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MATRIX GAMMA DISTRIBUTIONS AND RELATED

STOCHASTIC PROCESSES

TOMASZ J. KOZUBOWSKI, STEPAN MAZUR, AND KRZYSZTOF PODGÓRSKI

Abstract. There is considerable literature on matrix-variate gamma distri-

butions, also known as Wishart distributions, which are driven by a shape pa-
rameter with values in the (Gindikin) set {i/2, i = 1, . . . , k−1}∪((k−1)/2,∞).

We provide an extension of this class to the case where the shape parameter

may actually take on any positive value. In addition to the well-known singular
Wishart as well as non-singular matrix-variate gamma distributions, the pro-

posed class includes new singular matrix-variate distributions, with the shape

parameter outside of the Gindikin set. This singular, non-Wishart case is no
longer permutation invariant and derivation of its scaling properties requires

special care. Among numerous newly established properties of the extended

class are group-like relations with respect to the positive shape parameter.
The latter provide a natural substitute for the classical convolution proper-

ties that are crucial in the study of infinite divisibility. Our results provide
further clarification regarding the lack of infinite divisibility of Wishart distri-

butions, a classical observation of Paul Lévy. In particular, we clarify why the

row/column vectors in the off-diagonal blocks are infinitely divisible. A class of
matrix-variate Laplace distributions arises naturally in this set-up as the dis-

tributions of the off-diagonal blocks of random gamma matrices. For the class

of Laplace rectangular matrices, we obtain distributional identities that follow
from the role they play in the structure of the matrix gamma distributions.

We present several elegant and convenient stochastic representations of the

discussed classes of matrix-valued distributions. In particular, we show that
the matrix-variate gamma distribution is a symmetrization of the triangular

Rayleigh distributed matrix – a new class of the matrix variables that natu-

rally extend the classical univariate Rayleigh variables. Finally, a connection
of the matrix-variate gamma distributions to matrix-valued Lévy processes of

a vector argument is made. Namely, a Lévy process, termed a matrix gamma-
Laplace motion, is obtained by the subordination of the triangular Brownian

motion of a vector argument to a vector-valued gamma motion of a vector

argument. In this context, we introduce a triangular matrix-valued Rayleigh
process, which, through symmetrization, leads to a new matrix-variate gamma
process. This process when taken at a properly defined one-dimensional argu-

ment has the matrix gamma marginal distribution with the shape parameter
equal to its argument.
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1. Introduction

The classical k × k matrix-variate gamma (MG) distributions (see, e.g, [15]) in-
volve a matrix scale parameter and a shape parameter, which is restricted to the
values above (k − 1)/2. This class is closed with respect to the convolution, as
the sum of two independent MG random matrices is again MG, with the shape
parameter being the sum of the shapes of the summands (provided that the scaling
matrices of the summands are the same). It is well known that Wishart distribu-
tions are a subclass of matrix gamma distributions in an exact analogy with the
one-dimensional case, where chi-square distribution arises as a special case of the
gamma distribution. The Wishart distributions can be naturally defined also in the
singular case (see, e.g., [41]) and the convolution property is also valid for the non-
singular matrix-variate gamma distributions accompanied by the singular Wishart
distributions. This is a nontrivial result, due to [13], that the convolution property
holds over the so-called Gindikin semigroup {i/2, i = 1, . . . , k− 1}∪ ((k− 1)/2,∞),
see also [23]. However, this is as far as one can go regarding the closure with
respect to the convolution, which is due to the lack of infinite divisibility for the
entire class of MG distributions. Indeed, MG distribution is not infinitely divisible
in the usual sense, as remarked by [4]: “It is relevant to mention that the most
common examples in statistics of laws of positive definite random matrices, such
as the Wishart and gamma matrix distributions, are not infinitely divisible”. This
was perhaps first noted for the two-dimensional Wishart case in [27]. In [1], it was
shown that no Wishart distribution with one degree of freedom is a convolution of
two nontrivial distributions. In a far more complete fashion, the issue of infinite
divisibility was treated in [38] and [39] for the Wishart random matrix as well as
its sub-matrices, where the question of infinite divisibility of the blocks of Wishart
random matrices was posed. Further studies of Wishart characteristics functions
in [11] and [33] shed more light on the reasons for the lack of infinite divisibility.

In this work, we discuss a natural extension of the classical MG distributions,
where the shape parameter is no longer restricted to the Gindikin set and can
take on any positive value. The extension includes both the non-singular matrix-
variate gamma and singular Wishart distributions, as special cases. The original
MG distributions are embedded here without any change (with the shape parameter
above (k−1)/2), while the singular Wishart family is driven by the shape parameter
values in the set {1/2, . . . , (k−1)/2}. The extension allows for the shape parameter
to be anywhere in the interval (i/2, (i+1)/2] as well where i = 0, . . . , k−2, with the
corresponding rank of the random matrix taking on the values of i+ 1. To the best
of our knowledge, the presented extension of matrix-variate gamma distributions
to the case

α ∈
(

0,
1

2

)
∪
(

1

2
, 1

)
∪ . . . ∪

(
k − 2

2
,
k − 1

2

)
,

is the first of its kind. This extension and its properties is among the main contribu-
tions of this work. Let us note that while the term “singular gamma” matrix-variate
distribution has recently appeared in [31], the singular matrix-variate gamma dis-
tributions studied there were actually the familiar singular Wishart distributions,
with the shape parameter α ∈ {i/2, i = 1, . . . , k − 1}, which is the “discrete” part
of the Gindikin set.
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Even though the classical infinite divisibility group property does not hold for
this extended class of distributions, we provide a certain alternative to the stan-
dard convolution group property, leading to a closely related divisibility property.
We also present a complete characterization of the blocks of random Wishart and
gamma matrices in terms of their infinite divisibility. Through this, we argue that
the lack of infinite divisibility, which has been pointed out as a problem when build-
ing stochastic models based on these distributions, is not necessarily as prohibitive
as originally believed. The novel form of divisibility introduced in this paper, while
not completely yielding infinite divisibility of the entire matrix, can still be quite
effective in the construction of matrix-variate stochastic measures and stochastic
integration, which are crucial for time or/and space-dependent models, although
this topic is left for future studies. Our results indicate that, instead of reaching into
alternative versions of MG infinitely divisible distributions, as proposed in [35] and
[4], one can still work with the classical ones and exploit their explicit, analytically
tractable properties. Additionally, through the derived stochastic representations
of the MG distribution, we address the interpretability of the corresponding ran-
dom matrices where the shape parameter is not a half-integer, the lack of which
was sometimes pointed out in the literature, see [23].

We extend the fundamental analytical properties of the non-singular MG dis-
tributions to the singular case, discussed in detail in this paper. In particular,
we derive several interesting stochastic representations of random gamma matri-
ces and utilize MG distributions supported on non-negative definite matrices to
construct covariance-mean mixtures of matrix-variate normal distributions. This
leads to the new class of matrix-variate asymmetric distributions that are termed
matrix-variate generalized asymmetric Laplace distributions or, in short, matrix
asymmetric Laplace (MAL) distributions.

We note that the theory of matrix-variate distributions obtained by mixing a
matrix-variate Gaussian distribution with a randomly distributed covariance matrix
is well developed. Indeed, [5] considered a new class of infinitely divisible covariance
mixtures of Gaussian random matrices, while [35] introduced a class of infinitely
divisible positive-definite gamma random matrices and used them to define a ma-
trix gamma-normal distribution, which is also infinitely divisible. In turn, [42]
introduced a matrix-variate generalized hyperbolic distribution by compounding
matrix-variate normal distribution with generalized inverse Gaussian distributed
scale matrix. As a special case of these, the MAL distributions introduced in this
paper are fundamentally related to MG distributions, including their representa-
tion as the difference of two independent gamma distributed matrices. The close
relation between the MAL and MG distributions goes in both directions, as the
MAL distribution naturally appears as the distribution of the off-diagonal blocks of
gamma distributed matrices (regardless of whether the latter are singular or not).

Our paper is structured as follows. In Section 2, we review basic properties of
the classical MG distributions, including the singular case of Wishart distributions.
Here, we also discuss the class of MAL distributions as the distributions of the off-
diagonal blocks of random gamma matrices and establish some of their fundamental
properties that follow from the relation between these two classes. The singular
MG distributions are introduced in Section 3, where we discuss their structure and
some analytical and distributional results. This is followed by Section 4, where we
introduce an exchangeable version of MG distribution with the shape parameter



4 TOMASZ J. KOZUBOWSKI, STEPAN MAZUR, AND KRZYSZTOF PODGÓRSKI

falling below (k−1)/2, where k is the matrix dimension. Some basic properties and
the relation to the singular case are provided in this section as well. The problem
of infinite divisibility of the MG distributions is discussed in Section 5. Here, we
discuss the convolution properties of these distributions and address the question
posed by [39] concerning the infinite divisibility of the blocks of Wishart and MG
distributions. We provide a complete answer to the question through a stochastic
process representation of MG distributions. All proofs and technical results are
collected in the Appendix.

2. matrix-variate gamma, Laplace, and singular Wishart
distributions

In this section, we collect some known but relevant properties of the non-singular
MG and singular Wishart distributions. For this, we need some notation with which
we start. We let Ik denote a k × k dentity matrix, while 0 stands for the suitable
matrix of zeros. We use etr{A} for the exponent of the trace of the matrix A.

The symbol
d
= stands for the equality in distribution and ⊗ denotes the Kronecker

product. The notation C ≥ 0 means that the square matrix C is non-negative
definite and it is positive definite when C ≥ 0 and |C| > 0, which will be written
as C > 0. The set of all positive definite (symmetric) k × k matrices is denoted
by S+

k . This set constitutes a cone, that is, it is closed under the addition and
multiplication by a positive scalar. The non-negative definite matrices form a cone

as well, which is the closure S+
k .

2.1. Non-singular matrix-variate gamma distribution. Recall that a k × k
positive definite random matrix X is said to follow a MG distribution, which is
denoted by X ∼MGk(α,A), if its probability density function (PDF) is given by

f(X) =
1

Γk(α)|A|α
|X|α−(k+1)/2etr{−A−1X}, X > 0,(2.1)

where A ∈ S+
k is a scale parameter matrix (also known as a dispersion matrix), α

is a shape parameter such that α > (k− 1)/2, and Γk(α) is the generalized gamma
function, defined by

Γk(α) = πk(k−1)/4
k∏
i=1

Γ

(
α− i− 1

2

)
,

see [15, Chapter 3.6]. The crucial condition α > (k− 1)/2 ensures that the PDF is
properly defined and integrates to one over the cone S+

k . The case with A = Ik is
referred to as the standard matrix-variate gamma distribution of dimension k with
shape parameter α, denoted by MGk(α).

The LT of MGk(α,A) distribution is given by

ψX(T) =
1

Γk(α)|A|α

∫
X>0

|X|α−(k+1)/2etr{−(A−1 + T)X}dX

= |Ik + TA|−α,(2.2)

where T is a k×k symmetric matrix such that A−1+T (or, equivalently, A(Ik+TA)

or Ik + A
1
2 TA

1
2 ) is positive definite. In particular, the Laplace transform is well

defined for all positive definite T, which is true for any distribution on the cone S+
k .



MATRIX GAMMA DISTRIBUTIONS 5

This result about the domain of the LT is easily obtained by scaling the density of
a MG distribution and noticing that

|A−1 + T| = |A−1||Ik + AT| = |A−1||Ik + TA|.

Similarily, the characteristic function (ChF) of (2.1) is given by

(2.3) ϕX(T) = |Ik − ιTA|−α,

where ι2 = −1.

Remark 1. In general, the LT and the ChF of a random k×n matrix X are given
by ψX(T) = E

[
etr{−T>X}

]
and ϕX(T) = E

[
etr{ιT>X}

]
, respectively, where T

is a k×n real matrix (in the case of the Laplace transform, T must be also such that
the expectation is well-defined). However, here we can assume that the argument
T = (tij) is a symmetric matrix. Indeed, since X is a symmetric matrix, the trace
of T>X depends on tij and tji only through tij + tji, i.e.

tr(T>X) = tr

(
T + T>

2
X

)
.(2.4)

Thus, the assumption of the symmetry of T is not restrictive. However, it is impor-
tant to note that the final expressions in (2.2) and (2.3) are valid only for symmetric
T.

Remark 2. It is customary to use the Laplace transform for non-negative vari-
ables. This tradition has been extended for distributions on cones, such as S+

k (see
[34]). For a given distribution, the domain of the LT is the distribution specific
even in the one dimensional case, although it always contains [0,∞). Similarly, for
the distribution on the cone S+

k , it always contains the cone itself. The question of

whether the LT restricted to the values in S+
k determines the distribution on that

cone does not appear to be fully resolved, as we could find no results equivalent
to Lerch’s theorem in one dimension, [22]. Even in the case of infinitely divisible
distributions the typical argument starts with Fourier based Kchintchine-Lévy rep-
resentation, see, for example, [34]. However, the sufficiency of the LT restricted to
the cone for a unique definition of the Fourier transform, and thus of the infinitely
divisible distribution, does not seem to have been addressed so far. In the litera-
ture, see for example [26] and [32], the case of the non-singular gamma distribution
expanded by the singular Wishart distributions is defined through the form of the
LT on the cone, even though the considered distributions are not infinitely divisible.
Thus correctness of such a definition is not obvious. In general, the fact that the
LT with the argument restricted to S+

k defines the distribution of a positive-definite
random matrix should be probably argued through the analytic extension of such a
function, see [18] for a discussion of the LT and its inverse with the argument being
a matrix with complex entries. Nevertheless, we could not find any explicit refer-
ences regarding this fact and thus we prefer to utilize the properties of the Fourier
transform (characteristic function), which avoids this issue. We note that [40] is
sometimes quoted as a source of the theory on the Laplace transform on cones, see,
for example, [35]. However, the book actually uses the ChFs to deliver the result on
the canonical Lévy-Kchintchine representation of the infinitely divisible distribution
on a cone in a Euclidian space. Consequently, it is not easy, at least for us, to find
proper reference to the mathematical theory of the Laplace transform for distribu-
tions on a cone. Due to all this, we share the sentiment of William Feller who
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said ‘Within probability theory the use of multidimensional (Laplace) transforms is
comparatively restricted’, see XIII.8 [12].

There are other aspects that make the ChF of the matrix valued argument a
more convenient tool than the LT restricted to S+

k . While for non-negative random

vectors on Rk the LT restricted to the cone of vectors with non-negative entries does
define the distribution uniquely (see, e.g., [28]), this may not be so for arbitrary
distributions on Rk. Additionally, when we move to the cone of k × k positive
definite matrices, there is a difficulty with obtaining the distributions of sub-blocks
when working with the LT limited in the domain to the cone of positive definite
matrices. For example, consider the following general structure of a positive definite
random matrix with independent variables Γ, standard normal Z, and Γ̃ that is also
considered in this paper,

X =

(
Γ

√
ΓZ√

ΓZ Z2 + Γ̃

)
,

with the two cases of Γ: (1) standard exponential and (2) the reciprocal of squared
standard normal. Then, the Laplace transform ΨX(T) is well defined for T ∈
S+

2 . The off-diagonal term Y =
√

ΓZ has Cauchy distribution in case (2) and the
standard Laplace distribution in case (1). However, in the Cauchy case, this term
does not have a well defined LT while in the Laplace case, the LT is not properly
defined when the argument is outside of (−1, 1). Obtaining the LT of these off-
diagonal distributions directly from ΨX(T), T = (tij) ∈ S+

2 , is not possible. Indeed,
one cannot simply take t11 = t22 = 0 and then check the resulting LT, because such
T is not positive definite. Thus, the relation between the LT of the full matrix and
its blocks becomes complicated. This highlights technical difficulties of using the LT
on the cone. On the other hand, using it beyond the cone is problematic as well, as
it may be difficult to accurately define the domain. All this make the ChF on the
domain of all symmetric matrices a more ‘worry-free’ technical tool, which we shall
utilize in this paper. However, to keep up with the tradition, we also formulate some
of the results using the LT, in which case we also provide the regions of symmetric
matrix argument where the formulas hold, going beyond the cone, in a similar way
as it has been presented in the text following (2.2).

Remark 3. Let us note that if n is a positive integer and n ≥ k, then the
MGk(α,A) distribution with α = n/2 and A = 2Σ coincides with the Wishart
distribution with n degrees of freedom, see, e.g., [15, Chapter 3]. This is the distri-
bution of XX>, where X is a k×n random matrix whose columns are independent
and identically distributed (IID) mean-zero multivariate normal vectors with covari-
ance matrix Σ.

Remark 4. When k = 1, where we have α > (k − 1)/2 = 0 and A = a > 0, the
MG MGk(α,A) distribution reduces to a familiar univariate gamma distribution
with shape parameter α and scale parameter β = 1/a, denoted by G(α, β) and given
by the PDF

(2.5) f(x) =
βα

Γ(α)
xα−1e−βx, x ∈ R+.

In the standard MG case with k = 1, we get what we call standard gamma distri-
bution with shape α (and scale 1).
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Remark 5. It should be noted that if the argument T of the LT in (2.2) is a
diagonal matrix whose diagonal entries form a vector t ∈ Rk+, the function in (2.2)

(as a function of the vector-argument t) becomes the LT of a random vector in Rk+
consisting of the main diagonal elements of X ∼MGk(α,A). This provides a link
between MG distributions on S+

k , given by the LT (2.2) of a matrix-argument T, and

multivariate gamma distributions on Rk+, defined by the LT (2.2) of vector-argument
t, which is the main diagonal of the diagonal matrix T. There is a substantial
literature on multivariate gamma distributions with such a structure (see, e.g., [14];
[10]; [29]; [43]; and references therein), most recently in connection with the so called
permanental process, where these distributions provide their multivariate marginal
distributions (see, e.g., [10]). These processes are generalizations of the squared
and centered Gaussian process, which arise in this setting when α = 1/2. This is
related to the fact that if α = 1/2, the function in (2.2) with diagonal T is the
LT of the random vector (Y 2

1 /2, . . . , Y
2
k /2)> where (Y1, . . . , Yk)> has a (centered)

multivariate normal distribution with the covariance matrix A.

The MG distributions have a desirable scaling invariance property, formulated
below.

Proposition 2.1. Let A ∈ S+
k and let L be an arbitrary q × k matrix of con-

stants such that rank(L) = q ≤ k. Then LXL> ∼ MGq(α,LAL>) whenever
X ∼MGk(α,A), α > (k − 1)/2.

For the proof of this or other results of this work, see the Appendix.
From the above result we have the following permutation invariance of the matrix

gamma distributions. Let π be a permutation of {1, . . . , k} that is also identified
with its permutation matrix (δiπ(j))

k
i,j=1, where δkj = 1, if k = j and zero otherwise.

Thus, we have π> = π−1 and πXπ> = (Xπ−1(i),π−1(j))
k
i,j=1

Corollary 2.2. If X ∼MGk(α,A) where α > (k − 1)/2, then, for a permutation
matrix π, πXπ> ∼ MGk(α, πAπ>). In particular, in the standard case X ∼
MGk(α) with α > (k − 1)/2, we have X

d
= πXπ>.

Remark 6. It should be noted that the family is closed under the above ‘sandwiched’
scaling but not under the one-sided scaling. Indeed, as shown in Proposition 2.8
below, we have the following stochastic representation of X ∼MG2(α):

X
d
=

(
Γ (Γ/2)1/2Z

(Γ/2)1/2Z Z2/2 + Γ̃

)
,(2.6)

where the variables Γ and Γ̃ have standard gamma distributions with shape parame-
ters α > 1/2 and α−1/2, respectively, while the Z has standard normal distribution,
with all three variables mutually independent. For a positive definite matrix

A =

(
1 1
1 2

)
we obtain

AX
d
=

(
Γ + (Γ/2)1/2Z (Γ/2)1/2Z + Z2/2 + Γ̃

Γ + 2(Γ/2)1/2Z (Γ/2)1/2Z + Z2 + 2Γ̃

)
,

which clearly does not have MG distribution (is not even positive definite).
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In the next result, we recall the distributional structure of the blocks of the
random matrix X ∼ MGk(α,A). To formulate the result, we use the standard
notation for matrix-variate normal distribution, see [15]. Namely, we write X ∼
MN p,r(M,Σ ⊗Ψ) if the elements of the random matrix X are jointly normally
distributed, the p × r matrix M is the matrix of the expectations of the entries,
and Σ ⊗Ψ = cov

(
vec
(
X>
))

, where Σ and Ψ are p × p and r × r non-negative

definite matrices. Such a random matrix can be conveniently represented as X
d
=

M + Σ1/2ZΨ1/2, where Z is a p × r random matrix with IID standard normal
entries. Further, we also say that a r × r positive definite matrix X follows a
matrix-variate generalized inverse Gaussian (MGIG) distribution, denoted by X ∼
MGIGr(λ,Φ,Ψ), if its PDF is given by

f(X) =
2rλ|Φ|−λ

Bλ
(

1
4ΨΦ

) |X|λ−(r+1)/2etr

{
−1

2

(
ΦX−1 + ΨX

)}
,

where Φ and Ψ are symmetric non-negative definite matrices, λ ∈ R, and Bλ(·) is
the Type-2 Bessel function of Herz of matrix argument, see [18].

We note several basic distributional properties of the MGIG distributions that
are relevant for this paper (for a more complete account see, for example, [7] and
[26]). First, it is clear that MGIGr(λ,0,Ψ) coincides with MGr(λ, 2Ψ−1). More-
over, for X ∼MGIGr(λ,Φ,Ψ) we have

X−1 ∼MGIGr(−λ,Ψ,Φ),(2.7)

AXA> ∼MGIGr(λ,AΦA>,A>
−1

ΨA−1),(2.8)

where A is an invertible r × r scalar matrix (see, e.g., [3], [37]).
In what follows, for a block matrix

A =

(
A11 A12

A21 A22

)
,

with A11 (A22) invertible, the Schur complement of A11 (A22) is denoted by A22·1
(A11·2), i.e. A22·1 = A22 −A21A

−1
11 A12 (A11·2 = A11 −A12A

−1
22 A21).

Proposition 2.3. Consider the partition of X ∼ MGk(α,A) and its dispersion
matrix A ∈ S+

k , where α > (k − 1)/2, into the blocks

X =

(
X11 X12

X>12 X22

)
and A =

(
A11 A12

A21 A22

)
(2.9)

with dim(X11) = dim(A11) = r × r, r = 1, . . . , k − 1. Then it holds that

(i) X11 ∼MGr(α,A11),
(ii) X22 ∼MGk−r(α,A22),

(iii) X>12|X11 ∼MN k−r,r
(
A21A

−1
11 X11,

1
2A22·1 ⊗X11

)
,

(iv) X22·1 ∼MGk−r
(
α− r

2 ,A22·1
)
,

(v) X11|X12 ∼MGIGr
(
α− k−r

2 , 2X12A
−1
22·1X21, 2A−1

11·2
)
.

(vi) X12|X22 ∼MN r,k−r
(
A12A

−1
22 X22,

1
2A11·2 ⊗X22

)
,

Moreover, (X11 X12) is independent of X22·1.

Remark 7. The above result is partially formulated in [16, p. 4] without explicitly
stating (ii), while part (v) is formulated in [7, Theorem 1]. However, since the
proof of Theorem 3.3.9 in [15] and the proof of Theorem 1 in [7], which shows the
complete result for the Wishart case, applies without change to the MG case (see
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also [30] for a more rigorous proof) the proof of Proposition 2.3 shall be omitted.
We only point out that (vi) follows from (iii) in view of the permutation invariance
given in Corollary 2.2 and applied to the permutation that swaps the blocks in X
(and thus those in A as well).

There are several distributional relations that follow directly from the above
result, connected to the so-called Matsumoto-Yor property, see [7], [26], and [37],
which discusses how this property relates to the above structural form of the MG
distributions. Here, we limit ourselves to the following general relations between
MGIG and MG distributions, which follow from Proposition 2.3 and the relations
(2.7) - (2.8) by arguments that are summarized in the Appendix.

Corollary 2.4. For positive integers u, v, let A ∈ S+
u , B ∈ S+

v , C be a u × v
matrix, α > (u+ v − 1)/2, and

X ∼MGIGu
(v

2
− α, 2A, 2CBC>

)
,

Y ∼MGIGv
(
α− u

2
, 2C>AC, 2B

)
,

Z ∼MGv
(
α− u

2
,B−1

)
,

where X, Y, and Z are mutually independent. Then, we have

Y
d
= C>XC + Z.

There are some specifications of the above result that deserve to be stated ex-
plicitly.

Remark 8. If u = v and C is invertible, then we have

Y
d
= X + Z,

where Y ∼ MGIGu
(
α− u

2 , 2C>AC, 2B
)
, X ∼ MGIGu

(
u
2 − α, 2C>AC, 2B

)
,

and Z ∼MGu
(
α− u

2 ,B
−1
)
. In addition, if C = I and A = B, then

Y
d
= Y−1 + Z,

where Y ∼MGIGu
(
α− u

2 , 2A, 2A
)

and Z ∼MGu
(
α− u

2 ,A
−1
)
.

Corollary 2.5. In the notation of Proposition 2.3, let X ∼MGk(α,A) and define

X̃ =

(
X11 X12

X>12 X22·1

)
.(2.10)

Then the LT of X̃ is given by

ψX̃(T) = |Ik + AT|−α |Ik−r + A22·1T22|α−r/2 .

Remark 9. If X ∼ MGk
(
n
2 , 2Σ

)
with Σ > 0, then X has a k-variate Wishart

distribution with n degrees of freedom and covariance parameter Σ, denoted by
X ∼ Wk(n,Σ). We note that while the formal definition of MG distribution requires
that n ≥ k, it is well-known that for Wishart distributions this requirement is not
necessary, and for n < k we obtain singular Wishart distributions. This singular
case is discussed further in Subsection 2.3.
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The MG distribution has several interesting stochastic representations. We
present them below for the standard MG case, with proofs in the Appendix. Ex-
tensions to the general case are straightforward via the scaling property stated in
Proposition 2.1.

Let Zα = δΓα
1/2, where δ is a (symmetric) Rademacher variable (±1 with equal

probabilities), independent of the standard gamma variable Γα with shape param-
eter α. We refer to this variable and its distribution as generalized symmetric
Rayleigh, since in the case α = 1 it is the classical (symmetrized) Rayleigh distribu-
tion. We also note that the special case α = 1/2 corresponds to normal distribution
with mean zero and variance 1/2. For α > 1/2, consider a random, triangular 2×2
matrix

(2.11) Z2,α =

(
Zα 0
Z1/2 Zα−1/2

)
with independent entries. The variable Z2,α and its distribution will be referred
to as generalized matrix Rayleigh of dimension 2. Note that Z2,αZ>2,α has standard
MG distribution. We can generalize this to an arbitrary dimension k, by defining a
generalized (triangular) matrix-variate Rayleigh (MR) distribution with parameter
α > (k − 1)/2 through the recurrence relation

(2.12) Zk,α
d
=

(
Zr,α 0

Z0/
√

2 Zk−r,α−r/2

)
,

where r < k and Z0 has a standard (k− r)× r matrix-variate normal distribution,
Z0 ∼ MN k−r,r (0, Ik−r ⊗ Ir). In this recurrence, we assume the independence of
the blocks of the matrix on the right-hand-side of the relation. We shall write
Z ∼MRk(α) for such a random matrix, where α > (k − 1)/2. In the special case

with k = 1 we set Z1,α
d
= Zα, where we have α > 0.

The decomposition of a gamma distributed random matrix into the product of
a triangular Rayleigh matrix and its transpose is well known, see [44] and Propo-
sition 2.8 below. Before we turn to this result, we point out an interesting gener-
alization of the discussed construction in the result below, with the proof in the
Appendix.

Proposition 2.6. For α, β > 0, consider the following generalization of (2.11)

(2.13) Z =

(
Zα+β 0
Zα Zβ

)
,

where the entries are independent variables distributed as generalized symmetric
Rayleigh with the corresponding parameters. Then the following holds:

ZZ> =

(
Z2
α+β Zα+βZα

Zα+βZα Z
2
α + Z2

β

)
d
=

(
Z2
α + Z2

β Zα+βZα
Zα+βZα Z2

α+β

)
.

Corollary 2.7. Let α < 1/2 and

(2.14) Z =

(
Z1/2 0
Zα Z1/2−α

)
.

Then

ZZ> =

(
Z2

1/2 Z1/2Zα
Z1/2Zα Z

2
α + Z2

1/2−α

)
d
=

(
Z2
α + Z2

1/2−α Z1/2Zα
Z1/2Zα Z2

1/2

)
.
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The above results suggest a possibility of defining a 2 × 2 MG distribution for
any α > 0. Our work is aiming at such an extension, which is related to the result
in Corollary 2.7 and presented throughout the paper. For now, we provide the
following representations, valid for an arbitrary dimension k and standard MG case
with α ≥ k/2, which easily follow from Proposition 2.3.

Proposition 2.8. Let Γ ∼ MGk(α) where α ≥ k
2 . Further, for r < k, let Γ0 ∼

MGr(α), Γ1 ∼ MGk−r
(
α− k−r

2

)
, and Z0 ∼ MN k−r,r (0, Ik−r ⊗ Ir), all being

mutually independent. Finally, set

W =

(
Γ

1/2
0

Z0/
√

2

)
, V =

(
0

Γ
1/2
1

)
.

Then, we have

Γ
d
= WW> + VV>

=

(
Γ0

1√
2
Z0Γ

1/2
0

)
Γ−1

0

(
Γ0

1√
2
Γ

1/2
0 Z>0

)
+

(
0

Γ
1/2
1

)(
0 Γ

1/2
1

)

=

(
Γ0

1√
2
Γ

1/2
0 Z>0

1√
2
Z0Γ

1/2
0

1
2Z0Z

>
0

)
+

(
0 0
0 Γ1

)
.

(2.15)

In addition, the following triangular representations hold:

Γ
d
= UU>

d
= ZZ>,(2.16)

where Z ∼MRk(α) and

U =

(
Γ

1/2
0 0

1√
2
Z0 Γ

1/2
1

)
.

Remark 10. Due to the explicit nature of the representations and the indepen-
dence of the entries of Z and U in (2.16), one can conveniently use these relations
to simulate random MG variates. Of the two representations, the triangular one in-
volving Z is perhaps most suitable for this purpose as it does not involve any roots of
random matrices. However, both representations require simulation of gamma and
normal variables. See also Remark 18 in Subsection 3.1 for explicit representations
that include the singular MG case as well.

A simple consequence of the above stochastic representations is the result below
concerning the expectation and the covariance of a non-singular MG distribution.
The presented results can be deduces from the mathematically elegant results in
[24]. The explicit results for the Wishart case, where the matrix normal moments
have been utilized, are available in the literature, see, for example, [19]. Neverthe-
less, we present an independent derivation, which is useful for analogous results for
the singular MG case. Let us note that the existing results in this direction may
not be easily accessible by practitioners (see, e.g., [36], where the three dimensional
case is presented as a new result, and also [25], where more general results have
been obtained but, to the best of our knowledge, were not published as a journal
article).
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To formulate the results, we need the notion of the k2× k2 commutation matrix
Kk, consisting of k2 of k × k-blocks Sij defined through their entries,

(2.17) Sij;rs =

{
1; i = s, j = r,

0; otherwise.

Proposition 2.9. Let X be a k×k random matrix, such that X = X>, the entries
on and above the diagonal are uncorrelated, and their variances are given by the

matrix Σ =
(
σ2
ij

)k
i,j=1

. Then, the covariance matrix of X (defined as the covariance

of vec X, where vec is the vectorization operator on matrices) is given by

CX = diag (vec Σ) +


0 σ2

12S12 σ
2
13S13 . . . σ

2
1kS1k

σ2
21S21 0 σ2

23S23 . . . σ
2
2kS2k

σ2
31S31 σ

2
32S32 0 . . . σ2

3kS3k

...
...

...
. . .

...
σ2
k1Sk1 σ

2
k2Sk2 σ

2
k3Sk3 . . . 0


= diag (vec (Σ− diag Σ)) + (Σ⊗ 1k) ◦Kk.

Here, 1k is k×k matrix of 1’s, ◦ is the Hadamar product of matrices, and diag(V)
is a diagonal matrix with the entries of V on the diagonal in the case when V is a
vector, and the diagonal of V if the latter is a square matrix.

A straightforward proof of the result is given in the Appendix.
We note that the assumptions about non-correlated entries of the above result

are satisfied by Γ ∼ MGk(α), which follows, for example, from (2.15). Moreover,

we note that Var(Γii) = α and Var(Γij) = Var(
√

Γ/2Z) = α/2. This yields the

matrix Σα = α
(
1/21−δij

)k
i,j=1

of variances of Γ, leading to the following result.

Corollary 2.10. Let Γ ∼MGk(α). Then

E(Γ) = α Ik,

Cov (vec Γ) =
α

2
(Ik2 + Kk) .

More generally, if Γ ∼MGk(α,A), A ∈ S+
k , then

E(Γ) = αA,

Cov (vec Γ) =
α

2
(A⊗A) (Ik2 + Kk) .

The second part of the corollary follows from the standard properties of vector-
ization and Kronecker product,

vec(ABC) =
(
C> ⊗A

)
vec B,

(A⊗B) (C⊗D) = AC⊗BD,

(A⊗B)Kk = Kk(B⊗A).

2.2. matrix-variate Laplace distribution. In view of Proposition 2.3, one can
observe that the off-diagonal blocks of dimensions r × l and l× r, where l = k − r,
belong to the matrix gamma mean-covariance Gaussian mixtures, i.e. they have
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one the following two general structures:

XL = ΓM + Γ1/2Z,

XR = M>Γ + Z>Γ1/2,

where M is an r×l non-random matrix, Z ∼MN r,l(0,Ψ⊗Σ), and Γ ∼MGr(α,A).
The corresponding distributions constitute a special subclass of the matrix-variate
generalized hyperbolic distributions, considered in [42]. In the obvious analogy
to uni- and multivariate generalized asymmetric Laplace distributions discussed
in [20], we call these distributions matrix-variate generalized asymmetric Laplace
(MAL). The class has four non-superfluous matrix valued parameters M, A, Σ, Ψ
(identifiable up to a numerical scaling). We note that in the off-diagonal blocks of
the matrix gamma distribution we have Ψ = Ir. In the block notation of a ma-
trix valued gamma distribution, the distributions of X12 and X21 have the matrix
parameters Σ = A22·1/2, M = A−1

11 A12, and A = A11.
In the case when Ψ = Ir, we denote these distributions as MALr,l(α; A,M,Σ)

and MAL>l,r(α; A,M,Σ), respectively. It is not our intention to fully study this
class, but rather report properties that follow directly from those of the MG distri-
butions. For a dedicated study of this class we refer to [21].

In the first property, we show some distributional invariance properties between
the left-hand-side and right-hand-side multiplication of the matrix normal by matrix
gamma. It was first observed in [21] that in the vector case, the gamma matrix
multiplication is identical to scalar gamma multiplication. Namely, it was shown
that mixing a Gaussian vector with a gamma matrix is equivalent to mixing it with
a gamma scale as the following distributional identity shows:

Γm + Γ
1
2 Zσ

d
= mΓ + Σ

1
2 Z
√

Γ,

where σ > 0, m = (m1 . . . mr)
> is a non-random column, Z is a standard r × 1

Gaussian vector, Γ ∈MG1(α) is a standard gamma variable, Γ ∈MGr(α), and

Σ =
1

2

{
m>mIr −mm>

}
+ σ2Ir.

As an interesting consequence of this result, we observe that while the left-hand-side
is defined through a gamma matrix Γ that is not infinitely divisible and requires
α > r−1

2 , the right-hand-side is defined for any α > 0 and is infinitely divisible.
This observation contributes to understanding why the convolution properties do
hold for the off-diagonal vector components in the matrix but not for the matrix
itself. This somewhat surprising result for random vectors admits a generalization
to random matrices, as presented below with proofs in the Appendix.

Proposition 2.11. The LT of X ∼ MALr,l(α; A,M,Σ), α > r−1
2 , for each T

such that

(2.18) Ir +
A

1
2 (TM> + MT> −TΣT>)A

1
2

2
∈ S+

r

is given by

ψX(T) =

∣∣∣∣Ir + A
TM> + MT> −TΣT>

2

∣∣∣∣−α .
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The ChF of X ∼ MALr,l(α; A,M,Σ), α > r−1
2 , for any r × l matrix T is given

by

φX(T) =

∣∣∣∣∣Ir −A
ι
(
TM> + MT>

)
−TΣT>

2

∣∣∣∣∣
−α

.

The corresponding formulas for X> ∼MAL>l,r(α; A,M,Σ) are obtained by inter-

changing the T and T> on the right-hand-sides above.

Remark 11. Observe that the LT of the standard X ∼MALr,l(α; Ir,0, Il), which
is well defined for T such that

Ir −
TT>

2
∈ S+

r ,

is given by

ψX(T) =

∣∣∣∣Ir − TT>

2

∣∣∣∣−α ,
while the ChF of X, defined for an arbitrary T, is of the form

φX(T) =

∣∣∣∣Ir +
TT>

2

∣∣∣∣−α .
In addition, the following stochastic representation holds:

(2.19) X
d
= Zr,αZ>0 /

√
2,

where Zr,α ∼ MRr(α) and Z0 ∼ MN l,r(0, Il ⊗ Ir), where these matrix variables
are mutually independent. This represenation is a direct consequence of (2.16).

Remark 12. The representation (2.19) can be conveniently used to simulate matrix-
variate Laplace random variables, as it involves only independent normal and gamma
variables, readily available in standard packages.

Proposition 2.12. Let Γ ∼ MGr(α), Γ′ ∼ MGl(α), and Z ∼ MN r,l(0, Ir ⊗ Il)
and α > (min(r, l) − 1)/2. Then for each r × l matrix M, A ∈ S+

r , and Σ ∈ S+
l ,

we have

A
1
2 ΓA

1
2 M +

(
A

1
2 ΓA

1
2

) 1
2

ZΣ
1
2
d
= M′>A′

1
2 Γ′A′

1
2 + Σ′

1
2 Z
(
A′

1
2 Γ′A′

1
2

) 1
2

,

where

A′ = 2Σ + M>AM, M′ = A′
−1

M>A, Σ′ =
1

2

{
A−AMA′

−1
M>A

}
.

By combining the above results, we obtain an algebraic identity for the deter-
minants that can be of use when r � l. The result below is a generalization of
Theorem 18.1.1 of [17] and Lemma 5.1 of [21].

Corollary 2.13. If T is an r× l matrix with complex entries then for Σ ∈ S+
l and

an r × l real matrix M, we have

|A′|
∣∣∣∣Ir +

MT> + TM> −TΣT>

2

∣∣∣∣ =

∣∣∣∣A′ + A′T>M + M>TA′ −A′T>Σ′TA′

2

∣∣∣∣ ,
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where

A′ = M>M + 2Σ,

Σ′ =
1

2

(
Ir −MA′

−1
M>

)
.

The only part that needs a justification is the equality holding beyond T sat-
isfying the conditions of Proposition 2.11. However, as functions of T, both sides
are multivariate polynomials that coincide on an open set. Therefore, they have to
coincide across the entire domain of complex matrices T, since the coefficients of
the two polynomials must be the same on both sides.

For square Laplace matrices, we have the following generalization of the well-
known representation of a Laplace distributed random variable as the difference of
two independent gamma variables (see, e.g., [20]).

Proposition 2.14. In the standard square case where X ∼ MALr,r(α; 0, Ir) we
have the stochastic representation

X + X>
d
= Γ1 − Γ2,

where Γi, i = 1, 2, are IID MGr(α,
√

2Ir) distributed matrices.

2.3. Singular Wishart distribution. In Section 3, we propose an extension of
MG distributions that allows for an arbitrary parameter α > 0 and involves the
singular MG distributions. The special case of the new family is the class of the
singular Wishart distributions, which is a well-known family. Reference [41] con-
tains a number of valuable results on this subclass. Below we summarize the most
important properties of these distributions. The following definition of the singular
Wishart matrix may not be the most natural one, but it fits well with the extension
of the concept of random gamma matrices to the case with an arbitrary positive α.

Definition 1. Let k, r ∈ N with r < k. A k × k random matrix X is said to have
a singular Wishart distribution with r degrees of freedom and dispersion matrix
Σ = A/2 if the following stochastic representation holds:

X =

(
X11 X12

X>12 X>12X
−1
11 X12

)
and A =

(
A11 A12

A21 A22

)
.

Here, X11 ∼MGr(r/2,A11) =Wr(r,A11/2) and

X>12|X11 ∼MN k−r,r

(
A21A

−1
11 X11,

1

2
A22·1 ⊗X11

)
,

where dim(X11) = dim(A11) = r × r.

The above definition suggests that the distributions of different partitions of a
random matrix characterized by this distribution differ depending upon which part
of the matrix they are located in. In other words, one would expect that this class
of distributions is not closed on permutations of the coordinates. However, this is
not the case for the subclass of the singular Wishart distributions. In the result
below we let π be a permutation of (1, . . . , k) so that π(1), . . . , π(k) is a change
of the order of the coordinates. In this notation, for a k × k matrix X we let
Xπ = (Xπ(i)π(j)).

Theorem 2.15. Let k, n ∈ N and let π be a permutation of (1, . . . , k). If X ∼
Wk(n,Σ), then Xπ ∼ Wk(n,Σπ).
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The next result is well-known, see [23] and [13], and provides a general convo-
lution property for Wishart matrices, which covers both singular and non-singular
cases.

Theorem 2.16. If the k×k random matrices X1, . . . ,XN are all independent and

Xi ∼ Wk(ni,Σ), i = 1, . . . , N , and Σ > 0, then
∑N
i=1 Xi ∼ Wk(n,Σ), where

n =
∑N
i=1 ni.

Remark 13. Theorem 2.16 shows that the sum of independent Wishart random
matrices with the same dispersion matrix is again a Wishart random matrix. Let
us note that no assumption is imposed here on the degrees of freedom for these
Wishart matrices. In particular, the sum of singular and non-singular Wishart
matrices could be either singular or non-singular Wishart matrix. Moreover, the
sum of singular Wishart matrices could become a non-singular Wishart matrix.

3. A singular matrix-variate gamma distribution

As seen in the previous section, we have a restriction of the shape α to the
values in the open interval ((k − 1)/2,∞), except for the singular Wishart special
case that allows for α ∈ (0, (k − 1)/2] with α = i/2, i = 1, . . . , k − 1. Here, we
present a natural and consistent extension of this class that incorporates any value
of the shape parameter, including all real values in the interval (0, (k − 1)/2]. As
will be seen below, due to the singularity of this family of distributions, the manner
of introducing a matrix scaling parameter is not entirely obvious. For this reason,
we shall start with an extension of the standard MG case, where the dispersion
parameter is the identity matrix. Subsequently, we discuss different alternatives for
the matrix dispersion parameter.

Remark 14. Let us note that the term “singular gamma” matrix-variate distribu-
tion has recently appeared in [31]. However, the singular matrix-variate distribution
studied by the authors of [31] was, in fact, the singular Wishart distribution with
shape parameter α = q/2, as it was defined through the distribution of XX> with
X being a p× q matrix-variate normal with p > q, given by the PDF (1.7) in that
paper.

3.1. A standard singular matrix-variate gamma distribution. Throughout
this subsection, r = d2αe denotes the rank of the random matrix X described in the
definition below. We use the standard notation d·e to denote the smallest integer
upper bound (the ceiling function).

Definition 2. A k×k random matrix X is said to have a standard singular lower-
right matrix gamma distribution with parameter α ∈ (0, (k − 1)/2] if

X
d
=

(
X11 X12

X>12 X>12X
−1
11 X12

)
,(3.1)

where X11 ∼MGr(α) and X>12|X11 ∼MN k−r,r
(
0, 1

2Ik−r ⊗X11

)
, where r = d2αe.

In agreement with our previous notation, we denote the above distributions by
MGk(α). Notice that the structure of the matrix is not symmetric, as the lower-
right (k − r) × (k − r) block has different distribution than the upper-left r × r
block. If the roles of the blocks in the above definition are reversed, we obtain a
singular upper-left MG distribution, which we shall denote by MGk(α).
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We observe the following conditional distributions, which can be obtained by the
same arguments as those in the non-singular case.

Remark 15. We have the following singular analogs of the block conditional dis-
tributions:

X11|X12 ∼MGIGr
(
α− k − r

2
, 2X12X

>
12, 2Ir

)
,

X−1
11 |X21 ∼MGIGr

(
k − r

2
− α, 2Ir, 2X>21X21

)
,

X22|X21 = X21

(
X−1

11 |X21

)
X>21,

where X22 = X>12X
−1
11 X12.

Remark 16. Let us note that the above definition can be re-formulated with any
r ≤ d2αe, and many of the following results could be extended to this case. However,
any extension of singularity with r < d2αe can be equivalently obtained through an
additional singularity in the scaling matrix multiplication for the upper-left r × r
corner. Moreover, if α = r/2, where r is an integer less than k, then X ∼MGk(α)
defined via (3.1) has a singular Wishart distribution with r degrees of freedom and
A = Ik/2, as described in Definition 1. For these reasons, we restrict attention to
the largest possible value of r, i.e. r = d2αe.
Remark 17. Let us also note that (3.1) can be written in the following equivalent
forms:

(
X

1
2
11

X21X
− 1

2
11

)(
X

1
2
11 X

− 1
2

11 X12

)
=

(
X11

X21

)(
Ir X−1

11 X12

)
=

(
X11

X21

)
X−1

11

(
X11 X12

)
.

(3.2)

A direct application of the singular matrix-variate normal distributions (see [15],
Definition 2.4.1) leads to the following result.

Proposition 3.1. In the above notation, let X ∼ MGk(α) with α ∈ (0, k−1
2 ).

Then, conditionally on X11 = Γ0, we have the singular matrix-variate normal
representation:

X·1
def
=

(
X11

X21

)
d
=

(
0

Ik−r

)
Z0Γ

1/2
0 /
√

2 +

(
Γ0

0

)
,

where Z0 ∼ MN k−r,r(0, Ik−r ⊗ Ir). Thus, (X·1|X11 = Γ0) ∼ MN k,r(M,Σ ⊗
Γ0/2|k − r, r), where

M =

(
Γ0

0

)
, Σ =

(
0 0
0 Ik−r

)
.

This singular matrix-variate normal distribution resides on the set of all k × r
matrices X·1 such that the top r × r block, X11, is constant equal to Γ0 and the
lower (k − r) × r block, X21, is an arbitrary one. The density over this set of
matrices, say MΓ0 , is given by

fX·1|X11
(X·1|Γ0) = (2π)

r(k−r)
2r/2|Γ0|−r/2etr

{
(X·1 −M)Γ−1

0 (X·1 −M)>
}
, X·1 ∈MΓ0

.

The following result provides a fundamental representation of standard singular
lower-right matrix-variate distribution, which is analogous to the well-known repre-
sentation of standard singular Wishart distribution as the product ZZ> involving
a standard normal random matrix Z. The proof can be found in the Appendix.
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Proposition 3.2. Let X ∼MGk(α) with α ∈ (0, k−1
2 ], and set r = d2αe. Then X

admits the following stochastic representation:

X
d
= ZZ> =

(
Γ0

1√
2
Γ

1/2
0 Z>0

1√
2
Z0Γ

1/2
0

1
2Z0Z

>
0

)
=

(
Γ0

1√
2
Z0Γ

1/2
0

)
Γ−1

0

(
Γ0

1√
2
Γ

1/2
0 Z>0

)
,

where

Z =

Γ
1/2
0

Z0√
2


is a k × r stochastic matrix with mutually independent Γ0 ∼MGr(α) and

Z0 ∼MN k−r,r(0, Ik−r ⊗ Ir).

Moreover, the rank of X is equal to r = d2αe and its (singular) density, which
resides on all non-negative definite matrices of the form (3.1) with positive definite
X11, is given by

fX(X) = fX(X11,X12) =
|X11|α−(k+1)/2

πr(k−r)/2Γr(α)
etr {−X}

while the LT of X is well-defined for each symmetric k × k matrix T for which

Ir + T11 −T12 (Ik−r + T22)
−1

T21 ∈ S+
r

and takes the form

(3.3) ψX(T) = |Ik + T|−α |Ik−r + T22|α−
r
2 .

The ChF for a symmetric matrix T has the form

(3.4) ψX(T) = |Ik − ιT|−α |Ik−r − ιT22|α−
r
2 .

Having the representation given in Proposition 3.2, it is straightforward to obtain
the formulas for the mean and the variance of the singular MG distribution, which
are analogous to the ones for the non-singular case given in Corollary 2.10. To
use Proposition 3.2, we need to show that in the singular case the entries in Γ are
uncorrelated, which is rather straightforward. Indeed, the entries in Γ0 and Z0Z

>
0

(given in Proposition 3.2) are uncorrelated as these are a non-singular gamma and

Wishart matrices, respectively. The ith and jth columns of Γ
1/2
0 Z>0 , i > j > r,

are made of uncorrelated variables, since they are obtained as an inner product of
independent rows in Z0. The entries i and s in the lth column are uncorrelated,
since

E

 k∑
j=1

Γ
1/2
ij Zlj

k∑
j=1

Γ
1/2
sj Zlj

 = E

 k∑
j=1

Γ
1/2
ij Z2

ljΓ
1/2
sj


= E

 k∑
j=1

Γ
1/2
ij Γ

1/2
sj


= E(Γis)
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and the latter is zero as reported in Corollary 2.10. The terms in Γ
1/2
0 Z>0 and Z0Z

>
0

are uncorrelated since

E

 k∑
j=1

Γ
1/2
ij Zlj

k∑
j=1

Z2
lj

 = E

 k∑
j=1

Γ
1/2
ij Z3

lj

 = 0.

Finally, the terms in Γ
1/2
0 Z>0 and the terms in Γ0 are uncorrelated due to the

independence of Z0 from Γ0.
We note also that

E


 k∑
j=1

Γ
1/2
ij Zlj

2
 = E

 k∑
j=1

Γ
1/2
ij Γ

1/2
ij


= E(Γii),

so that the matrix Σ of the variances of Γ ∼MGk(α), α < (k − 1)/2, is given by

Σ =

(
αHr

α
2 1r,k−r

α
2 1>r,k−r

r
2Hk−r

)
= αHk +

(r
2
− α

)(
0 0
0 Hk−r

)
,

where Hs =
(
1/21−δij

)s
i,j=1

, s ∈ N. Thus, using the linearity in Proposition 3.2 with

respect to Σ, we obtain the following formulas for the mean and the covariances.

Proposition 3.3. Let Γ ∼MGk(α), α < (k − 1)/2. Then,

E(Γ) =

(
α Ir 0
0 r

2 Ik−r

)
,

Cov (vec Γ) =
α

2
(Ik2 + Kk) +

+
(r

2
− α

)(
diag

(
vec

(
0 0
0 Hk−r

))
+

1

2

(
0 0
0 1k−r − Ik−r

))
.

We now extend the definition of the random Rayleigh matrix Zk,α ∼ MRk(α)
in (2.11) to an arbitrary α using the recurrence in (2.12) and assuming that for a
negative α the matrix (variable) vanishes, i.e. becomes a matrix of zeros. Below we
provide a representation of singular MG variables in terms of these extended MR
distributions, which is analogous to the one that holds in the non-singular case. This
representation, which follows directly from the above result and Proposition 2.8,
provides a natural method of simulating singular MG random matrices.

Corollary 3.4. Let Zk,α ∼MRk(α) where α > 0. Then ZαZ>α ∼MGk(α).

Remark 18. Below we provide two explicit triangular representations of an ar-
bitrary (singular or not) X ∼ MGk(α), which are useful for simulation of these
random matrices. First, for any α > 0 and i ∈ {1, 2, . . . , k − 1}, we define

αi =
(
α− i−1

2

)+
, where x+ is the positive part of x ∈ R. In particular, we have

α1 = α. We also define a binary {δi} where δi = 1 whenever α > i−1
2 (and zero oth-

erwise). Further, we let Zαi ∼ MR1(αi) be one-dimensional generalized Rayleigh
variables (which reduce to zero when αi = 0) and we let Γαi be one-dimensional
standard gamma variables, with shape parameters given by αi (which also become
zero when αi = 0). Finally, we let {Zi,j} be IID standard normal variables and we
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let {Zi,j1/2} be IID copies of generalized symmetric Rayleigh variables with shape pa-

rameter 1/2. Under this notation, we define two k× k triangular random matrices
as follows

Zα =



Zk,α1
0 0 0 0 . . . 0 0

Z2,1
1
2

Zα2 0 0 0 . . . 0 0

Z3,1
1
2

δ2Z
3,2
1
2

Zα3 0 0 . . . 0 0

Z4,1
1
2

δ2Z
4,2
1
2

δ3Z
4,3
1
2

Zα4
0 . . . 0 0

Z5,1
1
2

δ2Z
5,2
1
2

δ3Z
5,3
1
2

δ4Z
5,4
1
2

Zα5
. . . 0 0

...
...

...
...

...
. . .

...
...

Zk−1,1
1
2

δ2Z
k−1,2
1
2

δ3Z
k−1,3
1
2

δ4Z
k−1,4
1
2

δ5Z
k−1,5
1
2

. . . Zαk−1
0

Zk,11
2

δ2Z
k,2
1
2

δ3Z
k,3
1
2

δ4Z
k,4
1
2

δ5Z
k,5
1
2

. . . δk−1Z
k,k−1
1
2

Zαk


,(3.5)

Uk,α =



Γ
1/2
α1 0 0 0 0 . . . 0 0
Z2,1√

2
Γ

1/2
α2 0 0 0 . . . 0 0

Z3,1√
2

δ2
Z3,2√

2
Γ

1/2
α3 0 0 . . . 0 0

Z4,1√
2

δ2
Z4,2√

2
δ3
Z4,3√

2
Γ

1/2
α4 0 . . . 0 0

Z5,1√
2

δ2
Z5,2√

2
δ3
Z5,3√

2
δ4
Z5,4√

2
Γ

1/2
α5 . . . 0 0

...
...

...
...

...
. . .

...
...

Zk−1,1√
2

δ2
Zk−1,2√

2
δ3
Zk−1,3√

2
δ4
Zk−1,4√

2
δ5
Zk−1,5√

2
. . . Γ

1/2
αk−1 0

Zk,1√
2

δ2
Zk,2√

2
δ3
Zk,3√

2
δ4
Zk,4√

2
δ5
Zk,5√

2
. . . δk−1

Zk,k−1√
2

Γ
1/2
αk



,

(3.6)

where all the random entries in the above matrices are mutually independent. Then,
we have the following stochastic representation of X ∼MGk(α)

X
d
= Zk,αZ>k,α

d
= Uk,αU>k,α.

We also have the following interesting representation of MG random matrices,
which can be easily deduced from the above remark.

Theorem 3.5. For each α > 0 and k ∈ N, the following stochastic representation
of X ∼MGk(α) holds:

X
d
= Γα + Γ1/2

α Z> + ZΓ1/2
α + ZZ>,

where Γα and Z are independent, Γα is a k × k random diagonal matrix with
diagonal entries of the form Γαi , i = 1, . . . , k (which are standard gamma variables

with shape parameters αi whenever αi =
(
α− i−1

2

)+
> 0 and zeroes otherwise), and

Z is a random triangular square matrix with zeros on and above the main diagonal,
zeros below the main diagonal in the i-column if αi = 0, and IID N (0, 1/2) variables
below the main diagonal in all other columns.
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It follows from the results of [41] and the form of the LT given in (3.4), that
the singular Wishart distribution is a scaled singular MG distribution, as reported
next.

Corollary 3.6. If r = 2α ≤ k − 1 is a positive integer and X ∼ MGk( r2 ), then
X/2 has the singular Wishart distribution Wk(r, Ik).

Since for a singular MG random matrix X ∼MGk(α) with α ≤ k−1
2 the lower-

right (k − r)× (k − r) block X22 of X is functionally dependent on the remaining
blocks of X, the distribution of X is uniquely determined by the distribution of

X0 =

(
X11 X12

X>12 0

)
.

Thus, the LT of X0 uniquely defines the distribution of X. If T is a symmetric
matrix and T0 is the same as T but with the lower-right corner set to zero in the
same way as in X0, then

E [etr{−T0X}] = E [etr{−TX0}] .

Consequently, the unrestricted LT of X0 coincides with the restricted LT of X.
This leads to the following result.

Corollary 3.7. We note the following restricted LT of X ∼MGk(α) with α > 0

ψX(T0) = ψX0
(T) = |Ik + AT0|−α,(3.7)

where

T =

(
T11 T12

T>12 T22

)
(3.8)

with a symmetric T11 of dimension r × r and where T0 is obtained from T by
setting T22 = 0. Since the lower-right block X22 of X is functionally dependent
on the remaining blocks X11 and X12 (that also define the entire distribution), this
restricted LT of X uniquely defines the distribution.

3.2. A scaled singular matrix-variate gamma distribution. As we have seen
in Section 2, the non-negative definite matrix dispersion parameter A of a non-
singular MG distribution was introduced by simply scaling both sides of the stan-
dard MG X by the square root of A. According to Proposition 2.1, a more general
matrix scaling parameter L yields LXL>, which distributionally depends only on
LAL> and thus results in another non-negative definite dispersion parameter. How-
ever, as will be seen below, for the singular case of X ∼MGk(α) with α ≤ (k−1)/2,
the distribution of LXL> does not depend on L only through LL>. For this reason,
we propose the following general definition of the scaled singular MG distribution.

Definition 3. Let X be a standard singular k × k MG variable with parameter

α ∈ (0, (k − 1)/2] and let L be a k × k matrix. Then, Y
d
= LXL> is said to have

an L-scaled singular MG distribution, denoted by SMGk(α,L).

By Corollary 3.6 and Corollary 3.4 of [41], it follows that the singular Wishart
family is a sub-class of the scaled singular MG distributions, as shown below.

Corollary 3.8. If r = 2α ≤ k − 1 is an integer, then the SMGk
(
r
2 ,
√

2A1/2
)

distribution coincides with the singular Wishart distribution Wk(r,A).
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Below we obtain the exact form of the (singular) PDF of the scaled MG distri-
butions for two particular forms of L. But first, we describe the set on which the
singular MG distribution resides on. The proof of the following result can be found
in the Appendix.

Proposition 3.9. Let X ∼ SMGk(α,L) with L of full rank, α ∈ (0, (k−1)/2], and
r = d2αe. In the notation of Proposition 3.2 the following stochastic representation
holds

X
d
= L

(
Γ0

1√
2
Z0Γ

1/2
0

)
Γ−1

0

(
Γ0

1√
2
Γ

1/2
0 Z>0

)
L>.

Moreover, X has the form (3.1) and its rank is equal to d2αe.
The following result concerning the LT of X ∼ SMGk(α,L) follows directly from

Proposition 3.2, and its short proof can be found in the Appendix.

Proposition 3.10. Let X ∼ SMGk(α,L) with a k×k matrix L and α ≤ (k−1)/2.
Then the LT of X, evaluated at a symmetric T satisfying

(3.9) Ir +
(
L>TL

)
11
−
(
L>TL

)
12

(
Ik−r +

(
L>TL

)
22

)−1 (
L>TL

)
21
∈ S+

r ,

is given by

ψX(T) = |Ik + LL>T|−α
∣∣Ik−r +

(
L>TL

)
22

∣∣α− r2 ,(3.10)

where r = d2αe and C22 stands for the lower-right, (k − r) × (k − r) corner of a
k × k matrix C.

Although one can derive further properties of the scaled singular MG distribution
for any general L, we shall focus on two specific cases where L is related to a non-
negative definite matrix dispersion parameter A. In the first case, we take L = A1/2

while in the second one we take L = A2·1, where

(3.11) A2·1 =

(
A

1/2
11 0

A21A
−1/2
11 A

1/2
22·1

)
.

Observe that in both cases we have LL> = A. However, despite having the same
dispersion, the two subclasses of the scaled singular MG distributions are essentially
different. The following simple example in two dimensions illustrates the difference.

Example 1. The standard singular MG variable X in two dimensions can be rep-
resented as

X
d
=

(
Γ

√
Γ/2Z√

Γ/2Z Z2/2

)
,

where Z is standard normal and Γ is standard gamma with shape parameter α ≤
1/2. Consider the dispersion matrix A and two scaling matrices, L1 and L2, where

A =

(
2 3
3 5

)
, L1 = A1/2 =

(
1 1
1 2

)
, L2 = A2·1 =

( √
2 0

3/
√

2 1/2

)
,

for which we have LiL
>
i = A, i = 1, 2. Then, we have

L1XL>1 =

(
(
√

Γ + Z/
√

2)2 Γ + Z2 + 3
√

Γ/2Z

Γ + Z2 + 3
√

Γ/2Z (
√

Γ +
√

2Z)2

)
,

L2XL>2 =

(
2Γ 3Γ +

√
ΓZ/2

3Γ +
√

ΓZ/2 (3
√

Γ + Z/2)2/2

)
.
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If α = 1/2, so that X is singular WishartW2(1, I2/2), then, by Corollary 3.3 of [41],
in both cases we get one and the same singular Wishart distribution W2(1,A/2),
although this is not easily seen by comparing the above matrices. However, when
0 < α < 1/2, the two distributions are essentially different. This can be seen by
comparing the variables in the corresponding upper-left corners. Indeed, routine
albeit tedious calculations show that the LT of the variable (

√
Γ + Z/

√
2)2 is of the

form

ψ(t) =
1√

1 + t

(
1 + t

1 + 2t

)α
, t > 0,

which is not the same as the LT (1 + 2t)−α of the gamma variable 2Γ (unless
α = 1/2 and X is singular Wishart).

3.3. The scaling L = A1/2. The (singular) density and the LT of the singular
MG distributions are discussed in the next two results. Rather technical proof of
the result below can be found in the Appendix.

Theorem 3.11. Let X ∼ SMGk(α,A1/2), where α ≤ (k − 1)/2 and X, A are
partitioned as in (3.1). Then the support of the PDF of X is the subset of non-
negative definite k × k matrices X of rank r = d2αe having the form

X =

(
X11 X12

X>12 X>12X
−1
11 X12

)
,

where dim(X11) = r × r. Further, the PDF is given by

fX(X11,X12) =
|X11|(r−k−1)/2−α

πr(k−r)/2Γr(α)|A|r/2
|B11X11 + B12X

>
12/
√

2|2α−retr
{
−A−1X

}
,

where B = A−1/2 and its blocks of respective sizes r × r, r × (k − r), (k − r) × r,
and (k − r)× (k − r) are denoted by B11, B12, B21, B22.

In an important special case where A12 = 0 we have a substantial simplification
of the PDF, presented below.

Corollary 3.12. In the special case where A12 = 0 we obtain the following simple
form of the PDF of X ∼ SMGk(α,A1/2):

fX(X11,X12) =
πr(r−k)/2

Γr(α)|A11|α|A22|r/2
|X11|α−(k+1)/2etr

{
−A−1X

}
(3.12)

=
πr(r−k)/2

Γr(α)|A|α|A22|r/2−α
|X11|α−(k+1)/2etr

{
−A−1X

}
.

The formula for the LT given in the result below follows directly from Proposi-
tion 3.10 with L = A1/2.

Theorem 3.13. Under the setting and assumptions of Theorem 3.11, the LT of X
is given by

ψX(T) = |Ik + AT|−α
∣∣∣Ik−r +

(
A1/2TA1/2

)
22

∣∣∣α− r2 ,(3.13)

where r = d2αe and C22 stands for the lower-right, (k − r) × (k − r) corner of a
k × k matrix C.
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The above result can be utilized to obtain the marginal distributions of the
diagonal blocks. The result below, whose proof can be found in the Appendix,
provides the details.

Theorem 3.14. Under the setting and assumptions of Theorem 3.11, let X11,
X12 = X21, and X22 be the standard partition of X into the blocks, with X11 being
an r × r matrix where r = d2αe. Then, we have the following LTs of the blocks

ψX11
(T11) = |Ir + A11T11|−α |Ir + B12B21T11|α−

r
2 ,

ψX22
(T22) = |Ik−r + A22T22|−α

∣∣Ik−r + B2
22T22

∣∣α− r2 ,
where B22, B12 and B21 are the blocks of A1/2.

Remark 19. Note that since r = d2αe, so that r − 1 < 2α ≤ r and thus α >
(r−1)/2, the first factor in the LT of X11 is the LT of a non-singular MG variable
Γ1 ∼MGr(α,A11). If, in addition, the matrix B12B21 is positive definite, then we
have the following distributional identity

X11 + Γ0
d
= Γ1 + W ,

where all the variables are mutually independent, Γ0 ∼ MGr(α,B12B21) is non-
singular MG, and W ∼ Wr(r,B12B21/2) is non-singular Wishart. This is a con-
sequence of Theorem 3.14, which implies the identity

ψX11
(T11) |Ir + B12B21T11|−α = |Ir + A11T11|−α |Ir + B12B21T11|−

r
2 ,

where the four factors in the above relation are the LTs corresponding to the four
relevant distributions. Further, if α < 1/2, so that r = 1, all these four variables
have univariate gamma distributions. In particular, the distribution of the variable
X11 is a convolution of two gamma distributions, say G(α, a) and G(1/2−α, b), while
Γ0 ∼ G(α, b), and thus the distribution of the left-hand-side in the distributional
identity becomes the convolution of G(α, a) and G(α, 1/2), which is precisely the
distribution of the right-hand-side. There is a similar interpretation involving the
variable X22. However, in order for the first factor in the LT of X22 to be the

LT of a non-singular MG variable Γ̃1 ∼ MGk−r(α,A22), we need to have that
α > (k − r − 1)/2. It can be shown that this condition is satisfied whenever α >
(dk/2e − 1)/2, in which case we have the distributional identity

X22 + Γ̃0
d
= Γ̃1 + W̃ ,

where all the variables are mutually independent, Γ̃0 ∼ MGk−r(α,B2
22) is non-

singular MG, and W̃ ∼ Wk−r(r,B
2
22/2) is non-singular Wishart. Again, this fol-

lows from Theorem 3.14, which implies the identity

ψX22
(T22)

∣∣Ik−r + B2
22T22

∣∣−α = |Ik−r + A22T22|−α
∣∣Ik−r + B2

22T22

∣∣− r2 ,
where the four factors in the above relation are the LTs corresponding to the four
relevant distributions. Further, if (k − 2)/2 < α < (k − 1)/2, so that r = k − 1
and k − r = 1, all the variables above have univariate gamma distributions, with
the distribution of X22 being a convolution of two gamma distributions, say G(α, a)

and G(r/2 − α, b) and where Γ̃0 ∼ G(α, b). It follows that the distribution of the
left-hand-side in the distributional identity becomes the convolution of G(α, a) and
G(α, r/2), which is precisely the distribution of the right-hand-side.
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3.4. The scaling L = A2·1. In this section, we propose an alternative singular MG
distribution with a dispersion matrix parameter. While this family is essentially
different from the one discussed in the previous section, the two families coincide
in several important special cases.

Definition 4. A k× k random matrix X is said to have a singular matrix-variate
gamma distribution with parameter α ∈ (0, (k − 1)/2] and dispersion matrix A if
the following stochastic representation holds

X
d
=

(
X11 X12

X>12 X>12X
−1
11 X12

)
and A =

(
A11 A12

A21 A22

)
.(3.14)

Here, X11 ∼MGr(α,A11) and X>12|X11 ∼MN k−r,r
(
A21A

−1
11 X11,

1
2A22·1 ⊗X11

)
,

where dim(X11) = dim(A11) = r × r with r = d2αe.

We consider this distribution as a most natural extension with scaling of the
non-singular matrix gamma distribution and thus we consistently denote it by
MGk(α,A). Observe that, as in the standard case corresponding to A = Ik,
the above definition can be retained for any r ≤ d2αe. However, as in the standard
case, we restrict ourselves to the largest r, where r = d2αe. We also note that the
distributions defined above constitute a subclass of the scaled singular MG distri-
butions. The stochastic representation discussed in the result below follows directly
from Definition 4.

Theorem 3.15. The class of distributions defined in Definition 4 coincides with
the SMGk(α,L) distributions with L = A2·1 given by (3.11). In addition, under
the assumptions of Proposition 3.9, the following representation holds

X
d
=

(
A

1/2
11 0

A21A
−1/2
11 A

1/2
22·1

)(
Γ0

1√
2
Γ

1/2
0 Z>0

1√
2
Z0Γ

1/2
0

1
2Z0Z

>
0

)(
A

1/2
11 A21A

−1/2
11

0 A
1/2
22·1

)
.

Remark 20. Considering the marginal distributions of X ∼ SMGk(α,A1/2) pro-
vided by Theorem 3.14, it is clear from the above definition that the two distributions
do not coincide as long as B12 6= 0 and α /∈ Sk, where Sk = ((k−1)/2,∞)∪{i/2, i =
1, . . . , k − 1} (see the notation in Theorem 3.13). On the other hand, if α ∈ Sk or
A12 = 0, the two classes of distributions are the same.

Remark 21. The matrix-variate distribution MGk(α,A) with α ≤ (k − 1)/2 can
be naturally referred to as the singular MG distribution of rank d2αe. Let us note
that the random matrix X with singular MG distribution is written in terms of its
functionally independent elements, X11 and X12. Additionally, Definition 4 tells
us that X11 has a non-singular MG distribution, while the conditional distribution
of X>12 given X11 is a non-singular matrix-variate normal, which is consistent with
the non-singular case reported in Proposition 2.3.

Next, we point out that the singular Wishart distribution relates in the same
manner to the singular MG distribution as it does in the non-singular case. The
result below follows directly from Definition 2 and Corollary 3.4 of [41].

Corollary 3.16. If r = 2α ≤ k−1 is an integer, then theMGk
(
r
2 , 2A

)
distribution

coincides with the singular Wishart distribution Wk(r,A).

We now provide the density function of the singular MG distribution, with the
proof in the Appendix.
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Theorem 3.17. Let X ∼ MGk(α,A), where α ≤ (k − 1)/2 and X, A are parti-
tioned as in (3.14). Then the support of the PDF of X is the subset of non-negative
definite k × k matrices X of rank r = d2αe having the form

X =

(
X11 X12

X>12 X>12X
−1
11 X12

)
,

where dim(X11) = r × r. Moreover, the PDF is given by

fX(X11,X12) =
πr(r−k)/2

Γr(α)|A11|α|A22·1|r/2
|X11|α−(k+1)/2etr

{
−A−1X

}
(3.15)

=
πr(r−k)/2

Γr(α)|A|α|A22·1|r/2−α
|X11|α−(k+1)/2etr

{
−A−1X

}
.

In the next theorem, we consider the LT of the singular Wishart and MG distri-
butions. The result relates to infinite divisibility and Eaton’s conjecture (see [9]),
the solution of which is given in [33] and [11]. We return to the discussion of infinite
divisibility in Section 5. The result below follows directly from Proposition 3.10
upon noticing that for

L =

(
A

1/2
11 0

A21A
−1/2
11 A

1/2
22·1

)
and a k × k matrix T we have(

L>TL
)

22
= A

1/2
22·1T22A

1/2
22·1,

followed by Sylvester’s determinant identity.

Theorem 3.18. Under the setting and assumptions of Theorem 3.11, the LT of
X, evaluated at a symmetric, positive definite T, is given by

ψX(T) = |Ik + AT|−α |Ik−r + A22·1T22|α−
r
2 .(3.16)

Corollary 3.19. We note the following restricted LT of X

ψX(T) = |Ik + AT|−α,(3.17)

where

T =

(
T11 T12

T>12 T22

)
(3.18)

with T22 = 0 and a symmetric T11 of dimension r × r. Moreover, since the
lower-right block X22 is functionally dependent on the remaining blocks of X, this
restricted LT uniquely defines the distribution of X.

Corollary 3.20. Under the setting and assumption of Theorem 3.11 with A12 =
A>21 = 0, the LT of X is given by

ψX(T) = |Ik + AT|−α|Ik−r + A22T22|α−r/2.

4. An exchangeable extension of the singular matrix-variate gamma
case

The singular MG distributions introduced in the previous section lack the ex-
changeability property, described below. Let π ∈ Pk, where Pk stands for a set
of all permutations of the set {1, . . . , k}. We have seen in Corollary 2.2 that the
non-singular gamma matrices have a natural permutation invariance. However,
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this property does not generally hold in the singular MG case. To see this, consider
the standard 2× 2 singular lower-right and upper-left MG variables, which can be
represented as

(4.1)

(
Γ

√
Γ/2Z√

Γ/2Z Z2/2

)
and

(
Z2/2

√
Γ/2Z√

Γ/2Z Γ

)
,

respectively, where Γ has a standard gamma distribution with shape parameter
α ≤ 1/2 and Z is standard normal, independent of Γ (see Proposition 3.2). While
the two random matrices in (4.1) can be obtained by permutations of one another
in the above sense, their distributions are clearly different for any α strictly less
than 1/2.

As seen in this example, the two-dimensional case contains two non-equivalent
sub-cases of singular MG distributions for α < 1/2. The situation is even more
complex in higher dimensions. For example, in three dimensions, we have three
different classes of singular MG distributions when α ∈ (1/2, 1) and 3! different
classes when α ∈ (0, 1/2). We claim that in general, when the dimension is equal
to k, there are k!/i! different singular MG distributions when α ∈

(
i
2 ,

i+1
2

)
for

i = 0, . . . , k − 1. It is quite remarkable that for α = i/2, i = 1, . . . , k − 1, all
these different classes collapse to one (singular) Wishart distribution, which is,
in fact, exchangeable in the above sense. In the remainder of this section, we
explore various modifications of the definition of the singular MG distribution that
retain the exchangeability property. For simplicity, we reduce our considerations to
the standard singular gamma case, where the dispersion parameter is an identity
matrix.

The two-dimensional case offers an elegant way to obtain the exchangeability
through Corollary 2.7. The basic properties of this method are summarized in
the following result, which follows easily from the properties of the singular MG
distributions given in Proposition 3.2.

Proposition 4.1. For α ∈ [0, 1/2], define a 2 × 2 matrix-variate distribution
through the following representation

X = X0 +

(
Γ1/2−α 0

0 0

)
,

where the X0 ∼MG2(α) is independent of the standard gamma distributed variable
Γ1/2−α with shape parameter 1/2− α. Then the following properties hold

(i) The distribution of X is exchangeable, that is(
X11 X12

X21 X22

)
d
=

(
X22 X21

X12 X11

)
.

(ii) The LT of X, evaluated at a symmetric matrix T = (tij)i,j=1, is given by

ψ(T) =
(
(1 + t11)(1 + t22)− t212

)−α
((1 + t11)(1 + t22))

α−1/2
.

(iii) The following representations hold

X
d
=

(
Z1/2 0
Zα Z1/2−α

)(
Z1/2 Zα

0 Z1/2−α

)
d
=

(
Z1/2−α Zα

0 Z1/2

)(
Z1/2−α 0
Zα Z1/2

)
.
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(iv) We have the following inverse relations(
X0,Γ 1

2−α

)
d
=

((
X11 X12

X21
X21X12

X11

)
, X22 −

X21X12

X11

)
d
=

((
X22 X21

X12
X12X21

X22

)
, X11 −

X21X12

X22

)
.

Unfortunately, this approach does not generalize to an arbitrary dimension. In-
stead, to obtain exchangeability one can follow a generic alternative approach based
on mixing through random permutations of the coordinates. Namely, let Π be a
random matrix transformation corresponding to a random permutation, which is
uniformly distributed over the set Pk of permutations, and let X ∼ MGk(α) with
α < k−1

2 . Then, an exchangeable version ofMGk(α) is obtained as the distribution
of

X̃ = ΠX.

The properties of X̃ that follow directly from this definition are straightforward,
and thus we omit them here. We only point out that this distribution is no longer
singular, and, in the two-dimensional case, does not coincide with the one discussed
in Proposition 4.1.

5. Infinite divisibility and convolutions properties

The results on the LTs of MG distributions extend the result given in [6], who
considered the case of singular Wishart distribution. In particular, it follows from
Corollary 1 of [6] that the LT of the k-dimensional singular Wishart matrix X with
n degrees of freedom with n < k (which corresponds to α = n/2 ≤ (k − 1)/2) and
covariance matrix A > 0, i.e. X ∼ Wk(n,A), is given by

ψX(T) = |Ik + AT|−α ,(5.1)

where T = (tij)i,j=1,...,k with tij = 0 for i, j = n+1, . . . , k. However, as can be seen
from Proposition 3.10 and Theorems 3.13 and 3.18, the requirement that tij = 0
for i, j = n + 1, . . . , k is not really necessary. In fact, the ChF corresponding to
the LT in (5.1) with an unrestricted T was investigated in the past. In particular,
it was shown in [33] that this function corresponds to a probability distribution if
and only if it is either singular Wishart or non-singular gamma. Indeed, our results
in Section 3 show that for a non-singular MG (but not Wishart), assuming tij = 0
for i, j = n+ 1, . . . , k in the LT does not uniquely define a distribution even if it is
singular (see Theorems 3.13 and 3.18).

These observations lead directly to the following semi-group property for general
MG distributions that originally was shown in [13] through a more analytical argu-
ment, see also [23]. In the result below, the only case not covered in the previous
discussion is one with α = i/2, i = 1, . . . , k − 1, and β ≥ (k − 1)/2. However, the
latter follows from the LT (5.1) of singular Wishart distribution.

Corollary 5.1. The semi-group relation

MGk(α,A) ∗MGk(β,A)
d
=MGk(α+ β,A)

holds for any α, β ∈ {i/2, i = 1, . . . , k − 1} ∪ ((k − 1)/2,∞).
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We conclude that the class of (non-singular) MG distributions with a fixed dis-
persion matrix parameter is closed under convolutions and that the convolution
property extends beyond the non-singular case to include the singular Wishart case
as well. Nevertheless, the MG distribution is not infinitely divisible, which is well
known, discussed in the introduction from a historical perspective.

In another line of work, the problem was also studied for the vector variate
gamma distribution, and the sufficient and necessary condition for infinite divisibil-
ity in terms of the matrix scale parameter A has been best described in [2]. Since
the class of multivariate gamma distributions is specified in a simple manner by the
LT written in the form (5.1), irrespectively if one deals with matrices or vectors
(T must be diagonal in the latter case), the conditions for infinite divisibility can
be easily confused. Thus let us emphasize that the infinite divisibility in the vector
gamma case holds if and only if the matrix A satisfies the following condition:

There is a diagonal matrix D with diagonal elements 1 or −1, such that (DAD)−1

has non-positive off-diagonal elements.

Since this condition could be formulated without any changes for the matrix-
variate case as well, it was mistakenly regarded as the solution to the problem of
infinite divisibility, see, for example, [8]. In the following remark, we present an
argument showing that such a direct matrix-variate extension of Bapat’s theorem
does not hold, as expected.

Remark 22. Let us note that the identity matrix D = Ik satisfies the above Bapat’s
condition. Consequently, for each α > 0, the function t → |Ik + diag(t)|−α of a
vector argument t ∈ Rk+ is a genuine LT of a vector variate probability distribution
(describing a random vector of k IID standard gamma variables with shape param-
eter α). However, if this was also the case for a matrix-variate argument T ∈ S+

k ,

then Proposition 2.1 (with A = Ik and L = A1/2) would imply that the function
T→ |Ik + TA|−α corresponded to a probability distribution on the cone S+

k for any

α > 0 and A ∈ S+
k . This, however, would be contradictory to the above Bapat’s

condition if the latter was true for the matrix case.

We show below that the lack of infinite divisibility can be mitigated through a
certain modification of the convolution property, which is quite natural and follows
from the derived form of the LT of the MG family. This modification leads to a
semi-group of distributions on the set of positive definite matrices with respect to
the shape parameter α, which mimics the classical infinitely divisible set-up.

We first note that Corollary 2.5 holds for each α > 0 if A12 = A>21 = 0. In order
not to be distracted by matrix scaling parameters, we formulate the results below
for the standard MG distribution, where A = Ik. Further, we let MGrk(α) denote
the distribution of a k × k random matrix that has MGk−r(α) distribution in the
lower-right (k − r)× (k − r) block and zeros everywhere else. Note that for k > 1,
we have the following distributional behavior as α approaches zero

lim
α→0+

MGk(α) =MG1
k(1/2),

i.e. the lower-right (k−1)×(k−1) corner has the Wishart distributionWk−1(1, Ik−1/2).
Accordingly, the distribution on the right-hand-side above is considered to be a MG
distribution with α = 0, that is MGk(0) =MG1

k(1/2).
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Theorem 5.2. In the above notation, the following convolution property holds for
the standard MGk(α) (α > 0) family

MGk(α) ∗MGk(β) ∗ FLk =MGk(α+ β) ∗ FRk ,(5.2)

where

FLk =

b
k−rα+β−1

2 c

*
i=0

MGrα+β+2i
k

(rα+β

2
− α− β

)

∗
b k−rα2 −1c

*
i=0

MGrα+2i+1
k

(
α− rα − 1

2

)
∗
b
k−rβ

2 −1c

*
i=0

MGrβ+2i+1
k

(
β − rβ − 1

2

)

FRk =

b
k−rα+β

2 −1c

*
i=0

MGrα+β+2i+1
k

(
α+ β − rα+β − 1

2

)

∗
b k−rα−1

2 c

*
i=0

MGrα+2i
k

(rα
2
− α

)
∗
b
k−rβ−1

2 c

*
i=0

MGrβ+2i
k

(rβ
2
− β

)
,

ra is set to d2ae for 2a ≤ k − 1 and to 2a otherwise, and the d·e, b·c are the
ceiling and the floor functions, respectively. Moreover, the convolution operator over
an empty set of the indices is assumed to yield a degenerated distribution sitting
on the k × k matrix of zeros. We also assume that whenever dimensions of the
matrices in the above convolution products are not interpretable the corresponding
term represents the degenerated distribution residing on the k × k zero matrix.

Let us take a closer look at the special case k = 2, where we have four distinct
cases:
(i) rα = rβ = rα+β = 1, leading to

FL2 =MG1
2

(
1

2
− α− β

)
, FR2 =MG1

2

(
1

2
− α

)
∗MG1

2

(
1

2
− β

)
;

(ii) rα = rβ = 1 while rα+β > 1, so that

FL2 = δ0, FR2 =MG1
2

(
1

2
− α

)
∗MG1

2

(
1

2
− β

)
,

where δ0 is a degenerated distribution at 0;
(iii) Only one of rα and rβ is equal to one, while the other one is greater than 1, in
which case we also have rα+β > 1. For example, if rβ = 1, we have

FL2 = δ0, FR2 =MG1
2

(
1

2
− β

)
;

(iv) All three values are greater than 1, in which case we have FL2 = RL2 = δ0 and
the regular convolution property holds.

We summarize this special case in the result below, where, without loss of gen-
erality, we assume that α ≥ β.
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Corollary 5.3. The case of k = 2 with α ≥ β yields the following

(5.3)

MG2(α)∗MG2(β) =MG2(α+β)∗


δ0 for α, β ≥ 1

2

MG2(0) for α+ β ≤ 1
2

MG1
2(1− α− β) for 1

4 < α ≤ 1
2 , α+ β > 1

2

MG1
2( 1

2 − β) for β ≤ 1
2 , α >

1
2 .

Remark 23. Note that when α, β ≥ 1/2, we get the regular convolution property,
consistent with Corollary 5.1.

In [39], a question of infinite divisibility of the blocks in general Wishart matrices
was posed. The remaining part of this section is devoted to a complete characteri-
zation of this property in terms of suitable stochastic process representation of MG
distributions. This representation is most conveniently expressed in terms of an
infinitely divisible matrix-variate stochastic process, which we shall introduce first.

First, we let Γ(t) = (Γ1(t1), . . . ,Γk(tk)), t ∈ Rk, where the {Γi(t), t ∈ R} are
IID standard gamma motions, extended to the whole real line by setting Γi(t) = 0
for t ≤ 0, i = 1, . . . , k. Next, we let {Bi,j(t), t ∈ R+}, i, j = 1, . . . , k, be IID
standard Brownian motions. Further, we let B(t), t = (t1, . . . , tk) ∈ Rk+, be a
triangular matrix-variate Brownian motion, defined as a process having zeros on
and above the main diagonal and with values of (Bi,j(tj) at the (i, j)th location
below the diagonal, where 1 ≤ j < i ≤ k. Following the standard construction in
one-dimension, we now define a triangular matrix-variate Laplace motion through
the subordination,

L(t) =

√
2

2
B(Γ(t)), t ∈ Rk,

assuming that the processes B(·) and Γ(·) are independent. Finally, we define a
matrix-variate stochastic process

GL(t) = diag(Γ(t)) + L(t) + L(t)>, t ∈ Rk,
which we term a matrix gamma-Laplace motion. The name is justified by the
following result, whose straightforward proof is given in the appendix.

Proposition 5.4. A gamma-Laplace motion GL is a Lévy motion on Rk+ =

[0,∞)k, i.e. a process started at zero and with independent and homogeneous in-
crements, satisfying the following conditions:

(i) GL(0) = 0;
(ii) For each m and ti = (ti,1, . . . ti,k)>, si = (si,1, . . . si,k)> ∈ (0,∞)k, i =

1, . . . ,m, such that ti,j ≤ ti,j+si,j ≤ ti+1,j,i = 1, . . . ,m−1, j = 1, . . . , k, the
random variables GL(ti + si)−GL(ti) are independent, with distributions
depending only on the {si}, i = 1, . . . ,m;

(iii) The LT and the ChF of GL(s), where s = (s1, . . . , sk)> ∈ Rk+, evaluated at
a symmetric k × k matrix T = (ti,j), i, j = 1, . . . k, are given by

ψGL(t)(T) =
1∏k

l=1

(
1 + t̃lt̃>l + tll

)sl ,
φGL(t)(T) =

1∏k
l=1

(
1 + t̃lt̃>l − ιtll

)sl ,
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respectively, where t̃l =
(
tl,l+1 tl,l+2 . . . tl,k

)
for l = 1, . . . , k−1 and t̃k = 0.

Corollary 5.5. The distribution of (Γ(t),L(t)) is infinitely divisible for each t ∈
Rk.

While the gamma-Laplace process is infinitely divisible, its values are not nec-
essarily positive definite matrices. However, the following modification leads to a
process having values in S+

k

(5.4) X = GL + diag(GL)
− 1

2 ltr(GL)ltr(GL)>diag(GL)
− 1

2 ,

where ltr(GL) is a triangular matrix with the entries of GL below the main diagonal
and zeros otherwise. The following results summarize the properties of X that
justify using the name matrix-variate gamma process for X. They can be easily
verified by using standard matrix algebra.

Proposition 5.6. Consider the matrix-variate gamma process X given by (5.4).
Then

X = diag(Γ) +
(
L + L>

)
+ diag(Γ)−

1
2 LL>diag(Γ)−

1
2 = RR>,

where R is a lower triangular matrix process defined as follows

R(t) = diag(Γ)
1
2 + diag(Γ)−

1
2 L

=



√
Γ1(t1) 0 0 0 . . . 0 0
L21(t1)√

Γ1(t1)

√
Γ2(t2) 0 0 . . . 0 0

L31(t1)√
Γ1(t1)

L32(t1)√
Γ2(t2)

√
Γ3(t3) 0 . . . 0 0

L41(t1)√
Γ1(t1)

L42(t1)√
Γ2(t2)

L42(t1)√
Γ3(t3)

√
Γ4(t4) . . . 0 0

...
...

...
...

. . .
...

...
Lk−11(t1)√

Γ1(t1)

Lk−12(t2)√
Γ2(t2)

Lk−13(t3)√
Γ3(t2)

Lk−13(t3)√
Γ3(t2)

. . .
√

Γk−1(tk−1) 0

Lk1(t1)√
Γ1(t1)

Lk2(t2)√
Γ2(t2)

Lk3(t3)√
Γ3(t2)

Lk3(t3)√
Γ3(t2)

. . . Lkk−1(tk−1)√
Γk−1(tk−1)

√
Γk(tk)


.

Due to its role in decomposing the matrix-variate gamma process, we call the
process R triangular matrix Rayleigh.

Finally, the following immediate consequence of Theorem 3.5 provides a link
between the process X defined above and MG distribution with an arbitrary shape
parameter.

Corollary 5.7. For t > 0, let t(t) = (t, t− 1
2 , . . . , t−

k−1
2 ). Then, we have

X(t(t)) ∼MGk(t).

Appendix A. Proofs

Proof of Proposition 2.1. The result follows from the following identities

ψLXL>(T) = E
[
etr
{
−TLXL>

}]
= E

[
etr
{
−L>TLX

}]
=
∣∣Ik + L>TLA

∣∣−α =
∣∣Iq + TLAL>

∣∣−α ,
where the first line follows from the properties of trace, while the second line follows
from (2.2) and Sylvester’s determinant theorem. �
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Proof of Corollary 2.4. Let us consider the following matching of the parameters
of Proposition 2.3: v = r, u = k − r, A = A−1

22·1, C = x21, and B = A−1
11·2, where

we assume that X>12 = x>12 = x21 is non-random. Then, by Proposition 2.3 and
(2.7), Y is distributed the same as X11|(X12 = x12), Z has the same distribution
as X11·2, and X−1

22 |X21 = x21 has the same distribution as X. In the latter, we
use the symmetry of MG distributions with respect to permutations and apply
Proposition 2.3 to the variable, where the roles of the blocks are reversed, i.e. X11

is swapped with X22 and X21 with X12. On the other hand, X11·2 is independent
of (X22,X12) and thus

X11|
(
X22 = x22,X12 = C>

)
= X11·2 + C>x−1

22 C

d
= Z + C>x−1

22 C,

where the second term on the right-hand side is non-random. Consequently,

Y
d
= Z + C>

(
X−1

22 |X21 = C
)
C

= Z + C> (X22|X21 = C)
−1

C,

where X22|X21 = C ∼ MGIGu(α − v/2, 2CBC>, 2A) and is independent of Z.
Applying (2.7) leads to the final conclusion. �

Proof of Proposition 2.6. The only relation to be shown is the distributional invari-
ance on coordinate permutations. Let us define

Z̃α+β = δ
√
Z2
α + Z2

β ,

Z̃α = |Zα+β |Zα/
√
Z2
α + Z2

β ,

Z̃β = δ̃ |Zα+β |
√

1− Z2
α/(Z

2
α + Z2

β),

where δ = sign(Zα+β) and δ̃ = sign(Zβ). By direct algebra, we have(
Z2
α+β Zα+βZα

Zα+βZα Z
2
α + Z2

β

)
=

(
Z̃2
α + Z̃2

β Z̃α+βZ̃α
Z̃α+βZ̃α Z̃2

α+β

)
.

It is well-known that for independent gamma Γα+β and beta Bα,β random vari-
ables, the variables Γα+βBα,β and Γα+β(1 − Bα,β) are independent and gamma

distributed, with shape parameters α and β, respectively. Note that Z̃2
α+β , Z̃2

α, Z̃2
β

have gamma distributions with the respective shapes, and are also mutually inde-
pendent. Finally, the signs of all the variables are mutually independent, producing

(Zα+β , Zα, Zβ)
d
= (Z̃α+β , Z̃α, Z̃β).

This concludes the proof. �

Proof of Proposition 2.9. Without loss of generality, we assume that we deal with
the zero mean entries of X. Let X̃ = vec X. Then X̃X̃> is made of k × k blocks
X·iXj·, i, j = 1, . . . , k. Thus the covariance matrix E(X̃X̃>) is made of the blocks
E(X·iXj·), i, j = 1, . . . , k. By the assumption of uncorrelated entries,

E(X·iXi·) = diag(Σ·i)
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and

E(X·iXj·) = σijSij ,

where Sij are defined in (2.17). Then the conclusions follows from the definition of
Kk and a straightforward rearrangement of the above identities. �

Proof of Proposition 2.11. If X ∼MALr,l(α; A,M,Σ), where α > r−1
2 , then X|Γ

is matrix normal MN r,l(ΓM,Γ ⊗ Σ). Consequently, the LT of this conditional
distribution evaluated at a r × l real matrix T is given by

ψX|Γ(T) = E
(
etr{−T>X}|Γ

)
= etr

{
−T>ΓM +

1

2
T>ΓTΣ

}
, T ∈ Rr×l,

which is obtained by evaluating the MGF of this conditional distribution at −T
(or by evaluating the ChF of this conditional matrix normal distribution at ιT).
Using standard properties of the trace operator, this formula can be written as

ψX|Γ(T) = E
(
etr{−T>X}|Γ

)
= etr

{
−MT>Γ +

1

2
TΣT>Γ

}
, T ∈ Rr×l.

Further, since tr(MT>Γ) = tr(TM>Γ), we can also write

ψX|Γ(T) = E
(
etr{−T>X}|Γ

)
= etr

{
−1

2

[
MT> + TM> −TΣT>

]
Γ

}
, T ∈ Rr×l.

Finally, since ψX(T) = E
{
E
(
etr{−T>X}|Γ

)}
, the above leads to

ψX(T) = E
(

etr

{
−1

2

[
MT> + TM> −TΣT>

]
Γ

})
,

which we recognize as the LT of the distribution of Γ ∼MGr(α,A) evaluated at a
symmetric matrix

T̃ =
1

2

[
MT> + TM> −TΣT>

]
.

This yields the form of the Laplace transform of X. Indeed, by the assumption
(2.18), T̃ is within the range of the Laplace transform (see (2.2)), since

Ir + A1/2T̃A1/2 = Ir +
A

1
2 (TM> + MT> −TΣT>)A

1
2

2
.

The argument for the ChF is similar.
�

Proof of Proposition 2.12. Assume first that α > (r + l − 1)/2. Then the proof is
a direct consequence of Parts (i) - (iii) and (vi) of Proposition 2.3. Namely, for
the blocks in this result, we again set A in Proposition 2.12 to coincide with A11

of Proposition 2.3, M = A−1
11 A12, and Σ = 1

2A22·1. We first note that with any
choice of A, Σ, and M as in Proposition 2.12, the following matrix(

A AM
M>A 2Σ + M>AM

)
=

(
A AM

M>A M>AM

)
+

(
0 0
0 2Σ

)
is a positive definite matrix that can be substituted for A in Proposition 2.3 (the
first term in the sum is the covariance matrix of (X,M>X), where X has A as its
covariance).
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Identifying X11 as A
1
2 ΓA

1
2 , from Parts (i) and (iii) of Proposition 2.3, we obtain

in the new notation

X12 = A
1
2 ΓA

1
2 M +

(
A

1
2 ΓA

1
2

) 1
2

ZΣ
1
2 .

On the other hand, noticing that A′ coincides with A22 of Proposition 2.3 and
identifying X22 there as A′

1
2 Γ′A′

1
2 , M′ = A−1

22 A21, and Σ′ = 1
2A11·2 , Parts (vi)

and (ii) yield

X12 = M′>A′
1
2 Γ′A′

1
2 + Σ′

1
2 Z
(
A′

1
2 Γ′A′

1/2
) 1

2

and thus proving the result.
To argue the result for α ∈ ((min(r, l)− 1)/2, (r + l − 1)/2], we notice that from

Proposition 2.11, the ChFs taken to the power −1/α has the same form, indepen-
dently of the value of α. Thus, if the equality holds for some α it must hold for all
α, which concludes the proof. �

Proof of Proposition 2.14. To establish the representation as a difference of two
independent gamma matrices, we first note the following LT of X + X>, obtained
from the LT of Γ ∼MG2r(α):

ψX+X>(T) = ψX(T + T>) = ψΓ

((
0 T+T>

2
T+T>

2 0

))

=

∣∣∣∣∣Ir −
(
T + T>

)2
2

∣∣∣∣∣
−α

.

On the other hand, by using the LT (2.2) of MG distribution, coupled with (2.4),
we obtain the following expression for the LT of the difference of two independent
MG variables evaluated at an arbitrary r × r matrix T

ψΓr−Γl(T) =

∣∣∣∣Ir +
T + T>√

2

∣∣∣∣−α ∣∣∣∣Ir − T + T>√
2

∣∣∣∣−α
=

∣∣∣∣∣Ir −
(
T + T>

)2
2

∣∣∣∣∣
−α

.

�

Proof of Theorem 2.15. Let Z be a k × n random matrix of IID standard normal

random variables, so that Z ∼ MN k,n(0, Ik ⊗ In). Then X
d
= Σ1/2ZZ>Σ1/2.

Using subindex j· for a 1× k matrix made of the jth row of a matrix, we have

Xπ(i)π(j) =
(
Σ1/2Z

)
π(i)·

((
Σ1/2Z

)
π(j)·

)>
=
(
Σ1/2

)
π(i)·

ZZ>
((

Σ1/2
)
π(j)·

)>
d
=
((

Σ1/2
)
π

)
i·

ZZ>
(((

Σ1/2
)
π

)
j·

)>
,
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where the last equality stands for the equality of distributions resulting in permuting
the rows of Z. Consequently, Xπ ∼ Wk(n,Σ1), where

Σ1 =
(
Σ1/2

)
π

((
Σ1/2

)
π

)>
=
(
Σ1/2

)
π

(
Σ1/2

)
π

= Σπ.

This concludes the proof. �

Proof of Proposition 3.2. The first part of the result follows almost immediately
from Definition 2 upon noticing that

ZZ> =

(
Γ0

1√
2
Γ

1/2
0 Z>0

1√
2
Z0Γ

1/2
0

1
2Z0Z

>
0

)
.

Next, since the rank of Γ0 ∼ MGr(α) is r, so is the rank of X. The form of the
density is obtained as follows

fX(X11,X12) = fX11(X11)fX>12|X11
(X>12|X11)

=
|X11|α−(r+1)/2

Γr(α)
etr{−X11}

2r(k−r)/2

(2π)r(k−r)/2
|X11|−(k−r)/2

etr
{
−X−1

11 X12X21

}
=
|X11|α−(k+1)/2

πr(k−r)/2Γr(α)
etr{−X11}etr

{
−X21X

−1
11 X12

}
=
|X11|α−(k+1)/2

πr(k−r)/2Γr(α)
etr {−X11} etr {−X22} .

We now move to the LT. Notice that

ψX(T) = E [etr{−TX}]

=

∫
S+r

|X11|α−(k+1)/2

πr(k−r)/2Γr(α)

∫
Mr,k−r

etr {−(Ik + T)X}dX12 dX11,

where Mr,k−r stands for the set of all r × (k − r) matrices. Let G = Ik + T and
write

G =

(
G11 G12

G21 G22

)
,

where G11 is an r × r matrix. Standard calculations involving properties of the
trace operator and completion of the square of the difference produce

tr(GX) = tr(G11X11) + tr(G12X21) + tr(G21X12) + tr(G22X22)

= tr(G11X11) + 2tr(G12X21) + tr(G22X21X
−1
11 X12)

= tr(G11X11) + 2tr(X
1/2
11 G12G

−1/2
22 G

1/2
22 X21X

−1/2
11 ) + tr(G

1/2
22 X21X

−1
11 X12G

1/2
22 )

= tr
((

G11 −G12G
−1
22 G21

)
X11

)
+ tr

((
G
−1/2
22 G21X

1/2
11 −G

1/2
22 X21X

−1/2
11

)(
X

1/2
11 G12G

−1/2
22 −X

−1/2
11 X12G

1/2
22

))
= tr (G11·2X11) + tr

(
G22

(
G−1

22 G21X11 −X21

)
X−1

11

(
X11G12G

−1
22 −X12

))
.

(A.1)
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Consequently, we have

ψX(T) =

∫
S+r

|X11|α−(k+1)/2

πr(k−r)/2Γr(α)
etr {−G11·2X11}

×
∫
Mr,k−r

etr
{
−G22

(
X21 −G−1

22 G21X11

)
X−1

11

(
X12 −X11G12G

−1
22

)}
dX12 dX11.

Note that the integrand in the inner integral above can be written as Cg(X2,1),
where g(·) is the density of the (non-singular) matrix-variate normal distribution

MN k−r,r
(
G−1

22 G21X11,G
−1
22 ⊗X11/2

)
and

C = (2π)(k−r)r/22−(k−r)r/2|G22|−r/2|X11|(k−r)/2.

Thus, we have

ψX(T) = π(k−r)r/2|G22|−r/2
∫
S+r

|X11|α−(r+1)/2

πr(k−r)/2Γr(α)
etr {−G11·2X11}dX11

= |G22|−r/2|G11·2|−α
∫
S+r

|X11|α−(r+1)/2

Γr(α)|G11·2|−α
etr {−G11·2X11}dX11 = |G22|−r/2|G11·2|−α,

where the last step follows from the form of (non-singular) MG density, which
follows from the assumption that G11·2 ∈ S+

r . Finally, in view of |Ik + T| =
|G22||G11·2| and G22 = Ik−r + T22, we obtain the conclusion. The formula for the
ChF can be shown along the same lines. This completes the proof. �

Proof of Proposition 3.9. The first part of the result is obvious from the definition.
Next, since the rank of Γ0 is r = d2αe and L is of the full rank, the rank of X is
inherited from that of U. For the lower-right corner of X to be X>12X

−1
11 X12, one

can argue based on the following, rather obvious algebraic fact: For a matrix Y to
have the form (

Y11 Y12

Y>12 Y>12Y
−1
11 Y12

)
with Y11 ∈ S+

r it is necessary and sufficient that Y = Y0Y
>
0 , where the k × r

matrix Y0 is given by

Y0 =

(
Y

1/2
11

Y>12Y
−1/2
11

)
.

Thus, the second part of the result is obtained from the above with Y0 = LU. �

Proof of Proposition 3.10. The result is obtained upon noting that ψX(T) = ψX̃(L>TL),

where X̃ ∼ SMGk(α), utilizing the form of the LT in the standard case given in
Proposition 3.2, and applying Sylvester’s determinant theorem to obtain

|Ik + L>TL|−α = |Ik + LL>T|−α.

�
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Proof of Theorem 3.11. That the distribution must have support on the set of pos-
itive definite matrices that have the specified form is clear from Proposition 3.9.
For the PDF, consider first the standard case, for which we have

fX(X11,X12) = fX11
(X11)fX>12|X11

(X>12|X11)

=
|X11|α−(r+1)/2

Γr(α)
etr{−X11}

2r(k−r)/2

(2π)r(k−r)/2
|X11|−(k−r)/2

etr
{
−X−1

11 X12X21

}
=
|X11|α−(k+1)/2

πr(k−r)/2Γr(α)
etr{−X11}etr

{
−X21X

−1
11 X12

}
=
|X11|α−(k+1)/2

πr(k−r)/2Γr(α)
etr {−X11} etr {−X22} .

The result holds, since in the standard case we have A = Ik so that |A| = 1,
B11 = Ir, and B12 = 0.

Next, we note that there is one-to-one relation between the (Γ0,Z0) from Propo-
sition 3.9 and the (X11,X12) (connected with the standard case)

Φ(Γ0,Z0) = (Γ0,Γ
1/2
0 Z>0 /

√
2) = (X11,X12),

Φ−1(X11,X12) = (X11,
√

2X>12X
−1/2
11 ) = (Γ0,Z0).

The Jacobian JΦ can be obtained from the change of variable relation for the
corresponding densities. Due to the independence of Γ0 and Z0, we have

JΦ(Γ0,Z0) =
f(Γ0,Z0)(Γ0,Z0)

f
Γ

1/2
0 Z0/

√
2|Γ0

(Φ(Γ0,Z0))

=
fΓ0

(Γ0)fZ0
(Z0)

fX11
(Γ0)fX12|X11=Γ0

(Γ
1/2
0 Z>0 /

√
2)

=
fZ0(Z0)

fX12|X11=Γ0
(Γ

1/2
0 Z>0 /

√
2)
.

The two densities in the above expression are given by

fZ0
(Z0) = (2π)−r(k−r)/2etr

{
−1

2
Z0Z

>
0

}
,

fX12|X11=Γ0
(X12‘) = (2π)−r(k−r)/2 |Γ0/2|−(k−r)/2

etr

{
−1

2
(Γ0/2)

−1
X12‘X

>
12‘

}
.

Consequently, the Jacobian becomes

JΦ(Γ0,Z0) =
fZ0

(Z0)

fX12|X11=Γ0
(Γ

1/2
0 Z0/

√
2)

= |Γ0/2|(k−r)/2 .

Further, for A ∈ S+
k , let us consider the general case with X 7→ A1/2XA1/2, and

its inverse Y 7→ A−1/2YA−1/2. We are interested in the distribution of (Y11,Y12).
Let us define (Γ1,Z1) = Φ−1(Y11,Y12). Then we have the following relation:

fY11,Y12(Y11,Y12) = fΓ1,Z1(Φ−1(Y11,Y12))JΦ−1(Y11,Y12) =

= fΓ1,Z1(Y11,
√

2Y
−1/2
11 Y12) |Y11/2|(r−k)/2

.

To find the distribution of (Γ1,Z1), we note that

(Γ1,Z1) = Φ1(Y1,Y2) = (Y2
1, 2Y2),
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where Ỹ = (Y1,Y2) is given through the mapping(
Y1

Y2

)
= A1/2

Γ
1/2
0

Z0√
2

 .

Thus, the density of (Γ1,Z1) satisfies

f(Γ1,Z1)(Γ1,Z1) = f(Y1,Y2)

(
Φ−1

1 (Γ1,Z1)
)
JΦ−1

1
(Γ1,Z1) =

= f(Y1,Y2)

(√
Γ1,Z1/2

)
JΦ−1

1
(Γ1,Z1)

= f(Y1,Y2)

(√
Γ1,Z1/2

)
JΓ1/2(Γ1)/2(k−r)2 ,

where JΓ1/2(Γ1) is the Jacobian of the transformation of a positive definite matrix

Γ1 to Γ
1/2
1 . Note that

(A.2)

(
Y1

Y2

)
= A1/2

(
X1

X2

)
,

where X̃ = (X1,X2) = Φ−1
1 (Γ0,Z0). The matrix entries in the linear transfor-

mation (A.2) are partially symmetric (Y1) and partially unrestricted (Y2). The
Jacobian of this transformation is not given by a straightforward formula but it is
still constant depending only on the matrix A. We denote it by JA. The distribu-
tion of (Y1,Y2) expresses as

f(Y1,Y2)(Y1,Y2) = f(X1

X2

)(A−1/2

(
Y1

Y2

))
JA.

Further,

f(X1

X2

)((X1

X2

))
= fΓ0,Z0 (Φ1(X1,X2)) JΦ1(X1,X2)

= fΓ0,Z0

(
X2

1, 2X2

)
JX2

1
(X1)2(k−r)2

= 2(k−r)2fΓ0

(
X2

1

)
JX2

1
(X1)fZ0

(2X2)

= 2(k−r)2(2π)−r(k−r)/2
|X2

1|α−(r+1)/2

Γr(α)
etr{−X2

1}JX2
1
(X1)etr

{
−2X2X

>
2

}
=

2k
2−5kr/2+3r2/2

πr(k−r)/2Γr(α)
|X2

1|α−(r+1)/2JX2
1
(X1)etr{−X2

1}etr{−2X2X
>
2 }

=
2k

2−5kr/2+3r2/2

πr(k−r)/2Γr(α)
|X2

1|α−(r+1)/2JX2
1
(X1)etr{−ΛX̃X̃>Λ},

where

Λ =

(
Ir 0

0
√

2Ik−r

)
.

Thus, we have

f(Y1,Y2)(Y1,Y2) = JA
2k

2−5kr/2+3r2/2

πr(k−r)/2Γr(α)
|B11Y1 + B12Y2|2α−r−1JX2

1
(B11Y1 + B12Y2)

etr{−A−1ΛỸỸ>Λ}.
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This leads to

f(Γ1,Z1)(Γ1,Z1) = f(Y1,Y2)

(√
Γ1,Z1/2

)
JΓ1/2(Γ1)/2(k−r)2

= JA
2−r(k−r)/2

πr(k−r)/2Γr(α)
|B11

√
Γ1 + B12Z1/2|2α−r−1

× JX2
1
(B11

√
Γ1 + B12Z1/2)JΓ1/2(Γ1)

× etr

{
−A−1Λ

(
Γ1

√
Γ1Z

>
1 /2

Z1

√
Γ1/2 Z1Z

>
1 /4

)
Λ

}
= JA

2−r(k−r)/2

πr(k−r)/2Γr(α)
|B11

√
Γ1 + B12Z1/2|2α−r−1

× JX2
1
(B11

√
Γ1 + B12Z1/2)JΓ1/2(Γ1)

× etr

{
−A−1

(
Γ1

√
Γ1/2Z>1

Z1

√
Γ1/2 Z1Z

>
1 /2

)}
.

Consequently, we have

fY11,Y12(Y11,Y12) = fΓ1,Z1(Y11,
√

2Y>12Y
−1/2
11 ) |Y11/2|(r−k)/2

=
JA

πr(k−r)/2Γr(α)
|B11

√
Y11 + B12Y

>
12Y

−1/2
11 /

√
2|2α−r−1

× JX2
1
(B11

√
Y11 + B12Y

>
12Y

−1/2
11 /

√
2)JΓ1/2(Y11) |Y11|(r−k)/2

× etr
{
−A−1Y

}
=

JA

πr(k−r)/2Γr(α)
|B11Y11 + B12Y

>
12/
√

2|2α−r−1

× JX2
1

(
(B11Y11 + B12Y

>
12/
√

2)Y
−1/2
11

)
JΓ1/2(Y11) |Y11|r−α−(k−1)/2

× etr
{
−A−1Y

}
.

To obtain the explicit form of the Jacobians present in the above formula we note
that for the singular Wishart distribution we have an explicit form of the density.
Namely, if α = r/2 with r < k, then we have

fY11,Y12
(Y11,Y12) =

πr(r−k)/2

Γr(r/2)|A11|r/2|A22·1|r/2
|Y11|(r−k−1)/2etr

{
−A−1Y

}
=

πr(r−k)/2

Γr(r/2)|A|r/2
|Y11|(r−k−1)/2etr

{
−A−1Y

}
=

JA

πr(k−r)/2Γr(r/2)
|B11Y11 + B12Y

>
12/
√

2|−1

× JX2
1

(
(B11Y11 + B12Y

>
12/
√

2)Y
−1/2
11

)
JΓ1/2(Y11) |Y11|(r−k+1)/2

× etr
{
−A−1Y

}
.

From this, we deduce that

|Y11|−1

|A11|r/2|A22·1|r/2
=
JAJX2

1

(
(B11Y11 + B12Y

>
12/
√

2)Y
−1/2
11

)
JΓ1/2(Y11)

|B11Y11 + B12Y>12/
√

2|
which concludes the proof. �
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Proof of Theorem 3.14. The LTs of X11 and X22 are obtained by evaluating (3.13)
at a matrix T that has zero everywhere except for the blocks T11 and T22, respec-
tively. Straightforward algebra, involving Sylvester’s determinant identity, produces

ψX11
(T11) = |Ir + A11T11|−α

∣∣∣Ik−r +
(
A1/2TA1/2

)
22

∣∣∣α− r2
= |Ir + A11T11|−α |Ik−r + B21T11B12|α−

r
2

= |Ir + A11T11|−α |Ir + B12B21T11|α−
r
2 ,

ψX22(T22) = |Ik−r + A22T22|−α
∣∣∣Ik−r +

(
A1/2TA1/2

)
22

∣∣∣α− r2
= |Ik−r + A22T22|−α

∣∣Ik−r + B2
22T22

∣∣α− r2 ,

as desired. �

Proof of Theorem 3.17. The result follows from the standard conditioning argu-
ment and direct application of Definition 4

fX(X11,X12) = fX11
(X11)fX12|X11

(X12|X11)

=
1

Γr(α)|A11|α
|X11|α−(r+1)/2etr

{
−A−1

11 X
}
fX12|X11

(X12|X11)

=
(2π)−(k−r)r/2

Γr(α)|A11|α|A22·1|r/2
|X11|α−(k+1)/2etr

{
−A−1

11 X
}

× etr
{
−X−1

11

(
X12 −X11A

−1
11 A12

)
A−1

22·1
(
X12 −X11A

−1
11 A12

)>}

=
(2π)−(k−r)r/2

Γr(α)|A11|α|A22·1|r/2
|X11|α−(k+1)/2etr

{
−A−1X

}
,

where the last equality follows from (A.1). �
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Proof of Theorem 5.2. In the proof, we utilize the LT (3.4) given in Proposition 3.2.
Accordingly, the LT of the left-hand-side of (5.2) is given by

|Ik + T|−α−β |Ik−rα + Trα
22 |

α− rα2
∣∣Ik−rβ + T

rβ
22

∣∣β− rβ2
×
b
k−rα+β−1

2 c∏
i=0

∣∣∣Ik−rα+β−2i + T
rα+β+2i
22

∣∣∣α+β−
rα+β

2
∣∣∣Ik−rα+β−2i−1 + T

rα+β+2i+1
22

∣∣∣ rα+β−1

2 −α−β

×
b k−rα2 −1c∏

i=0

∣∣Ik−rα−2i−1 + Trα+2i+1
22

∣∣ rα−1
2 −α ∣∣Ik−rα−2i−2 + Trα+2i+2

22

∣∣α− rα2
×
b
k−rβ

2 −1c∏
i=0

∣∣∣Ik−rβ−2i−1 + T
rβ+2i+1
22

∣∣∣ rβ−1

2 −β ∣∣∣Ik−rβ−2i−2 + T
rβ+2i+2
22

∣∣∣β− rβ2
= |Ik + T|−α−β

∣∣Ik−rα+β
+ T

rα+β

22

∣∣α+β−
rα+β

2

×
∣∣∣Ik−rα+β−1 + T

rα+β+1
22

∣∣∣ rα+β−1

2 −α−β

×
b
k−rα+β−1

2 c∏
i=1

∣∣∣Ik−rα+β−2i + T
rα+β+2i
22

∣∣∣α+β−
rα+β

2
∣∣∣Ik−rα+β−2i−1 + T

rα+β+2i+1
22

∣∣∣ rα+β−1

2 −α−β

×|Ik−rα + Trα
22 |

α− rα2
b k−rα2 −1c∏

i=0

∣∣Ik−rα−2i−1 + Trα+2i+1
22

∣∣ rα−1
2 −α ∣∣Ik−rα−2i−2 + Trα+2i+2

22

∣∣α− rα2
×
∣∣Ik−rβ + T

rβ
22

∣∣β− rβ2 b k−rβ2 −1c∏
i=0

∣∣∣Ik−rβ−2i−1 + T
rβ+2i+1
22

∣∣∣ rβ−1

2 −β ∣∣∣Ik−rβ−2i−2 + T
rβ+2i+2
22

∣∣∣β− rβ2 ,

where Tr
22 is the lower-right (k− r)× (k− r) block of T. It is now enough to show

that the last four lines correspond to the LT of FRk , which has the form

b
k−rα+β

2 −1c∏
i=0

∣∣∣Ik−rα+β−2i−1 + T
rα+β+2i+1
22

∣∣∣ rα+β−1

2 −α−β ∣∣∣Ik−rα+β−2i−2 + T
rα+β+2i+2
22

∣∣∣α+β−
rα+β

2

×
b k−rα−1

2 c∏
i=0

∣∣Ik−rα−2i + Trα+2i
22

∣∣α− rα2 ∣∣Ik−rα−2i−1 + Trα+2i+1
22

∣∣ rα−1
2 −α

×
b
k−rβ−1

2 c∏
i=0

∣∣∣Ik−rβ−2i + T
rβ+2i
22

∣∣∣β− rβ2 ∣∣∣Ik−rβ−2i−1 + T
rβ+2i+1
22

∣∣∣ rβ−1

2 −β
.
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This can be written as

∣∣∣Ik−rα+β−1 + T
rα+β+1
22

∣∣∣ rα+β−1

2 −α−β ∣∣∣Ik−rα+β−2 + T
rα+β+2
22

∣∣∣α+β−
rα+β−1

2

×
b
k−rα+β

2 −1c∏
i=1

∣∣∣Ik−rα+β−2i−1 + T
rα+β+2i+1
22

∣∣∣ rα+β−1

2 −α−β ∣∣∣Ik−rα+β−2i−2 + T
rα+β+2i+2
22

∣∣∣α+β−
rα+β−1

2

× |Ik−rα + Trα
22 |

α− rα2
∣∣Ik−rα−1 + Trα+1

22

∣∣ rα−1
2 −α

×
b k−rα−1

2 c∏
i=1

∣∣Ik−rα−2i + Trα+2i
22

∣∣α− rα2 ∣∣Ik−rα−2i−1 + Trα+2i+1
22

∣∣ rα−1
2 −α

×
∣∣Ik−rβ + T

rβ
22

∣∣β− rβ2 ∣∣∣Ik−rβ−1 + T
rβ+1
22

∣∣∣ rβ−1

2 −β

×
b
k−rβ−1

2 c∏
i=1

∣∣∣Ik−rβ−2i + T
rβ+2i
22

∣∣∣β− rβ2 ∣∣∣Ik−rβ−2i−1 + T
rβ+2i+1
22

∣∣∣ rβ−1

2 −β
.

However, it is easy to notice that we have

b k−rα2 −1c∏
i=0

∣∣Ik−rα−2i−1 + Trα+2i+1
22

∣∣ rα−1
2 −α ∣∣Ik−rα−2i−2 + Trα+2i+2

22

∣∣α− rα2
=
∣∣Ik−rα−1 + Trα+1

22

∣∣ rα−1
2 −α×

×
b k−rα−1

2 c∏
i=1

∣∣Ik−rα−2i + Trα+2i
22

∣∣α− rα2 ∣∣Ik−rα−2i−1 + Trα+2i+1
22

∣∣ rα−1
2 −α

.

Indeed, if α ≥ k−1
2 , then rα = 2α and both of the convolutions are over an empty

set of indices and k − rα − 1 ≤ 0 is not a positive integer in which the case it is
assumed that

∣∣Ik−rα−1 + Trα+1
22

∣∣ = 1, so both sides of the above equality are equal

to one. Next, consider α < k−1
2 and let IL = bk−rα2 − 1c and IR = bk−rα−1

2 c.
If IL = IR, then

∣∣∣Ik−rα−2IL−2 + Trα+2IL+2
22

∣∣∣ = 1, since k − rα − 2IL − 2 ≤ 0,

and thus both the sides have the same factors. Similarly, if IL = IR − 1, then∣∣∣Ik−rα−2IR−1 + Trα+2IR+1
22

∣∣∣ = 1 since k − rα − 2(IL + 1) − 1 ≤ 0 and thus the

equality is shown. The equality of analogous terms corresponding to α + β and β
follow by a similar argument.

�

Proof of Proposition 5.4. The process GL is the sum of k independent k × k pro-
cessess Xl, l = 1, . . . , k, such that for Xl = X>l ,

Xl;l· =
(

0 . . . 0 Γl(sl)
√

2
2 Bl,l+1(Γl(sl)) . . .

√
2

2 Bl,k(Γl(sl))
)
,

Xl;·l = X>l;l·,
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and having all other entries equal to zero. The ChF of Xl = Xl(s) is given by

φXl
(T) = E

[
eιtllG+ι

√
2t̃l
√
GZ
]

= E
{
E
[
eιtllG+ι

√
2t̃l
√
GZ|G

]}
=

∫ ∞
0

eιtllx E
[
eι
√

2xt̃lZ
] xsl−1

Γ(sl)
e−xdx

=

∫ ∞
0

eιtllx e−x(1+t̃lt̃
>
l )x

sl−1

Γ(sl)
dx

=
1(

1 + t̃lt̃>l
)sl ∫ ∞

0

eιtllx e−x(1+t̃lt̃
>
l )
(
1 + t̃lt̃

>
l

)sl
xsl−1

Γ(sl)
dx

=
1(

1 + t̃lt̃>l
)sl 1(

1− ι tll
1+t̃lt̃>l

)sl
=

1(
1 + t̃lt̃>l − ιtll

)sl ,
where G

d
= Γ(sl) and Z is a column of k− l independent standard normal variables

when l < k and is zero when l = k. The obtained ChF is clearly infinitely divisible
with the group parameter sl. Consequently, the independent processes Xl(s) are
Lévy motions and thus so is GL = X1+· · ·+Xk. The proof for the LT is similar. �
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