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Abstract: Outbound logistics is a crucial field of logistics management. This study considers a
planning distribution for the poultry industry in Thailand. The goal of the study is to minimize
the transportation cost for the multi-depot vehicle-routing problem (MDVRP). A novel enhanced
differential evolution algorithm (RI-DE) is developed based on a new re-initialization mutation
formula and a local search function. A mixed-integer programming formulation is presented in
order to measure the performance of a heuristic with GA, PSO, and DE for small-sized instances. For
large-sized instances, RI-DE is compared to the traditional DE algorithm for solving the MDVRP
using published benchmark instances. The results demonstrate that RI-DE obtained a near-optimal
solution of 99.03% and outperformed the traditional DE algorithm with a 2.53% relative improvement,
not only in terms of solution performance, but also in terms of computational time.

Keywords: multi-depot vehicle routing problem; novel enhanced differential evolution algorithm;
outbound logistics planning

1. Introduction

In recent years, competitive markets, challenging customer demands, and increased
awareness of logistics and transportation activities have increased the importance of tech-
nology for Thailand’s poultry industry. In order to develop new technology for the mar-
ketplace, companies “can and should use external ideas and internal ideas, as well as
internal and external paths to market,” according to the open innovation paradigm [1].
In addition to logistics management being influenced by innovations, new technologies
are evolving in response to businesses’ goals and competitiveness conditions, increasing
their complexity [2]. Currently, logistics, also known as logistics 4.0, is receiving the most
attention in the fourth industrial revolution trend. Artificial intelligence, real-time tracking,
data-driven network logistics, the internet of things, optimization software, and so on are
examples of technologies [3–5]. These logistics 4.0 technologies will significantly impact
Thailand’s poultry industry’s outbound logistics planning.

The outbound logistics of the poultry industry in Thailand are considered in this paper,
as agricultural products comprise a significant part of Thailand’s development, impacting
Thailand’s economic growth. Outbound logistics is the shipping of finished products to
customers from a distribution center. At this stage, transportation is typically carried out
by trucks. Distribution planning can be a challenging problem and adhering to distribution
center best practices is also crucial for ensuring the efficient transportation of products. The
importance of poultry distribution planning has increased, due to rising transportation
costs and opportunities for decreasing costs in incorporating optimal distribution planning.
A flow process of outbound logistics for the poultry industry in Thailand is depicted in
Figure 1. In short, the outbound logistics of the poultry industry in Thailand consists of three
principal distributions: (1) The old hens are slaughtered and then sold as poultry meats
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to customers; (2) eggs are mainly sold directly to the end-consumers; and (3) broken eggs
are sent to a processing plant [6,7]. Various egg products (e.g., egg powder) are produced,
which are used in the food industry. Poultry distribution, regarding the design of the routing
scheme for routing problems, is known as the multiple-depot vehicle-routing problem
(MDVRP). One characteristic of this problem is that many customers need to be served
by vehicles from many depots (e.g., egg distribution centers 1,2 and a slaughterhouse).
Each vehicle must start at its depot, visit customers in order, and return to the same depot.
Therefore, poultry distribution planning is intended to route the vehicle at each depot, with
respect to the orders of customers.
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The MDVRP has been the focus of many studies, as it is widely applicable to many
real-world situations, including logistics distribution problems for optimizing total trans-
portation costs. After all, an optimal route can minimize the total distance of each route,
thereby leading to cost savings. Hence, it is essential to have an optimized plan for vehicle
routing to complete poultry distribution.

In this paper, we focus on outbound logistics planning of the poultry industry in
Thailand, with the objective being to minimize transportation costs. We developed a
mixed-integer linear programming (MILP) model for small-sized instances. In terms of
large-sized instances, we developed a new enhanced differential evolution (DE) algorithm,
which should make the best decision to minimize the distance between each depot and
the customers. The main contributions of this paper are twofold. First, we developed a
new mutation formula for re-initializing solutions for the DE algorithm in the context of
protecting movements to a local optimal. Secondly, we designed an algorithm to further
enhance the DE algorithm. The local search techniques were used in the k-variable move
to improve the ability to search for the best solutions to enhance the exploitation search
capability, called the local vector. Hence, using the re-initialization solution formula on the
DE algorithm is known as the novel re-initialization solution and local search function on
the DE algorithm (RI-DE), which will be implemented in Thailand’s Poultry Industry.

This paper is organized as follows: In Section 2, a review of the related literature
is presented. Section 3 introduces the problem statement and formulation of MDVRP.
Section 4 presents our proposed algorithm for solving the MDVRP. The computational
results are discussed in Section 5. Finally, our conclusion is detailed in Section 6.
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2. Literature Review

Developing an efficient production planning system for the poultry industry is chal-
lenging and interesting to manage, in terms of the supply chain and logistics; this is
especially the case in the transportation planning for poultry, which is a process that covers
activities involving both inbound, production, and outbound logistics. Optimizing opera-
tional and production planning results in lower operating costs and links to the outbound
logistics system, where each customer receives the product according to their quantity
demand. Therefore, this research aims to develop decision-making guidelines for solving
poultry transportation planning problems based on obtaining globally optimal solutions,
then developing a mathematical model for a mixed-integer linear program considering a
single objective optimization problem to minimize the total cost of transportation, solving
poultry transportation planning problems based on obtaining globally optimal solutions.
By developing a mathematical model of a mixed-integer linear program considering a
single objective optimization problem, the minimization of the total distance from each
depot to all customers can be achieved.

The literature on open-innovation dynamics and multiple-depot vehicle-routing prob-
lems mainly considers three factors: MDVRP, metaheuristics in routing problems, and local
search problems. In the following, we review the related papers in terms of these three
directions.

Open innovation is intended for exploring and exploiting [8] new opportunities to
obtain and develop new knowledge and technology [9], specifically in the poultry industry
in Thailand, in which Small and Medium Enterprises (SMEs) assist in overcoming innova-
tion obstacles [8,10,11]. In addition, previous research on open innovation investigates the
importance of management in SMEs [12].

Given the novelty of open innovation dynamics in various research domains such as
SMEs, as well as small and medium industries (SMIs), numerous studies have attempted
to establish a precise description of this concept through research techniques by using
qualitative methods such as system dynamics [13–19], theory-building [20–22] content
analysis [3,23,24] optimization [12,25] and etc. Open innovation dynamics vary across
different ecosystems [26], Moreover businesses’ attitudes toward open innovation result
from a mix of the ecosystem’s various aspects [27,28].

Open innovation appears to be an ideal strategy for promoting a firm’s operations
for knowledge exploration and exploitation to produce optimization software for routing
problems in the context of Industry 4.0 technologies and their execution and integration [2,3].
Theeraviriga et al. [29] presented a new optimization technique for the location-routing
problem of agriculture in Thailand. They developed a mathematical model and variable
neighborhood strategy adaptive search (VaNSAS). They compared the solution of the
proposed algorithm with the probability of selecting a black box in four different equations.
Theeraviriga et al. [30] studied location decision making and transportation for the palm
oil collection center. Firstly, they proposed a mixed-integer linear programming model
(MILP) and adaptive large neighborhood search (ALNS). Then, the results were compared
between the solution from the MILP by the LINGO program and ALNS. Supattananon and
Akararungruangkul [31] presented a combination of a web application and the modified
differential evolution (MDE) algorithm for the vehicle dispatching problem (VDP). They
modified the DE with the probability of accepting the solution in the four different equations.
The results demonstrated that the MDE outperformed the traditional DE.

Reviewing of the open innovation dynamics literature demonstrates that a combined
approach of metaheuristic techniques such as genetic algorithm (GA), particle swarm
optimization (PSO), and differential evolution (DE) algorithm in the field, planning the
distribution of SMEs/SMIs, has not been used yet.

In 2015, Montoya-Torres et al. [32] provided a state-of-the-art survey on vehicle rout-
ing with multiple depots (MDVRP). Most of the initial papers on MDVRP considered
transportation cost minimization. Moreover, due to the intricacy of transportation issues,
there are numerous elements which should be as near to a real-world scenario as possi-
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ble, including time windows, split delivery, heterogeneous fleets, periodic deliveries, and
pickup and delivery.

Ho et al. (2008) [33] considered the topic of reverse logistics for a company that
wants to collect cores from dealers during campaign seasons. Moreover, they proposed
the distribution of products from multiple warehouses to sample customers in the trans-
portation industry. This study developed two hybrid genetic algorithms (HGAs) to deal
with the challenge efficiently. The primary distinction between the HGAs was that, in
HGA1, the initial solutions were produced at random. For the initialization technique,
HGA2 used the Clarke and Wright savings approach and the closest neighbor heuristic.
Computational modeling was carried out in order to compare the methods with different
issue sizes. In terms of overall delivery time, HGA2 outperformed HGA1. Aras, Aksen,
and Tekin (2011) [34] presented two mixed-integer linear programming (MILP) models in
MDVRP. They developed a Tabu search-based heuristic technique to modify medium- and
large-sized cases, as the issue is NP-hard.

Sombuntham and Kachitvichyanukul (2010) [35] developed a particle swarm optimiza-
tion algorithm with multiple social-learning structures (GLNPSO) to solve MDVRP with
simultaneous pickup and delivery time windows. They created a new decoding technique,
and their preliminary findings suggested that the proposed method could effectively solve
most of the test issues.

Subsequently, many studies have focused on local search algorithms in MDVRP. A
heuristic approach can tackle issues that are computationally difficult to solve. A local
search may be employed to address issues when moving from one solution to the next in
the context of candidate solutions, by making local adjustments until a solution which is
deemed optimal is discovered, or a time limit has passed. Kuo and Wang (2012) [36] offered
a variable neighborhood search (VNS) solution for the MDVRP with loading costs (LC).
There were three phases in the proposed VNS: (1) Initial solution generation; (2) random
neighborhood solutions; and (3) neighborhood solution acceptance by simulated annealing
(SA). Their findings demonstrated that the proposed technique is both efficient and suc-
cessful in addressing the related issues. In 2016, Alinaghian and Shokouhi [37] presented a
hybrid algorithm composed of an adaptive large neighborhood search (ALNS) and VNS
for a multi-compartment MDVRP. In the same year, Bezerra et al. [38] presented a modified
randomized variable neighborhood descent (RVND) for solving MDVRP.

Sadati, Çatay, and Aksen (2021) [39] have recently developed a hybrid Tabu search
and variable neighborhood search to escape from local optima; the algorithm was called the
variable tabu neighborhood search (VTNS). The VTNS was used to solve three problems:
MDVRP, MDVRPTW, and multi-depot open vehicle routing problem (MDOVRP). The
study found that VTNS was competitive, in terms of the speed of solution, compared to
state-of-the-art solution approaches published in the literature. Sethanan and Pitakaso
(2016) [40] indicated a DE metaheuristic for the transportation of raw milk. In order to
increase the quality of the solution, they developed five modified DE algorithms, including
two new steps: reincarnation and survival processes. The modified DE algorithms offered
higher efficiency in minimization of the total costs. Dechampai et al. (2015) [41] used
the Multifactor Based Evolving Self-Organizing Maps with Differential Evolution for the
General Q-Delivery Vehicle Routing Problem (G-Q-DVRP) with considerations of flexibility
in mixing pickup and delivery services and the maximum duration of a route constraint
(MESOMDE_G-Q-DVRP-FD) algorithm for the egg industry. The algorithm was beneficial
for minimizing overall costs, compared to real-world cases, and for the efficient handling
of a poultry production system.

Therefore, in the field of work related to the DE algorithm [40,41] we developed, in
contrast to the above-mentioned works, the new mutation formula for re-initialization and
new operation of using the k-valuable move algorithm in the DE algorithm.

Stodola (2018) [42] developed the ant colony optimization (ACO) theory to minimize
the length of the longest route of all vehicles in the standard MDVRP. Later, Stodola
(2020) [43] used a hybrid ant colony optimization algorithm. Mutual colony optimization
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was conducted twice. ACO applies the local optimization process, and updates pheromone
trails according to selected solutions in a current generation, using the simulated annealing
technique for decisions. The algorithm was found to minimize the total distance and
the longest route for all vehicles. Zhang et al. (2020) [44] presented a multi-depot green
vehicle routing problem considering alternative fuel-powered vehicles with limited fuel
tank capacity. They proposed a two-stage ant colony system (TSACS). The proposed TSACS
is distinguished through the utilization of two types of ants for two different objectives: the
first type of ant was used to assign customers to depots, while the second type of ant was
assigned to find the routes. The overall goal was to reduce total carbon emissions as much
as possible. This approach could effectively reduce the total carbon emissions. Shi, Hu, and
Han (2020) [45] considered waste collection problems from waste collection points to waste
disposal plants formulated in terms of MDVRP. They presented the sector combination
optimization (SCO) algorithm to generate initial solutions and used the merge-head and
drop-tail (MHDT) strategy in the process of updating solutions to minimize the total
transportation distance. This algorithm provided more effective solutions compared to the
other algorithms presented, and used the lowest computational time in the tabu search to
obtain near-optimal solutions. Zhen et al. [46] investigated a multi-depot multi-trip vehicle
routing problem with time windows and release dates. They developed a mixed integer
programming model for small-sized instances, and a hybrid particle swarm optimization
algorithm and a hybrid genetic algorithm for large-sized instances. A summary of the past
work on MDVRP is shown in Table 1.

Table 1. Summary of past work on MDVRP.

Author Year Solution Approach

Ho et al. [33] 2008 Initial solution with Hybrid based on GA
and LS

Sombuntham and
Kachitvichyanukul [35] 2010 PSO with multiple social learning structures

Aras, Aksen, and Tekin [34] 2011 A rich neighborhood TS (TS-RN) heuristic
Kuo and Wang [36] 2012 Initial solution and VNS

Dechampai et al. [41] 2015 DE algorithm
Sethanan and Pitakaso [40] 2016 DE algorithm

Alinaghian and Shokouhi [37] 2016 Hybrid based on ALNS and VNS
Bezerra et al. [38] 2018 Randomized VND

Stodola [42] 2018 Ant Colony Optimization (ACO)

Shi, Hu, and Han [45] 2020
Sector Combination Optimization (SCO)
algorithm with merge-head and drop-tail

(MHDT) strategy.
Stodola [43] 2020 Hybrid based on ACO and SA

Zhen et al. [46] 2020 Hybrid based on PSO and GA
Zhang et al. [44] 2020 A Two-stage ACO

Sadati, Çatay, and Aksen [39] 2021 Variable Tabu Neighborhood Search (VTNS)

3. Problem Statement and Mathematical Model
3.1. The Problem Statement

The logistic flow problem is also known as the vehicle routing problem (VRP). The
VRP is an NP-hard combinatorial optimization problem that is designed to improve logistic
planning to minimize the total cost. In this paper, we considered the outbound logistics for
the poultry industry in Thailand. The outbound logistic in this case study is characteristic of
multiple-depot vehicle routing problems. In summary, transportation from the depot to the
customers must follow a circular route, with the depot serving as both a starting node and a
destination node. When considering only one depot, the problem is known as a single-depot
problem, or VRP (see Figure 2a). Meanwhile, when the number of depots increases, it is
known as the multi-depot vehicle problem (see Figure 2b). The objective of this paper is to
find the best plan for the poultry industry that minimizes transportation costs.
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3.2. The Mathematical Model

This paper used the mixed-integer linear programming of MDVRP based on the first
presented by Kulkarni and Bhave [47]. The mathematical model of the MDVRP defines
a three-index binary decision, where the binary decision variable xijk is equal to 1 when
linking the arc between customers i and j in the route of vehicle k, and 0 otherwise. We
consider assumptions that are used in the poultry distribution industry based on MDVRP:

(1) Each vehicle must depart from and return to the same depot;
(2) Each customer is served exactly once by one vehicle;
(3) The customer’s demand does not exceed the vehicle capacity;
(4) All customers needs are met; and
(5) The total time of a route does not exceed the maximum duration time of the route.

The following notation is used in the model:

Sets and indices:
M Set of poultry distribution center (depot) nodes
N Set of customer nodes
K Set of vehicles
i, j Index of nodes; i, j = 1, . . . , N + M
k Index of vehicles; k = 1, . . . , K

Parameters:
cij Transportation cost between customers i and j
tij Transportation time between customers i and j
Qi Demand at customer i
Pk Capacity of vehicle k
Tk Maximum duration time of route allowed for vehicle k

Decision variables:

xijk
Equal to 1 if the vehicle k is traveling from customer i to
customer j, zero otherwise

ui
An integer variable that defines the order of vertices visited
on a tour for the elimination of sub-tours



J. Open Innov. Technol. Mark. Complex. 2022, 8, 15 7 of 19

The formulation of poultry distribution based on MDVRP can be stated as follows:

Minimize Z =
N+M

∑
i=1

N+M

∑
j=1

K

∑
k=1

cijxijk (1)

Subject to:
N+M

∑
i=1

K

∑
k=1

xijk = 1 j = 1, . . . , N (2)

N+M

∑
j=1

K

∑
k=1

xijk = 1 i = 1, . . . , N (3)

N+M

∑
i=1

xihk −
N+M

∑
j=1

xhjk = 0
k = 1, . . . , K
h = 1, . . . , N + M

(4)

N+M

∑
i=1

N+M

∑
j=1

Qixijk ≤ Pk k = 1, . . . , K (5)

N+M

∑
i=1

N+M

∑
j=1

tijxijk ≤ Tk k = 1, . . . , K (6)

N+M

∑
i=N+1

N

∑
j=1

xijk ≤ 1 k = 1, . . . , K (7)

N+M

∑
j=N+1

N

∑
i=1

xijk ≤ 1 k = 1, . . . , K (8)

ui − uj + (N + M)xijk ≤ (N + M)− 1 1 ≤ i 6= j ≤ N and 1 ≤ k ≤ K (9)

xijkε {0, 1} k = 1, . . . , K
i, j = 1, . . . , N + M

(10)

ui ≥ 0 i = 1, . . . , N + M (11)

The objective function (1) of the poultry industry distribution is to minimize the
transportation cost. Constraints (2) and (3) denote a single visit, and that a single vehicle
serves the customer. Constraints (4) states that any vehicle that visits a customer should
also depart from that customer. Constraints (5) ensure that the demand at customer i (Qi)
cannot exceed its vehicle capacity (Pk). Constraint (6) ensures that a vehicle k is returned to
the depot no later than the maximum duration time (Tk). Vehicle availability is verified by
constraints (7) and (8). Constraint (9) is for sub-tour elimination. Finally, constraint (10)
and (11) serves as the basis for the decision variables.

4. New Enhanced Differential Evolution Algorithms

The differential evolution (DE) algorithm is a population-based search, which was
proposed by Storn and Price [48]. The DE algorithm includes three operations: Mutation,
recombination, and selection. The vector containing dimension (D) variables is denoted by
xt

i,j. The pseudocode of the traditional DE algorithm is shown in Algorithm 1. This section
presents a new, enhanced DE algorithm with a new mutation formula to adapt between the
mutation formula DE/rand/1 and the local mutation vector and local search function. The
proposed algorithm is named RI-DE, and its steps are shown in Algorithm 2. The details of
the procedures are as follows.
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Algorithm 1 The pseudocode of DE

1. Define the objectives function f(x)
2. Generate the initial population of NP
3. while t < Max(number of iteration)
4. for each xt

i in the population do
5. Random vector r1, r2, r3 ∈ (1,NP), with r1 6= r2 6= r3
6. Generete a random integer jrand ∈ (1, D)
7. for each parameter j do
8. Generate vt

i through Equation (12)
9. Generate ut

i through Equation (13)
10. end for
11. Replace xt

i with the ut
i if ut

i is better through Equation (16)
12. end for
13. end while

4.1. Initialization Operation

The initial individuals vector x0
i,j (i = 1, . . . ,NP) generates random numbers within the

range [0, 1), and the maximum number of iterations tmax for the current generation t is set
as 0 (note: For understanding xt

i is a target vector i iteration t does not reference dimension
j, which xt

i,j references dimension j, that the same variable).

4.1.1. New Mutation Operation

For each xt
i in the population, the mutant vector vt+1

i is generated by the mutation
formula. The traditional DE uses the following mutation formula:

DE/rand/1 : vt+1
i = xt

r1 + F
(

xt
r2 − xt

r3
)
, (12)

where r1, r2, and r3 form a random vector chosen within the range [1,NP], and each r must
be different (i.e., r1 6= r2 6= r3). F is the is the scaling factor. The new enhanced DE is
developed considering the following mutation operation.

The new mutation operation was developed considering the concept of protecting the
moving trap solution, as the search performance of DE still needs to be improved. The
mutant vector, vt+1

i , is generated by the mutation formula as follows:

vt+1
i =

{
xt

rnew + F
(

xt
best − xt

i
)
+ F

(
xt

r1 − xt
r2
)
, i f NI ≥ RI

xt
r1 + F

(
xt

r2 − xt
r3
)
, otherwise

(13)

where xt
rnew , xt

best , NI, and RI are the new random vector, the vector that obtains the best
solution at iteration t (called the best vector), the number of iterations after which the
solution does not improve, and the number of cumulative iterations in which the solution
does not improve (function re-initialization is used), respectively. Moreover, the percentage
of the number of populations (Ps) for random populations used Equation (13). We set the
parameter Ps equal to 20% based on previous work [49]. We hope to use a new mutation
formula to protect against trapping in local optima.

4.1.2. The Recombination Operation

For this study, we adopted the binominal recombination operation. For each target
vector x0

i,j, the trial vector ut
i,j was generated as follows:

ut+1
i,j =

{
vt+1

i,j , i f rj ≤ CR or j = randn(i)
xt

i,j , otherwise,
(14)

where rj, j, and CR are a random number within the range [0, 1], a random integer within the
number of dimensions D, and the crossover probability within the range [0, 1], respectively.
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Algorithm 2: The pseudocode of RI-DE

1. Define the objectives function f(x)
2. Generate the initial population of NP
3. while t < Max(number of iteration)
4. for each xt

i in the population do
5. Random vector r1, r2, r3 ∈ (1,NP), with r1 6= r2 6= r3
6. Generete a random integer jrand ∈ (1, D)
7. for each parameter j do
8. if NI ≤ RI
9. Generate vt

i through Equation (12)
10. else
11. if Random each xt

i in population with Ps%
12. Generate vt

i through Equation (13)
13. Generate ut

i through Equation (14)
14. else
15. Generate vt

i through Equation (12)
16. Generate ut

i through Equation (14)
17. end
18. end
19. Call local search function
20. Generate lt

i through local search function
21. Replace u′ti with the lt

i if lt
i is better, and ut

i otherwise through Equation (15)
22. end for
23. Replace xt

i with the u′ti if u′ti is better through Equation (16)
24. end for
25. end while

4.1.3. The Local Search Functions

The RI-DE algorithm used a local search algorithm (e.g., swap function, insert function,
and 2-opt function), in order to improve the exploitation ability of the search in the context
of protecting movements to a local optimum. To create a new vector, the local search
function (called the local vector, lt

i ) from Equation (15), is operated in each dimension j by
the local search function to create the lt

i,j. The new trial vectors u′ti,j are selected as follows:

u′ti,j =

{
lt
i,j , i f f

(
lt
i,j

)
≤ f

(
ut

i,j

)
ut

i,j , otherwise
(15)

Our proposed algorithm uses a local search name k-variable move algorithm [50]. The
k-variable move is an extended version of the swap algorithm, in which k continues to
move from a k position to the next k position until the last k moves to the first k in D.

For example, after the trial vector ut
i,j is created (see Figure 3), a k-variable move

(where k = 3) is shown in Figure 3. The trial vector is randomized in three positions {3,7,5}
(see Figure 3a), swapping from the first position to the next position. Finally, the third
position must move to the first position (see Figure 3b).
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Figure 3. The example for k-variable move function: (a) The trial vector; and (b) trial vector after the
k-variable move (local vector).

In this paper, we used k = 20% based on previous work [49], which means that k should
be the random number for moving up to around 20% of the customers.

4.1.4. Selection Operation

If the fitness value of the trial vector is better than the target vector, then the trial vector
replaces the target vector with a pre-target vector in the next iteration based on a greedy
selection.

xt+1
i,j =

{
u′ti,j , i f f

(
u′ti,j

)
≤ f

(
xt

i,j

)
xt

i,j , otherwise
(16)

In the brief discussion of Algorithm 1, each individual of the trial vector is compared
to the objective function with its target vector, and the better one is selected for the next
iteration. Then, these steps are repeated until the stopping criterion is reached. Moreover,
the critical difference between Algorithms 1 and 2 is that in Algorithm 2, when the solution
does not develop, Equation (13) is used, the individual target vector is random with PS%
chance to be the local vector, and the better one between the trial vector and local vector is
chosen to be new trial vector that is compared with its target vector.

4.2. The Decoding Method

The solution to our proposed problem is the use of multiple vehicle routes for the
poultry distribution problem to deliver products from the multi-depot to customers within
the limited number of vehicles at each depot. The following example shows the decoding
method: suppose we have two depots. Then, the limited number of vehicles at each depot
is two, the vehicle capacity in a homogeneous fleet is equal to 40, and there are 10 customers.
The demand of the 10 customers is shown in Table 2.
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Table 2. The demand of 10 customers and depot assigned.

Customers Demands Depot Assigned

1 10 1
2 12 2
3 10 1
4 15 2
5 18 2
6 10 1
7 12 2
8 16 1
9 10 2
10 14 1

In our proposed algorithm, the dimension in the vector represents the solutions. In
the first array, each dimension is identified by a customer sequence, which is sorted by
increasing values. In the second array, each dimension is identified by a corresponding
random real-number sequence (see Figure 4a). Therefore, the customer sequence of each
depot can be obtained by rank order value (ROV), which decodes the ascending order (see
Figure 4b).

Figure 4. The decoding method of our proposed algorithm: (a) Vector that has not yet been operated
with the decoding method; and (b) decoded vector.

4.2.1. The Customer Assigned

The customer assigned to each depot is chosen based on the greedy algorithm. The
customers must select a closer depot for delivering products for them. The objective of this
paper is to minimize the overall transportation costs. Thus, the customers are assigned to
the nearest depots. For example, each of the 10 customers should be assigned to nearby
depots, as shown in Table 2, column 3.

4.2.2. Solution Representation of RI-DE Algorithm

Each vector is structured as a double array, with the length being the number of
customers in this algorithm (|N|). Figure 4 depicts an example of the decoding method of
RI-DE, where |N| equals 10. The vector with random positioning of customers is shown
in Figure 4a. The customers in {1, 3, 6, 8, 10} are assigned to depot 1. Similarly, customers in
{2, 4, 5, 7, 9} are assigned to depot 2. Therefore, the customer sequences are depicted as {5, 2,
1, 8, 9, 4, 6, 10, 3, 7} (see Figure 4b), in which the customer sequences of depot 1 and depot 2
are {1, 8, 6, 10, 3} and {5, 2, 9, 4, 7}, respectively. The routing of vehicles for each customer is
available with respect to the vehicle capacity and the maximum number of vehicles at each
depot.

(1) Route No. 1: Vehicle No. 1 at Depot 1. The routing assignment: The vehicle has to
deliver products to customers {1,8,6} with amounts of 10, 16, and 10, respectively, as
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the products loaded are inadequate to meet the demand of the following customers:
customer number 10 had a demand of 14, but there were only four remaining products
(40–10−16–10 = 4). Hence, the vehicle must then return to Depot 1.

(2) Route No. 2: Vehicle No. 2 at Depot 1. This is similar to Route No. 1 at Depot 1, but
Vehicle No. 2 has to deliver to the remaining customers ({10,3}).

(3) Route No. 3: Vehicle No. 3 at Depot 2. The routing assignment: The vehicle has to
deliver products to customers {5, 2, 9} with amounts of 18, 12 and 10, respectively;
however, the products loaded were not enough to meet the demand of the following
customers: customer number 4 had a demand of 15, but there were no remaining
products (40–18−12–10 = 0). The vehicle must return to Depot 2.

(4) Route No. 4: Vehicle No. 4 at Depot 2. This is similar to Route No. 3 Vehicle No. 3
at Depot 2., but Vehicle No. 2 at Depot 2 has to deliver to the remaining customers
({4, 7}).

Suppose the number of vehicles in service is insufficient to meet the demands of the
customers. In that case, it is necessary to move the number of customers that cannot be
served to the next nearest depot. For example, customers {5,3,2,1,6,7} are assigned to be
serviced by depot 1 (see Figure 5a), while customers {4,8,9,10} must be serviced by depot 2.
It is found that the number of vehicles at depot 1 can only serve customers {5,3,2,1}, while
customers {6,7} cannot be serviced as the number of vehicles at depot 1 are inadequate.
Thus, it is necessary to assign customers {6,7} to the next nearest depot to receive service.
Suppose the next nearest depot is depot 2, where the sequence will be appended to the
original order, becoming {4,8,9,10,6,7} (see Figure 5b).
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5. Computational Experiment

In this section, the experiments were executed on a computer with the following
parameters: Intel® Core™ i7-8750H CPU @ 2.20 GHz, 2.21 GHz RAM, and 16.0 GB. We
developed the mathematical model in LINGO software, based on the branch and bound
method, and our proposed algorithms were coded in MATLAB (R2018a). The implementa-
tion of our proposed algorithm requires parameters, as provided in Table 3 [7,51–53]. We
divided the parameters into small- and large-sized instances, shown in the third and fourth
columns, respectively. For each experimental set, we attempted 15 replicates. Comparisons
based on several population-based algorithms were discovered as well, such as traditional
differential evolution (DE) algorithm, genetic algorithm (GA) [54,55], and particle swarm
optimization (PSO) [55].

The results of our proposed algorithms were compared with LINGO for small-sized
instances, as illustrated in Table 4, which is organized as follows. The first column contains
the number of the instance ID. Column 2 contains the instance ID. In addition, each instance
comprises three parts: the number of depots, the number of customers, and the number of
vehicles. In column three, we show the optimal solution obtained by LINGO. Columns 4–12
show the best, average, and worst solutions obtained by the genetic algorithm (GA), particle
swarm optimization (PSO), traditional differential evolution (DE), and re-initialization
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differential evolution (RI-DE) algorithm. We tested a total of 25 instances with 5, 10, 15,
20, and 25 customers. The number of the depots was 2, 3, and 4 depots. The numbers of
vehicles at each depot were 3, 4, 5, and 6 vehicles. We used the best solution obtained from
the 15 replicates of our proposed algorithm to demonstrate the transportation cost. The
computational time of our proposed algorithms is shown in Table 5.

Table 3. Parameters of our proposed algorithm.

Symbol Meaning Small-Sized Instance Large-Sized Instance

Tmax Maximum number of iterations 300 500
NP Number of populations 25 50
F Scaling factor 2.0 2.0

CR Crossover Rate 0.8 0.8
RI Re-initial factor 30 50

The case study (CS) on this research was motivated by the small and medium-sized
enterprises (SMEs) in northeastern Thailand. Currently, the total number of distribution
centers is 6 with customers numbering about 500. To deliver to the customers, the case-
study company has a contract with a third-party delivery company, which provides about
250 vehicles.

In Table 6, the heuristic performance (HP) percentage is shown, which was calculated
as HP = (SL/So) × 100. Here, SL and So are the solutions obtained by LINGO and the
solution obtained by our proposed algorithm in Table 4, respectively. The statistical test
results in the solution obtained by our proposed algorithm using the Wilcoxon test are
shown in Table 7. We used the Wilcoxon test because it neither depends on the form of
the parent distribution nor its parameters and does not depend on any assumptions about
the shape of the distribution or on being normally distributed. The statistical test was
performed based on the transportation cost of LINGO and our proposed algorithm, and
the SPSS V14 software for Windows was used to carry out the statistical analysis.

Table 4. Transportation cost of our proposed algorithm for small-sized instances.

No. Instance
ID

Transportation Cost

LINGO
GA PSO DE RI-DE

Best Avg. Worst Best Avg. Worst Best Avg. Worst Best Avg. Worst

1 In2-10-3 4754.79 4754.79 4754.79 4754.79 4754.79 4754.79 4754.79 4754.79 4754.79 4754.79 4754.79 4754.79 4754.79
2 In2-10-3 3419.17 3419.17 3419.17 3419.17 3419.17 3419.17 3419.17 3419.17 3419.17 3419.17 3419.17 3419.17 3419.17
3 In2-10-3 3355.35 3355.35 3361.91 3371.68 3355.35 3355.35 3355.35 3355.35 3355.35 3355.35 3355.35 3355.35 3355.35
4 In2-10-3 5811.17 5811.17 5824.88 5854.59 5811.17 5821.27 5848.89 5811.17 5811.17 5811.17 5811.17 5811.17 5811.17
5 In2-10-3 5405.38 5405.38 5420.44 5452.22 5405.38 5414.85 5437.56 5405.38 5412.15 5435.45 5405.38 5405.38 5405.38
6 In2-15-4 6292.73 6292.73 6302.73 6328.22 6292.73 6303.81 6336.78 6292.73 6299.78 6323.76 6292.73 6292.73 6292.73
7 In2-15-4 7775.00 7775.00 7795.30 7832.59 7775.00 7788.91 7842.48 7775.00 7786.51 7822.35 7775.00 7781.95 7816.56
8 In2-15-4 8323.10 8323.10 8339.58 8376.87 8323.10 8337.36 8380.55 8323.10 8333.38 8365.84 8323.10 8325.47 8335.13
9 In2-15-4 6263.96 6263.96 6278.28 6304.50 6263.96 6272.03 6283.38 6263.96 6272.60 6301.04 6263.96 6269.66 6298.98
10 In2-15-4 10,708.31 10,708.31 10,733.77 10,785.34 10,708.31 10,728.70 10,792.46 10,708.31 10,723.25 10,762.20 10,708.31 10,717.51 10,759.03
11 In2-20-5 11,752.80 12,366.13 12,396.17 12,452.71 12,125.96 12,163.71 12,210.02 12,048.52 12,069.69 12,114.07 11,765.05 11,778.60 11,814.05
12 In2-20-5 17,256.92 18,272.71 18,330.35 18,449.57 18,447.77 18,504.03 18,603.07 17,741.07 17,770.48 17,817.13 17,617.10 17,650.48 17,710.62
13 In2-20-5 11,333.43 12,247.92 12,286.08 12,323.79 11,572.32 11,611.25 11,668.84 11,646.04 11,668.50 11,726.48 11,460.67 11,479.88 11,517.08
14 In2-20-5 10,752.50 11,476.59 11,505.77 11,551.50 11,021.77 11,062.89 11,120.57 10,993.35 11,032.68 11,050.87 10,997.47 11,021.31 11,066.12
15 In2-20-5 13,712.95 14,464.44 14,490.47 14,523.75 14,260.33 14,297.85 14,356.45 14,373.83 14,401.39 14,461.48 14,192.19 14,219.51 14,261.92
16 In3-20-5 13,123.55 13,845.44 13,884.53 13,952.46 13,438.09 13,487.34 13,557.08 13,558.32 13,601.09 13,657.74 13,249.50 13,274.50 13,337.62
17 In3-20-5 10,777.28 11,337.92 11,364.47 11,392.98 11,017.87 11,343.60 11,391.68 11,293.19 11,319.52 11,365.95 11,061.50 11,078.58 11,119.02
18 In3-20-5 10,902.53 11,535.25 11,573.11 11,625.81 11,440.83 11,474.40 11,522.53 11,218.21 11,250.43 11,299.06 10,937.57 10,950.59 11,002.75
19 In3-20-5 8511.74 9083.85 9112.99 9153.57 8924.62 8959.61 8994.24 8602.79 8610.54 8633.11 8595.39 8609.01 8646.73
20 In3-20-5 12,674.18 13,369.58 13,403.44 13,464.31 13,231.46 13,266.27 13,307.45 13,093.37 13,115.04 13,173.06 13,041.96 13,058.42 13,096.90
21 In4-25-6 17,493.36 18,567.10 18,612.52 18,716.55 18,038.85 18,184.90 18,253.68 17,707.57 18,104.00 18,236.30 18,056.50 18,093.86 18,183.47
22 In4-25-6 11,540.92 12,304.64 12,348.42 12,397.44 12,021.83 12,057.42 12,133.14 11,790.48 11,815.73 11,856.01 11,775.83 11,796.24 11,827.22
23 In4-25-6 11,026.53 11,656.89 11,696.79 11,755.03 11,539.67 11,570.91 11,622.78 11,493.51 11,527.66 11,582.66 11,047.37 11,055.88 11,076.36
24 In4-25-6 20,052.29 21,233.29 21,300.74 21,377.40 20,511.95 20,556.37 20,639.39 20,528.55 20,570.91 20,648.21 20,344.64 20,391.66 20,469.14
25 In4-25-6 13,121.14 14,316.55 14,358.68 14,408.74 13,257.00 13,297.78 13,373.62 13,445.43 13,478.90 13,542.73 13,243.98 13,267.26 13,291.11

CS In6-500-
250

a 148,323.04 148,459.56 148,523.61 147,820.78 147,932.51 148,123.42 146,961.10 147,059.76 147,152.23 146,897.64 146,989.41 147,080.32

Avg (Number 1 to 25) 10,245.64 10,727.49 10,755.81 10,801.02 10,518.37 10,561.38 10,608.24 10,465.73 10,500.19 10,540.64 10,379.83 10,394.36 10,426.74

a Problem is too large to be solved by LINGO.
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Table 5. Computational time of our proposed algorithm for small-sized instances.

Number Instance ID
Computational Time (s.)

LINGO GA
(avg.)

PSO
(avg.)

DE
(avg.)

RI-DE
(avg.)

1 In2-10-3 2.65 1.27 1.13 1.22 2.31
2 In2-10-3 1.79 1.18 1.22 1.32 2.12
3 In2-10-3 2.30 1.22 1.24 1.14 2.26
4 In2-10-3 2.77 1.19 1.29 1.27 2.21
5 In2-10-3 1.30 1.25 1.09 1.21 1.72
6 In2-15-4 311.31 1.81 1.93 1.91 2.52
7 In2-15-4 253.57 1.66 1.69 1.78 2.89
8 In2-15-4 226.19 1.64 1.69 1.79 3.54
9 In2-15-4 327.04 1.74 1.75 1.81 2.67

10 In2-15-4 327.53 1.79 1.76 1.82 2.84
11 In2-20-5 8632.18 2.49 2.42 2.74 4.08
12 In2-20-5 11,825.68 2.42 2.65 2.36 4.00
13 In2-20-5 13,446.76 2.15 2.16 2.76 4.20
14 In2-20-5 12,711.19 2.25 2.34 2.15 4.14
15 In2-20-5 9548.06 2.36 2.40 2.59 3.81
16 In3-20-5 16,024.76 3.56 4.13 3.86 5.18
17 In3-20-5 13,802.22 3.80 3.96 3.82 5.53
18 In3-20-5 14,967.13 3.28 3.80 3.25 4.94
19 In3-20-5 17,021.28 3.81 3.55 3.90 6.63
20 In3-20-5 17,902.19 3.77 3.62 3.91 6.15
21 In4-25-6 18,947.25 5.37 5.77 5.66 10.99
22 In4-25-6 24,137.45 6.26 5.51 6.57 10.94
23 In4-25-6 21,703.05 6.16 6.15 6.91 10.51
24 In4-25-6 24,492.81 5.91 5.90 6.37 9.24
25 In4-25-6 21,441.77 6.21 6.13 6.79 8.27

Case study In6-500-250 a 174.83 201.69 180.37 324.92
Avg. (Number 1 to 25) 9922.40 2.98 3.01 3.16 4.95

a Problem is too large to be solved by LINGO.

Table 6. The heuristic performance of our proposed algorithm for small-sized instances.

Number
Heuristic Performance%

GA PSO DE RI-DE

1 100.00 100.00 100.00 100.00
2 100.00 100.00 100.00 100.00
3 100.00 100.00 100.00 100.00
4 100.00 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00
7 100.00 100.00 100.00 100.00
8 100.00 100.00 100.00 100.00
9 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00
11 95.04 96.92 97.55 99.90
12 94.44 93.54 97.27 97.96
13 92.53 97.94 97.32 98.89
14 93.69 97.56 97.81 97.77
15 94.80 96.16 95.40 96.62
16 94.79 97.66 96.79 99.05
17 95.06 97.82 95.43 97.43
18 94.51 95.29 97.19 99.68
19 93.70 95.37 98.94 99.03
20 94.80 95.79 96.80 97.18
21 94.22 96.98 98.79 96.88
22 93.79 96.00 97.88 98.01
23 94.59 95.55 95.94 99.81
24 94.44 97.76 97.68 98.56
25 91.65 98.98 97.59 99.07

Avg. 96.48 97.97 98.33 99.03
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Table 7. Statistical test results of differences of the solutions obtained from our proposed algorithm
for small-sized instances.

GA PSO DE RI-DE

LINGO 0.001 0.001 0.001 0.001
GA 0.002 0.001 0.001
PSO 0.233 0.002
DE 0.011

Our proposed algorithm could also obtain the optimal solutions for instances 1 to
10 from Table 4 (see bold numbers in Table 4). However, for instances 11 to 25, our
proposed algorithm found near-optimal solutions. The best solutions for our proposed
algorithms were 12/15, 2/15, 1/15, and 0/15 times by RI-DE, DE, PSO, and GA, respectively,
which implies the new formula of the re-initialization DE algorithm and the local search
function can improve protection against trapping in local optima for small-sized instances.
The average computational time of the mathematical model (LINGO) and our proposed
algorithms were 9922.40, 2.98, 3.01, 3.16, and 4.95 s with LINGO, GA, PSO, DE, and RI-DE,
respectively.

The statistical test results demonstrated that the RI-DE algorithm obtained solutions
that differed in a statistically significant manner from the other algorithms (p-value ≤ 0.05).
In addition, in our experiments, we found that the DE and PSO did not significantly differ.
In terms of small-sized instances, RI-DE outperformed the other proposed algorithms.

In large-sized instances, where LINGO cannot obtain solutions, our proposed al-
gorithm was evaluated on Cordeau’s benchmark instances. The best knowledge solu-
tions were taken from NEO Web, with all instances available for download at https:
//neo.lcc.uma.es/vrp/vrp-instances (23 September 2021).

Table 8 shows some properties of Cordeau’s benchmark instances for each instance; the
numbers of nodes (N) and depots (M) are shown, as well as the results of the GA, PSO, traditional
DE and RI-DE algorithms, in terms of the best and average solutions found. Our proposed
algorithm ran 10 replicates on all instances. The best solutions, average solutions, and average
computational time of our proposed algorithm are recorded. The numbers in bold in the best
solutions columns record the best-known solutions (BKS) taken from our proposed algorithm.

The results for the 23 instances of Cordeau’s benchmark in Table 9 report the deviation
from the best-known solutions (∆) for our proposed algorithms. The last column reports the
percentage relative improvement (RI%) between the traditional DE and RI-DE algorithm,
calculated by RI = (SDE − SRI-DE/SDE) × 100. Here, SDE and SRI-DE are the solutions
obtained by the traditional DE and RI-DE algorithms, respectively. The average deviation
from the best-known solutions (∆) for different GA, PSO, DE and RI-DE algorithms was
9.98%, 6.15%, 4.05% and 1.48%, respectively. In addition, the average percentage of relative
improvement between the traditional DE and RI-DE algorithms was 2.53%. Also, when
considering the large-sized instances from Cordeau’s benchmark, it was demonstrated that
the RI-DE algorithm outperforms the traditional DE algorithm.

The discussion of metaheuristics and open innovation is applied to the features of
outbound logistics for distribution in order to develop the new optimized technique. in
our opinion, the metaheuristic can be applied to minimize the transportation of the poultry
industry in Thailand. One of the complexities of multiple vehicle routing problems is the
NP-hard problem [47]. However, many researchers have considered the problem of open
innovation [29–31]. To develop the optimization software for finding the optimal solution
for the vehicle routing problem, it is discussed how the open innovation concept can be
applied to the metaheuristics technique, such as our proposed algorithm to industrial dy-
namics perspective. Moreover, this paper is virtually the first case in which the differential
evolution algorithm has been enhanced using the re-initialization mutation formula and
local search function, in terms of the theoretical implications of open innovation among the
poultry industry SMEs in Thailand via the concept of open innovation [1].

https://neo.lcc.uma.es/vrp/vrp-instances
https://neo.lcc.uma.es/vrp/vrp-instances
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Table 8. Comparison of DE and RI-DE with Cordeau’s benchmark instances.

Instance

BKS

GA PSO DE RI-DE Computational Time

(N/M) Best Avg. Best Avg. Best Avg. Best Avg. GA Avg. (s.) PSO Avg. (s.) DE Avg. (s.) RI-DE Avg. (s.)

P01 (50/4) 576.87 590.14 837.94 576.87 747.66 576.87 755.30 576.87 654.16 17.63 24.24 17.59 25.94
P02 (50/4) 473.53 503.55 700.36 473.53 628.52 473.53 583.29 473.53 535.82 18.21 23.61 18.74 28.88
P03 (75/5) 641.19 684.45 931.38 657.38 837.07 656.42 845.45 641.19 762.40 30.61 31.68 32.84 43.55
P04 (100/2) 1001.59 1064.98 1446.00 1055.00 1366.98 1025.98 1343.12 1014.08 1213.49 16.19 18.57 17.47 24.16
P05 (100/2) 750.03 841.58 1018.74 833.15 960.77 794.45 963.18 776.84 908.12 18.25 16.34 18.51 27.13
P06 (100/3) 876.5 1030.21 1267.55 954.99 1205.12 958.66 1159.09 879.17 994.95 23.92 24.00 26.04 39.07
P07 (100/4) 885.8 959.81 1262.26 897.78 1188.61 903.33 1156.47 887.68 1016.06 33.85 40.85 34.63 57.32
P08 (249/2) 4437.68 4817.86 6264.81 4624.79 6187.56 4562.23 6177.58 4513.52 5196.59 44.52 47.22 43.60 64.83
P09 (249/3) 3900.22 4513.86 5138.81 4266.08 5046.08 4097.08 5036.16 4050.07 4603.25 63.14 61.10 64.93 104.55
P10 (249/4) 3663.02 4211.41 4725.28 3936.37 4668.79 3814.88 4660.47 3730.75 4276.60 86.24 90.53 86.86 134.81
P11 (249/5) 3554.18 3821.44 4717.28 3795.95 4666.45 3615.38 4622.07 3578.34 4148.83 110.43 116.38 110.07 181.02
P12 (80/2) 1318.95 1464.75 1750.45 1374.12 1668.67 1318.95 1654.12 1318.95 1540.19 12.53 22.85 14.32 19.79
P13 (80/2) 1318.95 1447.21 1815.23 1412.07 1721.91 1422.76 1735.26 1362.13 1541.95 15.03 19.49 17.05 22.92
P14 (80/2) 1360.12 1418.77 1818.75 1417.71 1753.70 1393.68 1736.83 1385.47 1592.85 15.24 12.89 14.17 26.63
P15 (160/4) 2505.42 2773.68 3476.40 2737.91 3381.22 2610.03 3364.40 2597.64 3030.39 55.62 56.45 57.35 88.64
P16 (160/4) 2572.23 2898.63 3419.55 2805.70 3365.35 2676.14 3368.55 2579.16 2988.30 55.19 56.22 55.74 95.78
P17 (160/4) 2709.09 2882.47 3546.22 2846.79 3471.24 2765.00 3449.03 2716.64 3197.79 56.95 56.87 56.30 87.89
P18 (240/6) 3702.85 4164.11 5168.42 4164.39 5103.74 4133.41 5079.11 3787.42 4221.70 124.55 122.66 125.69 226.10
P19 (240/6) 3827.26 3945.80 4972.83 3865.73 4904.05 3911.28 4879.44 3844.66 4523.50 124.93 124.56 126.81 159.10
P20 (240/6) 4058.07 4861.87 5524.00 4497.35 5427.46 4345.94 5388.65 4278.40 4690.10 136.23 142.77 137.54 206.44
P21 (360/9) 5474.84 6046.16 7217.81 5810.89 7117.98 5550.54 7091.34 5510.11 6645.58 283.01 288.82 282.04 433.30
P22 (360/9) 5702.16 6603.52 8190.11 6401.79 8132.93 6395.11 8129.50 5830.91 6874.11 251.67 259.88 251.89 440.18
P23 (360/9) 6095.46 6490.57 7802.19 6267.43 7750.28 6236.93 7738.99 6107.00 7245.07 279.75 286.15 279.28 419.31

Avg. 81.46 84.53 82.15 128.58

Table 9. Performance of GA, PSO, DE and RI-DE with Cordeau’s benchmark instance.

Instance ∆GA (%) ∆PSO(%) ∆DE (%) ∆RI-DE (%) RI (%)

P01 2.30 0.00 0.00 0.00 0.00
P02 6.34 0.00 0.00 0.00 0.00
P03 6.75 2.52 2.38 0.00 2.38
P04 6.33 5.33 2.44 1.25 1.17
P05 12.21 11.08 5.92 3.57 2.27
P06 17.54 8.96 9.37 0.30 9.04
P07 8.36 1.35 1.98 0.21 1.76
P08 8.57 4.22 2.81 1.71 1.08
P09 15.73 9.38 5.05 3.84 1.16
P10 14.97 7.46 4.15 1.85 2.26
P11 7.52 6.80 1.72 0.68 1.04
P12 11.05 4.18 0.00 0.00 0.00
P13 9.72 7.06 7.87 3.27 4.45
P14 4.31 4.23 2.47 1.86 0.59
P15 10.71 9.28 4.18 3.68 0.48
P16 12.69 9.08 4.04 0.27 3.76
P17 6.40 5.08 2.06 0.28 1.78
P18 12.46 12.46 11.63 2.28 9.14
P19 3.10 1.01 2.20 0.45 1.73
P20 19.81 10.82 7.09 5.43 1.58
P21 10.44 6.14 1.38 0.64 0.73
P22 15.81 12.27 12.15 2.26 9.68
P23 6.48 2.82 2.32 0.19 2.13
Avg. 9.98 6.15 4.05 1.48 2.53

As a result, it is essential to remember that it extends beyond traditional logistical
boundaries. A concept model of open innovation developed in [26] aims to investigate
current open innovation channels, which might motivate engineering research to increase
open innovation and the creation of new open-business models from meta-heuristics.

6. Conclusions

This paper focused on the planning of outbound logistics for the poultry industry in
Thailand. The problem involves the planning of distribution of poultry products where
the distribution center has more than one depot, making the situation characteristic of the
multi-depot vehicle routing problem (MDVRP), which aims to minimize transportation
costs.

Considering the NP-Hardness of our proposed problem, a new enhanced DE algo-
rithm composed of a re-initialization solution and a local search function was developed.
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In the computational results, our proposed algorithm reached the optimal solution in
small-sized instances (numbers 1–10). The average transportation costs of our proposed
algorithm for small-sized instances for LINGO (exact method), GA, PSO, DE, and RI-DE
were equal to 10,245.64, 10,727.49, 10,518.37, 10,465.73, and 10,379.83, respectively. The
average computational times for LINGO (exact method), GA, PSO, DE, and RI-DE were
equal to 9922.40, 2.98, 3.01, 3.16, and 4.95 s, respectively. The statistical test showed that
the RI-DE solution obtained based on transportation costs was significantly different from
the solutions from the GA, PSO, and DE algorithms. Heuristic performance (HP) indicated
that GA, PSO, DE, and RI-DE obtained near-optimal results, with an average of 96.48,
97.97, 98.33 and 99.03% respectively. The experimental results showed that the IR-DE
algorithm obtained a near-optimal solution ranging from 96.62% to 100% of 15 replicated
runs. When solving large-sized instances on Cordeau’s benchmark instances, the enhanced
DE algorithm (RI-DE) returned 1.48% error on average, which was significantly lower
than that of the traditional DE algorithm. Moreover, given that the relative improvement
(RI) comparing the transportation cost obtained from the traditional DE to that of RI-DE
was equal to 2.53% on average, the results show that the RI-DE algorithm provides better
transportation cost that the DE algorithm, ranging from 0.00% to 9.68%.

The RI-DE algorithm demonstrated an ability to obtain effective solutions by using the
re-initialization mutation formula and local search function. The re-initialization solution
could protect against trapping in local optima when the solution did not improve and
create new vectors to find the best solution. In addition, the local search function was
used to enhance the exploitation searchability of the DE algorithm. This implies that the
re-initialization mutation formula and the local search function significantly improved the
DE algorithm.

Future work can be extended in the following directions: firstly, there is still much
opportunity to extend our work in many aspects when there are multiple periods, multiple
products, heterogeneous fleets, and time window constraints, which may also provide an
interesting topic for minimizing the total cost, including transportation, holding, and hiring
costs. Secondly, the performance of the algorithm will be assessed in other real-world
environments involving difficult combinatorial optimization problems in logistics and
supply management. Lastly, our proposed algorithm could be extended to solve problems
in other industries, i.e., agriculture and food.
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