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Abstract: In recent years, crowdfunding has attracted the attention of tech startups. It has become a
good alternative way to readily raise funds, especially during the early startup stages. However, in
the case of mass intelligence, it is quite difficult to ensure the accuracy and reliability of knowledge.
Individual investors who are not experts in science and technology often face difficulties investing
in technology companies. In this regard, a new type of collective intelligence formed by accredited
professionals needs to be attempted. This paper explores an alternative crowdfunding model
for enhancing access to technology investments by the general population through an investor
acceptance model. We developed an investor acceptance model to examine how the crowdfunding
model involving scientists and engineers is adopted by individual investors using survey data from
the general population. The results revealed that individual investors have a positive attitude towards
investing through the crowdfunding model when they perceive that the information provided by
a group of scientific experts is useful. We found that the perceived usefulness of the information
from scientists and engineers is affected by the perceived quality of the information and perceived
credibility of the scientists and engineers. We also suggest a basic concept for the crowdfunding
model utilizing the collective intelligence of scientists and engineers for tech startups. The results
could suggest a policy direction for promoting innovation.

Keywords: startups; crowdfunding; investment; technology; scientists; engineers; collective
intelligence; open innovation; individual investor; fund-raise

1. Introduction

Access to finance is one of the most important factors in supporting the innovation
process of startups toward the maturity phase [1]. However, due to the lack of information
and the uncertainty of investment success, startups receive comparatively less investment
than large enterprises [2]. Furthermore, corporate venture capital is more likely to invest in
companies with potentially lower information costs [3].

In recent years, crowdfunding has emerged as a new way to finance businesses for
which it is difficult to set up an investment fund because of their innovative character [2,4,5].
Crowdfunding is defined as “the practice of obtaining needed funding by soliciting contri-
butions from a large number of people, especially from the online community”, according
to the Merriam-Webster dictionary [6]. Crowdfunding is a unique way of raising money
promoted by an increasing number of internet sites [4]. Through crowdfunding platforms,
consumers identify valuable investments according to their preferences and their favorite
products [7]. Individual investors can also start investing small amounts in promising
technologies, so it becomes easier for companies to raise funds. Entrepreneurs choose
crowdfunding for capital collection and marketing effects [8]. According to a recent study,
companies with successful crowdfunding show good economic performance and employ-
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ment growth [9]. Crowdfunding also allows entrepreneurs to retain more control over their
company than if they receive venture capital [10].

There are two key factors that increase the probability of success for a crowdfunding
project. First, it is essential to better understand and predict customers’ strategic behavior
before designing a crowdfunding project. The project’s success is affected by the sensitivity
of the optimal expected profit, the success rate, and the risk concerning the fixed cost
and the opportunity cost coefficient [11]. Second, digital storytelling matters in attracting
funding investors. Digital storytelling provides better service and convenience for investors
and significantly impacts their perception of performance expectations [12].

The knowledge and environment of investors influence investment behavior [13]. The
signals of project quality have a significant positive effect on the investment decisions
around crowdfunding for science and technology projects [14]. However, in the case
of mass intelligence in technology, it is quite difficult to secure accurate and reliable
knowledge. Since most individual investors are non-experts in science and technology, it is
difficult for investors to invest in the technology sector. Whether a product is feasible in
the market [15] and the existence of functional prototypes for the product are important
factors in investment decisions [16]. Information asymmetry is a hindrance to individual
investors’ investment in technology. Crowdfunding is transparent for its users through
the accumulated amount of pledges and the number of investors it involves. However,
because quality information is asymmetrical, investors cannot fully understand each
business [17]. In a recent study, we confirmed that information sharing helps reduce
information asymmetry [18] and that the perceived trust and perceived risk jointly created
by the platform and crowdfunding have a positive effect on participation intention [19].
Furthermore, it was confirmed that recognizing the value of communication with others
through participation in crowdfunding could affect social interaction online [20].

To the best of our knowledge, there is little previous research on the impact of signals
from experts on investors’ behavior. Our paper focuses on a crowdfunding model involving
scientists and engineers. Accredited professionals could offer signals that are useful in the
reduction of information asymmetry for individual investors in the face of uncertainty in
investment decision-making. In this study, we investigate how individual investors adopt
the crowdfunding model involving scientists and engineers. The purpose of the study is to
present a model that describes which factors affect the acceptance attitude of individual
investors for this crowdfunding model and how they relate to each other. In addition, we
suggest a process for the crowdfunding model that involves scientists and engineers. The
findings will be able to provide fundamental data to policymakers by presenting specific
processes of models as well as individual investor acceptance of a new model that could
facilitate promising technology investments.

The outline of the paper is as follows. Section 2 includes the various theories that un-
derlie this study; research into theories of technology adoption is introduced in this section.
Section 3 describes the data, the methods used to test the hypotheses, and the research
framework. Section 4 provides the results of the empirical analysis. Section 5 discusses the
relationship between crowdfunding, collective intelligence, and open innovation. Section 6
concludes the paper.

2. Literature Reviews
2.1. Theoretical Framework

Adoption models are based on social psychology theories that deal with beliefs,
attitudes, intentions, and behaviors. In terms of social psychology, research into factors
that cause individual behavior has expanded, and it has begun to be applied to the study
of the information technology acceptance process [21,22].

The Theory of Reasoned Action (TRA) was developed in 1975 by Fishbein and Azjen
to predict human behavior under complete volitional control [23]. According to the TRA,
attitudes toward behavior and subjective norms influence behavioral intention, leading to
behavior such as [24]. The TRA is a valuable model for predicting consumer behavior and
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behavioral performance [25,26] and serves as the theoretical foundation for the Theory of
Planned Behavior (TPB) and the Technology Acceptance Models (TAM) [27].

The TAM is a theory proposed by Fred Davis based on the TRA to explain and predict
the acceptance of user behavior for information technology [28–30]. According to the
TAM, the user’s intention to use the system determines the actual use of the system, and
the user’s intent to use the system is influenced by the user’s attitude toward using the
system. Fred Davis presented two independent constructs of user acceptance: perceived
usefulness and perceived ease of use concepts to illustrate user acceptance, which he
described as influencing behavior. On the other hand, subjective norms were excluded
from the TAM [24]. The TAM is widely used to focus on system utilization and reliable
measurement tools that exist and is parsimonious and sufficiently empirically tested [31].

Fred Davis, who developed the TAM, proposed an extended technology acceptance
model (TAM2) that included external factors affecting the information technology accep-
tance process at the organization level with Viswanath Venkatesh. Additional variables
as determinants of perceived usefulness are subjective norms, image, job relevance, out-
put quality, and result demonstrability. Additionally, additional variables as regulatory
variables are experience and collegiality. Attitudes were excluded from the TAM2 to main-
tain the model’s simplicity and increase the explanatory power of the willingness to use
it [32]. Since then, the TAM3 was proposed, with conditioned variables of perceived ease
(self-efficacy, external support perception, anxiety, playfulness) and regulatory variables
(perceived pleasure, objective ease) [33].

Sussman and Siegal presented an integrated model based on the Elaboration Likeli-
hood Model (ELM), which describes the acceptance of information [34]. They hypothesized
that the provided argument quality and the source credibility would act as leading variables
for the information usefulness. The information usefulness would again be the leading
variable for determining information adoption. In addition to the concept of the ELM,
they also hypothesized that when the argument quality or the source credibility affects the
information usefulness, the expertise and immersion of information users will affect as
context variables, and all of these hypotheses are empirically analyzed through surveys [34].
Hyoung-Yong Lee and Hyunchul Ahn empirically analyzed the user acceptance model for
mass collective intelligence represented by Wikipedia. They proposed the behavior model
based on Sussman and Siegal’s research [34]. They conducted a survey and validated it
through a PLS structural equation model [35].

User acceptance of new technologies and mass intelligence based on adoption theories
has been widely investigated, but few have attempted to address collective intelligence
formed by accredited professionals. To the best of our knowledge, this study is the first
paper to investigate individual investors’ acceptance of the crowdfunding model based
upon the collective intelligence formed by scientists and engineers. Previous studies have
investigated user acceptance for new technologies or systems. This paper presents not
only user acceptance but also a process model of the crowdfunding platform to provide
fundamental data to policymakers.

2.2. Hypotheses Development

Figure 1 below indicates the research model used in this study. This study draws on
the work of Sussman and Siegal [34] to develop the theoretical framework for the analysis
of the user acceptance model. It is extended to include various leading variables that can
account for the intention to use the crowdfunding platform. The proposed model consists
of a total of seven hypotheses.
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Individuals choose the most reasonable mode of action after comparing the benefits
that may arise from a given set of decision options [36]. To reach the decision, trustworthi-
ness perceptions and trust intentions depend on individual differences because the trustor
relies on a worldview, cognitive bias, or heuristic [37]. According to Gene M. Alarcon
et al., those higher in trust propensity tend to trust others [38]. For platforms where the
information provided by experts has a significant impact, it can be thought that the basic
level of trust the general public has in others could affect the confidence in the experts. All
this considered, the first hypothesis of the study is postulated as:

Hypothesis 1 (H1). Individual investors’ trust propensity impacts their perceived credibility of
scientists and engineers.

Trust plays an important role in improving the functionality of all business operations
in situations where there is risk and uncertainty [39]. Cooperation is an act in which individ-
ual goals contribute to each other, while trust is an expectation that the other will perform
certain actions and a willingness to take risks and damages from the other’s failure [40].
In sociology, trust is divided into parts of emotion and reason, and the former is defined
as emotional trust and the latter as cognitive trust [41]. Cognitive trust positively coordi-
nates the relationship between the quality of information and the operational performance
of crowdfunding [42]. A system quality means desirable characteristics of information
systems, such as ease of use and learning, flexibility, credibility, and sophistication. If
investors have high confidence in scientists and engineers, they will recognize that the
quality of the information provided by the platform involving scientists and engineers is
also excellent [43]. Thus, the second hypothesis of the study is postulated as:

Hypothesis 2 (H2). Individual investors’ perceived credibility of scientists and engineers impacts
their perceived quality of the information provided by scientists and engineers.

Bonabeau argued that experts working together in groups, advising and critiquing,
could create synergies rather than handling tasks individually, resulting in better solutions
to the problem [44]. The quality of forecasts is significantly improved if independent
expert judgments are aggregated rather than those predicted by individual experts [45].
Groups that collaborate organically also solve challenges faster and more accurately than
others [46]. By the same token, the collective intelligence of scientists and engineers from
various fields can provide information of higher quality than that provided by a single
expert. Thus, the third hypothesis of the study is postulated as:

Hypothesis 3 (H3). Individual investors’ perceived effect of the collective intelligence of scientists
and engineers impacts their perceived quality of the information provided by scientists and engineers.
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The quality of information affects the operational performance of crowdfunding [39].
The perceived information quality also has a negative impact on the perceived investment
risk [47]. Sussman and Siegal examined how knowledge workers are affected by adopting
advice they receive in mediated contexts and emphasized assessing the information’s
usefulness as a mediator in the information adoption process. They recognized argument
quality as a central route, source credibility as a peripheral route, and information use-
fulness as a mediator. According to Sussman and Siegal’s information adoption model,
information adoption is determined by two leading variables, argument quality and source
credibility [34]. In the context that Sussman and Siegal’s findings would also be valid in
mass intelligence of scientists and engineers, we derived two variables: perceived quality
of information and perceived credibility of scientists and engineers as leading variables for
the perceived usefulness of information [34]. Thus, the fourth and fifth hypothesis of the
study are postulated as:

Hypothesis 4 (H4). Individual investors’ perceived quality of the information provided by sci-
entists and engineers impacts their perceived usefulness of the information provided by scientists
and engineers.

Hypothesis 5 (H5). Individual investors’ perceived credibility of scientists and engineers impacts
their perceived usefulness of the information provided by scientists and engineers.

According to the technology acceptance model, the perceived usefulness of new
technologies significantly impacts an individual’s attitude toward using the system [29].
Based on the perspective of the technology acceptance model, the information formed by
the mass intelligence of scientists and engineers can be interpreted in the same context. If
investors consider the information provided by scientists and engineers as useful, they will
actively accept it. Thus, the sixth hypothesis of the study is postulated as:

Hypothesis 6 (H6). Individual investors’ perceived usefulness of the information provided by
scientists and engineers impacts their intention to use the crowdfunding platform.

People generally do not like risk, but there is a difference in the degree to which they
try to avoid or take risks depending on the individual in situations where risk and benefit
exist simultaneously. Risk tolerance is a subjective perception of risk that means how much
risk an individual can accommodate. John defined financial risk tolerance as the maximum
amount of uncertainty that someone is willing to accept when making a financial decision,
which reaches into almost every part of economic and social life [48]. Understanding
an investor’s financial risk tolerance is crucial in determining the applicability of an
investment. People with high financial risk tolerance are likely to have a higher level of
confidence investing in more risky assets and would behave differently [49]. Thus, the
seventh hypothesis of the study is postulated as:

Hypothesis 7 (H7). Individual investors’ financial risk tolerance impacts the interaction between
perceived usefulness of the information and intention to use the crowdfunding platform.

3. Methodology
3.1. Data Collection and Sample

Drawing on an existing literature and research model, survey data are collected from
a sample of respondents that took a survey. We manipulated each factor contained in
the model into between three and four measurement tools, referring to existing literature,
and developed measurement questions using the 7-point Likert-type scale ranging from
“strongly disagree” (score 1) to “strongly agree” (score 7). The population of the study
comprised people in various filed who subscribe to newsletters from Korea Evaluation
Institute of Industrial Technology (KEIT), a public institution that plans, evaluates, and
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manages industrial technology R&D. A total of 518 people were finally used in this study.
Table 1 below contains the demographics of the participants.

Table 1. Demographic information on subjects.

Variable Classification Frequency Percent

Gender
Male 474 91.51%

Female 44 8.49%

Ages

Between 20 and 29 years 4 0.78%
Between 30 and 39 years 68 13.12%
Between 40 and 49 years 149 28.76%
Between 50 and 59 years 190 36.68%

Older than 60 years 107 20.66%

Position

Research and Development 301 58.10%
Engineering 58 11.20%

R&D Policy Planning 48 9.27%
Office Management 98 18.92%

Other 13 2.51%

Occupation

Employee in University 64 12.36%
Employee in Public Sector 89 17.18%
Employee in Private Sector 351 67.76%

Other 14 2.70%

Education

Ph.D. 199 38.42%
Master’s degree 153 29.54%

Bachelor’s degree 138 26.64%
Other 28 5.40%

Major

Mechanical · Material 137 26.45%
Electrical · Electronic 78 15.06%

Information and Communication 67 12.93%
Chemical 56 10.81%

Biomedical 75 14.48%
Energy Resource 24 4.63%

Knowledge Service 35 6.76%
Other 46 8.88%

(Note: Appendix A provides quantitative measures and indicators).

3.2. Data and Measurement

The reliability analysis of this study examined the homogeneous composition of
questions for variables measurement by applying Cronbach’s alpha, which represents
internal consistency. The results are shown in Table 2 as follows. The results for reliability
assessment demonstrate reliabilities (above 0.70 [50]) for all scales. We confirmed that all
the questions about the latent variable had high consistency.

The validity is to examine whether the observation variable measured the latent
variable properly. Table 2 below displays that all factor loadings are above 0.7, and the
validity is statistically significant [51].

To analyze construct validity, we assessed convergent validity and discriminant valid-
ity. The value of the average variance extracted (AVE) should be higher than 0.5 to achieve
convergent validity [51]. Table 2 above shows that convergent validity is established. Ad-
ditionally, confidence interval for a coefficient (Φ ± 2 × standard error) should not include
1.0 to achieve discriminant validity. The results presented in Table 3 show all the factors
that do not include 1.0. Thus, discriminant validity is established.
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Table 2. The results for reliability analysis and convergent validity analysis.

Latent Variable Observed
Variable

Factor
Loading

Cronbach’s
Alpha AVE

Perceived Effect of
Collective Intelligence

PE1 0.784

0.852 0.592
PE2 0.789
PE3 0.747
PE4 0.757

Perceived Quality of
Information

PQ1 0.864
0.903 0.755PQ2 0.920

PQ3 0.829

Perceived Usefulness of
Information

PU1 0.761
0.868 0.700PU2 0.870

PU3 0.863

Intention to use the
Platform

IP1 0.940
0.966 0.905IP2 0.985

IP3 0.931

Trust Propensity
TP1 0.811

0.786 0.577TP2 0.845
TP3 0.613

Perceived Credibility of
Scientists and Engineers

PC1 0.798
0.844 0.644PC2 0.745

PC3 0.875
(Note: AVE = average variance extracted).

Table 3. The results for discriminant validity.

Path Φ S.E. Φ − 2 × SE Φ + 2 × SE

PE–PQ 0.774 0.024 0.726 0.822

PE–PU 0.792 0.024 0.744 0.840

PE–IP 0.678 0.028 0.622 0.734

PE–TP 0.508 0.041 0.426 0.590

PE–PC 0.680 0.032 0.616 0.744

PQ–PU 0.755 0.024 0.707 0.803

PQ–IP 0.615 0.030 0.555 0.675

PQ–TP 0.539 0.038 0.463 0.615

PQ–PC 0.735 0.026 0.683 0.787

PU–IP 0.788 0.020 0.748 0.828

PU–TP 0.606 0.036 0.534 0.678

PU–PC 0.744 0.027 0.690 0.798

IP–TP 0.520 0.037 0.446 0.594

IP–PC 0.587 0.033 0.521 0.653

TP–PC 0.749 0.028 0.693 0.805
(Note: Φ = correlation, S.E. = standard error).

The results for the goodness of fit test are presented in Table 4. Absolute fit measures
present how well a theoretical model fits the sample data. We use root mean square
of error approximation (RMSEA) and goodness of fit index (GFI) as absolute fit indices.
Incremental fit indices indicate the relative improvement in the fit of the research model. We
use comprehensive fit index (CFI), adjusted goodness of fit index (AGFI), and parsimony
goodness of fit index (PGFI) as incremental fit indices. Parsimonious fit measures state
indices that make it possible to examine the fit of competing models on a common basis.
We use parsimonious normed fit index (PNFI) as parsimony fit indices. According to the
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results for the goodness of fit test, each index value satisfies its level of acceptance. Thus,
the model fit is satisfactory.

Table 4. The results for the goodness of fit test.

Name of Category Name of
Index

Level of
Acceptance

Index
Value

Absolute fit indices
RMSEA ≤0.08 [52] 0.072

GFI ≥0.8 [53] 0.905

Incremental fit indices
CFI ≥0.9 [54] 0.954

AGFI ≥0.8 [55] 0.868
PGFI ≥0.5 [56] 0.652

Parsimony fit indices PNFI ≥0.5 [56] 0.752

4. Results

This study used Structural Equation Modeling for the statistical analysis. The internal
consistencies of scale were assessed through computing Cronbach’s Test. The construct
validity was evaluated via convergent and discriminant validity. The results of testing the
hypothesis using a structural equation model are presented in Figure 2 below. Findings
show that all factors have a significant impact (p < 0.001). In support of H1, we found that
trust propensity has a significant impact on the perceived credibility of scientists and engi-
neers. The path coefficient between trust propensity and perceived credibility of scientists
and engineers was the highest at 0.83. Additionally, the results indicate that the perceived
quality of information is affected by the perceived credibility of scientists and engineers
and the perceived effect of collective intelligence. Hence, H2 and H3 are also confirmed.
The path coefficient (0.58) between perceived quality of information and perceived effect of
collective intelligence was higher than those (0.36) of perceived quality of information and
perceived credibility of scientists and engineers. This suggests that individual investors
perceive the effect of collective intelligence formed through collaboration more than trust
in a group of experts who are scientists and engineers. Accordingly, the crowdfunding
platform needs to be designed with structures that facilitate collaboration among experts
participating in the platform. In addition, it was confirmed that the perceived usefulness of
information is affected by both perceived quality of information and perceived credibility
of scientists and engineers with path coefficients of 0.53 and 0.36, respectively, at a signifi-
cant level of 0.1%. Thus, H4 and H5 are supported. Among them, they were found to be
more influenced by the perceived quality of information. This means that more resources
and efforts must be put into improving the quality of the information provided to attract
participation from individual investors in the crowdfunding platform. Further, we found
that the intention to use the crowdfunding platform involving scientists and engineers
is influenced by the perceived usefulness of the information. The path coefficient of 0.76
indicates a strong positive relationship. Thus, H6 is supported.

Lastly, we verified that the impact interaction between perceived usefulness of in-
formation and intention to use the crowdfunding platform is affected by financial risk
tolerance. As a result, we confirmed that the perceived usefulness of the information and
financial risk tolerance has a significant effect on the intention to use the platform (each of
p-value = 0.000) and that the interaction between perceived usefulness of the information
and financial risk tolerance also has a significant statistical impact (p-value = 0.012). This
means that individual investors’ attitudes toward the risk of investing in funds also affect
their attitudes toward accepting the crowdfunding platform.

However, some might argue that systematic differences among subsamples can bias
our result seriously. Thus, we checked systematic differences among groups by gender,
educational background, and major, respectfully. The results revealed that there is no
statistical difference at the 5% significance level.
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5. Discussion
5.1. Crowdfunding and Collective Intelligence

We discuss two crowdfunding model ideas combined with the concept of collective
intelligence as follows. The first idea is to combine collective intelligence with the con-
ventional IP trust model. IP Trust Model is a way in which a trust company receives
IP from an innovative company and raises funds based on it. A group of scientists and
engineers can design an investment portfolio by selecting companies with excellent intel-
lectual property (IP) using their expertise. Referring to the investment portfolio composed
by scientists and engineers can help individuals make investment decisions through the
crowdfunding platform.

The second idea is to combine collective intelligence with a Business Development
Company (BDC). A company’s selective waiver of intellectual property rights may benefit a
company’s business [57]. A BDC is an organization that invests money in privately owned
small- and medium-sized companies and distressed companies. A management company
can establish a BDC with scientists and engineers for each technology area, such as electric
vehicles, robotics, and smart grid. Investors can invest in BDCs designed by scientists and
engineers through the crowdfunding platform.

5.2. Crowdfunding, Collective Intelligence, and Open Innovation

As digitization progresses, the openness of information and technology has expanded,
and the importance of open innovation is also emphasized [58–63]. Adopting existing exter-
nal knowledge and technologies contributes to business growth [64–66]. Open innovation
requires various tools and technologies to ensure quality, accuracy, and speed [67]. In the
case of converted industry in a mature stage and emerging industry, an open innovation
strategy focused on technology is useful [68]. The ability to capture value determines the
success of open innovation [69].

According to JinHyo Joseph Yun‘s study, the more knowledge in an economic system,
the more the motivation of open innovation by collective intelligence [70]. Addition-
ally, leveraging collective intelligence techniques is potentially helpful in research and
development [71]. We focus on collective intelligence formed from accredited experts in
science and engineering. The proposed crowdfunding model could reduce asymmetry
that negatively affects investment in firms through the collective intelligence of experts
and promote open innovation by strengthening internal cooperation [72]. JinHyo Joseph
Yun argues that collective intelligence can motivate open innovation in new companies by
moving those who joined the patents as co-inventors [73]. In the same vein, scientists and
engineers participating in the proposed crowdfunding model can generate innovations in
their organizations or enterprises.

Crowdfunding also requires the joint participation of multiple stakeholders in innova-
tive work [74]. In that sense, crowdfunding can play a role as innovation intermediaries that
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contribute to the success of entrepreneurial opportunities by supporting open innovation ac-
tivities to facilitate the interaction and identification of collaboration opportunities [74–79].
To create a combination of entrepreneurs and technology and markets, it is necessary to
provide and foster financial systems such as crowdfunding [80].

6. Conclusions
6.1. Implication

This paper tested an investor acceptance model of the crowdfunding platform involv-
ing scientists and engineers. We developed the research framework consisting of seven
variables and validated it through a structural equation model based on the survey. The
conclusion from this study is these: (1) the usefulness of information affects the inten-
tion to use the crowdfunding platform involving scientists and engineers. The perceived
usefulness of information is determined by the perceived quality of information and the
credibility of scientists and engineers. (2) The perceived effect of collective intelligence
and the credibility of scientists and engineers affect the perceived quality of information,
and trust propensity has a significant impact on the credibility of scientists and engineers.
(3) The perceived quality of information affects the perceived usefulness of information
more than the perceived credibility of scientists and engineers. The perceived effect of
collective intelligence affects the perceived quality of information more than the credibility
of scientists and engineers. Proceeding from these results, it is highly probable that the
quality of the information they produce is more important than trust in scientists and
engineers. (4) An individual’s attitude toward financial risk influences the intention to
use the crowdfunding platform. To sum this up, individual investors recognize that the
information provided by scientists and engineers through the platform is high-quality, and
they have confidence in scientists and engineers, so they recognize that the information
provided by the crowdfunding platform involving scientists and engineers will be valuable
and they will be willing to use the platform.

The academic significance of this study is as follows. This study presented the behav-
ior model that explained individual investors’ acceptance of the crowdfunding model and
verified it through survey-based empirical analysis, while numerous studies applying the
adoption theory mainly presented user acceptance models for new technologies or mass
intelligence. The study emphasized how individual investors accept collective intelligence
formed by accredited professionals. Furthermore, this study provides practical implications
for policymakers in charge of technology financing policy and asset management compa-
nies. It will enhance the efficiency of policymaking by presenting the basic concept of the
model to stakeholders, including policymakers, as well as individual investors’ acceptance
of the crowdfunding platform that can facilitate promising technology investments. The
results of this study suggest that efforts should be made to improve the quality of the
information provided by scientists and engineers to attract participation from individual
investors in the crowdfunding platform. It is recommended that the platform be designed
to ensure that the information provided by scientists and engineers is accurate, reliable,
and consistent. Furthermore, the study suggests that encouraging collaboration between
scientists and engineers can improve the quality of information.

6.2. Limits and Future Research Topic

Although this study offers academic contributions and practical implications, some
limitations were recognized. First, the data were collected in South Korea only. In this
regard, this study may not apply to other countries due to system and cultural differences.
Cross-national comparative research would be vital for better research in the future. Sec-
ond, the research framework of this study is not designed to include all possible variables.
Additional variables need to be considered that describe the perceived quality of informa-
tion and the perceived credibility of scientists and engineers to measure the behavior of
individual investors in detail.
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Appendix A. Quantitative Measures and Indicators

Perceived Effect of Collective Intelligence: four items adapted from Bonabeau [44].

1. I think it is more likely that information created through collaboration between
several scientists and engineers on the crowdfunding platform is more reliable than
information created by one scientist or engineer alone.

2. I think it is more likely that a group of experts from various fields will produce more
meaningful information on the crowdfunding platform than a group of experts from
one field.

3. I think providing information that tells you which fund the scientist was involved in
would help the individual investors decide on investment.

4. I think that if the platform provides information on the investment status of each fund
(such as the amount of investment, the number of investors, etc.), it can help judge
the investment.

Perceived Quality of Information: three items adapted from Petter et al. [43].

1. I think that the scientists and engineers involved in the crowdfunding platform will
provide accurate information about their area of expertise.

2. I believe that the scientists and engineers who participate in the crowdfunding plat-
form will provide reliable information about their area of expertise.

3. I believe that the scientists and engineers involved in the crowdfunding platform will
provide coherent information about their area of expertise.

Perceived Usefulness of Information: three items adapted from Davis [81].

1. I think we can quickly obtain the information we need to invest in technology from
the crowdfunding platform.

2. I think the crowdfunding platform can increase my chances of successful investment.
3. I think the crowdfunding platform will make investing in technology easier.

Intention to use the Platform: three items adapted from Vankatesh et al. [33].

1. I am willing to use the crowdfunding platform.
2. I think I will use the crowdfunding platform.
3. I am planning to use the crowdfunding platform.

Trust Propensity: three items adapted from Gene et al. [38].

1. I think people generally care about others as well as themselves.
2. I think most people try to be honest with others.
3. I am not very suspicious of persons I first meet.

Credibility of Scientists and Engineers: three items adapted from Sussman et al. [34].
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1. I think that the scientists and engineers involved in the crowdfunding platform will
participate in good faith.

2. I think that the scientists and engineers involved in the crowdfunding platform will
want investors to profit from their investment.

3. I believe that the scientists and engineers involved in the crowdfunding platform will
provide the right knowledge.
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