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Abstract: We apply a functional data approach for mixture model-based multivariate innovation
clustering to identify different regional innovation portfolios in Europe, considering patterns of
specialization among innovation types. We combine patent registration data and other innovation
and economic data across 225 regions, 13 years, and eight patent classes. The approach allows us
to form several regional clusters according to their specific innovation types and captures spatio-
temporal dynamics too subtle for most other clustering methods. Consistent with the literature
on innovation systems, our analysis supports the value of regionalized clusters that can benefit
from flexible policy support to strengthen regions as well as innovation in a systematic context,
adding technology specificity as a new criterion to consider. The regional innovation cluster solutions
for IPC classes for ‘fixed constructions’ and ‘mechanical engineering’ are highly comparable but
relatively less comparable for ‘chemistry and metallurgy’. The clusters for innovations in ‘physics’
and ‘chemistry and metallurgy’ are similar; innovations in ‘electricity’ and ‘physics’ show similar
temporal dynamics. For all other innovation types, the regional clustering is different. By taking
regional profiles, strengths, and developments into account, options for improved efficiency of
location-based regional innovation policy to promote tailored and efficient innovation-promoting
programs can be derived.

Keywords: functional data analysis (FDA); innovation concentration; spatio-temporal cluster modeling;
multivariate cluster analysis; European innovation; cluster algorithm

1. Introduction

Innovation is a key driver of Europe’s sustainable economic success. The topics of
innovation, geography, clustering and their interdependencies can be investigated by a
variety of approaches. If innovation is considered in the context of geography and eco-
nomic growth, there is no single theoretical framework, as there are too many interlinkages
between these topics to find a universal approach [1]. Thus, there are multiple schools
of thought regarding the temporal and spatial evolution of innovative activity [2]. In
this paper, we focus on approaches related to investigating innovation clustering such as
that of Fornahl and Brenner [3], who find that heterogeneous types of innovation cluster
differently, which points to the relevance of considering innovation as a differentiated
subject. Knowledge spillovers are another link between innovation and geography to con-
sider, as knowledge (tacit or understanding) is often only transferred locally or regionally.
Innovation is thus prone to spillover, as research shows (e.g., McCann and Simonen [4],
Costantini et al. [5], and Aldieri et al. [6]). This is confirmed by Bottazzi and Peri [7], who
correlate data on research and development (R&D) and patents, finding that R&D spending
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can increase innovation output, but limited to a local scale. Giannitsis and Kager [8] analyze
links between technology and specialization as these can determine market positions and
competitive success. Thus, it is vital to know how static and dynamic conditions interact
and how they contribute to the emergence of innovation. They note that it is important
for policy to adapt effectively and in a timely fashion to changing circumstances, as tech-
nical specification can drive industry, and thus competitive advantages. Here, policy can
promote progress through innovation.

There are various national and supranational approaches for delineating innovation
profiles and analyzing the European innovation landscape on several levels, the most
renowned being the European Innovation Scoreboard (EIS) and its regional equivalent
(RIS). Ranking regions according to their innovation strength is important for identifying
and analyzing the characteristics of innovation leaders, so conditions in lagging regions
can be improved, e.g., via regional or innovation policy [9,10].

Capello and Lenzi [11] search for patterns of knowledge, attitudes, and innovation
behaviors in innovative European regions utilizing a cluster analysis. They cluster the
degree of knowledge and innovation that the selected regions produce, taking into account
the different stages of the innovation process. Above all, the results indicate that policy
measures at a regional level are useful and necessary, as innovation trajectories diverge due
to regional characteristics. Innovation, the authors propose, is much more complex than just
the divide between agglomerated and peripheral regions. Moreover, they suggest policies
that are closely oriented towards the respective clusters and their specific innovation
patterns, leading to a “smart” Europe.

Spielkamp and Vopel [12] explicitly combine innovation systems and cluster theory to
find innovation clusters in Germany. They assume the existence of agents in technological
environment networks to create, use, and diffuse technology. By linking this view with
other innovation variables they found a system of innovation and of firms emerging
that leads to certain patterns. Furthermore, they emphasize that due to the extremely
high complexity of innovation systems, a multitude of approaches are possible. Several
variables are used in their clustering approach, the most important of which are innovation,
knowledge, information, and industry characteristics.

Common among these approaches is the fact that innovation should not be considered
without a spatial component, nor a temporal component. Turkina and Van Assche [13]
examine innovation performance in clusters and find that linkages along the horizontal
and vertical supply chain are key to increasing knowledge intensity and thus innovation.
Pełka [14] analyzes innovation clusters using symbolic density-based ensemble cluster-
ing, taking into account innovation policy. They investigate European countries and use
the Regional Innovation Scoreboard as well as multiple innovation and other indicators.
They calculate clusters with standard methodologies (e.g., k-means) and investigate the
heterogeneity of the clusters. The result is a ranking of innovation leadership.

Ionela-Andreea and Marian [15] use data from the European Patent Office and cal-
culate the Malmquist index for total factor productivity in knowledge performance [16].
They also identify differences and similarities in the development of innovation capacities
between the resulting clusters. Zabala-Iturriagagoitia et al. [17] investigate the increasing
territorial disparities in Europe using production theory and also apply the Malmquist
index. They note that advances in innovation are not necessarily synonymous with techno-
logical progress and that there is no innovation convergence via which lagging regions can
catch up with leading regions.

Pelau and Chinie [18] conduct a cluster analysis of European regions focusing on
innovation and sustainable development, linking innovation and sustainability for an
improved economic growth process. They use a static multivariate analysis to characterize
regional clusters and find three major innovation-sustainability clusters ranked by degree
of achievement. They also relate their approach to the literature on innovation systems,
emphasizing the importance of the regional context of innovation. Kim and Bae [19]
apply clustering as a step in forecasting potentially promising technology. Based on the
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information contained in classified patents, which can indicate the technologies involved
in development, they find technology-specific clusters. Their aim is then to derive potential
trends for developing technologies based on the clusters.

As innovation is a highly complex matter, it is crucial to focus on regional innovation
profiles and align policy programs with regional characteristics, as there are several and
significant difficulties in targeting an increase in innovation activity and possibly resulting
economic growth. Furthermore, there is a need to look past national levels and investigate
regional strengths and weaknesses for a more efficient adaptation of policy mixes, as
policies are often not able to address regional needs [20]. Insights into specific branches of
innovation via patent analysis, supported by the inclusion of further knowledge indicators
and regional characteristics, can provide levers for improving policies, thus harnessing not
only innovation potentials but also regional potentials of a European cohesion policy [21].
Thorough investigations and a precise understanding of the different types of innovation,
their place of inception, and their evolution over time are crucial for aiding Europe’s path
to a sustainable economic future.

We apply a mixture model-based clustering analysis for multivariate functional data
proposed by Schmutz et al. [22] to explore the spatio-temporal dynamics of European
regional innovation activities and uncover groups of regions with homogeneous innovation
profiles. To achieve this, the analysis is based on the functional data analysis paradigm
(FDA), which allows us to analyze latent functional forms, inherent dynamics, and other
features in time series of multiple innovation indicators too subtle to be captured by classical
time series or clustering approaches. As innovation is a heterogenous phenomenon, we use
several time series for main patent classes as proxies for innovation activity as well as other
closely related indicators to generate individual innovation profiles for Europe’s regions.

To our knowledge, a functional data analysis for multivariate innovation clusters
taking into account different innovation types, multiple measures and temporal and spatial
dimensions, which allows for a very detailed investigation of innovation profiles, has not
been conducted so far. We will illustrate the procedure in the following chapters. First, a
theoretical overview of relevant innovation literature concerning general principles and
related approaches for identifying innovation clusters and the role of policy is given. The
second section describes the time series data used for the statistical analysis, the general
principles of the functional data paradigm and the mixture model-based multivariate
functional clustering algorithm applied. A presentation of the clustering results is given in
the third section before the paper concludes with a discussion in the fourth section.

1.1. Innovation Theory

In economics, the spatial dimension has played an increasingly important role since
the beginning of the 1990s, as the publication of Krugman’s ‘Geography and Trade’ [23]
broadened the economic view for a better understanding of the global economy through its
spatial dimension.

While some countries may experience lower growth or investment rates, other coun-
tries may suffer from higher unemployment rates. Krugman linked this globally and
explained that global competition leads to more challenges that need to be considered. To
have a sufficient number of qualified jobs for their population, countries have to consider
their advantages or disadvantages due to location and innovation. In modern economies,
more companies are forced to export their products and are therefore subject to a higher
level of international competitiveness. To manage this successfully, companies are likely to
settle into industry clusters and may consider relocating to gain from location advantages.

Krugman also shows the crucial role of innovation in economies by saying ‘(t)he more
you know, the more you can learn’ [24]. He pointed out that countries must find regional
strengths and weaknesses to ensure their success, which depends to a large extent on the
development of innovation-promoting structures.

Accordingly, spatial factors and innovation activities are closely connected as, e.g., seen
in the Silicon Valley area in California, USA [25]. This leads to the assumption that regional
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factors influence the operational innovation process, as these processes have a geographic
origin and are thus spatially differentiated. Spatial proximity promotes innovation-relevant
interactions and, as a result, regional innovation and technology policy support measures
are effective [26].

Krugman also considers transport costs affecting regional growth rates [26] as pro-
ducers and consumers make spatial decisions based on prices and revenues to optimize
their profits. Consequently, producers will try to increase profits by minimizing the costs of
transportation, which can lead to a relocation of businesses. This logic also applies to the
end-users, as they will relocate their demand to the regions with the lowest transport costs.
As companies are more likely to produce most efficiently where their required production
factors are sufficiently available, they have a latent incentive to locate in their customer’s
geographical vicinity. This will result in low transport costs for both parties, the supply
side, and the demand side. However, it has to be considered that transport costs have been
significantly reduced by transportation technology and have consequently become less
important in many industries in recent years [27].

In terms of spatial clustering, agglomeration effects are of crucial relevance as several
advantages as well as disadvantages can arise from localized concentrations of companies.
To reach optimal levels of competitiveness within clusters, both internal and external
agglomeration effects have to be differentiated and considered. Internal agglomeration
effects are also known as economies of scale and provide advantages reducing fixed costs
by the production of larger quantities of goods, while external agglomeration effects refer to
the proximity of companies in the same value chain. As clearly shown by [28], companies
with similar activities can profit from sharing access to skilled labor-by-labor pooling,
sharing inputs from common suppliers, and benefiting from knowledge spillovers. Thus,
companies can maximize their profits by shared use of workers, infrastructure, services and
information. If a company has access to all its key resources in its vicinity, it can experience
a competitive advantage [29]. Potential disadvantages of agglomeration effects can arise in
form of higher environmental pollution [30], increasing property prices, higher competition
in the local area, or overstrained infrastructure.

Further effects of agglomeration are localization and urbanization [31], where localiza-
tion effects can be described as advantages arising from a company’s proximity to other
companies of its industry. Those advantages can be, e.g., an industry-relevant job market in
the area, R&D facilities, and therefore patenting activity or the emergence of a specialized
supply industry [32]. The urbanization effects develop over time as different industries
lead to more infrastructure as well as urbanization of affected areas, and therefore to an
increase in economic activity in general [31].

However, the analysis is limited due to other factors, e.g., psychological factors
such as security, social factors such as welfare, tax, and subsidies, education and overall
trends [33,34]. Even if governments try to encourage specific regions to grow or develop,
there will be no guarantee of sustainable success in innovation, but firms are considerably
more likely to benefit than in an environment without supporting structures [35]. The
economic importance of innovation in general and in the regional economies of Europe in
particular is highlighted due to the benefits of innovation to a system, whether through
patents as a measure of analysis, or through other innovation indicators. To be globally
competitive in the long run, a high level of innovation activity within countries or regions
is required, which policy can support by promoting approaches to assessing technological
progress. Funding R&D, promoting open innovation, and the successful use of intellectual
property rights are important steps [35]. This paper shows the importance of assessing inno-
vation in a differentiated way and links data to innovation agglomeration and the systems
theory behind it, which complements the views of Krugman [23] and Cooke [36]. Further-
more, it underlines that regional clusters are not only important for facilitating knowledge
and innovation transfer [37], but that clusters differ spatially in terms of technology.
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1.2. Europe and Innovation Support

As some regions in Europe are highly successful and others are lagging behind, theo-
ries of innovation can provide means to identify and understand these disparities in terms
of employment, infrastructure, availability of services, and economic success in general.
Often disparities arise due to the unequal distribution of natural resources, decisions of
the public sector, or other locational reasons. Within metropolitan areas, disparities can be
seen between central and peripheral areas with peripheral areas increasing faster in value
than the centers. Therefore, migration and relocations from centers to suburban areas can
be seen, which can potentially lead to the devaluation of certain areas and neighborhoods,
thus creating social inequalities [38].

In the European Union, regional development is a key factor for equal living conditions
in and between the member states. Therefore, the EU targets economic development
via spatial planning, state planning, and regional planning. Particularly, the European
Regional Development Fund (ERDF) and the Trans-European Networks (TEN) are means
to detect national and regional disparities and to support the realization of equal living
conditions. The newest European funding program and a key focus of the European
Commission is the European Green Deal, which aims to fight environmental degradation
and climate change, while simultaneously searching for new and sustainable growth
strategies in order to be competitive in the future. The European Green Deal focuses on
investing in environmentally friendly technologies, supporting innovation in industries,
and introducing cleaner, cheaper, and healthier forms of private and public transport. In
addition, decarbonizing energy production, ensuring higher energy efficiency of buildings,
and improving global environmental standards via international cooperation are core
values [39].

To achieve these goals, the EU must ensure a high level of labor skills as well as
high levels of investment in R&D. Given this focus, it is vital to gain a precise under-
standing of the spatio-temporal dynamics within the European innovation system. The
potential of innovation for mitigating climate change through new, efficient technologies
that promote sustainable growth can help to avoid lock-in and turn innovation into ‘green
innovation’ [40]. This applies not only to identifying the types and drivers of Member
States’ innovation strengths but also to investigating locational differences in innovation.
More knowledge about the structure of innovation and its place of inception can be used
to understand innovation emergence as well as its inherent geographical nature, provide
insights into the success of policy programs and help structure future policy programs for
a sustainable innovation climate in the EU.

Structures for innovation clusters, networks, and interrelations can benefit from open
innovation, which can contribute to sustainable knowledge growth. The role of public
institutions in supporting knowledge generation is particularly important in regional
systems [36], where collaboration and networking facilitate innovation by increasing social
capital [41–43]. Policy is needed where local actors are lacking in expertise concerning open
innovation practices [44]. This is particularly important for small firms, as they rely heavily
on spatial proximity to generate innovation, as shown by Leckel et al. [35]. Open innovation
as a paradigm [45] can promote the creation of innovation and strengthen inter- and intra-
regional knowledge exchange by emphasizing different regional characteristics [46].

2. Materials and Methods

In practice, several indicators can be used to approximate innovation, but we choose
mainly to use patent data to indicate the type of innovation, with the patent classification
scheme allowing a distinction between different types of inventions. The classification is
based on the type of innovation group to which a patent belongs and must be indicated
when filing an application. The patent classes we use are the eight major classes (A: ‘human
necessities’; B: ‘performing operations and transporting’; C: ‘chemistry and metallurgy’; D:
‘textiles and paper’; E: ‘fixed constructions’; F: ‘mechanical engineering, lighting, heating,
weapons, and blasting’; G: ‘physics’; H: ‘electricity’ [47]). As suggested by Griliches [48]
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and noted by several other researchers, the inclusion of patents as an indicator of innovation
is justified by the intentions pursued by filing a patent, i.e., an intended commercial use.
Other innovation indicators are R&D personnel and researchers as well as internal R&D
expenditures as a percentage of the gross domestic product. In addition, we use a human
capital indicator approximated by human resources in science and technology. These
variables are suitable to support patents as an indicator of innovation, as they are directly
related to the emergence of innovation and can lead to patents or other forms of innovation.

In the model, variants of these variables are used. First, we compute Innovation Gini
indicators according to Rhoden [49] for each IPC class, which provide a measure of the
degree of innovation variation in regions. Then, we calculate the labor density and relate
it to the regional GDP, the share of R&D labor, the human capital density, and the R&D
expenditure per R&D labor. These measures are used to indicate labor productivity, human
capital accumulation per worker, and R&D expenditure productivity. This step results in
a set of five covariates that are included in the clustering process of the Innovation Ginis
(see Table 1). In this way, multivariate spatio-temporal innovation dynamics of European
regions can be aggregated into eight sets of clusters showing the similarities and differences
of regional structures for each of the eight patent classes.

Table 1. Variable Declaration, source: Own calculations [50–52].

Variable Description Eurostat Datasets Used

Innovation Gini
Innovation Gini for the relevant IPC class of patents (patent

applications to the EPO by priority year); Normalization Factor:
Economically active population in 1000

PAT_EP_RIPC
LFST_R_LFP2ACT

Labor Density Economically active population per square kilometer in 1000 LFST_R_LFP2ACT
DEMO_R_D3AREA

Share of R&D Labor R&D personnel and researchers directly engaged in R&D per
economically active population in 1000

RD_P_PERSREG
LFST_R_LFP2ACT

GDP per Labor Gross Domestic Product at current market prices in Billion Euro per
economically active population in 1000

NAMA_10R_3GDP
LFST_R_LFP2ACT

Human Capital Density Human resources in science and technology (Persons with education in
science and technology) per economically active population in 1000

HRST_ST_RCAT
LFST_R_LFP2ACT

R&D Investment per
R&D Labor

Internal R&D investment in Billion Euro per R&D personnel and
researchers directly engaged in R&D in 1000

RD_E_GERDREG
RD_P_PERSREG

As our analysis focuses on European regions, our dataset consists mainly of data
from Eurostat [50] from 2000 to 2012, with supplements from other statistical offices and
organizations (i.e., [51,52]) used for filling missing values in the main datasets after checking
for plausibility. However, there are still large numbers of remaining missing values, which
we choose to impute via natural spline interpolation using the annual cross-sections of our
datasets as knots [53,54]. This imputation is applied when less than 30% of values for a
region are missing and the pattern of missingness can be reasonably handled by spline
interpolation, i.e., when there are enough values next to the missing values. Although this
may seem like an arbitrary choice, sensitivity analyses have shown that this procedure
strikes a more robust balance between the highest number of regions to cluster and the least
amount of imputation bias compared to other approaches (e.g., Honaker and King [55]).

Spatially, we focus on the European regions at NUTS-2 level, which necessitates the
creation of a custom reference, as several revisions of the NUTS classification were made
over the periods covered by our data. This reference is based on NUTS 2016, which
corresponds to most of our data but adopts NUTS 2010 regions where later revisions differ
from the regions in our dataset. We also create a custom shapefile to correctly represent the
statistical geographical level, which we then apply throughout our calculations. In total,
we use 225 distinct regions in our mixture model-based multivariate functional cluster
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analysis. All computations are realized in the software R [56] using the packages fda [57]
and funHDDC [22].

2.1. Functional Data Paradigm

Although the concept of functional data dates back to Grenander [58] and Rao [59], the
actual term functional data for objects that can naturally be viewed as smooth curves rather
than a set of discrete observations was coined by Ramsay [60], Ramsay and Dalzell [61] and
Rice and Silverman [62]. In statistical terms, functional data are random variables usually
observed at multiple discrete points on an infinite dimensional or functional continuum
such as time, space, or other variables describing continua [63]. Accordingly, a set of
functional variables for multiple observations is called the functional dataset. In line with
Kokoszka and Reimherr [64], we refer to functional data as

Xn
(
tn,p
)
∈ Rp; tn,p ∈ [Tmin, Tmax]; n = 1, . . . , N; p = 1, . . . , P.

In this notation, functional data are given by a set of N independent curves Xn observed
in discrete sets of values {tn,p, yn,p} along an interval [Tmin, Tmax] over potentially infinite
dimensions P. Functional data analysis can thus be performed not only with random
curves but also p-dimensional random surfaces. In most fields of research, however, the
focus is still on the analysis of curves, which is why the term curve data [62,65,66] is often
used for the analysis of the special case of a one-dimensional continuum. A comprehensive
review of the history of functional data analysis, its methods, and applications in different
fields of research is given by Wang et al. [67].

In general, functional data are considered as independent and identically distributed sam-
ples from L2-continuous stochastic processes whose mean and covariance estimators are given
by µ̂

(
tp
)
= 1

n ∑n
i=1 xi

(
tn,p
)

and v̂
(
tp
)
= 1

n−1 ∑n
i=1
(
xi
(
sn,p
)
− µ̂

(
sn,p
))(

xi
(
tn,p
)
− µ̂

(
tn,p
))

.
As Deville [68] has shown, both estimators converge to µ

(
tp
)

and ν
(
sp, tp

)
in L2-norm,

which is consistent with the assumption of a latent functional form in the form of smooth
curves rather than mere sequences of observations as a basic principle of functional data
analysis [69].

As crucial as smoothness may be for the analysis of functional data, it may not be
obvious in raw datasets, as observations are often contaminated or distorted by random
noise, measurement errors, or other types of bias [69]. These effects can be viewed as
fluctuations in the smooth curves that we include by extending our earlier notion of
functional data:

Sn
(
tn,p
)
= Xn

(
tn,p
)
+ εn,p,

where Sn
(
tn,p
)

is the realized and observable functional form and εn,p the representation of
noise, disturbance, or error. We would like to refer to Ferraty and Vieu [63], Ramsay and
Silverman [69], and Kokoszka and Reimherr [64] for a complete overview of the theoretical
foundations of functional data analysis.

As our imputed data are still in their raw form, we use basis expansion to reconstruct
their functional forms, which is necessary for any kind of functional data analysis [70].
Ideally, this basis function is similar in shape and form to the observed functions, as
the curves can then be easily approximated by a linear combination of the chosen basis
function [64]. As there is no clear rule for choosing the most efficient shape and number
of basis functions for multivariate functional clustering [71], we follow the suggestions of
Schmutz et al. [72] and choose a set of B-spline functions whose size corresponds to the
number of years for every variable, while applying a small roughness parameter to reduce
potential biases due to our earlier spline imputation.

2.2. Multivariate Functional Clustering

Cluster analyses are used to find homogeneous groups of observations in datasets
without prior knowledge of latent group relationships, which can be achieved with a wide
variety of algorithms that have been proposed for clustering of functional data. However,
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due to the potentially infinite-dimensional nature of functional data, several issues arise that
are of lesser importance for classical cluster analyses, such as the reduction of functional
dimensionality, which need to be solved. To address these issues, several methodological
approaches for clustering functional data have recently been published, ranging from the
simple transfers of classical algorithms to the functional domain, to complex model-based
clustering after applying statistical filtering (see Jacques and Preda [71] for a review).

However, most of these approaches focus on clustering univariate functional data
(see e.g., Abraham et al. [73], Serban and Wasserman [74], Coffey et al. [75], Peng and
Müller [76], Li and Chiou [77], Chiou and Li [78], James and Sugar [79], Bouveyron and
Jacques [80], Bouveyron et al. [81], Jacques and Preda [82], Bongiorno and Goia [83]), while
there are still only a few concepts dedicated to multivariate functional clustering. Among
these concepts, model-based approaches have received more attention in recent years, as
they have proven to be suitable for complex statistical structures and relationships (see e.g.,
Schmutz, Jacques, Bouveyron, Cheze and Martin [72], Bouveyron and Jacques [80], Ieva
and Paganoni [84], Kayano et al. [85], Jacques and Preda [86], Traore et al. [87]).

In our cluster analysis, we follow the mixture model-based approach proposed by
Schmutz et al. [72] to cluster multivariate functional data of regional innovation activities in
order to investigate spatio-temporal similarities and differences in the European innovation
system. This approach builds on previous work by Bouveyron and Jacques [80] and Jacques
and Preda [86] by circumventing the curse of dimensionality [88] with a multivariate
functional principal component analysis (MFPCA) and considers the analytical scores
to be random variables with cluster-specific probability distributions. By reprojecting
the previously infinite- onto a finite-dimensional problem, the cluster-specific probability
distributions can then be approximated via expectation maximization (EM) [89], which
makes this approach highly flexible as additional assumptions can easily be imposed on
the model.

2.3. Multivariate Functional Principal Component Analysis

The use of principal component analysis for functional data as a means for dimen-
sionality reduction was already proposed by Ramsay and Silverman [69]. Multivariate
functional data require more adaptive approaches, as shown by Jacques and Preda [86] and
Schmutz et al. [72]. Specifically, MFPCA aims to find the eigenvalues and eigenfunctions to
solve the decomposition equation of the covariance operator

ν f j = λl f j

where λj is a finite group of j positive eigenvalues, principal scores, and f j is a group of
corresponding multivariate eigenfunctions, principal factors. Following Schmutz et al. [72],
we assume that the latter are part of a linear space spanned by a matrix φ:

f j(t) = φ(t)b′j

Consequently, we can reformulate the eigenproblem using the covariance estimator

v̂(s, t) =
1

n− 1
φ(s)C′Cφ′(t)

which leads to
1

n− 1
φ(s)C′CWb′l = λlφ(t)b′l

where W =
∫ T

0 φ′(t)φ(t) is a R× R-Matrix containing the inner product of our basis func-
tions. The principal component analysis is then reduced to an eigenvalue decomposition of
the matrix

1√
n− 1

CW
1
2
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allowing each multivariate curve Sn
(
tn,p
)

to be identified by its scores δi =
(
δi j
)

into
the basis of multivariate eigenfunctions

(
f j
)

for j ≥ 1 (see Jacques and Preda [86] and
Schmutz et al. (2020) for proofs).

2.4. Mixture Model-Based Clustering of Multivariate Functional Data

Model-based clustering assumes that population data are a mixture of groups so that
the elements of this mixture can be modeled by their conditional probability distribution.
Therefore, the latent finite mixture model for the approach by Schmutz et al. [72] can be
formulated as

g(s) =
K

∑
k=1

πk fk(sn)

where g(s) is the probability density function of s, the mixture proportion of the k-th cluster
is given by πk with ∑k

k=1 πk = 1 and fk(sn) being the conditional density function. However,
a feature of functional random variables is the lack of general notion of probability density
functions [90], which necessitates the use of a parametric approximation:

g(s) =
K

∑
k=1

πk fk(sn; θk)

with θk being the parameter vector of the k-th mixture element. Given this approximation,
the likelihood of the mixture model proposed by Schmutz et al. [72] is then given by

l(θ; s; z) =
N

∑
n=1

K

∑
k=1

zkn log(πk f (sn; θk))

where zkn is a latent group variable equal to 1 if multivariate curves belong to cluster k or 0
otherwise. Finally, we can obtain a fully parameterized form of the likelihood by including
the Gaussian density function f (sn; θk)) (see Schmutz et al. [72] for proofs):

l(θ; s; z) = − 1
2

K
∑

k=1
nk

[
−2 log(πk) +

dk
∑

j=1
log
(

akj

)
+

R
∑

j=dk+1
log(bk) +

dk
∑

j=1

qt
kjW

1/2CkW1/2qkj
akj

+
R
∑

j=dk+1

qt
kjW

1/2CkW1/2qkj

bk

]
+ nR

2 log(2π)

where akj and bk are a direct result of the MFPCA, since it is assumed that the scores of the
nk curves of the k-th cluster δn

k follow a Gaussian distribution with mean function µk ∈ R
and a covariance matrix ∆k. The latter is crucial for both parameters as they are diagonal
matrix elements:

∆k =



 ak1 · · · 0
...

. . .
...

0 · · · akdk

 0

0

 bk · · · 0
...

. . .
...

0 · · · bk





 dk R− dk

Due to this covariance matrix, the variance of the first dk principal components can be
modeled much more accurately, while the other components can be retained and modeled
via the parameter bk, which provides a model with much higher degrees of clustering
flexibility [72].

2.5. Model Inference via Expectation Maximization

An expectation maximization algorithm [89] is used to estimate the parameters of
the complete likelihood given in the previous section, as this type of algorithm is reliable
and reproducible in maximizing the likelihood of model-based clustering approaches. The
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algorithm uses two stages to estimate the model parameters and constantly alternates from
one to the other until an optimal solution is found (Schmutz et al., 2020).

In the expectation step, the conditional expectation of the log-likelihood is calculated
using the most recent parameter estimates. Then, the maximization step updates these
estimates by maximizing the expected log-likelihood conditionally. The process is stopped
when the difference of two successive estimations is smaller than 10−6 or a limit of 200
iterations has been reached. However, the algorithm must first be initialized by either
providing initial values or using random values. We choose to initialize the clustering
analysis by applying a k-means algorithm by Hartigan and Wong [91] with four partitions
to the discretized values of our functional dataset to obtain initial values for the functional
partitions. Although Schmutz et al. [72] suggest using multiple initialization strategies
to prevent convergence to a local maximum, we found this approach to result in nearly
identical cluster solutions as random initialization.

To obtain optimal cluster solutions for each IPC class, a series of models covering all
parameter constraints provided by Schmutz et al. (2020) is estimated for a range of 2 to
10 clusters. We retain the solutions with the lowest Bayesian information criterion (BIC) [92]
as our final cluster solution. The BIC is defined by

BIC = l(θ; s; z)− m
2
∗ log(n)

where l(θ; s; z) is the maximum log-likelihood value, the number of model parameters is
given with m and n is the number of individuals, which allows the log-likelihood to be penal-
ized by model complexity. This procedure is in line with proposals by Schmutz et al. (2020).

3. Results

In the following sections, the results of our mixture model-based cluster analysis are
presented for the eight IPC classes for the innovation indicators. As these cluster solutions
are the results of multivariate functional dynamics, differentiation of the clusters is based
on a simultaneous evaluation of all modeling variables, i.e., Innovation Gini coefficients,
labor density, the share of R&D labor, GDP per labor, human capital density, and R&D
investment per R&D labor (see Table 1). This ensures that subtle spatio-temporal regional
dynamics in the modeled indicators are captured and regional disparities can be shown
more clearly. To optimize the cluster solution, a range of models with various parameter
constraints is used for up to 10 clusters, with the lowest BIC indicating the best cluster
solution for a given set of variables. Accordingly, the number of clusters varies across the
eight patent classes, but the size of the clusters is not limited, i.e., the numbers of regions
per cluster only depend on regional similarities in innovation dynamics.

3.1. IPC Class A

The clustering process results in ten distinct clusters of spatio-temporal innovation
dynamics for the patent group ‘human necessities’ (IPC A, see Figure 1, 1st row, left panel).
While clusters 1, 2, and 6 are relatively small and limited to a few regions spread over
Central European countries, clusters 4, 5, and 10 consist mostly of neighboring regions
in, with few exceptions, large parts of Eastern Europe and the Baltic Area (cluster 4),
and Portugal and Spain (cluster 5). In contrast, cluster 10 is significantly less spatially
concentrated, containing most parts of France, but also regions in Italy, Austria, Germany,
or Finland. Another large cluster is found in Scandinavian regions and Iceland, with regions
in the United Kingdom, Germany and Italy also assigned to this group of innovation
concentration. East Germany has similar innovation dynamics to regions in northern Spain,
northern Ireland, and southern Italy (cluster 8). These regions are often characterized as
structurally weak, which seems to be reflected in innovation concentration potentials. Most
regions in Central Europe, mainly Germany, Luxembourg, Belgium, and the Netherlands,
are highly diverse with neighboring regions not being part of the same innovation cluster.
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Own calculations.
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Regarding the mean curve of the Innovation Gini (see Figure 1, 1st row, right panel),
it is noticeable that cluster 4 drops significantly compared to the other clusters until 2008,
before a slight increase to a stable trajectory sets in. In comparison, the mean curve of
cluster 5 rises very sharply from 2004 onwards, reaching a higher level of concentration
than any of the other clusters. Most other cluster mean curves either show a stale trajectory
or increase slightly until 2008 before declining. Despite these temporal dynamics, there
are noticeable crossings of most cluster mean curves, with cluster 5 being an exception,
i.e., the clusters only develop in a relatively narrow range overall in terms of innovation
concentration, but evolve highly variably in this range. The mean curves of the variables
for labor density, the share of R&D labor, GDP per labor, and human capital density from
2000 to 2012 show a relatively even and almost linear increase. In terms of human capital
density, the clusters do not differ much. In principle, these results hold for the mean curves
of all indicators, but the decreasing function of cluster 10 deviates from the other stable
or slightly increasing cluster trajectories of the share of R&D labor. The mean curves for
R&D investment per R&D labor are very differentiated. While the curves for clusters 6 and
10 initially increase, then decrease until 2005, clusters 4 and 5 show a stable level, which is,
however, well below all other clusters.

3.2. IPC Class B

Ten clusters are found for the patent group ‘performing operations and transporting’
(IPC B). Again, Central Europe is quite fragmented in terms of cluster memberships, as the
regions in this part of Europe are assigned to clusters 1, 2, 5, 7, and 10 (see Figure 1, 2nd
row, left panel). Other regions in cluster 5 are located in England, large parts of Norway,
Iceland, and Finland, but also in Austria, northern Italy, and France, while cluster 8 is
mainly located in Spain, Portugal, and East Germany, which corresponds to the clustering
previously observed in these regions for IPC class A. Eastern Europe is largely composed
of regions in clusters 4 and 8, with slightly more variation than for class A. Ireland and
Northern Ireland are divided into three different clusters (6, 7, and 8), while Norway is
divided into two large clusters (3 and 5). Most Regions belonging to cluster 2 are located
in southern Italy and the northeastern parts of Spain and France, as well as parts of the
Netherlands and Germany.

Regarding the temporal dynamics of the cluster for this IPC class, there are significant
differences in the mean curves for innovation concentration (see Figure 1, 2nd row, right
panel). For example, clusters 4 and 9, both located mainly in Eastern Europe, differ strongly.
While the mean curves for most clusters decrease over time, cluster 3 seems to be an
exception, as regions in this cluster seem to slightly increase their degree of concentration.
In general, cluster 10 is the most stable in terms of innovation concentration. However,
the mean curves of most clusters have slightly decreased since 2005, which corresponds
to a decrease in innovation concentration. The other covariates, with exception of R&D
investment per R&D labor, mostly show stable or slight, almost linear, increases over time.
The mean curves of all clusters are very close to each other and similar in terms of human
capital density, which again is consistent with the results for IPC class A. The mean curves
for GDP per labor show wide variation in terms of the level, with only cluster 6 and its
exclusive focus on the UK showing a slight decline from 2007 onwards, while the regions
of cluster 3, which are mostly located in Norway, show the highest overall mean values. In
terms of the share of R&D labor, cluster 6 again diverges from the other clusters, showing a
steady decline over time, while the other clusters remain largely stable. In terms of labor
density, the mean curve for cluster 3 is significantly higher than all other curves, which
are stable over time. The mean curves of clusters 5 and 6 show opposite trends in R&D
investment per R&D labor, with one cluster increasing while the other decreases and vice
versa. With the exception of the last four years, cluster 5 is mostly higher than the other
clusters, which show a slight and steady increase over time.
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3.3. IPC Class C

For the patent class ‘chemistry and metallurgy’, the spatio-temporal clustering process
again resulted in ten clusters (see Figure 1, 3rd row, left panel). Essentially, the clustering
appears to be similar to the results of the previous patent class, with a few exceptions.
For example, clusters 6, 9, and 10 are mostly identical, with two Portuguese regions now
belonging to the cluster mainly located in Eastern Europe. The latter is no longer divided,
as all Eastern European regions have innovation profiles that make them part of the same
homogeneous cluster. Compared to the results of the previous patent class, a few regions
in cluster 1 are showing changes in the clustering pattern. While Central Europe is again
fragmented compared to patent class B, and this also applies to a higher degree to Spain
and Portugal, the homogeneous structure of Eastern Europe represents a clear contrast to
the rest of Europe.

The mean curves for the Innovation Ginis are quite similar in their temporal dynamics,
with several curves intersecting each other, but most remaining within a narrow, slightly
declining corridor (see Figure 1, 3rd row, right panel). While cluster 3, with its focus
on Eastern Europe, has the highest level of mean curves but declines sharply from 2008
onwards, clusters 5 and 6 seem to develop comparably from 2008 onwards with slight
time lags, whereas previously they had complementary trajectories. As in the previous
cluster results, the labor-related covariates show a slight, but constant increase in the mean
curves. In terms of human capital density, the mean curves are again close to each other
and also increase linearly. There is an increase in GDP per labor for all clusters, with a
slight dip in 2008 and the Eastern European regions of cluster 3 showing the lowest mean
curve values. The share of R&D labor is more or less stagnant for all clusters, with cluster
5 again showing the highest mean curve values. In terms of R&D investment in R&D
labor, the spatially-spread cluster 8 shows a strong increase in 2003, followed by a similarly
long decline until 2008. Regarding labor density, all clusters show linear trajectories at
very low levels, except for cluster 5, which is spread over half a dozen regions across
Europe and shows significantly higher and slightly increasing mean curve values. Across
all covariates, mean curves of cluster 3 are lower than all others, with the exception of
Innovation Gini curves.

3.4. IPC Class D

In terms of the patent class for innovations in ‘textiles and paper’, a set of nine distinct
clusters was found in the clustering process, possibly due to missing data for some regions
included in previous clustering results (see Figure 2, 1st row, left panel). The cluster with
the highest number of regions is cluster 3, which includes regions in Finland, most of France,
and parts of Italy, Austria, Germany, Belgium, Luxembourg, and the Netherlands. Except
for Southern Germany, Belgium, Luxembourg, and the Netherlands, neighboring regions
are part of the same cluster. The United Kingdom is divided into four different clusters,
with cluster 9 occurring only in England. Most parts of Eastern Germany, Northern Ireland,
and parts of Spain are members of cluster 8. As the innovation profiles for this patent class
seem to be more homogeneous than in previous results, most regions belong to a few larger
clusters, while the remaining regions are divided into highly distinct clusters 1, 4, and 6.



J. Open Innov. Technol. Mark. Complex. 2022, 8, 6 14 of 23

J. Open Innov. Technol. Mark. Complex. 2022, 8, x FOR PEER REVIEW 14 of 23 
 

 

In terms of the patent class for innovations in ‘textiles and paper’, a set of nine distinct 
clusters was found in the clustering process, possibly due to missing data for some regions 
included in previous clustering results (see Figure 2, 1st row, left panel). The cluster with 
the highest number of regions is cluster 3, which includes regions in Finland, most of 
France, and parts of Italy, Austria, Germany, Belgium, Luxembourg, and the Netherlands. 
Except for Southern Germany, Belgium, Luxembourg, and the Netherlands, neighboring 
regions are part of the same cluster. The United Kingdom is divided into four different 
clusters, with cluster 9 occurring only in England. Most parts of Eastern Germany, North-
ern Ireland, and parts of Spain are members of cluster 8. As the innovation profiles for this 
patent class seem to be more homogeneous than in previous results, most regions belong 
to a few larger clusters, while the remaining regions are divided into highly distinct clus-
ters 1, 4, and 6. 

Compared to the previous results, the mean curves for the Innovation Ginis are at a 
very low level (see Figure 2, 1st row, right panel). Here, the regions of Eastern Europe and 
Portugal of cluster 4 show the highest values but decline slightly after 2008. This contrasts 
with cluster 6, which consists of only two regions and follows a U-shaped trajectory so 
that the curve only rises steadily after 2008 and shows the highest values of all clusters. 
Regarding the other variables, the mean curves show mostly linear trajectories, with a few 
exceptions such as cluster 1, which mostly consists of Norwegian regions and shows the 
highest mean values with increasing trends. This is particularly noticeable for labor den-
sity and GDP per labor. Compared to the other clusters, cluster 6 varies the most over 
time, with its trajectory changing towards 2004 and even increasing non-linearly for both 
covariates and human capital density. As with the previous results, the most variation 
across all clusters is found for R&D investment per R&D labor. Here, cluster 5, which is 
scattered across Europe, shows a sharp increase to the highest mean curve value in 2008, 
before declining similarly. This is mirrored at a lower level in clusters 3, 7, and 9, with the 
first two reaching their maximum around 2002. 

 

 

J. Open Innov. Technol. Mark. Complex. 2022, 8, x FOR PEER REVIEW 15 of 23 
 

 

 

 

Figure 2. Results of the mixture model-based multivariate functional clustering algorithm. Rows: 
IPC classes D, E, and F (D: ‘textiles and paper’; E: ‘fixed constructions’; F: ‘mechanical engineering, 
lighting, heating, weapons, and blasting’). Columns: left: Spatial cluster mapping, right: Temporal 
cluster dynamics. Source: Own calculations. 

3.5. IPC Class E 
The clustering for innovations in ‘fixed constructions’ are quite similar to the cluster-

ing for the IPC class C, although only eight clusters are found (see Figure 2, 2nd row, left 
panel). Essentially, clusters 2, 4, and 7 are evidence for this similarity. The fragmentation 
of Central Europe has shifted slightly to the west, as western German regions are members 
of the same cluster. The Scandinavian cluster is also found in Central European regions 
and is scattered across northern Italy, parts of the United Kingdom, and Ireland. Another 
similarity to the innovation profiles of IPC classes C and E can be seen due to cluster 2, 
which is exclusively found in the UK. 

In comparison with the results of IPC class C, the mean curves for the Innovation 
Ginis for fixed constructions are on a much lower level, with the Eastern European regions 
of cluster 7 showing the highest mean curve values (see Figure 2, 2nd row, right panel). 
Furthermore, clusters 5 and 6 show complementary trajectories and while the mean 

Figure 2. Results of the mixture model-based multivariate functional clustering algorithm. Rows:
IPC classes D, E, and F (D: ‘textiles and paper’; E: ‘fixed constructions’; F: ‘mechanical engineering,
lighting, heating, weapons, and blasting’). Columns: left: Spatial cluster mapping, right: Temporal
cluster dynamics. Source: Own calculations.



J. Open Innov. Technol. Mark. Complex. 2022, 8, 6 15 of 23

Compared to the previous results, the mean curves for the Innovation Ginis are at a
very low level (see Figure 2, 1st row, right panel). Here, the regions of Eastern Europe and
Portugal of cluster 4 show the highest values but decline slightly after 2008. This contrasts
with cluster 6, which consists of only two regions and follows a U-shaped trajectory so
that the curve only rises steadily after 2008 and shows the highest values of all clusters.
Regarding the other variables, the mean curves show mostly linear trajectories, with a
few exceptions such as cluster 1, which mostly consists of Norwegian regions and shows
the highest mean values with increasing trends. This is particularly noticeable for labor
density and GDP per labor. Compared to the other clusters, cluster 6 varies the most over
time, with its trajectory changing towards 2004 and even increasing non-linearly for both
covariates and human capital density. As with the previous results, the most variation
across all clusters is found for R&D investment per R&D labor. Here, cluster 5, which is
scattered across Europe, shows a sharp increase to the highest mean curve value in 2008,
before declining similarly. This is mirrored at a lower level in clusters 3, 7, and 9, with the
first two reaching their maximum around 2002.

3.5. IPC Class E

The clustering for innovations in ‘fixed constructions’ are quite similar to the clustering
for the IPC class C, although only eight clusters are found (see Figure 2, 2nd row, left panel).
Essentially, clusters 2, 4, and 7 are evidence for this similarity. The fragmentation of Central
Europe has shifted slightly to the west, as western German regions are members of the same
cluster. The Scandinavian cluster is also found in Central European regions and is scattered
across northern Italy, parts of the United Kingdom, and Ireland. Another similarity to the
innovation profiles of IPC classes C and E can be seen due to cluster 2, which is exclusively
found in the UK.

In comparison with the results of IPC class C, the mean curves for the Innovation
Ginis for fixed constructions are on a much lower level, with the Eastern European regions
of cluster 7 showing the highest mean curve values (see Figure 2, 2nd row, right panel).
Furthermore, clusters 5 and 6 show complementary trajectories and while the mean curves
are steadily decreasing, at the same time the dispersion of all mean curves is decreasing
over time. For labor density, the share of R&D labor, GDP per labor, and human capital
density the temporal dynamics of the mean curves are again comparable to the results of
IPC class C, with the exception being that the dispersion across the mean curves is much
smaller and no cluster has significantly higher mean values than all other clusters. In terms
of R&D investment per R&D labor, clusters 5 and 6 show high maxima in the period from
2000 to 2004 and then converge to the overall corridor of cluster mean curves.

3.6. IPC Class F

For the patent class for ‘mechanical engineering, lighting, heating, weapons, and
blasting’ innovations, eight clusters are found, again showing noticeable similarities to
the cluster results for IPC class C (see Figure 2, 3rd row, left panel). Especially the Eastern
European regions (cluster 6), Scandinavia and parts of Central Europe (cluster 4), Spain,
Portugal, and East Germany (clusters 2 and 6) as well as France (clusters 6 and 7) are the
reason for the similarities in the spatial cluster pattern. Nevertheless, some deviations from
previous clustering results can be found in western Germany, northern Italy, Austria, and
parts of France. Compared to Western Europe, innovation profiles in the Northern and
Eastern European regions seem to be more homogenous.

The cluster mean curves for the Innovations Ginis show some temporal variation
and an overall increasing trend, with cluster 6 showing the highest level until 2004 before
decreasing thereafter (see Figure 2, 3rd row, right panel). The strongest increase is shown
by the mostly non-adjacent Central Europe regions of cluster 5 and cluster 2 (East Germany
and Spain), while the regions of cluster 4 stagnate at a stable level. Concerning the other
covariates, similar temporal trajectories as for IPC class E are shown for the mean curves.
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Due to the curve maxima not standing out from the curves as in previous results, the cluster
mean curves show smoother trajectories overall.

3.7. IPC Class G

As with most previous results, ten innovation clusters are found for the patent class for
‘physics’ that resemble the clustering pattern of IPC class C, while sharing a few similarities
with IPC classes E and F (see Figure 3, 1st row, left panel), except for Denmark, which is
now an independent cluster with a single region in northern Germany (cluster 7) and no
longer part of the Scandinavian cluster (cluster 2). In addition, some smaller regions in the
Netherlands are assigned differently compared to other IPC classes.
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In the cluster mean curves of the Innovation Ginis, both the overall level and the curve
maxima are very pronounced in comparison to IPC class C (see Figure 3, 1st row, right
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panel). The highest mean curve values are shown for cluster 10, which is located mostly in
Norway, while cluster 8 increases sharply in 2004 before matching the temporal dynamic
of cluster 10 from 2008 onwards. In contrast, most cluster mean curves remain stable for
this variable, with cluster 7 being an exception that decreases over time. As far as the other
variables are concerned, cluster 10 has the highest level of all mean curves for almost all
of these variables. For labor density, the share of R&D labor, GDP per labor, and human
capital density the difference between cluster 10 and the other clusters in mean values is
very clear. Only in terms of R&D investment per R&D labor is cluster 10 surpassed by the
maxima of clusters 6 and 7 until 2005, but as these curves decline again, the mean curve of
cluster 10 reaches the highest level again in 2012.

3.8. IPC Class H

The last clustering found a set of ten clusters for electrical innovations (IPC H, see
Figure 3, 2nd row, left panel). The East German regions are divided into three larger clusters
(clusters 1, 6, and 7), with cluster 6 again consisting of regions in East Germany, Spain, and
Portugal that were assigned to the same cluster for other IPC classes. In addition, several
regions in Ireland, England and southern Italy are members of this cluster. Scandinavia
is also divided into three clusters, with members of cluster 4 found in Finland, France,
Austria, and other regions throughout Central Europe. Another cluster is found in the
southern regions of Norway as well as the central region of Paris. The rest of Scandinavia
is clustered together with southern Ireland, southern Germany, and the central London
region (cluster 5). Most regions in England form their cluster, with only a few exceptions in
Denmark, Italy, and the southwest of France (cluster 10).

Consistent with all previous results, there is a high degree of variation in the mean
curves of innovation concentration, with cluster 1 showing the highest overall mean values,
but steadily decreasing over time, with a noticeable minimum in 2005 (see Figure 3, 2nd
row, right panel). While most other clusters stagnate at a stable level, cluster 7 increases
sharply after a minimum in 2001. In comparison, cluster 10 decreases until 2004, and
stagnates until 2009 before finally increasing. In terms of the other covariates, there are
large similarities to IPC class G. Regarding labor density, cluster 8 shows the highest mean
values and increase, with a clear gap to the other clusters, which remain constant over time
and show similar values, with minor variations. For all other variables, cluster 10 differs
the most from the other clusters, as the mean curve for the share of R&D labor decreases
while all others increase constantly. In addition, there is a dip in GDP per labor in 2007
and human capital seems to be gradually increasing for cluster 10. While the mean curves
for most clusters are quite similar to the curves for IPC class G, high maxima for R&D
investment per R&D labor are missing.

4. Discussion

Overall, innovation clusters in Europe differ by IPC class, although some regions are
more similar than others and some IPC classes more interconnected in terms of innovation
concentration. The Innovation Gini is mostly similar in the main regions in Eastern Europe,
Spain, Portugal, and East Germany, resulting in these regions being in the same spatio-
temporal cluster groups. Regarding the Innovation Gini and the different covariates used
in the mixture model-based multivariate functional clustering, it is noticeable that some
covariates seem to have opposite functional effects. This is the case when considering
regions with the highest values of innovation concentration over time, which is usually
accompanied by the lowest values in the covariates. This holds for all IPC classes except
for class G (‘physics’). The clustering results for the classes E, C, and F are similar, with the
pair E/F being more similar than the pair E/C. In addition, cluster solutions for the classes
G and C as well as G and H show similar temporal dynamics.

If one relates the clustering results to analyses of innovation-promoting policies from
the same period, the clustering clearly shows the various efforts in innovation policy
and general economic trends such as the economic crisis of 2008. The crisis is reflected
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in the functional curves and affects almost all IPC cluster solutions, with some being
more affected than others. As Izsák et al. [20] state in their final report for the European
Commission, funding focused on innovation development slowed down during the period
of our analysis, especially after the economic crisis. Nevertheless, funding shifted towards
more collaborative projects which is one reason that our analysis showed the emergence of
clusters not only in neighboring regions but also at the supra-regional level. Furthermore,
the funding priorities have not shifted in their scientific and technological cores, so the
FDA cluster model should be able to capture relevant effects to a large degree.

Considering patents as one of the innovation measures is consistent with the concept
of closed innovation, which is solved by adding further innovation indicators in the models.
These types of indicators mainly include ex-ante innovation indicators, where the success of
innovations is implicit, but considered sufficient for analyzing and forecasting effects on the
economy [93–95]. Nevertheless, open innovation concepts can enrich innovation analyses
by resolving the opposition to patents. Licensing concepts are not always antithetical
to intellectual property rights in the sense of patents, as flexible concepts can increase
the value of technologies and facilitate innovation dispersion [96–98]. Our analysis also
includes multiple indicators and highlights the importance of regional innovation structures
and policy support where innovation is lacking and thus can support the findings of, e.g.,
Leckel et al. [35]. The literature on innovation systems also proves to be a relevant point that
our results can support [36], as Pelau and Chinie [18] show. Moreover, as McPhillips [37]
notes, innovation clusters differ in terms of the openness of innovation, and policy can
support where barriers exist. Our analyses can provide information about the characteristics
of regional clusters and serve as leverage for improved policy targeting. Open innovation
can be conducive to further innovation gains, which is likely to benefit from information
about specializations in the regional clusters, in line with innovation system literature [36,
99].

In general, our analysis would benefit from longer time series of data that could
provide further insights into national and regional innovation dynamics. The periods of
funding programs often span several years or even decades, and their impact might not
be fully captured by the analysis conducted in this paper. Similarly, it is possible that the
effects of regional innovation policies have not been significant enough to have lasting
effects related to innovation concentration [20].

The concept of the European and Regional Innovation Scoreboards takes into account
innovation developments over time and divides nations by regions, but policies derived
from the European legislation are relatively inconsistent. The innovation index generally
shows little variation between countries, with most countries occupying the same or similar
categories of innovation leadership. This is also true across regions, with exceptions
due to highly specialized regions (e.g., Malta as a moderate innovator, is among the
strongest innovators in digitalization) [9]. As Pełka [14] states, innovation is heterogeneous.
Our model supports this result and we further suggest combining multiple measures of
innovation indicators, which is in line with Spielkamp and Vopel [12].

Izsák et al. [20] conclude that innovation policy should be location-based and tailored
to different conditions to take national characteristics into account. This idea is supported
by the results of our analysis, as regional characteristics and differing conditions in the
technological mix foster the emergence of heterogeneous innovation portfolios and thus
suggest higher policy efficiency if properly taken into account. Moreover, place-based
policy strategies should leverage the interconnectedness of industries, authorities, firms,
and other actors by mobilizing knowledge internal and external to the region to facilitate
innovation [100]. This is also noted by Capello and Lenzi [11] and supported by our model,
which describes specialization in clusters corresponding to IPC classes. Policy concepts
should be flexible and not apply a fixed scheme to all regions, as they differ with regard to
a multitude of characteristics, as our analysis shows [100,101].
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5. Conclusions

Knowledge of regional innovation dynamics, leading to different Innovation Ginis
that result in clustering regions differently across all of Europe depending on the type
of innovation activity, is crucial when designing policies for supporting innovation in
Europe. The emergence of innovation clustering in different regions is an important
factor for innovation systems, drawing on principles of agglomeration economics. This
paper extends the knowledge of clusters by highlighting the technological specialization of
regional clusters, which underlines the relevance of innovation systems and also provides
options for policy concepts related to open innovation and regional development.

In this paper, a mixture model-based multivariate functional clustering algorithm has
been adapted to analyze the spatio-temporal dynamics of European regional innovation
activities at the NUTS-2 level from 2000 to 2012. As this analysis is based on the paradigm
of functional data, it allows the analysis of latent features and dynamics in multivariate
time series of innovation activities that would have been too subtle to be captured by
classical time series or clustering approaches, making it possible to cluster 225 European
regions according to their temporal innovation profiles. This was achieved through the
integrative combination of multivariate functional principal component analysis, mixture
modeling, and expectation maximization, overcoming the limitations of classical methods
in analyzing high-dimensional data. However, it should be noted that this multivariate
clustering approach requires the reconstruction of functional forms from raw time series,
which necessitates careful consideration of robust spline interpolations to impute missing
data and the selection of appropriate basis expansions. Therefore, functional clustering,
especially with regard to multivariate data, is more laborious in the pre-processing stages
compared to other methods, as any interpolation or expansion approach may inappropri-
ately influence or change the functional form, which must be avoided through multiple
sensitivity and simulation analysis runs. Nevertheless, by using these multivariate inno-
vation time series, multi-characteristic innovation activity is taken into account, reflecting
the political efforts of European policy programs. Our measurements for identifying the
clusters are innovation- and economy-related variables including innovation concentra-
tion indicators that consider different IPC classes of patents. Thus, regions are profiled
according to their innovation portfolios.

The resulting innovative activity across the European clusters differs, although some
regions in Eastern Europe and on the Iberian Peninsula are reliably constant across innova-
tion types. Accounting for the differences in innovation, clustering for IPC classes E (‘fixed
constructions’) and F ‘mechanical engineering, lighting, heating, weapons, and blasting’) is
almost identical, whereas similarities in regional clustering of classes E and C (‘chemistry
and metallurgy’) are relatively more distinct but still comparable. Clusters of classes G
(‘physics’) and C are correspondent while classes H (‘electricity’) and G exhibit comparable
dynamics over time. This supports a place-based regional innovation policy approach that
is not only able to account for differing regional potentials in innovation but also diverging
specialization in innovation types.

For future research, it is crucial to consider and address the limited data availability in
terms of time series length and missing values. The accuracy of the results could be further
increased if these limitations were removed by better, more complete, and more recent
data, or if more variables were added to further optimize our existing models. Another
possibility would be to analyze regions below the NUTS-2 level if high-quality data from
official sources are available.
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