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Abstract

This paper replicates the study ”A Model of Secular Stagnation: Theory and Quantitative Eval-

uation” by Eggertsson et al. (2019) using the Dynare toolkit. Replication is important as it confirms

the results of the original article, provides a user-friendly version using Dynare (Adjemian et al.,

2022), and shows how to deal with large-scale models with occasionally binding constraints. The

results show that the original Matlab code was fully replicated, but minor discrepancies were found

between the paper’s equations and the code. The two models produce similar dynamics but with

small differences, particularly at the beginning of the simulation.
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1 Introduction

This paper replicates the large-scale overlapping generation model of ”A Model of Secular Stagnation:

Theory and Quantitative Evaluation” by Eggertsson et al. (2019) using the latest version (5.3) of Dynare

(Adjemian et al., 2022), a standard software to simulate and estimate dynamic general equilibrium models

widely used in academies, central banks, and other institutions. The original model builds a large-scale

OLG model with several occasionally binding constraints (OBCs) in order to capture the main features

of the Secular Stagnation Hypothesis (Summers, 2015), with a focus on the long-run decline of interest

rates. The authors show the quantitative importance of key drivers such as population aging and slowing

productivity growth over the interest rate for the United States, computing transitional dynamics from

1970 to 2015.

Our replication exercise is intended to provide a valuable contribution along three dimensions. First,

it confirms the results of a significant contribution well-known in macroeconomics. Indeed, the Secular

Stagnation Hypothesis (Summers, 2015) and its quantitative relevance (Eggertsson et al., 2019), has

been one of the most credited developments in macroeconomic thought since the Great Financial Crisis

(GFC), especially for gaining insights on the causes of the GFC and on the role of monetary policy

stuck at the zero lower bound (ZLB). Second, the replication makes use of Dynare, which represents

the state-of-the-art software for the simulation and estimation of dynamic general equilibrium models.

Dynare provides a user-friendly platform that is easier to use with respect to the complex original

Matlab code of (Eggertsson et al., 2019), therefore reducing the entry barriers for those interested in

large-scale OLG modeling and being helpful for the entire community of users. Third, the original model

includes several OBCs that are particularly challenging to compute but extremely important from a

policy standpoint. Modelers have traditionally dealt with the presence of OBCs by using toolkits such

as Guerrieri and Iacoviello (2015) and Holden (2016). In this case, the presence of an OBC for each

working-age generation makes them not feasible. By rewriting the constraints as in Swarbrick (2021), we

show how to handle and treat several OBCs with a large-scale model and with the standard algorithms

included in Dynare in an easier and faster way relative to the original Matlab code.1

The results from the replication substantially confirm the original outcome of Eggertsson et al. (2019).

On one hand, following the original Matlab code available on the American Economic Journal: Macroe-

conomics repository, we are able to fully replicate the original results with the exception of Figure 8 of

the original paper. However, we found the equations of the original Matlab code to be slightly different

from the ones reported in the text. Once we rewrite the model as in the paper, small differences between

the transition dynamics of the two models emerge, especially in the first thirty periods of the simulation.

All in all, the replication exercise confirms the original results of the paper.
1Of course, many models cannot be handled by Dynare, and each one may require its own modeling techniques. However,

when the constraints are well-behaved (Swarbrick, 2021), we show that Dynare is also able to solve non-linear large-scale
models with multiple occasionally binding constraints (Eggertsson et al., 2019) in a very efficient way.

2
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This replication paper is organized as follows: In section 2, we compare the results from the original

Matlab code with our Dynare implementation, whereas in Section 3 we show the same Dynare replication

but making use of the equations delivered in the original paper. Section 4 concludes.

2 Replication of the original Matlab code

In this Section, we focus on the replication of the original Matlab code. A salient feature of the original

model is the presence of several occasionally binding collateral constraints, one for every 40 working-

generations (j) contained in the model. The collateral constraint is as follows:

aj ≥ Dj · w · hcj (1)

OccBin (Guerrieri and Iacoviello, 2015) and DynareOBC (Holden, 2016) toolkits, typically used in

Dynare to deal with OBCs cannot deal with a large numbers of constraints. The simplest way to

workaround the problem is therefore using a brute-force approach with the min/max function in a

perfect foresight enviroment along the lines proposed by Swarbrick (2021). Therefore, equation 1 can be

transformed as follows:

min
(
λj , aj −Dj · w · hcj

)
= 0 (2)

where λj represents the lagrange multiplier, aj the asset of each generation, Dj ≤ 0 the individual

debt limit of each generation, and hcj the human capital profile which shapes the wage w profile among

generations. However, in our Dynare code as well as in the Matlab implementation by Eggertsson et al.

(2019), the debt limit is written with positive values, Dj ≥ 0, therefore each constraint will be:

min
(
λj , aj +Dj · w · hcj

)
= 0 (3)

2.1 The Matlab equations

The results of this Section are given by the direct translation from the original Matlab code provided

by the authors into Dynare notation. The full set of the equation used in this section can be found in

Appendix A.2

2The model’s derivations are basically the same as detailed in the Appendix C for the model written as in the paper,
but with the discrepancies in the equations as outlined in Section 3.
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Table 1: 1970 steady state for the baseline calibration

Variables steady state 1970
Capital 48.69
Labor 36.58
Population 34.03
Income 52.72
Consumption 31.49
Aggregate Profit 6.65
Investment 10.03
Rental rate 0.195
Wage tax 0.301
Bequest 2.504
Population growth rate 0.014
Debt 0.458
Public expenditure 11.22
Investments to Output ratio 19.0%
Interest rate 2.55%
Labor share 72.4%
Consumer-debt-to-output-ratio 4.20%

Note: bold variables are presented in Table 5 on page 39 of the original paper.

2.2 Results

We start our replication exercise by computing the 1970 steady-state values for the baseline calibration.3

Results are reported in Table 1 where the last four rows should be compared with the ones reported in

Table 5 on page 39 of the original paper. The other variables are not presented in the original paper but

can be easily retrieved from the Matlab code.

Figure 1 instead, reports the comparison of the transitional dynamics of several endogenous variables

of our Dynare code with the original Matlab code, again for the main calibration made by the authors.

There are basically no discrepancies between the two simulations, where many differences arrive to a

magnitude of 10−13. The dynamics of these aggregate variables are not reported in the original paper

but can be found on the Matlab code.4

3Inside the replication kit, the user will also find the code to replicate the calibration of the model using Dynare.
4In the folder ”Alt_Calibrations” of our replication material, you also have access to the alternative calibrations made

by Eggertsson et al. (2019) (look at the Online Appendix from page A.28) and the relative comparisons with our Dynare
code. Again, the results are identical with many differences in the order of 10−13.

4
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Figure 1: Aggregate variables dynamics from Eggertsson et al. (2019) Matlab code (blue line) and the Dynare implementation (dashed red line)
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Figure 2 is the replication of Figure 8 on page 42 of the original paper. The simulations obtained from

the Dynare code and the Matlab code are filtered using the two-side HP filter and they are identical

to each other. However, the two simulations differ from Figure 8 in the original paper (the dotted

line in Figure 8, Model national rate). The original paper does not report any details on the filtering

methodology or if the data are filtered at all. Our intuition is that, since the Fed funds rate is plotted

using the HP trend, the simulated series are also filtered in order to maintain comparability. However,

also by doing this, we find some discrepancies in Figure 8, it seems to us that the dynamics reported are

shifted down by a constant, relative to what is written in the text and what comes from the Matlab code

of the authors. In particular, the description of Figure 8 on page 41 basically does not correspond with

Figure 8 itself. The steady-state at 1970 which is around 2% in Figure 8, is lower than what is reported

in the text and what is coming from the Matlab code of the authors, 2.55%. Moreover, data about the

figure and the plot of the figure itself are not present in any part of their replication material. However,

despite these small inconsistencies, the overall storytelling of the paper remains unaltered.

Figure 2: Natural Interest Rate (HP Trend)

19
70

19
80

19
90

20
00

20
10

20
20

20
30

Years

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Eggertsson et al. (2019)
Dynare

6

Institute for Replication I4R DP No. 56

8



3 Paper replication

In this section, we implement the Dynare code using the equations as written in the original paper,

both for the steady state and the transition dynamics. We highlight the differences in red. Appendix B

presents the full set of equations and C provides the full derivation of the model.

Assuming as a benchmark their Matlab code, we find differences about some points:

1. the equations 63-72 and 96-101 for the various budget constraints written in the original paper

differ from the ones written in the function ”opt_lb_alt.m” of the Matlab code with respect to

a) the relative price of capital goods (e) which is not presented at all in the Matlab function and

cannot be simplified with the no-arbitrage condition, at least when considering the transitional

dynamics for what is written in the paper; b) the bequest received (qj) differently from what is

written in the paper, is left out of the multiplication with
(
rk + ϵ(1− δ)

)
in Matlab;

2. the equations 73 and 102 for the borrowing constraints used in the functions ”opt_lb_alt.m” and

”create_profile.m” of the Matlab code, is different from what is written in the paper. Instead of

using aj ≥ Dj

1+r , they used aj ≥ Dj · w · hcj ;

3. the equations 90 and 118 for the asset market clearing conditions are different from what is written

in ”repeatfunc.m” in the Matlab code.

3.1 Results

The results obtained from the paper equations are reported in Tables 3 and 4. The results are essentially

the same compared to the ones obtained with the original Matlab code. However, there are a few

discrepancies at the beginning of the sample, especially for the bequest variables (q32 and x56), but at

the end of the day the endogenous variables’ dynamics are fully captured by our Dynare implementation.

7
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Figure 3: Aggregate variables dynamics from Eggertsson et al. (2019) Matlab code (blue line) and the paper Dynare implementation (dashed red line)
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Figure 4 compares the dynamics of the interest rates filtered using the two-side HP filter obtained

from the original Matlab implementation and our Dynare code written with the paper equations. The

replication is not as perfect as in Figure 2 but the dynamic is basically the same. The problems emerged

in the previous Section remain.

Figure 4: HP Trend Interest Rate
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4 Conclusion

In this article, we provide a successful replication of the paper ”A Model of Secular Stagnation: Theory

and Quantitative Evaluation” by Eggertsson et al. (2019) using the free software Dynare. The results

are almost identical to the ones presented in the original paper. A few discrepancies emerge between

the equations presented in the paper and the ones available in the original Matlab code. However, these

small differences have negligible effects on the dynamics of the aggregate variable.

Our Dynare implementation has several strengths with respect to the original MatLab implemen-

tation. In particular, the easiness of our code can facilitate the works of other scholars in the field of

OLG modeling tearing down the entry barriers usually very high, helping them in developing a complete

quantitative research going from the calibration to the simulation procedures. Finally, our code shows

how to deal with several OBCs in Dynare providing a fast, yet accurate, way to produce consistent

results.

9
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A Appendix: the Matlab equations

A.1 Steady state equations

j ∈ {26, . . . , J = 81}
n26 = 1 (4)

nj+1 =
sj · nj

1 + n
(5)

for j ∈ {26, J − 1}

1

β
=

(
cj+1

cj

)− 1
γ

·
(
1 + r

)
+ λj+1 (c

j)−
1
γ

sujβj
(6)

for j ∈ {26, J − 1}

xJ =

(
Γ

µ

)−γ

· cJ (7)

for j ∈ {J}
aj = 0 (8)
for j ∈ {26}

aj+1 =

(
1 + r

)
· aj

svj
+

(
(1− τ) · w · hcj + πj

)
· (1 +ALgrowth)

j − cj (9)

for j ∈ {26, . . . , 56}

aj+1 =

(
1 + r

)
· aj

svj
+

(
(1− τ) · w · hcj + πj

)
· (1 +ALgrowth)

j + qj+1 · (1 +ALgrowth)
j+1 − cj

(10)
for j ∈ {56}

qj = xJ · Γ · nJ

nj
(11)

for j ∈ {57}

aj+1 =

(
1 + r

)
· aj

svj
+

(
(1− τ) · w · hcj + πj

)
· (1 +ALgrowth)

j − cj (12)

for j ∈ {57, . . . , 65}

aj+1 =

(
1 + r

)
· aj

svj
− cj (13)

for j ∈ {66, . . . , 80}

cj =

(
1 + r

)
· aj

svj
− Γ · xj (14)

for j ∈ {81}

min

(
λj , aj + (Dj · w · hcj) · (1 +ALgrowth)

j

)
= 0 (15)

for j ∈ {26, . . . , 65}

min

(
λj , aj

)
= 0 (16)

for j ∈ {66, . . . , 81}

πj =
hcj ·Π

L
(17)

for j ∈ {26, . . . , 65}

11
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pint

P
=

θ − 1

θ
(18)

Aadj =
pint

P
·
(
α · (AK ·K)

σ−1
σ + (1− α) · (AL · L)

σ−1
σ

) 1
σ−1

· (1− α) ·AL
σ−1
σ · L− 1

σ (19)

w = 1 (20)

rk =

pint

P ·
(
α · (AK ·K)

σ−1
σ + (1− α) · (AL · L)σ−1

σ

) 1
σ−1

· α ·AK
σ−1
σ ·K− 1

σ

Aadj
(21)

Y =

(
α · (AK ·K)

σ−1
σ + (1− α) · (AL · L)σ−1

σ

) σ
σ−1

Aadj
(22)

r =
rk + (1− δ)ϵ

ϵ
− 1 (23)

Π =
Y

θ
(24)

govdeficit · govrev =

(
(1 +ALgrowth) · (1 + n)− 1

)
· (govdebt ·K) (25)

govdebt = b · Y
K

(26)

govrev = (g · Y + r · govdebt ·K) (27)

τ =

(
govrev · (1− govdeficit)

)
w · L

(28)

N =

J∑
j=26

nj (29)

L =

J∑
j=26

njhcj (30)

C =

J∑
j=26

njcj(1 +ALgrowth)
j (31)

K =

(∑J
j=26

njaj

svj ·(1+ALgrowth)j

)
ϵ+ govdebt

(32)

12
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A.1.1 Transitional Dynamics

j ∈ {26, . . . , J = 81}

n26
t =

n25
t−1

su25
t−1

· Γt (33)

nj+1
t = sjt−1 · n

j
t−1 (34)

for j ∈ {26, J − 1}

1

β
=

(
cj+1
t+1

cjt

)− 1
γ

·
(
1 + rt+1

)
+ λj+1

t

(cjt )
− 1

γ

suj
tβ

j
(35)

for j ∈ {26, J − 1}

xJ
t =

(
Γt−J+26

µ

)−γ

· cJt (36)

for j ∈ {J}
ajt = 0 (37)
for j ∈ {26}

aj+1
t+1 =

(
1 + rt

)
· ajt

svjt
+ (1− τt) · wt · hcj + πj

t − cjt (38)

for j ∈ {26, . . . , 56}

aj+1
t+1 =

(
1 + rt

)
· ajt

svjt
+ (1− τt) · wt · hcj + πj

t + qj+1
t+1 − cjt (39)

for j ∈ {56}

qj =
xJ
t−1 · Γt−56 · nJ

t−1

nj
t

(40)

for j ∈ {57}

aj+1
t+1 =

(
1 + rt

)
· ajt

svjt
+ (1− τt) · wt · hcj + πj

t − cjt (41)

for j ∈ {57, . . . , 65}

aj+1
t+1 =

(
1 + rt

)
· ajt

svjt
− cjt (42)

for j ∈ {66, . . . , 80}

cjt =

(
1 + rt

)
· ajt

svjt
− Γt−55 · xj

t (43)

for j ∈ {81}

min

(
λj
t , a

j
t + (Dj

t+1 · wt+1 · hcj)
)

= 0 (44)

for j ∈ {26, . . . , 65}

min

(
λj
t , a

j
t

)
= 0 (45)

for j ∈ {66, . . . , 81}

πj
t =

hcj ·Πt

Lt
(46)

for j ∈ {26, . . . , 65}
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pint
t

Pt
=

θ − 1

θ
(47)

wt =

pint
t

Pt
·
(
α · (AKt ·Kt)

σ−1
σ + (1− α) · (ALt · Lt)

σ−1
σ

) 1
σ−1

· (1− α) ·AL
σ−1
σ

t · L− 1
σ

t

Aadj
(48)

rkt =

pint
t

Pt
·
(
α · (AKt ·Kt)

σ−1
σ + (1− α) · (ALt · Lt)

σ−1
σ

) 1
σ−1

· α ·AK
σ−1
σ

t ·K− 1
σ

t

Aadj
(49)

Yt =

(
α · (AKt ·Kt)

σ−1
σ + (1− α) · (ALt · Lt)

σ−1
σ

) σ
σ−1

Aadj
(50)

rt =
rkt + (1− δ)ϵt

ϵt−1
− 1 (51)

Πt =
Yt

θ
(52)

govrevt = gt · Yt + rt · govdebtt ·Kt (53)

govdebtt =

(
govdebtt−1Kt−1 · (1 + rt−1) + gt−1 · Yt−1 − govrevt−1 · (1− govdeficitt−1 )

)
Kt

(54)

govdeficitt =
(bt+1 · Yt+1 − govdebtt ·Kt)

govrevt

(55)

τt =
govrevt · (1− govdeficitt )

wtLt
(56)

Nt =
J∑

j=26

nj
t (57)

Lt =
J∑

j=26

nj
thc

j (58)

Ct =
J∑

j=26

nj
tc

j
t (59)

Kt =

(∑J
j=26

nj
ta

j
t−1

svj
t

)
ϵt−1 + govdebtt

(60)

B Appendix: the paper equations
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B.1 Steady state equations

j ∈ {26, . . . , J = 81}
n26 = 1 (61)

nj+1 =
sj · nj

1 + n
(62)

for j ∈ {26, J − 1}

1

β
=

(
cj+1

cj

)− 1
γ

·
(
1 + r

)
+ λj+1 · sv

j+1(cj)
1
γ

sujβjϵ
(63)

for j ∈ {26, J − 1}

x81
t+80 =

(
Γ26
t−80

µ

)−γ

c81t+80 (64)

xJ =

(
Γ

µ

)−γ

· cJ (65)

for j ∈ {J}
aj = 0 (66)
for j ∈ {26}

ϵ · aj+1 =

(
rk + ϵ(1− δ)

)
· aj

svj
+

(
(1− τ) · w · hcj + πj

)
· (1 +ALgrowth)

j − cj (67)

for j ∈ {26, . . . , 56}

ϵ · aj+1 =

(
rk + ϵ(1− δ)

)
·
(
aj + svjqj+1 · (1 +ALgrowth)

j+1
)

svj
+ . . .

. . .+

(
(1− τ) · w · hcj + πj

)
· (1 +ALgrowth)

j − cj (68)

for j ∈ {56}

qj = xJ · Γ · nJ

nj
(69)

for j ∈ {57}

ϵ · aj+1 =

(
rk + ϵ(1− δ)

)
· aj

svj
+

(
(1− τ) · w · hcj + πj

)
· (1 +ALgrowth)

j − cj (70)

for j ∈ {57, . . . , 65}

ϵ · aj+1 =

(
rk + ϵ(1− δ)

)
· aj

svj
− cj (71)

for j ∈ {66, . . . , 80}
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cj =

(
rk + ϵ(1− δ)

)
· aj

svj
− Γ · xj (72)

for j ∈ {81}

min

(
λj , aj +

Dj

1 + r
· (1 +ALgrowth)

j

)
= 0 (73)

for j ∈ {26, . . . , 65}

min

(
λj , aj

)
= 0 (74)

for j ∈ {66, . . . , 81}

πj =
hcj ·Π

L
(75)

for j ∈ {26, . . . , 65}
pint

P
=

θ − 1

θ
(76)

Aadj =
pint

P
·
(
α · (AK ·K)

σ−1
σ + (1− α) · (AL · L)

σ−1
σ

) 1
σ−1

· (1− α) ·AL
σ−1
σ · L− 1

σ (77)

w =

pint

P ·
(
α · (AK ·K)

σ−1
σ + (1− α) · (AL · L)σ−1

σ

) 1
σ−1

· (1− α) ·AL
σ−1
σ · L− 1

σ

Aadj
= 1 (78)

rk =

pint

P ·
(
α · (AK ·K)

σ−1
σ + (1− α) · (AL · L)σ−1

σ

) 1
σ−1

· α ·AK
σ−1
σ ·K− 1

σ

Aadj
(79)

Y =

(
α · (AK ·K)

σ−1
σ + (1− α) · (AL · L)σ−1

σ

) σ
σ−1

Aadj
(80)

r =
rk + (1− δ)ϵ

ϵ
− 1 (81)

Π =
Y

θ
(82)

b · Y ·
(
(1 +ALgrowth) · (1 + n)− 1

)
= g · Y + (1 + r) · b · Y − τ · w · L (83)

govrev = (g · Y + r · b · Y ) (84)

govdeficit =

(
(1 +ALgrowth) · (1 + n)− 1

)
· (b · Y )

govrev
(85)

govdebt = b · Y
K

(86)

N =
J∑

j=26

nj (87)

L =
J∑

j=26

njhcj (88)

C =
J∑

j=26

njcj

(1 +ALgrowth)j
(89)

ϵ ·K =

( J∑
j=26

ϵ · njaj

(1 +ALgrowth)j

)
− b · Y (90)
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B.1.1 Transitional Dynamics

j ∈ {26, . . . , J = 81}

n26
t =

n25
t−1

su25
t−1

· Γt (91)

nj+1
t = sjt−1 · n

j
t−1 (92)

for j ∈ {26, J − 1}

1

β
=

(
cj+1
t+1

cjt

)− 1
γ

·
(
1 + rt+1

)
+ λj+1

t · sv
j+1
t (cjt )

1
γ

suj
tβ

jϵt
(93)

for j ∈ {26, J − 1}

xJ
t =

(
Γt−J+26

µ

)−γ

· cJt (94)

for j ∈ {J}
ajt = 0 (95)
for j ∈ {26}

ϵt · aj+1
t+1 =

(
rkt + ϵt(1− δ)

)
· ajt

svjt
+ (1− τt) · wt · hcj + πj

t − cjt (96)

for j ∈ {26, . . . , 56}

ϵt · aj+1
t+1 =

(
rkt + ϵt(1− δ)

)
·
(
aj + svjt q

j+1
t+1

)
svjt

+ (1− τt) · wt · hcj + πj
t − cjt (97)

for j ∈ {56}

qj =
xJ
t−1 · Γt−56 · nJ

t−1

nj
t

(98)

for j ∈ {57}

ϵt · aj+1
t+1 =

(
rkt + ϵt(1− δ)

)
· ajt

svjt
+ (1− τt) · wt · hcj + πj

t − cjt (99)

for j ∈ {57, . . . , 65}

ϵt · aj+1
t+1 =

(
rkt + ϵt(1− δ)

)
· ajt

svjt
− cjt (100)

for j ∈ {66, . . . , 80}

cjt =

(
rkt + ϵt(1− δ)

)
· ajt

svjt
− Γt−55 · xj

t (101)

for j ∈ {81}

min

(
λj
t , a

j
t +

Dj
t

1 + rt

)
= 0 (102)

for j ∈ {26, . . . , 65}

min

(
λj
t , a

j
t

)
= 0 (103)

for j ∈ {66, . . . , 81}

πj
t =

hcj ·Πt

Lt
(104)

for j ∈ {26, . . . , 65}
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pint
t

Pt
=

θ − 1

θ
(105)

wt =

pint
t

Pt
·
(
α · (AKt ·Kt)

σ−1
σ + (1− α) · (ALt · Lt)

σ−1
σ

) 1
σ−1

· (1− α) ·AL
σ−1
σ

t · L− 1
σ

t

Aadj
(106)

rkt =

pint
t

Pt
·
(
α · (AKt ·Kt)

σ−1
σ + (1− α) · (ALt · Lt)

σ−1
σ

) 1
σ−1

· α ·AK
σ−1
σ

t ·K− 1
σ

t

Aadj
(107)

Yt =

(
α · (AKt ·Kt)

σ−1
σ + (1− α) · (ALt · Lt)

σ−1
σ

) σ
σ−1

Aadj
(108)

rt =
rkt + (1− δ)ϵt

ϵt−1
− 1 (109)

Πt =
Yt

θ
(110)

bt+1Yt+1 = gtYt + (1 + rt) · btYt − τtwtLt (111)
govrevt = gtYt + rtbtYt (112)

govdeficitt =
bt+1Yt+1 − btYt

govrevt

(113)

govdebt =
btYt

Kt
(114)

Nt =
J∑

j=26

nj
t (115)

Lt =
J∑

j=26

nj
thc

j (116)

Ct =
J∑

j=26

nj
tc

j
t (117)

ϵt ·K =

( J∑
j=26

ϵtn
j
ta

j
t−1

)
− btYt (118)

C Appendix: full model’s derivations

We follow closely Eggertsson et al. (2019) and we report the main derivations of the model to help the

reader. We invite interested readers to follow the original paper for a complete description of the model’s

equations.

C.1 Demographics

The population growth rate is determined by the total fertility rate of every household (Γ) and by the

probability of dying before arriving at the maximum age J = 81 years, which is set stochastically. The

probability of surviving between age j and j + 1 is given by sj and it’s called conditional, instead,

the probability of arriving at age j is given by sj and it’s called unconditional probability. The total
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population alive at any given time, Nt, is the sum of the population of the individual ages, nj
t . The

population size of a given generation nj
t is the population of the generation the previous year that has

survived, except for the generation j = 26 years, which is the first generation in the model. That is

given by the total population of their parents which entered the economic maturity at time t − 25,

multiplied by the total fertility rate of their parent’s generation at that time (Γt−25) and discounted for

the unconditional probability of survival. In sum, the total population evolves in the model according

to the law of motions and aggregates given below:

Nt =
J∑

j=26

nj
t (119)

nj+1
t+1 =sjn

j
t for j ∈ {26, J − 1} (120)

n26
t =

n26
t−25Γt−25

su26
(121)

where:

Γt−25 =(1 + nt−25)
1
25

Households do not receive wage income after retirement, set at age j = 65. Labor is supplied

inelastically, but it depends on the individual age-specific exogenous labor productivity hcj . Thus the

total labor supply at a given time t is given by:

Lt =
J∑

j=26

nj
thc

j (122)
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C.2 Households Problem

Each generation j of the population maximizes the following intertemporal utility function:

max
{cjt+j−1,x

j
t+j−1}

Ut =
1

(1− 1
γ )

[( J∑
j=26

sujβj−1u(cjt+j−1)

)
+ suJβJ−1µv(xJ

t+J−1)

]
(123)

subject to:

cjt + ϵta
j+1
t+1 + Γ26

t−j+26x
j
t = (1− τw)wthc

j + πj
t +

(
rkt + ϵt(1− δ)

)
·
(
ajt + qj+1

t+1 +
1− svj
svj

ajt

)
(124)

ajt ≥
Dt

1 + rt
(125)

cjt ≥ 0 (126)

a26t = 0 (127)

aJ+1
t = 0 (128)

qjt =
nJ
t−1x

J
t−1Γ

26
t−J+26

n57
t

(129)

where:

suj =

j−1∏
m=26

svm

Dj
t ≤ 0 for j ≤ 65

Dj
t = 0, hcj = 0, πj

t = 0 for j > 65

qjt = 0 for j ̸= 57

xj
t = 0 for j ̸= 81

The utility and bequest are CES function:

u(cjt+j−1) = (cjt+j−1)
(1− 1

γ )

v(xJ
t+J−1) = (xJ

t+J−1)
(1− 1

γ )

The non-negativity constraint for consumption (126) can be omitted. Substituting the consumption

cj,it+j−1 into the utility function (123) using the equality constraint (124), using the financial (occasionally

binding) constraint (125) and taking care of all the other conditions, we can form the lagrangian to be

maximized as follows:
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max
{aj+1

t+j ,x
j
t+j−1,λ

j
t+j−1}

Lt =
1

(1− 1
γ )

{
J∑

j=26

( j−1∏
m=26

svm

)
· βj−1 · . . .[

− ϵta
j+1
t+j − Γ26

t−j+26x
j
t + (1− τ)wthc

j + πj
t+j−1 + . . .

. . .+
(
rkt + ϵt(1− δ)

)
·
(
ajt + qj+1

t+1 +
1− svj
svj

ajt

)]1− 1
γ

}
+ . . .

. . .+
1

(1− 1
γ )

{( J−1∏
m=26

svm

)
· βJ−1µ

[
xJ
t+J−1

]1− 1
γ

}
+ . . .

. . .+
J∑

j=26

λj
t+j−1

(
ajt+j−1 −

Dj
t

1 + rt

)
subject to:

a26t = 0

aJ+1
t = 0

qjt =
nJ
t−1x

J
t−1Γ

26
t−J+26

n57
t

where:

Dj
t ≤ 0 for j ≤ 40

Dj
t = 0, hcj = 0, πj

t = 0 for j > 40

qjt = 0 for j ̸= 57

xj
t = 0 for j ̸= 81
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Deriving with respect to aj+1
t+j , xj

t+j−1 and considering the complementary slackness conditions, we

get the first-order conditions (FOCs):

• ∂L

∂aj+1
t+j

=

sujβj−1
(
cjt+j−1

)− 1
γ · −ϵt + suj+1βj

(
cj+1
t+j

)− 1
γ

(
rkt+1 + ϵt+1(1− δ)

)
svj

+ λj+1
t+j = 0

for j ∈ {26, . . . , 80}

sujβj−1
(
cjt+j−1

)− 1
γ · 0 = 0

for j ∈ {81}

• ∂L

∂xj
t+j−1

=

sujβj−1
(
cjt+j−1

)− 1
γ · −Γ26

t−j+1 + sujβj−1µ
(
xj
t+j−1

)− 1
γ = 0

for j ∈ {81}

• Slackness conditions:

λj
t+j−1

(
ajt+j−1 −

Dj
t

1 + rt

)
= 0

for j ∈ {26, . . . , 65} and, ajt+j−1 ≥ 0

λj
t+j−1

(
ajt+j−1

)
= 0

for j ∈ {66, . . . , 81} and, ajt+j−1 ≥ 0
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Rewriting using the no-arbitrage condition below (eq. 147) we get:

• ∂L

∂aj+1
t+j

:

1

β
=

(
cj+1
t+1

cjt

)− 1
γ

·
(
1 + rt+1

)
+ λj+1

t · sv
j+1
t (cjt )

1
γ

suj
tβ

jϵt
(130)

for j ∈ {26, . . . , 80}

• ∂L

∂xj
t+j−1

:

x81
t+80 =

(
Γ26
t−80

µ

)−γ

c81t+80 (131)

for j ∈ {81}

• Slackness conditions:

λj
t+j−1

(
ajt+j−1 −

Dj
t

1 + rt

)
= 0 (132)

for j ∈ {26, . . . , 65} and, ajt+j−1 ≥ 0

λj
t+j−1

(
ajt+j−1

)
= 0 (133)

for j ∈ {66, . . . , 81} and, ajt+j−1 ≥ 0
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We follow Swarbrick (2021, Pag. 8) and we summarise conditions (125), (132) and, (133) making use

of the minimum function to handle the financial OBCs. The resulting two expressions are the following:

min

(
λj
t+j−1, a

j
t+j−1 −

Dj
t

1 + rt

)
= 0 (134)

for j ∈ {26, . . . , 65}

min

(
λj
t+j−1, a

j
t+j−1

)
= 0 (135)

for j ∈ {66, . . . , 81}

C.3 Firms Problem

Final Goods Firms

The final goods firms choose real prices pt(i)
Pt

to maximize real profits:

max
{ pt(i)

Pt
}
Πt =

pt(i)

Pt
yft (i)−

pint
t

Pt
yft (i)

subject to the following demand curve constraint:

yft (i) = Yt

(
pt(i)

Pt

)−θt

where θt is a time-varying shock to the firm’s market power. An increase in θt decreases a firm’s market

power and lowers equilibrium markups. Then, the lagrangian is given by:

max
{ pt(i)

Pt
}
Lt =

pt(i)

Pt
Yt

(
pt(i)

Pt

)−θt

− pint
t

Pt
Yt

(
pt(i)

Pt

)−θt

Deriving with respect to pt(i)
Pt

we get the first-order condition (FOC):

pt(i)

Pt
=

θt
θt − 1

pint
t

Pt
(136)

The nominal price index implies the following expression for the price of intermediate goods:

Pt =

(∫
pt(i)

1−θtdi

) 1
1−θt

Since the price of intermediate good is the same, all final goods firms make the same pricing decisions

(no pricing frictions), and thus pt(i) = Pt, yielding to:

pint
t

Pt
=

θt − 1

θt
(137)
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Substituting, pint
t

Pt
, pt(i)

Pt
, yft (i) into Πt we get the aggregate profit:

Πt =
Yt

θt
(138)

Profits from monopolistically competitive firms are distributed according to wage income, πj
t = hcj Πt

Lt
.

In equilibrium, the total distributed profit must equal total profits:

Πt =
65∑

j=26

nj
tπ

j
t (139)

Intermediate Goods Firms

This is a perfectly competitive market in which intermediate firms rent capital Kt from the capital

market at rkt, hire labor Lt from the labor market at wt, and sell their production Yt to the final firms

at a real price pint
t

Pt
taken as given. They maximize the following profit function:

max
{Kt,Lt}

Πint
t =

pint
t

Pt
Yt − wtLt − rktKt

subject to the production constraint, given by a CES production function:

Yt =

(
α(AKtKt)

σ−1
σ + (1− α)(ALtLt)

σ−1
σ

) σ
σ−1

The lagrangian for the Intermediate Firms problem is:

max
{Kt,Lt}

Lt =
pint
t

Pt

(
α(AKt ·Kt)

σ−1
σ + (1− α)(ALt · Lt)

σ−1
σ

) σ
σ−1

− wtLt − rktKt

Deriving with respect to Lt,Kt we get the first-order conditions (FOCs):

wt =
pint
t

Pt
(1− α)(ALt)

σ−1
σ

(
Yt

Lt

) 1
σ

(140)

rkt =
pint
t

Pt
(α)(AKt)

σ−1
σ

(
Yt

Kt

) 1
σ

(141)

Yt =

(
α(AKt ·Kt)

σ−1
σ + (1− α)(ALt · Lt)

σ−1
σ

) σ
σ−1

(142)
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Taking wt as a numeraire, we define Aadj = w as a parameter at its steady-state value, and we divide

wt, rkt, Yt for Aadj to get:

Aadj =
pint
t

Pt
(1− α)(ALt)

σ−1
σ

(
Yt

Lt

) 1
σ

(143)

wt =

pint
t

Pt
(1− α)(ALt)

σ−1
σ

(
Yt

Lt

) 1
σ

Aadj
(144)

rkt =

pint
t

Pt
(α)(AKt)

σ−1
σ

(
Yt

Kt

) 1
σ

Aadj
(145)

Yt =

(
α(AKt ·Kt)

σ−1
σ + (1− α)(ALt · Lt)

σ−1
σ

) σ
σ−1

Aadj
(146)

Eventually, we have the no-arbitrage condition which relates the risk-free real rate with the return on

capital:

1 + rt =
rkt + (1− δ)ϵt

ϵt−1
(147)

C.4 Government

The government spends an exogenous Gt and may issue debt. The following equations describe the main

government variables:

Gt = g · Yt (148)

Tt = τtwtLt (149)

bt+1Yt+1 = gtYt + (1 + rt) · btYt − τtwtLt (150)

govrevt = gtYt + rtbtYt (151)

govdeficitt =
bt+1Yt+1 − btYt

govrevt

(152)

govdebt =
btYt

Kt
(153)

C.5 Aggregates

Besides the other aggregates, such as (119), (122), (138) and, (146), we have:

Ct =

J∑
26

nj
tc

j
t (154)

ϵt ·Kt =

( J∑
j=26

ϵtn
j
ta

j
t−1

)
− btYt (155)
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