBM STAR model are intrinsically parallel, leading to a fully transparent description
of the effect. The corresponding effect in the linear quantile regression can be described by
a single number, namely, the slope of the lines.
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Figure 12. ICE curves for logarithmic living area.

On the other hand, the effect of the transaction time T is non-additive for all three
models due to interaction effects with location (Figure 13).
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Figure 13. ICE curves for the date of transaction.

4.3.3. Extracting Time-Dependent Location Effects

In this case study, the centered encoder f̂ c
J(R) serves as a one-dimensional represen-

tation of both time and locational effects. In the QR with LGB loc model, we followed
the workflow of Remark 4 and plugged the encoder as a derived feature into a simple-to-
interpret linear model while retaining complex time-varying locational effects.

Furthermore, since the large feature setR, consisting of 77 locational features plus time
T, has the natural low-dimensional representation (T, Latitude, Longitude), we can use the
projection trick discussed above to visualize the combined effect of R. To do so, we plot
heatmaps of the centered encoder over all unique combinations of latitude and longitude
and for different values of T. Figure 14 shows realistic relative price maps with the usual
hotspots of Zurich, Geneva, and St. Moritz. An increasing price trend is clearly visible. Due
to interaction effects between time and location, the time trend varies across locations.
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Figure 14. Time-dependent relative location effects in Switzerland extracted from the LightGBM
STAR model.

Remark 7 (Regional hedonic indices). In Figure 14, we visualized regional effects for selected
time points. Similarly, it would be straightforward to visualize time effects for selected addresses. In
fact, each ICE curve in Figure 13 shows an address-specific time effect. Regional indices at some
administrative unit (e.g., the canton) could be created by a STAR model using additive components
for the object characteristics, one component for all regional effects, and one component for canton
and time.

5. Discussion and Conclusions

We have shown that, thanks to interaction constraints, the two high-performance
gradient boosting libraries XGBoost and LightGBM can be used to create highly intelligible
and accurate GAM and STAR models. In contrast to traditional ways of fitting such models,
tree-based additive components can use large groups of features. The combined effects of
such groups can be extracted as derived one-dimensional features and used in subsequent
analyses, such as in a simplified linear regression model.

This paper is the first to apply these techniques to house price valuation, where a large
group of location features that contribute to land value can be represented with maximum
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flexibility while restricting the effects of each building characteristic to be additive for
full transparency.

Our case studies illustrate the usefulness of these techniques, as well as their flexibility.
In the Miami case study, we found that the XGBoost methods performed very well with
respect to predictive accuracy, with a constrained model that allowed for some transparency
performing nearly as well as an unconstrained model that was completely opaque. More-
over, an OLS model with a single location variable derived from the constrained XGBoost
model also performed quite well. In the Swiss case study, the highly interpretable Light-
GBM STAR (constrained) model performed almost as well as the unconstrained LightGBM
model. A linear regression model with a single location variable derived from the con-
strained model also performed well. In general, these approaches combine two desirable
features: high predictive accuracy and interpretability for selected variables.

A further application in real estate modeling would be to add high-dimensional
numeric information extracted from text and/or images—just like a group of locational
features—to the model, without reducing the interpretability of the other covariates. The
techniques are not only relevant in situations involving housing data. Consider, for example,
automobile insurance pricing models, where one could represent driver characteristics
in an additive and fully transparent way while letting characteristics of the car interact
freely with each other. Finally, further research is needed to identify applications where
structured deep learning would outperform gradient boosting with interaction constraints.
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