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Abstract

The empirical evidence on how industrial robots affect employment and wages
is very mixed. Our meta-study helps to uncover the potentially true effect of indus-
trial robots on labor market outcomes and to identify drivers of the heterogeneous
empirical results. By means of a systematic literature research, we collected 53
papers containing 2143 estimations for the impact of robot adoption on wages. We
observe only limited evidence for a publication bias in favor of negative results. The
genuine overall effect of industrial robots on wages is close to zero and both statisti-
cally and economically insignificant. With regard to the drivers of heterogeneity, we
find that more positive results are obtained if primary estimations a) include more
countries in their sample, b) control for ICT capital, demographic developments, or
tenure, c) focus on employees that remain employed in the same sector, d) consider
only non-manufacturing industries, e) are specified in long differences, and f) come
from a peer-reviewed journal article. More negative effects, in turn, are reported
for primary estimations that are i) weighted, ii) aggregated at country level, iii)
control for trade exposure, iv) and consider only manufacturing industries. We also
find some evidence for skill-biased technological change. The magnitude of that
effect is albeit small and less robust than one might expect in view of skill-biased

technological change. We find little evidence for data dependence.
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1 Introduction

In recent years, industrial robots have received much attention in economic research. The main
characteristic of a robot is that it can perform tasks autonomously. This sets the technology
apart from other capital goods like ICT capital or traditional machines which still need a human
to operate. If robots can render human workers obsolete, how will this affect labor market
outcomes such as wages and employment? From a theoretical perspective, both positive and
negative effects on wages and employment are possible. Three main transmission channels for
the effect of industrial robots on employment and wages can be distinguished in the literature.
As pointed out by e.g. Acemoglu and Restrepo (2020) or Hotte et al. (2022b) and Hotte et al.
(2022a), the overall effect depends on whether the productivity and reinstatement effect from
automation outweighs the displacement effect of workers. If industrial robots substitute for
human labor, wages and employment can decrease as tasks previously performed by labor are
then performed by robots. However, if robotization raises overall labor productivity, thereby
inducing a higher demand for labor, wages will increase. This is especially true if tasks performed
by workers are complements rather than substitutes of robots. Aghion et al. (2017)) call this
the weak link of labor within the production function. As long as labor tasks are essential,
the wage share cannot decline. Productivity improvements may also induce real income gains
if lower production costs are reflected in reduced output prices, thereby enabling an expansion
of aggregate output that leads to higher labor demand (Hotte et al., [2022a). Moreover, new
economic activities and products can emerge, causing labor to be reallocated to (newly created)
occupations and tasks which are more productive and therefore better paid. This reinstatement
effect would then lead to higher wages and more employment (Acemoglu and Restrepo, [2018)),
Hotte et al., [2022a). Increasing usage of automation technologies can also generate additional
jobs in the machine-producing sector as well as related services for installing and maintaining

robotic production lines (Mondolo, 2021)).

To scrutinize the total outcome of these co-existing effects, quantitative research focusing on
labor market effects of robotization has increased tremendously. Klump et al. (2021)) provide a
first comprehensive overview of the existing literature on robots, wages, and employment. The
empirical evidence on how industrial robotization affects employment and wages is very mixed.
A meta study can help to uncover the potentially true effect of industrial robots on labor market
outcomes and to identify the drivers of the heterogeneous empirical results. Owing to the large
number of research (a Google Scholar search on industrial robots and wages yielded almost 9,000
hits in August 2022), we focus on wage effects only. On the one hand, wages are a valid indicator
for shifts in labor demand given a certain labor supply, while they are simultaneously related
to labor productivity. On the other hand, it is unlikely that a majority of workers replaced by
robots in the past decades remained long-term unemployed or dropped out of the active labor
force. Instead, they were likely reallocated to other industries, firms, or occupations. Rather
than observing employment levels, it is thus more interesting to analyze whether workers exposed

to robotization really suffer from significant income losses. Moreover, investigating differential



trends in wage development across different skill or demographic groups in the population is at

the core of explaining economic inequality.

By conducting a meta-analysis on the wage effects of industrial robots, we contribute to the
literature in two important ways. First, employing several meta-regression models, we try to
correct the original econometric research for publication, misspecification, and omitted-variable
biases to detect a potentially overall effect of robots on wages. Second, we shed light on the
heterogeneity of primary empirical findings by scrutinizing the influence of study-invariant fac-
tors as well as the inclusion of essential control variables on the estimated wage effects. We are
especially interested of whether the various, often contradicting results of the primary literature
are driven by the level of analysis, using alternative measures for robots and wages, studying
different geographic regions or time periods, distinct educational and occupational skill groups,
demographic groups (gender, age, income quartile), labor mobility as well as sector of employ-
ment. The vast majority of studies relies on data of the International Federation of Robotics
(IFR). These IFR data exhibit several issues and limitations that are treated differently by dif-
ferent authors (see Jurkat et al. (2022)) for an analysis of the IFR data set). Our meta-analysis
allows to investigate if the varying data preparation approaches contribute to the variation in
empirical results. We consider papers using the IFR dataset as well as other data sources on in-
dustrial robots (e.g. trade data, survey data) to rule out that the IFR dataset and the necessary

data preparation has a substantial influence on the estimated labor market outcomes.

By means of a systematic literature research, we collected 53 papers containing 2143 estimates
of the impact of robot adoption on wages. We conducted a systematic literature search in
August and September 2022 with the keywords ”industrial + robot + wages” and included all
eligible papers from 2018 to the third quarter of 2022. Applying simple vote counting based
on the conventional 5%-significance level, reveals that 17.9% of the estimates show a positive
and statistically significant effect, 38.6% report a significantly negative effect, while 43.5% are

statistically insignificant.

A main challenge for meta-analysis in economics is that often the dependent and/or independent
variables of the estimations vary across studies or even within studies. In our context this means
that “wages” and “robots” may be differently defined. “Robots” can be expressed as density (e.g.
robots per million hours worked or per 1000 employees), a simple stock of robots, a monetary
value, or as a binary indicator for robot adoption (1 if at least one robot is installed or zero
otherwise). Moreover, a shift share measure can be applied to distribute robot data at country-
industry level to a smaller geographic unit (see e.g. Acemoglu and Restrepo, 2020). “Wages”
can be expressed in wage rates (hourly vs. daily/weekly /monthly/annual), wage bills, income,
or earnings cumulated over a certain period. In order to ensure comparability of estimates
across and within studies we need to build a unitless index. We calculate partial correlation
coefficients and perform weighted least square (WLS) regressions using alternative weighting
schemes for the primary estimates. We closely follow the methodology laid out by Stanley and
Doucouliagos (2012)) and applied by e.g. Cazachevici et al. (2020) or Duan et al. (2020). In order



to assess the heterogeneous effects beyond potential publication bias, we construct a moderator
matrix consisting of a set of study /estimation characteristics. We then employ multivariate WLS
regressions with our moderator matrix to identify the drivers of heterogeneity in the estimated

effects of robot adoption on wages.

We only find limited evidence for a negative publication bias. The genuine effect of industrial
robots on wages beyond publication bias is close to zero and both statistically and economically
not significant. This suggests that industrial robotization has so far had no visible overall effect
on wages for the total population. With regard to the drivers of heterogeneous findings in the
primary literature, we find that more positive results are obtained if primary estimations a)
include more countries in their sample, b) control for ICT capital, demographic developments,
or tenure, c) focus on employees that remain employed in the same sector, d) consider only
non-manufacturing industries, e) are specified in long-differences , and f) come from a peer-
reviewed journal article. More negative effects, in turn, are reported for primary estimations
that are i) weighted, ii) aggregated at country level, iii) control for trade exposure, iv) and
consider only manufacturing industries. We also find some evidence for skill-biased technological
change (SBTC) since wages are more positively affected in high-skilled occupations and more
negatively affected in medium- to low-skilled occupations. The magnitude of that effect is albeit
small and less robust than one might expect in light of the widespread assumption of SBTC
in theoretical models incorporating automation (e.g. Fierro et al., 2022; Prettner and Strulik,
2020; Lankisch et al.,[2019). Although, we find evidence for more positive wage outcomes in the
non-manufacturing sector, our meta-regression results for skill groups do not support job/wage

polarization due to a rise of service occupations as hypothesised by Autor and Dorn (2013).

The paper is organized as follows: Section [2] provides a broad overview of the existing empirical
literature on the wage effects of robotization and some related meta-studies in economics. Section
the data and the selection process and section [4] describes the methodology. Section [5|studies
the overall effect of robot adoption on wages and tests for the publication bias. Section [6]
analyses then the heterogeneity of empirical results by means of a multivariate meta-regression
framework including a moderator matrix. Section [7] repeats the meta-analysis for the subset of
primary estimates that treated endogeneity by means of an instrumental variable (IV) approach.
Further robustness checks are presented in section Section [9] concludes and provides some

recommendations for future research on the labor market impact of robots.

2 Related Literature

The economic and social impact of industrial robots is a rapidly evolving field of scientific re-
search. Klump et al. (2021) provide a first comprehensive overview of the empirical literature
on robot adoption. Topics covered in empirical studies comprise mainly productivity and em-
ployment effects but also the impact on international trade (e.g. Krenz et al., 2021), as well as

links with demographic change (e.g. Acemoglu and Restrepo, |2022a)), health (e.g. Caselli et al.,



2021b) and voting behavior (e.g. Anelli et al., [2021a). By far the largest strand of literature
is focused on employment and wage effects of robotization. While writing a synopsis of all the
53 studies which entered our meta-analysis is beyond the scope of this paper, we would never-
theless, like to refer to some results in order to emphasize the very mixed wage effects found
in the empirical literature. The paper by Acemoglu and Restrepo (2020)) as well the paper by
Graetz and Michaels (2018) have become the central references for research on this topic. Both
papers use the data on industrial robot adoption provided by the IFR. Acemoglu and Restrepo
(2020) study US local labor market effects of increased robot exposure between 1993 and 2007.
They find that one robot per thousand workers reduces wages by 0.42%, the employment-to-
population ratio by 0.2 percentage points, and substitutes for 3.3 workers. Contrary to that,
Graetz and Michaels (2018) find no aggregate employment effect of increased robot use between
1993-2007 in a sample of 14 industries in 17 countries and even report a positive effect on mean
hourly wages (albeit with a magnitude of only 10% of the estimated labor productivity gains).

However, they find that increased robot usage lowers employment for low-skilled workers.

In line with Acemoglu and Restrepo (2020]), Aghion et al. (2019) confirm that robotization
reduces aggregate employment at the regional employment zone level in France and show that
this effect is concentrated on less-educated workers. Similarly, Borjas and Freeman (2019) find
a negative impact of industrial robots on employment and earnings in the US, concentrated on
lower educated workers and those in automatable occupations. Giuntella and T. Wang (2019)
find large negative effects of robot exposure on employment and wages for state-owned enterprises
in China. Chiacchio et al. (2018]) also apply the local labor market approach for a study of the
employment and wage effects of robots in Europe. Their results support a negative impact of
robots on employment but only mixed results on wages. Compagnucci et al. (2019) provide
evidence for the displacement of workers in OECD countries, measured as reduced growth rates
of hours worked and real wages. A number of papers report rather small negative or statistically
insignificant results. Dauth et al. (2021) find a small negative but statistically insignificant
impact of robot exposure on wage growth in Germany. Within manufacturing the wage effects
are negative, however, they are slightly offset by positive wage effects in services. Bekhtiar
et al. (2021) show that the positive wage effects documented by Graetz and Michaels (2018) are
reversed into negative effects when replicating their analysis while excluding non-manufacturing
industries. This reduced sample further produces no robust support for SBTC in terms of a
decline in the share of hours worked by low-skilled workers. Instead, Bekhtiar et al. (2021)
report evidence for wage polarization as wages of middle-skilled workers are negatively affected.
Moreover, for the more recent time horizon 2010-2015, they cannot detect a clear effect of robot

adoption on average wages.

Koch et al. (2021) use a panel dataset of Spanish manufacturing firms from Encuesta Sobre
Estrategias Empresariales (ESEE) for the period 1990-2016 and thus belongs to the group of
papers which do not employ the IFR data on industrial robots. Using a dummy variable for

robot adoption, they identify positive effects of robots on employment and output for robot-



adopting firms, while average wages are not significantly affected. Non-adopters in turn suffer
from output losses and reduce employment, suggesting an intra-industry reallocation of market
shares. Barth et al. (2020)) find in a firm-level study for Norway that robot adoption increases
the skill premium by affecting the wages of highly educated workers positively and those of low-
educated workers negatively. They use micro-level import data to construct a dummy for robot
adoption at the firm level. Other papers relying on firm level data are: Acemoglu et al. (2020)
for France, T. Wang et al. (2022)) for China, and Dixon et al. (2021) for Canada. Generally,
studies at the firm level tend to report only weak wage effects of robots, with some tendency
to more positive findings. In contrast to Barth et al. (2020), robot measures of studies relying
on trade/ customs data are usually monetary values. Examples of studies are: Bonfiglioli et al.
(2021)) for the US, Rodrigo (2021) for Brazil, and Lai et al. (2022)) for China. The latter finds
that disposable income for the high income group increases in relation to low income groups
but not in relation to the mean wage. This suggests that the overall productivity effect of robot
adoption increases mean wages. Low income groups, however, do not benefit from this leading
to increased income inequality. Bonfiglioli et al. (2021) do not find a significant wage effect of
robot adoption in the manufacturing sector, instead, wages of the non-manufacturing sector are
affected positively leading to also an overall positive effect of wages averaged across sectors — a

result in line with the findings of Graetz and Michaels (2018).

Opposing results of robot adoption can also be found with regard to the gender wage gap. While
Aksoy et al. (2021) find that a 10% increase in robotization has led to an increase of 1.8% in the
gender wage gap for a panel of 20 European countries, Ge and Zhou (2020) find that increased
robot adoption has contributed to a decrease in the gender wage gap between 1990 and 2015
in US local labor markets. Albinowski and Lewandowski (2022) shed further light on the labor
market outcome of robot adoption conditioned on gender, age, and occupational task content.
The wage effects for younger men aged 20-49 occupied in routine manual tasks were negative
whereas for women they were much smaller or lacked statistical significance altogether. Robot
adoption benefited wages of young women aged 20-29 in routine, cognitive occupations more
than the wages of their male counterparts. Adachi (2022)) is an example for an occupation-level
analysis. It finds negative wage effects from cost reductions in robot adoption in the US between
1990 and 2007 which are concentrated on ”routine production” and ”routine transportation”
occupations. No significant effects are reported for abstract and manual service occupations.
Using a large sample of Spanish workers from 2001 to 2017, Cuccu and Royuela (2022) examine
transitions to different employers following involuntary dismissals associated with exposure to
robots. They find a more pronounced loss of earnings among medium- and low-skilled workers,
while women are more negatively affected than men. However, also high-skilled workers face a

lower pay if they had to the switch the sector of employment.

In the light of these mixed results, conducting a meta-analysis of the robot-wage nexus is the
right tool to assess the heterogeneity apparent in the empirical literature. A meta-analysis

helps to uncover an overall effect —if such a true effect indeed exists- and to identify potential



drivers of the mixed effects by applying a rigorous econometric methodology. Meta-regression
analyses are very common in medical studies but have become increasingly implemented in an
economic context as well. Recent examples include Duan et al. (2020) who conduct a meta-
analysis of the spill-over effects on exports, Cazachevici et al. (2020) who assess the effect of
remittances on growth, Terzidis et al. (2019)) who study the effect of technological progress and
trade on labour market outcomes, Cardoso et al. (2021)) who analyze the effects of offshoring on
wages, and Knoblach et al. (2020) with a meta-regression analysis on the aggregate elasticity
of substitution. Our meta regression analysis is similar to the first four studies in the sense
that we need to rely on a partial correlation coefficient in order to measure effect sizes of robot
adoption on wages. Knoblach et al. (2020]) can retrieve their value of interest directly out of
the different studies as it is already an elasticity which is by definition dimensionless. We,
however, have to deal with various measures for both the independent (here robots) and the
dependent variable (here wage). We will discuss this in the following section in more detail.
To our knowledge, we are the first to conduct a meta-regression analysis on the wage- robot
adoption relationship. Mondolo (2021) and Hotte et al. (2022a) provide literature reviews on
the employment effects of technological progress covering a broad scope of technologies defined in
different categories: ICT, Robots, Innovation, TFP-style, Other” in Hotte et al. (2022a); R&D
investments as a proxy for disembodies technological change as well as ” Computer and ICT”,
"Robots”, ” Automation and new digital technologies”, and ” Artificial Intelligence” as categories
of technological change embodied in capital inputs in Mondolo (2021). These reviews, however,
are only of descriptive nature, and do not employ a quantitative meta-regression framework like

our study does.

3 Data collection and constructing the dataset

We used Google Scholar as our primary search engine and conducted the search with the key-
words ”industrial 4+ robot + wages” in August 2022. We inspected the first 600 hits of 8,470,
sorted by relevance. We also used IDEAS/RePEc as supplementary search engine in September
2022 and obtained only 13 hits, which were all duplicates of already identified papers. Further-
more, we looked at the references of all eligible studies to detect additional relevant studies.
This method is known as snowballing. We selected all papers which meet the following criteria.
The paper must deal with industrial robots according to the ISO standard 8373:2012 (§ 2.9)
and their effect on wages applying econometric methods. We omitted papers with simulations
or event studies and papers with a broader measure of automation than industrial robots. The
IFR defines an industrial robot according to the ISO standard 8373:2012 (§ 2.9) as an “au-
tomatically controlled, reprogrammable, multipurpose manipulator programmable in three or
more axes, which may be either fixed in place or mobile for use in industrial automation applica-
tions” (IFR, 2020). We follow this definition and disregard papers whose measure of automation

comprised service robots, other dedicated robots, numerically controlled machinery, Al or digital



technologies (e.g. Eggleston et al., 2021, Bessen et al., 2020). Purely theoretical measures of
susceptibility to or risk of automation are excluded as well (e.g. Brambilla et al., [2022). We
also drop papers where robots are only used as an instrument (e.g. Acemoglu and Restrepo,
2022b or Autor and Salomons, 2018). Moreover, estimations must involve a continuous measure
of wages or income as dependent variable. Estimations with a measure of inequality (e.g.Brall
and Schmid, [2020)), skill premium (e.g. (Gravina and Foster-McGregor, [2020))), labor (income)
share (e.g. Fu et al.,[2021), income mobility (Berger and Engzell, 2022) or a categorical variable
of wage changes (Jongwanich et al., 2022) as dependent variable were thus excluded. We do
not restrict our search to peer-reviewed papers as this field of research is so young that only a
fraction of papers is already published. But we take the publication status into consideration
when we code our moderator matrix. Papers must be published in English and be publicly ac-
cessible (through paid journal or open access). As laid out in section 4} we need coefficients and
their respective standard errors in order to calculate the effect size. Sometimes, standard errors
or sample sizes were not reported. We contacted the authors whenever we lacked information.
Primary estimates presented as figures were included if the authors made the exact numbers
available upon request. In rare cases, when we did not receive feedback, we had to disregard
the primary study for our meta-analysis. In total, we were able to code 53 primary studies with
2143 estimates. A comprehensive list of all primary studies included in the meta-analysis can
be found in the Appendix (s. Table . The number of estimates per study ranges from 1 to
394, with an average of 40 and a median of 16 estimates per study. The process of searching an

selecting eligible studies is illustrated in a PRISMA flow diagram in the Appendix (s. Figure
E1).

It is common in meta-regression analysis to code a so-called moderator matrix. This matrix
contains all relevant study-dependent or estimation-specific characteristics that might help to
explain the mixed effects of industrial robots on wages which extend beyond potential publication
bias. A properly coded moderator matrix addresses potential biases from omitted variables and
misspecification in the primary literature. We divide our analysis of the determinants of the
heterogeneous wage effects in the primary studies into five broad groups: data characteristics,
inclusion of control variables, subsamples, estimation model, and publication status (s. Tables
and . Data characteristics are split further into 5 subgroups, namely level
of analysis, geography, time period, and the construction of the independent, and dependent
variables. Most of the explanatory variables in our multivariate meta-regression analysis are
constructed as binary indicators taking on a value of 1 if the measure fits the category and 0

otherwise.

Conducting a meta-analysis in economics is usually challenging due to the fact that the con-
struction of the independent and dependent variables often differs across studies or even within
studies. Our meta-study on the wage effects of industrial robots is no exclusion to this. We
identify five main wage concepts in the primary studies under inspection: (annual/ monthly/

weekly/ daily) wages, hourly wages, income, cumulative earnings, and the wage bill of a whole



firm or industry. We include hourly wages separately because we deem it to be the most pre-
cise measure of wages as it accounts for potential adjustments in working time. Additionally,
the moderator variable ”rel_wage” takes into account if a wage measure is expressed relative to
an average or total wage measure (e.g. sector average). 47.6% of the primary estimation use
wages as dependent variable, 35.2% hourly wages, 8.4% use a wage bill, 5.3% income, and 3.5%

cumulated earnings. 6.9% express the wage measure in relative terms.

With regard to the independent variable, our main interest is on the wage effect of industrial
robots. We do so for two reasons: Firstly, we believe that industrial robots differ greatly from
other types of automated capital in the sense that they truly substitute for human labor. The
clear-cut definition of industrial robots in ISO standard 8373:2012 (§ 2.9) enables us to compare
wage effects of robotization across studies. Other notions of automation would differ much more
across studies as the scope of technologies considered significantly varies without such a clear-
cut definition. Secondly, by limiting our research to industrial robots, we can check whether
specific characteristics of the IFR dataset have an influence on regression results. The IFR is
the main provider of worldwide data on industrial robots. However, the dataset does have some
caveats (see Jurkat et al., 2022 for an extensive analysis of the IFR data). For instance, IFR
robot stocks are calculated from data on annual installations without applying a continuous
annual depreciation rate but instead by assuming that a robot becomes obsolete after 12 years
(one-hoss shay depreciation). This is in contrast to the perpetual inventory method (PIM)
which is usually applied by economists when constructing a capital stock measure. Graetz and
Michaels (2018)) among others calculate the stock of industrial robots via PIM with depreciation
rates ranging from 5-15%. Other studies, in turn, rely on the robot stock as provided by the
IFR. Furthermore, data on annual installations can be subject to compliance issues. If in a
given year less than 4 robots are installed, the number is not reported by the IFR in order
to avoid drawing conclusions about robot producing companies. Instead, the robots are then
classified in a special category named “unspecified” at the same level of hierarchy for the industry
classification or moved upwards in the hierarchy of the industry classification until compliance
is achieved. This compliance mechanism has been implemented from 2014 onwards and may
create discrepancies when applying the PIM method to calculate the capital stock from annual
installations as compared to the robot stock provided by the IFR. The category “unspecified”
however, may not only contain those robots which could not be reported due to compliance
reasons but also those which could not be classified according to the industry classifications or
where the destination industry is unknown. Especially in earlier years of the database (which
starts in 1993) this category can be quite large. Some authors (e.g. Graetz and Michaels, |2018)
drop it entirely, others allocate it across the industry classification via the respective industry
shares of specified robots (e.g. Acemoglu and Restrepo, 2020). Consequently, how researchers

deal with this “unspecified” category might affect the regression results.

Even though most studies we found use the IFR dataset (85.4% of the estimates are based on

IFR data), there are also some studies relying on other data sources for the usage of industrial



robots. Alternative data sources are mainly trade and customs data, but also firm-level surveys,
data from the Japan Robot Association (JARA) or patent data (e.g. Acemoglu et al. (2020)),
use French firm level data compiled from several data sources). These alternative data sources
partially provide information on robot usage at a finer level of aggregation than country-industry
level, e.g. at firm-level or regional level. Related to the data source and the treatment of the
original data is the construction of the measure for robot usage. Analogously to the dependent
variable, we identified 5 different approaches: a robot density expressed as the quantity of robots
in relation to either the number of workers or hours worked (either unadjusted or adjusted for
output growth), a shift-share design, a simple count of robot stocks, a monetary value of the
robots used, or a dummy variable for robot adoption. If the robot measure does not fit in any
of these categories, we assign it to category “other robot measures” (e.g. patent data, robot

prices, or robot installations instead of stocks).

Most estimations (83.7%) use a robot density as the independent variable and many of these
are so called shift-share measures (in total, 38.8% of the estimates are based on a shift-share
design). A shift-share measure is typically used to distribute national robot stocks to finer levels
of geographic aggregation. It combines a shift element — usually the change in the national
robot stock per industry divided by the number of employees (often at a base year well before
the industry has begun to install robots to avoid endogeneity on the labor market) with a
share element - typically a regions’ or local labor markets’ (e.g. commuting zones, states, cities)
industry employment shares. The term “exposure to robots” is used in the literature whenever a
shift-share measure is combined with a robot density. Such a shift-share design tries to measure
the risk of a region regarding potential displacement effects by robots based on its industry
employment composition. Acemoglu and Restrepo (2020)) were the first to apply a shift-share
measure to an analysis of local labor markets. Because of its ensuing widespread use, we include
the shift-share design as an additional category for measures of robot usage. If it is based on
a robot density, it enters both categories. Sometimes, studies call their measure “exposure to
robots” but only apply a shift component. In such cases, where the share element is missing,

we categorize it as a mere robot density.

There is a very high correlation of some robot measures with the usage of non-IFR data. In fact,
all studies employing a monetary robot variable (i.e. trade data) and most studies using another
robot measure which is not a robot stock or density, draw on non-IFR data. Therefore, we do
not utilize a binary indicator for non-IFR data explicitly in our moderator matrix as it is already
captured by the robot measure categories. Another moderator variables is termed ”alter_data” to
capture robustness checks within primary studies. It refers to alternative imputation methods
or the use of alternative data sources for the wage or robot measure within studies without

changing the type of measure according to our categories.

The discussion of the shift-share design brings us directly to another important aspect of this
meta-study: the level of analysis/aggregation. The impact of robot adoption on wages may

differ greatly amongst industries and regions depending on the respective exposure to robots.
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For instance, Bekhtiar et al. (2021) doubt the appropriateness of industry level analyses be-
cause they neglect spillover effects between industries and thus prevent drawing conclusions on
the economy wide effect of robot adoption. Firm-level studies in turn allow comparing robot-
adopting firms to non-adopters and thereby analysing business-stealing effects or adjustments
in the skill-composition of labor employed by robot adopters that may explain changes in firms’
averages wages (Koch et al., |2021). Similarly, Acemoglu and Restrepo (2020)’s LLM approach
is also motivated by taking into account spillover effects within and across commuting zones.
Different levels of analysis tackle the empirical question from different angles, moving from a
macroeconomic perspective to microeconometrics. The finer, respectively the lower the level of
analysis, the more concisely the effects of robot adoption on wages can be estimated. While
higher levels of aggregation measure overall net effects resulting from all the forces exerted by
robots on wages, lower level of aggregation allow disentangling the heterogeneous mechanisms
behind aggregate effects (Calvino and Virgillito, 2018]). Consequently, we distinguish between 7
levels of analysis: country level, industry level (reference category), regional (including local la-
bor markets) level, firm level, occupational level, demographic group level, and worker level. The
occupational level refers to analyses where wages are aggregated at clearly defined occupations
or occupational groups according to occupational classification schemes. The demographic cell
level captures analyses that aggregate wages for certain demographic groups defined by criteria
such as age, gender, education, or race. Only 1% of the primary estimates is at country level,
14.7% are at industry level, 16.8% at regional level, 7.3% at firm level, 3% at occupational level,
and 23% at demographic group level. Individual-level estimates form the largest group with a

share of 34.3%.

Since the estimated wage effects are very heterogeneous regarding both sign and size, it is
essential to investigate potential disparities between different geographic entities. We, therefore,
include 4 dummy variables indicating whether the estimation sample covers the US, Europe,
Japan or developing countries. 77.3% of the estimates are based on data for a single country,
while the remaining 22.7% come from multi-country samples. Of the single-country estimates,
36.5% originate from the US, 50.6% from European countries, 12.2% from developing or emerging
countries, 0.6% from Japan, and 0,1% from Canada. It is often conjectured that negative effects
of robot adoption may be more prevailing in countries with more flexible labor markets where
firms can more easily lay off employees, e.g. leading to a dichotomy between the US and Europe
(Leigh et al., 2020, Nardis and Parente, 2022)). This meta-study contributes to this discussion
by applying rigorous econometric analysis instead of relying on vote counting. A first inspection
of the studies and their estimates suggests that strong negative effects are mainly prevalent in
the US. The mean PCC for all estimates in the US is -0.452 compared to 0.061 in Europe (see
Table ?7). However, as we will show for our full sample of primary estimates, these effects
are not driven by geography. If we introduce more moderator variables, the negative US effect
is not robust across specifications. In addition, developing countries may respond differently

to the adoption of robots than industrial countries. We, therefore, construct a binary variable
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indicating that developing or emerging countries are analyzed by the primary study. 15 studies
focus solely on developing countrieﬂ We are indicating Japan separately since this country is

the frontrunner in industrial automation (Adachi et al., [2022]).

Data coverage on industrial robots by the IFR begins in 1993. However, in the early years
robot adoption rates were rather low and estimated effects might be low accordingly. In order to
account for this, we include the sample period of each estimation. That is, we calculate a mid-
year for the sample period of each primary study and define a cutoff year. We use 2007 as cutoff
to separate estimates with an average sample year after 2007 from those with an average sample
year before or equal to 2007 as this marks the year before the financial crisis. For robustness
check, we also use 2010 as cutoff year. The number of sample years is included as well to account
for longer term effects of robot adoption on wages. If the number of sample years is euqal to 1,

the respective estimation is of cross-sectional nature.

Most of the primary studies examined in our meta-study control for gender, demographic shifts
in working age population, the manufacturing employment share, the skill level of employees, as
well as effects from trade and use of information and communication technologies (ICT). We code
binary indicators for the inclusion of these control variables in primary estimations. In addition,
most primary studies also provide estimates for subsamples such as age groups, educational
and occupational skill types, gender, and wage quartiles. With regard to subsamples related
to skill levels, we code binary indicators for subsample estimations in primary studies focusing
solely on workers with a low, medium or high level of education as well as workers in high vs.
medium- to low-skilled occupations to detect heterogeneous wage effects among different types
of workers. This division is useful as it allows us to investigate the idea of job polarization and
SBTC. In line with SBTC, there is some evidence that high- skilled workers are less prone to
substitution through robots (Graetz and Michaels, 2018} Vries et al.,|2020; Damelang and Otto,
2023). So robotization may impact their wages differently than other skill groups. The job
polarization hypothesis is supported by some evidence that industrial robots and automation
in general erodes mostly the middle-skilled workers and occupations because these are the ones
which can be most easily automated due to their high routine character (Acemoglu and Autor,
2011; Autor and Dorn, [2013; Vries et al., 2020; Adachi, 2022; Bordot, |2022). Not controlling for

skill levels could bias the overall wage effect.

Unfortunately, subsamples are rarely constructed by the same classification scheme across dif-
ferent studies. For instance, the age limits within the different age groups vary across studies.
We have chosen to code four age groups (<30, 30-49, 50-59, and >=60) and regrouped studies
with different age limits to fit our grid. The age of the working force might constitute another
important determinant in explaining different wage effects. Acemoglu and Restrepo (2022a)

conjecture that middle-aged workers are relatively more engaged in automatable production

1One further study contains 42 countries in its sample, also comprising developing/ emerging countries
(Jung and Lim, 2020).

12



tasks whereas older workers specialize in services. Some studies provide estimates for different
wage percentiles. There, we proceeded in the same manner as with the age limits and regrouped
these estimates into wage quartiles if necessary. When it comes to occupational skill-levels, some
studies conduct subsample estimations for a wide range of occupations or occupational groups
such as manual, routine, abstract, blue-collar, white-collar, professionals, non-professionals or
elementary occupations. In order to ensure comparability across studies and without inflating
our moderator matrix, we categorized each of these classifications by means of a conversion ta-
ble according to the International Standard Classification of Occupations (ISCO-08) into high,
and medium- to low skilled occupations (s. Table for conversion details). Unfortunately,
we had to merge middle-skilled and low-skilled occupations because of overlapping definitions.
Mostly authors classify skill levels of occupations according to ISCO-08. However, sometimes
they reclassify middle-skilled occupations to low-skilled occupations even if they are defined as
middle-skilled occupations according to ISCO-08. This no longer allows us to analyse middle-
and low-skilled occupations separately in our MRAE| Educational skill levels of workers are
classified according to ISCED-2011 into high , medium, and low (s. Table for conversion de-
tails). Further subsamples are related to gender, labor mobility (i.e. switching employer/ sector/
region/ occupation and employees with a temporary contract), and robot exposure (manufac-
turing and non-manufacturing subsamples, samples excluding the automotive industry (which
traditionally has a high robot density), and samples excluding outliers in terms of regions most

exposed to robotization).

The next pillar of our moderator matrix captures diverging estimation techniques across or
within studies. Various econometric methods are applied in the primary literature, foremost
OLS, quantile regression, or IV estimation techniques. Econometric specifications differ accord-
ing to log in log formulations, weighted estimations, long or stacked differences. Sometimes,
robots enter with time lags or multiple times in the same regression through an interaction
term, a quadratic term or as foreign or domestic robots. We account for all of these estimation
models and its functional forms. Specifications estimated in long differences (i.e. changes in
wages and robot adoption between an initial year and a final year, with several years in be-
tween) are typically interpreted as estimating the long-term structural impact of robot adoption
on wages. It is important to note, that such specifications require panel data for computing
differences between the two points in time but end up as cross-sectional estimations because the
time dimension is removed. 46.8% of our estimates collected from primary studies stem from

panel regressions, while 53.2% are cross-sectional estimates.

To assess the quality of the publications we apply a dummy variable for publication status
indicating whether estimates come from a study published in a peer-reviewed journal. Other
types of publication are mainly working papers and some dissertations. 44.6% of the estimates

were published in academic journals. The large share of estimates coming from working papers

2The correlation between the categories ”medium-skilled occupations” and ”low-skilled occupations” was
0.88
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(54.5%) underlines that the labor market effects of robotization are a young and rapidly emerging

field of economic research.

4 Methodology

Frequently, the empirical literature reports many different estimates with varying signs leaving
the reader puzzled regarding the true effect of a certain relationship. Readers might be induced
to rely on simple vote counting techniques in order to assess an overall effect. Vote counting
entails counting the negative and positive estimates and whether they are statistically signifi-
cant at the 5% level or not. This is, however, not a precise methodology as it does not account
for sampling error, publication bias, the strength of the effects, and the source of the variation
(Stanley and Doucouliagos, 2012)). Mixed results in economic research can be due to data depen-
dence, econometric specifications, sample selection and publication bias. The latter is of special
importance as one criterion for publication is often statistical significance so that estimates with
low or even no statistical significance may not be reported at all. Data accessibility and/or re-
liance on special datasets could also bias results. The aim of meta-regression analysis (MRA) is
to apply rigorous econometric analysis to summarize and explain reported empirical estimates.
Applied to our context, this means systematically examining the heterogeneous effects of robot
adoption on wages. Data dependence is of special interest to us since most studies we find on
robots and wages use the IFR dataset. We want to rule out that results are driven by certain

peculiarities of the IFR data and the particular treatment of these by the researchers (s. section
3).

MRA uses effect sizes to assess the strength and direction of empirical estimates. The aim
is to uncover a potential true overall effect as well as drivers of heterogeneous findings in the
primary literature. Effect sizes should be comparable across and within studies (Stanley and
Doucouliagos, 2012)). The most common effect size measures in economics are partial correlation
coefficients (PCC's), elasticities, and t-statistics. While elasticities have the advantage of mea-
suring the economic effect of a variable (here robotization) on a certain outcome (here wages),
they cannot be calculated as easily from the primary studies if the functional form is not in log-
log. PCC's and t-statistics are both statistical measures rather than economic measures but are
more easily calculated from the primary studies. Furthermore, both are especially convenient
when the dependent and/or independent variables of the regression models are not identical
across studies that nevertheless measure the same relation. In our case, we can distinguish be-
tween 5 main wage concepts and 5 robot measures (for details see section . In most cases, the
t-statistics can be easily calculated from the coefficients and its standard errors reported in the
primary studies. However, in order to assess the strength of the effect, PC'C's are better suited
as they are a unitless index ranging from —1 to +1. We, therefore, follow the recent literature
on meta- analysis (Stanley and Doucouliagos, 2012; Babecky and Havranek, 2014; Duan et al.,
2020; Cazachevici et al., |[2020; Cardoso et al., [2021) and employ the PCC concept as our effect
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Table 1: Descriptive statistics for effect size variables

Measure Obs. Mean Median SD Min Max

t-value 2143 -1.32963 -0.91176 4.32091 -21.58333 50

df 2143 72746.066 89 423692.6 > 2839811
PCC 2143 -0.09637 -0.03347 0.34527  -0.95492  0.99741
SEpce 2143 0.09293  0.08748  0.07951  0.00059  0.44695

size. The PCC;, is defined as follows:

tis

\ B+ dfis

where ¢t denotes the t-statistic and df the degrees of freedom from estimate ¢ in study s. Table

PCC;, = (1)

shows summary statistics for the effect size variables. Applied to our context, PCC < 0
indicates a negative effect of robotization on wages while PC'C' > 0 captures a positive effect of
robotization on wages. PCC's close to £1 are very strong effects that are rarely encountered in
MRA in economics. Doucouliagos (2011) provides guidelines for the relative strength of PCC's
based on 22,000 partial correlation coefficients drawn from various meta-studies. A partial
correlation coefficient above £0.33 can be considered strong while a PCC' of £0.07 is low and

4+0.17 constitutes a moderate effect.

Our meta-study also includes primary estimations that employ interaction or quadratic terms
for the robot variable and thus report more than one coefficient for the relation of interest. To
fit interaction terms into our meta-analysis, we follow Cazachevici et al. (2020)) by calculating
the average marginal effect of robots on wages and applying the delta method to approximate

the associated standard error:

B=Fi+bw  SE(B) = \/SE(B) + SE(B)% 2)

where (31 is the estimate of the robot coefficient for the linear term, (o is the estimate of the
coefficient for the interaction term, Z is the sample mean of the variable interacted?| with the
robot measure , SE(f1) is the standard error of the reported coefficient for the linear term,
and SE(f2) is the standard error of the reported coefficient for the interaction term. Since the
original dataset used in the respective primary studies were not available, we omit the covariation
between the estimated coefficients from the formula for SE(S) by assuming the covariances to
be zero. In case of a quadratic term, the total effect of robots on wages must be linearized using

the following formula for the average marginal effect (Zigraiova and Havranek, [2016):

B=Fi+25w  SE(B) = \/SE(A)? +4SE(5)%2 + 43Cov(B), bo) (3)

3If the interacted variable is a dummy, Z is set equal to 1 to compute the marginal effect for the respective

subsample indicated through the dummy.
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where (1 is the estimate of the robot coefficient for the linear term, (o is the estimate of the
robot coefficient for the quadratic term, Z is the sample mean of the robot measure, SE(f1) is
the standard error of the reported coefficient for the linear term, and SE(f32) is the standard
error of the reported coefficient for the quadratic term. In contrast to Zigraiova and Havranek
(2016), we also consider the covariance between the estimated coefficients in the formula for
SE(fB) as the original data for the respective study (Sequeira et al., |2021) were available. The
resulting coefficient of robotization after computing the average marginal effect by equation

or is subsequently transformed into the PC'C' in line with equation (|1).

The PCC's are relatively robust to imprecise measures of the degrees of freedom (Stanley and
Doucouliagos, 2012, p.156). Often, the degrees of freedom must be approximated if not all
relevant information is provided within the primary studies. While calculating the degrees of
freedom for default or heteroskedasticity-robust standard errors is strauightforvvardﬂ7 it is more
difficult in the context of clustered standard errors’l It is sometimes not clear whether the
authors of a primary study cluster at the intersection of two or more dimensions (one-way
clustering) or in multiple dimensions (multiway clustering). The latter would require that the
degrees of freedom are equal to the cluster-dimension with the smallest number of clusters. This
yields much less degrees of freedom than in the case of one-way clustering. We follow here the
guidelines provided by Cameron and Miller (2015, p. 336): If authors write that they cluster
standard errors in dimension A and dimension B (and dimension C), two(three-)-way clustering
is assumed. If authors write that they cluster standard errors at A-B-level, one-way clustering
at the intersection of the two dimensions is assumed (i.e. hyphen instead of and in the cluster

description).

Given the PCC's derived from the primary studies, we could now estimate the overall mean

effect of robots on wages by applying a simple OLS regression with a constant only:
PCCis = i+ €4 (4)

where, in the absence of any bias, p represents the true effect and the error term €;5 ~ N(0, o¢,,)
describes primary sampling error. However, p will not be efficient as the error term in equation
(4) is a function of the sampling error and therefore heteroskedastic, i.e. not independently and
identically distributed (Stanley and Doucouliagos, 2012, p. 61). More precise estimates with
smaller standard errors are better estimates of the true effect. This is not reflected in equation
where all PCC's enter with the same weight. MRA therefore, involves weighted least squares
(WLS) to receive unbiased, consistent and efficient estimates:

P LE] &)
e e o)

Wis Wis Wis

where w;s is the weight of estimate i of study s. The weight should reflect the quality of the

estimate. We use precision as quality measure of the reported coefficients. For each PCCjs we

4df = N — k — 1, where N is the number of observations and k is the number of regressors and/or fixed

effects included in the estimation.
5One-way clustering: df = G — 1; multiway clustering: df = Gin, following Cameron and Miller (2015).
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calculate a standard error of our effect size according to:

1 — PCC? PCC;
SEpca;, = || i, t=— (6)

where t;5 is the t-value of estimate ¢ in study s and therefore identical to the t-value of the re-

spective PC'C'. The precision weight is then calculated as the inverse of the estimator’s standard
error: 1

FEFE1 = m (7)
which is known as the fixed effect estimator (FEE) in MRA (Stanley and Doucouliagos, 2012,
p- 46)E| The idea is that the more precise an estimator is as measured by a small standard
error, the smaller can be the estimated effect size and vice versa in order to retain a statistically
significant coefficient. Therefore, we attribute more weight to the PC'C's with a higher precision
and a lower standard error. Other approaches to measure quality could be the journal’s ranking
or the number of citations of the primary study. Both quality measures are not feasible for our
meta-analysis since robot adoption is such a new research field that many papers have not been
published in a peer-reviewed journal and may not have reached a wider audience as reflected in
the number of citations yet. If we relied on papers published in journals only, we would lose 31
primary studies and more than half of our 2143 observations. Using the number of citations as
a quality measure would give unusual weight to older studies regardless of their actual quality.

Our “youngest” primary studies are from September 2022 and can, naturally, not have been

cited by many other studies.

In addition to mere precision weighting, we also use weights adjusting for the number of estimates

per study:

FEE2 = L (8)

SEpcc;, - /Mics

where n is the number of estimates of study s. We thereby give equal weight to studies rather

than estimates (Duan et al., 2020)). This helps us to uncover undue effects a study with many
estimates has in comparison to a study with few estimates. We have opted to include all estimates
provided by a primary study if they fit our selection criteria (industrial robots and wages) and
where we could extract all the relevant information needed to construct our PCC. In meta-
analysis it is often argued that only one estimate per study should enter the meta regression to
avoid study dependence. That could be the best estimate per study as preferred by the authors
of the primary study or by the authors of the meta-analysis. In both cases, results could be
severely biased towards e.g. the most precise estimate or the one with the most favorable
sign. Alternatively, using an average effect size per study would preclude potential within-study
Variationm Selecting only one estimate per study is also misleading if studies provide estimates
for several subsamples. We thus include all estimates provided within the primary studies to

avoid selection bias. This has the advantage that we can include more observations and have

5This fixed effect estimator should not be mistaken for a fixed effect estimation in an econometric sense.
"See Stanley and Doucouliagos (2012, p. 32-33) for a comprehensive discussion of this.
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more variation. It, however, raises the question of study and author dependency. Estimates from
one primary study usually draw from the same data and employ similar econometric strategies.
This might undermine the basic assumption of all regression analysis that the error terms are
independently and identically distributed. However, we are very confident that our moderator
matrix containing data characteristics and differences in estimation models helps us to overcome
the problems of study dependence. Additionally, we always use robust standard errors clustered

at the study-level to address within-study dependence (Stanley and Doucouliagos, 2012, p. 71).

The assumption underlying the fixed effect estimators using FEE weights as specified in equation
and is that all estimates are drawn from one population and thus, measure one, true
effect of robots on wages. The primary estimates (PCCjs) sampled from studies i = 1,..., N
are assumed to deviate from the true effect solely due to sampling error. However, in reality,
primary studies use different populations and different econometric methods. Therefore, the
assumption of a uniform effect can be incorrect. Random effects estimators (REE), in contrast,
explicitly allow for heterogeneity of primary estimates beyond pure sampling error. Accordingly,
equation 4| must be extended by a random component ;5 ~ N(0,72) allowing the true effects

to vary between studies (Harbord and J. P. Higgins, 2008]):

PCCis = ©+ ;s + €is (9)

REE assume additive error variances and the weights in equation and are adjusted as to

account for between-study heterogeneity:

REE1 — ! (10)
\/ SEPCC“Z + 72
1
REE2 = (11)

\/SEpcc,,? + 72+ \/lics

is a constant parameter capturing the differences in the mean true effect (Duan et
2

where 72

al., 2020). While information on SEpcc can be retrieved from primary studies, 7° must be
estimated in a first step of the WLS meta-regression (Feld and Heckemeyer, 2011)E| A larger
72 indicates a greater between-study heterogeneity. So, including 72 in the weighting scheme,
reduces the relative importance of the precision weight and creates a more uniform weighting
scheme. It reflects the circumstance that a low standard error alone rather captures the quality

of the estimate within a primary study than across studies.

Implementing four different weighting schemes requires some judgement of what we deem prefer-
able. In light of the highly right-skewed distribution of the number of estimates per study (range
from 1 to 394, with a mean of 40 and a median of 16), it is necessary to adjust the weighting
scheme for the number of estimates per study to avoid an undue influence of a few studies
with a high number of estimates. This was done in FEE2 and REE2. To choose whether FEE

8This is done using the restricted maximum-likelihood (REML) estimator (Raudenbush, 2009)).
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or REE is the suitable estimator, one can consult Cochran’s Q-test for the null-hypothesis of
between-study homogeneity, i.e. 72 = 0 (Feld and Heckemeyer, 2011} Stanley and Doucouliagos,
2012, p. 48-49). In all regressions we will present in the following sections, the Q-test always
rejects the null-hypothesis with a statistical significance well below the 1%—leve1E| Moreover, the
heterogeneity statistic 72 measuring the share of observed variability which reflects true differ-
ences in the effect size rather than sampling error is always above 99%, indicating a high degree
of heterogeneity according to J. P. T. Higgins et al. (2003)). Also from a practical perspective
it appears reasonable to assume that studies (or some estimations within studies) at different
levels of analysis and focusing on different (sub-)populations measure different true effectsH

We therefore choose REE2 as our preferred weighting scheme.

5 Overall mean effect and publication bias

Applying simple vote counting based on the conventional 5%-significance level, we find that
17.9% of the estimates show a positive and statistically significant effect, 38.6% report a signif-
icantly negative effect, while 43.5% are statistically insignificant. However, as documented by
Stanley and Doucouliagos (2012, pp. 43), vote counting can be very misleading. We, therefore,
present further summary statistics for our measure of effect size and formally test for publication

selection bias in the literature on the wage effects of industrial robots.

Table 2] reports summary measures for the PCCs computed for all estimates collected from
primary studies, while Figure [I] illustrates the frequency distribution of PCC's. None of the
estimators for the overall mean effect of industrial robots on wages from equations and
shown in table [2] is statistically significant. With regard to economic significance, only the
arithmetic mean and the REE1 estimator indicate a small negative effect. The unweighted
average of all PCCs is equal to —0.096. A simple mean of partial correlation coefficients,
however, does not consider the estimates’ precision. It is more appropriate to apply the fixed
effects and random effects estimators (weights FEE1, FEE2, and REE1, REE2, respectively) as
given by equations , , , and . Both FEE1 and FEE2 suggest an effect of industrial
robots on wages that is close to zero. This is in line with the highest frequencies of PC'C's being

centered around zero as shown in Figure[I] A decline in the mean effect caused by assigning larger

9In the multivariate MRA where we try to systematically explain the driving forces of heterogeneity, 72
measures the remaining unexplained heterogeneity after including our moderator matrix, i.e. between-
study variability not explained by the moderator variables (Feld and Heckemeyer, |2011). Although,
the value of 72 considerably decreases by more than 90% once the moderator matrix is introduced, the

Q-test still rejects the null of homogeneity.
OHowever, the meta-analysis literature has not yet achieved consensus on what estimator works best

in practice (Reed, 2015; Doucouliagos and Paldam, [2013} Stanley and Doucouliagos, 2015} Doi et al.,
2017). There are particular concerns that REE are biased in the presence of publication selection as
the random effects might be correlated with the standard error (Stanley and Doucouliagos, 2012, p.

82-84). As we obtain little evidence for publication bias, we deem this concern as negligible.
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Measure Obs. Estimate SE 95% CI

Mean 2143  -0.09637 0.09590 [-0.28880, 0.09607]
FEE1 2143 0.00008  0.00214 [-0.00421, 0.00437]
FEE2 2143 -0.00467 0.00491 [-0.01452, 0.00518]
REE1 2143 -0.10052 0.08871 [-0.27854, 0.07750]
REE2 2143 -0.01425 0.03567 [-0.08582, 0.05732]

Note: Standard errors are clustered at study level. Q-test:
Q = 43779.38, p-value = 0.0000; 72 = 0.0869; I* = 99.98%

Table 2: Summary measures of the PCCs for the

effect of industrial robots on wages

weights to more precise studies, may indicate a publication selection bias. From a technical point
of view, REE1 and REE2 are the appropriate estimators if there is between-study heterogeneity
(which is confirmed by the Q-test). The REE1 estimator is very close to the unweighted average,
delivering an overall mean effect of —0.101. As can be seen from equation , if the between-
study heterogeneity, i.e. 72, is large compared to SEI%CC, the weighting scheme across primary
estimates is approximately uniform and converges to an OLS estimation. Although REELI is the
appropriate weighted average under between-study heterogeneity, publication selection might
reverse this convention in favor of FEE1 (Stanley and Doucouliagos, 2012, p. 47). Anyway, once
the weighting scheme is adjusted for the number of estimates per study, the REE2 estimator is
again close to zero. Moreover, no reliable inference can be drawn from these summary measures.
In case of publication selection, all averages, weighted or not, can be biased. Furthermore, under
systematic heterogeneity, any measure of average effect size may obscure the true characteristics
of the economic phenomenon under research. To capture systematic heterogeneity, we need to

include our moderator matrix.

Figure 1: Histogram of partial correlation coefficients.

Publication selection refers to the process of choosing research papers or reporting only a subset

of estimates within a study, according to statistical significance or compliance with conventional
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theories. Many existing meta-analyses in the field of economics provide evidence for publication
bias (e.g. Havranek and Irsova, ; Gunby et al., . Therefore, it is essential to formally
test and correct for publication selection also in the literature on the wage effects of industrial
robots. For instance, there is a wide-spread fear of job replacement by automation technologies
in the society (c.f. Abeliansky and Beulmann, Cheng et al., and also well-published
theoretical and empirical evidence in that direction in the academic literature (e.g. Acemoglu
and Restrepo, DeCanio, . In consequence, researchers might selectively report nega-
tive effects of industrial robots on wages because they expect such findings to be more likely to
be published.

A visual inspection of a potential publication bias is provided by means of a so-called funnel
plot in Figure a scatterplot of the study-specific effect sizes (PCC's, x-axis) against study
precision (inverse of the standard error of PCC's, y-axis). In the absence of publication bias
(and between-study heterogeneity), the primary estimates should be distributed symmetrically
about the overall effect size because the sampling error is random. The typical funnel shape
arises from the measure of precision on the y-axis. Estimates at the bottom of the graph exhibit
larger standard errors and, thus, are widely dispersed. More precise estimates at the top of the
graph, in contrast, are more compactly distributed. As our preferred estimators for the overall
mean effect, FEE2 and REE2, are close to zero and statistically insignificant, one should expect
that the primary estimates are symmetrically distributed around zero. The funnel plot shown in
Figure [2] is quite symmetric. If any asymmetry is visible, then there are some more imprecisely
estimated PCC's with a negative sign. The most precise estimates show an effect size close to
zero, in line with FEE2 and REE2 in Table

Logarithm of the precision (1/SE)

Figure 2: Funnel plot of partial correlation coefficients (N = 2143, from 53 studies).
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Table 3: Funnel-asymmetry test for publication bias (FAT-PET)

(1) (2) (3) (4)
WLS FEE1 WLS FEE2 WLS REE1  WLS REE2

Publication bias (/1) -1.4715% .459 -.2871 1937
(.8672) (.696) (1.0375) (.4784)
True effect (5p) .0017 -.0053 -.0773 -.0297
(.0014) (.005) (.0555) (.0381)

Observations 2143 2143 2143 2143
R-squared .0962 .0045 .0038 .0016

Notes: Standard errors clustered at study level are in parentheses. The weights
used in the WLS estimation are indicated in the column header. Q-test: @ =
39565.80, p-value = 0.0000; 72 = .08554; I? = 99.98%; ***p < .01, p < .05,
p<.1

When publication selection bias is present, the reported effect size is correlated with its standard
error. To formally test for publication bias, we perform the so-called funnel-asymmetry test

(FAT), which means estimating the following regression:
PCC;s = Bo + B1SEpcc,, + €is (12)

where PCC and SEpcc are the partial correlation coefficient and its associated standard error
of estimate 7 in study s as previously defined, respectively, and ¢;s is the regression error term.
Coefficient [y represents the true empirical effect corrected for potential publication selection
(precision-effect test, PET). Coefficient 1 indicates the direction and magnitude of publication
bias (FAT). Equation is heteroskedastic by construction, since the explanatory variable
is estimated as the standard deviation of the dependent variable. Therefore, it is estimated
by WLS instead of OLS using the weights given in equations , , , and . To
account for dependence among estimates stemming from the same primary study, we cluster
standard errors at study level. Table |3| presents the results from FAT and PET. The FAT
provides only modest evidence for publication selection. Solely weighting scheme FEE1 indicates
a negative publication bias with a substantial magnitude of selectivity according to the practical
guidance provided by Doucouliagos and Stanley (2013). In contrast, all other specifications
do not point to any significant publication bias. The underlying, “true”, effect corrected for
publication bias shows a lack of statistical and economic significance in all specifications (PET).
This suggests that industrial robotization has so far had no visible overall effect on wages for

the total population.

6 Assessing heterogeneity in a multivariate MRA

The univariate regression presented above (Eq. may give biased estimates if important

variables that explain heterogeneity between estimates are omitted. For instance, a specific
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method choice made by the authors of primary studies may affect both the standard error
and the reported point estimate in the same direction. Then the standard error variable will
be correlated with the error term, resulting in a biased estimate of 37 (Havranek, 2015). We
therefore add a matrix of moderator variables to Equation and estimate the following model

to identify the drivers of heterogeneity in the estimated effects of industrial robots on wages:
PCCis = o+ B1SEpcc,, + > BuZnis + €is, for estimate i in study s (13)

where k represents the number of moderator variables, 8i is the coefficient of the corresponding
moderator variable, and €;; denotes the error term. As we face the challenge of meta-analyzing a
set of primary estimates that vary along many characteristics of research design, our moderator
matrix is composed of 85 variables to account for as many of these characteristics as possible
and alleviate omitted variable bias concerns. Table in the appendix shows that the majority
of variables displays a statistically significant effect at least in one of our WLS specifications.
We attribute this to the great heterogeneity of the primary studies. It is common in MRA to
reduce the number of moderator variables by means of a variable selection procedure to mitigate
multicollinearity (Stanley and Doucouliagos, 2012, p. 91). We therefore employ a backwards
stepwise regression procedure that sequentially chooses the "best” set of moderator variables by
minimizing the Bayesian information criterion (BIC) (Duan et al., [2020; Lindsey, 2014). Reas-
suringly, within a certain weighting scheme, coefficients estimated for a given moderator in the
specifications with the full set of moderators and with selected moderators always exhibit the
same sign and a similar magnitude. Hence, we conclude that the selected model specifications
do not suffer from omitted variable bias while preventing multicollinearity from obscuring the
results. As recommended by Stanley and Doucouliagos (2012} p. 103-104), we focus on research
characteristics with consistent findings across alternative MRA model specifications. Tables [4]
and [5| show the results for those moderator variables that are selected in every weighting scheme
and always have a statistically significant effect that is consistent across all weighting schemes.
Table [4] presents the coefficients of these moderators in the regression model with the selected
set of moderator variables, while Table |5 shows their coefficients in the regression model with
the full set of moderator variables. The full table including all moderator variables can be found
in the appendix (Table .

Also after running our multivariate meta-regression, the evidence for a negative publication bias
remains very limited. Only weighting scheme FEE1 robustly indicates a negative publication
bias with a substantial degree of selectivity according to the classification provided by Doucou-
liagos and Stanley (2013). In weighting scheme REEL, the standard error is not even selected
by the backwards stepwise regression procedure. Our preferred weighting scheme REE2 does
also not point to any significant publication selection. In the following thematically organised

subsections, we will discuss the findings for our moderator variables.
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Table 4: Meta-regression analysis - selected specification

o) ) ) @
WLS FEE1 WLS FEE2 WLS REE1 WLS REE2
se_pcc -1.927%%* -1.2066** -.4808
(.5188) (.4875) (.3433)
country_lev - T3 - TO5THH* - 8768%** -1.1071%**
(.1946) (.1819) (.119) (.1067)
c_num .0361*** .0286*** .0269%** .0296%**
(.006) (.0057) (.0047) (.0033)
tenure .302%* .6447HH* .1351%* L2T22%H*
(.1401) (.1181) (.0752) (.081)
trade_control -.1068*** -.1525%** -.0606%** -.1061%**
(.0342) (.0236) (.02) (.0278)
ict_control .0617%* .0885H** .06817%** LQ84HH*
(.0269) (.0319) (.0178) (.0291)
demograph_control L2531 .2169%** .0912%** 143%%*
(.0604) (.0585) (.0316) (.042)
stay_sec .0413%%* 0521 %% .0585HH* 671K
(.0011) (.0082) (.0176) (.0545)
quartile_4 -.1581%* -.1194%* - 1784%%* -.2103%**
(.0618) (.0563) (.047) (.0505)
manuf -.0303** -.0129%%* -.1456%** - 154K
(.0144) (.0045) (.0369) (.0309)
non_manuf 24 1%%* 1371 .2055%* 1176%*
(.0974) (.0593) (.0864) (.0646)
weighted - 1256%F* -.1088*** -.0621%%* -.1263***
(.029) (.0282) (.021) (.0246)
long_dif 22THRFE .2032%** .1695%** .1919***
(.0452) (.0424) (.0515) (.0536)
journal .0643* 1016%** .0754%* .1622%%*
(.0321) (.0224) (.0313) (.0305)
_cons -.0263 -.3212%%* - 281 8%** -.5393%**
(.0927) (.062) (.0882) (.0638)
Observations 2143 2143 2143 2143
R-squared 6675 8758 7164 641

Note: Standard errors clustered at study level are in parentheses. The weights
used in the WLS estimation are indicated in the column header. The mod-
erator variables were selected by means of a backwards stepwise regression al-
gorithm which sequentially selects the explanatory variables that minimize the
BIC information criterion. Only those moderator variables are shown that ex-
hibit consistent and statistically significant results across all weighting schemes.

*rp < .01,%*p < .05, *p < .1
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Table 5: Meta-regression analysis - full specification

0 @) 3) )
WLS FEE1 WLS FEE2 WLS REE1 WLS REE2
se_pcc -1.7819%** -1.0414 .3503 -.3916
(.5426) (.6237) (.4485) (.5678)
country_lev -.6046%** -.7338%** -.9165%** -1.1702%**
(.1893) (.2262) (.164) (.1332)
c_num 034%** .0263*** .0209*** .0315%**
(.0064) (.0077) (.0075) (.0045)
tenure .3315%* 6407HF* 1156 .39967%**
(.1727) (.1447) (.1044) (.1415)
trade_control -.0939** - 1511%** -.0866** -.1081**
(.044) (.0458) (.0349) (.0416)
ict_control .0628%* .0901* .0518* .0823**
(.0346) (.0457) (.0289) (.037)
demograph_control ~ .2847*** .2298%** .0566 .1019%*
(.1004) (.0731) (.0631) (.0486)
stay_sec .0449%F* 0573HH* .0672%* .1891%*
(.0022) (.0163) (.0284) (.0763)
quartile_4 -.1362 -.1784%* -.1938%* -.2207F*
(.0918) (.0865) (.0741) (.0965)
manuf -.0289** -.0126*** -.1315%%* - 1731%%*
(.0139) (.0043) (.0409) (.042)
non_manuf L2327%* .1615%* .2169%* 1051
(.098) (.0663) (.0884) (.0711)
weighted - 1271 - 1128%%* -.0731%%* - 1212%%*
(.0369) (.0401) (.0249) (.0265)
long_dif D28THH* L2233 ** .1302** .1561**
(.0536) (.0577) (.0615) (.0641)
journal .0619* .1293%%* .0571 1703%H*
(.0322) (.0339) (.0504) (.0492)
_cons -.0337 -.3296%* -.1987 -.6093%**
(.1946) (.1555) (.162) (.141)
Observations 2143 2143 2143 2143
R-squared 677 .8801 .7853 7815

Note: Standard errors clustered at study level are in parentheses. The weights
used in the WLS estimation are indicated in the column header. Only the
coefficients of the selected moderators from Table [l are shown but estimated in
the model specification including all 85 moderator variables. ***p < .01,"*p <
.05, *p< .1
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6.1 Data characteristics

Two of the moderator variables related to geography, time, and level of analysis exhibit robust
and consistent results (Tablesand. First, estimations at country level (country_lev = 1) find
clearly more negative wage effects of industrial robots compared to estimations at industry level.
This suggests aggregate macroeconomic net effects resulting from all the direct and indirect ef-
fects at lower levels of aggregation could be negative. Second, adding countries to the estimation
sample (c_num) leads to more positive findings in the primary literature. Multi-country samples
move closer to a global economic perspective, possibly capturing trade effects of robotization
and benefits from further specialization. Moreover, although less robust, our findings suggest
that estimations at firm level (firm_lev = 1) tend to produce more positive effects compared to
analyses at industry level, whereas estimations at the level of occupations seem to result in more
negative primary estimates (Table .

With regard to geographic disparities in the labor market effect of industrial robots, we find some
evidence that the estimated effects in Japan and in developing/ emerging countries are more
positive, both statistically and economically significant. These are interesting findings. Since
Japan is a frontrunner in industrial robotization (Adachi et al., 2022)), labor demand reductions
due to robotization are likely to be outweighed by larger productivity effects. We believe that
the higher robot penetration in Japan and the greater market maturity might have contributed
to higher productivities. From the perspective of development economics, it is reassuring that
the wage effects of robots are more beneficial in developing and emerging countries compared
to the rest of the world. This might be explained by a larger scope for productivity increases
through robotization in less developed regions compared to industrialized countries. Moreover,
we do not find a clear evidence for disparities between US and European labor markets. These
results hold only for the full sample. Results are different when considering subsamples see
and robustness checks In the full sample, the bivariate correlations between PCC's and
our moderator variables “us” (corr = —0.65) and “europe” (corr = +0.47) suggest strong geo-
graphic differences. These correlations are, however, partially absorbed by other characteristics
of research design in a multivariate meta-regression analysis. Our preferred weighting scheme
REE2 suggests more positive effects in European countries. For the US, only FEE1 and REE1
suggest a negative impact, which however vanishes once the weights are adjusted for the number
of estimations per study. This observation can be attributed to the high number of negative
primary estimates for US labor markets stemming from few studies.

With respect to the time period under research, we find some evidence that studies considering
more recent time periods (with a mid-point after year 2007) tend to find a more positive effect
of robots on wages (c.f. significantly negative coefficient of period_2007 in Table . This is
interesting as industrial automation proceeded or even accelerated in the last decade, such that
any effect of labor substitution should have become more visible in recent years. Using 2010

instead of 2007 as cutoff year leaves our results qualitatively unchangedE

HUMRA results with moderator variable period_2010 instead of period_2007 are available upon request.
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None of our moderator variables capturing the construction of the robot measure shows up in
Tables [4] and [5| as we do not find robust evidence for a systematic influence of different robot
measures on the estimated effect. However, our preferred weighting scheme REE2 suggests that
primary estimations using absolute robot stocks, a robot dummy, a monetary value of robot
capital, or other robot measures (e.g. patent data) as explanatory variable tend to report more
positive effect sizes than primary estimations using a robot density (Table . While robot
stock is usually taken from IFR data, the other measures rely usually non-IFR data. As all
coefficients are positive in our preferred specification, we conclude that data dependence is not
an issue here. Furthermore, applying the PIM for the construction of the robot measure seems
to positively influence the estimated effect.

Just as for the construction of the robot measure, we also do not find robust evidence for vary-
ing definitions of the wage measure as driver of heterogeneity. While weighting scheme FEE2
suggests that using income as dependent variable is associated with more negative findings, our
preferred weighting scheme REE2 indicates that different wage measures do not explain the
heterogeneous findings in the primary literature at all (Table .

As might be expected, alternative data constructions within studies, typically used as robust-
ness checks in the primary literature, are also not driving heterogeneous findings: alter_data is
never selected by our backwards stepwise regression procedure and the point estimates in the
full specification are always close to zero. Excluding estimates where alter_data = 1 from our

analysis, leaves the findings presented in sections [5| and |§| qualitatively unchanged@

6.2 Control variables

Four control variables show a robust and systematic influence on the estimated effects (Tables
and. While control variables for ICT capital, demographic developments, and tenure positively
affect the estimated outcomes, controlling for trade flows reduces the estimated effect. ICT
capital and trade exposure are widespread control variables in the primary literature and seem
to be important for isolating the effect industrial robots have on wages. For all other control
variables, the evidence for a systematic influence on the estimated effect size remains rather
small. Our preferred weighting scheme REE2 suggests that also control variables related to
education, firm size, unionization, and other capital positively affect the estimated outcome,
whereas controlling for productivity/ value added and migration has a negative impact on the
estimated effect. It is worth noting that the inclusion of some control variables depends on
the level of analysis as those control variables are not available at higher levels of aggregation.
For instance, only estimations at individual level did control for tenure. Controls for firm size
were only used at the level of firms, demographic groups, and individuals. This dependence
complicates the detection of consistent MRA findings for the level of analysis as some of the
variation in this research dimension can also be attributed to the inclusion of different control

variables.

12This reduces the number of primary estimates to 1,829. Results are available upon request.
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6.3 Subsamples related to skill-levels

Many primary studies report estimations for subgroups according to skill level, either regarding
education levels or the requirements of occupational tasks. Interestingly, despite the widespread
view of skill-biased technological change in the economic literature on automation (e.g. Fierro
et al., |2022; Prettner and Strulik, 2020; Lankisch et al., 2019), none of our moderator variables
capturing these research dimensions have robust results. We only find few indications that
industrial automation the wage of workers with low educational attainment (Table[C1]). Workers
in high-skilled occupations benefit from robot adoption while workers in medium- to low skilled
occupations do not. There is only one specification with REE1 weights where we observe a
more negative wage impact for medium- to low-skilled occupations. So our meta-regression
results for educational and occupational skill groups do not support the job/wage polarization
hypothesis of Acemoglu and Autor (2011) and Autor and Dorn (2013) as we never see more
advantageous effects for high- and low-skilled individuals compared to the total population.
Generally, occupational skill levels are more relevant than educational skills on the employee

level for explaining heterogeneous wage effects.

6.4 Subsamples related to labor mobility

Some primary studies explicitly run subsample regressions considering only workers which either
experienced a change in employment along the dimensions of employer/firm, sector, region, or
occupation or not. Only one of the moderator variables capturing this research characteristic
shows a clear pattern for explaining the heterogeneity of primary estimations: employees who
remain in an automating sector benefit from more positive wage developments compared to
the total population (s. stay_sec in Tables |4] and . This might be attributed to productivity
increases in the respective sector after adopting robots. In contrast to that, we find some
evidence that workers staying in the same occupation are more negatively affected (stay_occ in
Table. This suggests occupational mobility might be rewarded and serves as a mechanism to
alleviate any displacement effects of robots. Surprisingly, estimations considering only workers
with temporary contracts seem to result in more positive effect sizes (s. temp_contract in Table
. It should be treated with caution, as it is based on a low number of primary estimates

originating from only two studies.

6.5 Subsamples related to demographic and income groups

The evidence for demographic groups as drivers of heterogeneity remains very limited. None
of the moderator variables related to gender and age groups exhibit robust findings. There is
only some evidence that male employees are more negatively affected (Table . This could be
explained by men being more likely to work in occupations with a high degree of physical work
which are more prone to automation. Differential effects across certain age groups seem to be

no explanation for the heterogeneous empirical findings in the primary literature.
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Surprisingly, primary estimations focusing only on the top quartile of the income distribution
robustly show more negative outcomes compared to the total population (s. quartile_4 in Tables
and . This finding is in conflict with the skill-biased technological change hypothesis. If
high-skilled employees are favored by industrial robots, one would expect more positive wage
effects in the top quartile of the income distribution as high-skilled workers are typically located
in the upper part of the income distribution. Although this finding might alleviate concerns
that automation drives inequality, some caution is required. As can be seen in Table we
also find evidence that primary estimations for the two bottom quartiles exhibit more negative

effect sizes in a similar order of magnitude.

6.6 Subsamples related to robot exposure

It is evident from Tables 4| and |9| that the wage effects of industrial robots are more negative
in the manufacturing sector, whereas more positive effects are found in the non-manufacturing
sector. This can be explained by the fact that robotization so far has mainly taken place in
manufacturing industries such that any labor-substituting effects of robots should have been
focused on this sector. Simultaneously, industrial robotization might have led to new labor
demand in the service sector, especially in services related to automation (e.g. developing
software used in robotic systems or consultancy for robot adoption). This result is in line with
a reallocation of labor from manufacturing activities to services, as also documented by Mann
and Plittmann (2023)) for a broader scope of automation technologies. Consequently, advancing
robotization may boost structural change as regards accelerating the ongoing servitization of
economies (Breemersch et al.,|2019). Frequently implemented robustness checks in the primary
literature are to exclude outliers in terms of industries (in particular, the automotive industry)
or regions with the highest exposure to robots from the estimation sample. This appears to have

no systematic effect on the reported effect sizes (s. excl_automotive and outlier in Table .

6.7 Estimation technique and publication status

With respect to different estimation techniques as drivers of heterogeneity, we find strong evi-
dence that weighted estimations produce more negative effects, while regression model specifi-
cations in long differences are associated with more positive findings (s. weighted and long_dif
in Tables [4f and . We also find quite robust evidence for more positive results in specifications
with stacked differences (s. stacked_dif in Table , which are often implemented as a robust-
ness check for the long difference specifications. Especially regression models in long differences
are to be understood as measuring the long-term structural effect of robots. Therefore, more
positive outcomes for those specifications are a reassuring message for the long-run effect of
progressing automation.

Moreover, our preferred weighting scheme REE2 suggests that specifications where both wage

and robot measure are logarithmically transformed come a long with more positive effects. With
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respect to the inclusion of fixed effects, we obtain some evidence that entity fixed effects exert
a positive influence on the estimated effect, while industry and entity-year fixed effects are neg-
atively associated with the estimated effect (Table . Since the clustering of standard errors
matters for computing the degrees of freedom used in the formula for the PCC's, it is reassuring
that primary estimates with non-clustered standard errors are not associated with systemati-
cally different effect sizes (s. secl_no in Table . Also, different regression approaches than
OLS (i.e. IV, GMM, quantile regression) do not explain the heterogeneity of the findings in the
primary literature.

Effects reported in peer-reviewed journals are systematically more positive than effects reported
in working papers. This creates further doubts as to a potentially negative publication bias.
Instead, already published articles report more positive effect sizes than working papers and dis-
sertations. However, one needs to take into account that the labor market impact of industrial
robots is a young field of research with a high share of articles that have yet to be published.

Thus, the evidence for more positive findings in journals can quickly change.

6.8 Overall mean effect in the multivariate MR A framework

To scrutinize the overall effect of robots on wages in our multivariate MRA, one needs to look
at the intercept (_cons). The constant reflects the mean effect when all moderator variables and
se_pcc are equal to zero and thus corresponds to the mean effect for the reference categories.
As an estimation with zero countries and zero sample years does not exist, we must adjust the
constant for the average number of countries (= 3.43) and years (= 6.83) used among the primary
estimates included in our meta-analysis. The reference group is made up of estimates from OLS,
at industry level, in a global multi-country sample (or Canada), using a robot density as robot
measure, non-hourly wages as wage measure, and employing no fixed effects. Consulting our
preferred weighting scheme REE2 in the selected specification of Table [4] gives a large negative
mean effect of -0.378 for the reference group. However, this effect must be interpreted with
caution and most econometricians would likely deem it not representative because it is based on
estimates from estimations without any control variables. If we consider the coeflicients of the
selected dummy variables indicating the inclusion of control variables for tenure, trade, ICT, and
demography, the mean effect changes to 0.015, again close to zero. If we additionally account
for heterogeneity between economic sectors, the effect becomes -0.139 for the manufacturing
sector but +0.132 for the non-manufacturing sector. Anyway, defining a representative effect is
not possible without some judgement by the meta-analyst of what is viewed as ”best practice”
research (Stanley and Doucouliagos, 2012, p. 93). For instance, if we expected researchers to
apply weighted estimations specified in long differences to capture long-term effects, the overall
mean effect would become 0.08, i.e. a small positive effect according to the classification of

Doucouliagos (2011]).
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7 Treatment of endogeneity

Endogeneity, reverse causation, and simultaneity are important issues in empirical research. In
our context, high wages could drive investment into industrial robots. Several articles, there-
fore, investigate the effect of wages on robot adoption (e.g. Ferndndez-Macias et al., 2021} Fan
et al., 2021; Samwer and Chen, [2020). Further endogeneity concerns in the primary literature
are typically that unobserved shocks affect both robot adoption and labor demand, e.g. a lo-
cal recession or industry-specific institutional changes such as wage pressure from unionization
(Acemoglu and Restrepo, [2020); or that certain industries, regions or firms select into robot
adoption and fundamentally differ from non-adopting industries/ regions/ firms, thereby follow-
ing different trends in wage evolution even absent automation (Koch et al., 2021). Although our
moderator matrix used in section [] already addresses biases from omitted variables (dummies
for inclusion of control variables in primary estimations) and measurement deviations (dummies
for different wage and robot measures) as well as the treatment of endogeneity (moderator iv),
this section presents MRA results for the subset of primary estimates based on an IV/2SLS
approach. This allows to focus on the drivers of heterogeneity among estimates that were (to
some extent) cleaned from endogeneity. The most frequently applied IV approach in the primary
literature is to instrument robot adoption in the country under research by robot adoption in
other, comparable countries (e.g. Acemoglu and Restrepo, 2020; Dottori, 2021} Dauth et al.,
2021; Ge and Zhou, 2020). The IV-subsample comprises 36 studies with 1092 estimates.

7.1 Overall mean effect and publication bias in the I'V-subsample

As shown in table [6] the PCC summary measures in the IV-subsample are very close to zero.
The FEE1 and FEE2 estimators now indicate a statistically significant mean effect, which how-
ever lacks economic significance. The unweighted mean and the REE1 estimator are shifted
towards zero compared to the full sample, while the REE2 estimator is practically unchanged.
Eyeballing the funnelplot for the IV-subsample shown in Figure [3| suggests a very symmetric
distribution of primary estimates around zero. This is mirrored in the absence of any evidence
for publication selection in the FAT for the IV-subsample (s. Table [7). The evidence for a
slightly negative overall true effect (PET) of robots on wages becomes somewhat stronger as a
statistically significant effect is found in all weighting schemes except for REE2. The magni-
tude of this effect, however, is always well below the threshold for a small effect as defined by
Doucouliagos (2011]).
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Table 6: Summary measures of the PCCs in the IV-subsample

Measure Obs. Estimate SE 95% CI

Mean 1092 0.00584 0.03927 [-0.07387, 0.08556]
FEE1 1092  -0.02078  0.00645 [-0.03387, -0.00770]
FEE2 1092 -0.01133 0.00107 [-0.01350, -0.00916]
REE1 1092 -0.00574 0.03054 [-0.06774, 0.05627)
REE2 1092 -0.01471 0.04102 [-0.09798, 0.06857]

Note: Standard errors are clustered at study level. Q-test:
Q = 13058.71, p-value = 0.0000; 72 = 0.0167; I?> = 99.41%

4 6
L 1

Logarithm of the precision (1/SE)
2
1

Figure 3: Funnel plot of partial correlation coefficients (N = 1092, from 36 studies).

Table 7: Funnel-asymmetry test for publication bias (FAT-PET) in the IV-subsample

(1) (2) (3) (4)
WLS FEE1 WLS FEE2 WLS REE1  WLS REE2

Publication bias (51) -.2291 .0626 .607 2219
(.4432) (.5514) (.6178) (.7157)
True effect (5o) -.0196%** -.0114%** -.0473** -.0347
(.0067) (.0011) (.0216) (.0337)

Observations 1092 1092 1092 1092
R-squared .0031 .0003 .0315 .0025

Notes: Standard errors clustered at study level are in parentheses. The weights
used in the WLS estimation are indicated in the column header. Q-test: @ =
13017.63, p-value = 0.0000; 72 = .01695; I? = 99.41%; ***p < .01,**p < .05,
p<.1
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7.2 Assessing heterogeneity in the I'V-subsample

In the IV-subsample, 16 moderator variables are robustly and consistently identified as drivers
of heterogeneity (s. Table B With regard to the level of analysis, estimates at the highest
level of aggregation are clearly more negative compared to industry-level estimates, while finer
levels of aggregations (region_lev, occ_lev, individual_lev) are positively associated with the effect
size. This at odds with the results of the full sample and the other robustness checks where oc-
cupational level is associated with more negative findings. Adding more countries to the sample
also increases the effect size. As regards geographic disparities, there is strong evidence among
IV-estimates that the wage effects of robots are more negative in the US compared to other
parts of the world. Controlling for ICT usage and unionization is positively linked to the effect
size.

Interestingly, in the IV-subsample we obtain evidence for skill-biased technical change favoring
high-skilled occupations, although the magnitude of the skill-bias still appears limited. In addi-
tion to individuals who stay in an automating sector, also individuals who stay at an employer
that adopted robots, seem to benefit from more positive wage outcomes.

Further, among IV-estimates we obtain strong evidence that the construction of the robot mea-
sure can influence the effect size. Relative to a robot density, absolute robot stocks, monetary
measures as well as adoption dummies are associated with more positive findings. Besides, ap-
plying a shift-share measure or using the PIM is also positively associated with the reported
effect size. These findings related to the construction of the robot measure have already been
suggested by our preferred weighting scheme REE2 in the total meta-sample.

The coefficients for manuf and non_manuf point to more adverse effects in manufacturing indus-
tries and more advantageous effects in the non-manufacturing sector also in the IV-subsample
but due to the reduced number of observations are more imprecisely estimated, especially for
non_manuf. Moreover, more recent IV estimates with a mid-year after 2007 tend to be more
favorable: period_2007 is always selected with a negative sign and also statistically significant

except for weighting scheme REE2.

13Results for the full moderator matrix are available upon request. The moderator variables gmm and

other_robot_measure are no longer relevant in the IV-subsample.
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Table 8: Meta-regression analysis for the IV-subsample

5) @) @) %)
‘WLS FEE1 ‘WLS FEE2 WLS REE1 WLS REE2
se_pcc LT114%* -.3568 LT684%**
(.3365) (.7572) (.2428)
country_lev -1.3901%** -1.6408%** -1.1788%** -1.1937%**
(.1448) (.125) (.1349) (.1188)
region_lev L6021 %** 5T788%** .3131%** .1953%**
(.1034) (.1347) (.0651) (.0449)
occ_lev .3842%%* .5923%** .2328%** .3743%**
(.1178) (.1638) (.0669) (.0567)
individual_lev LAT02%** .4895%** .2883*** 2041 %**
(.1041) (.139) (.0574) (.048)
c_num .0427%** .0454%** .0359%** .034%**
(.0059) (.0077) (.0049) (.0048)
us -.1995%%* -.2021%%* -.2196%** -.2148%%*
(.0212) (.0767) (.0251) (.0301)
ict_control .2073%** 453T7H** .1103%** L1752% K
(.0646) (.1636) (.0376) (.0248)
union .5469*** 844 TH** L2976%** .6463***
(.0688) (.1667) (.0435) (.1624)
high_skill_occ .0434%** .0406*** .0405%** .0323%**
(.0005) (.0043) (.0018) (.0091)
stay_empl L3221 %%* LAB2TH** .3688%** .38T9***
(.0361) (.1109) (.0441) (.0382)
stay_sec .0429%** .043%** .0381*** .0438***
(0) (.0002) (.0003) (.0019)
shift_share 1424 %%* .3246%** .1036* L161TH*K
(.0517) (.1146) (.0522) (.0516)
rob_stock .4339%** .6618*** 449%** .888TH**
(.0936) (.1138) (.085) (.0942)
rob_dum .4398%** L66T4HH* 456%** .0135%**
(.0908) (.1153) (.0841) (.0925)
monetary_rob .1943%** .3458%** .2342%** L601***
(.0591) (.0722) (.0699) (.0694)
pim .2432% %% 323 7%k .22247% %% .3043%%%
(.0465) (.0647) (.044) (.044)
—cons -.TA84*** -.8134%%* -.BT3TH** - T98¥ X
(.1334) (.1746) (.0826) (.1065)
Observations 1092 1092 1092 1092
R-squared 7528 7672 7145 .8218

Note: Standard errors clustered at study level are in parentheses. The weights

used in the WLS estimation are indicated in the column header. The modera-
tor variables were selected by means of a backwards stepwise regression algo-
rithm which sequentially selects the explanatory variables that minimize the
BIC information criterion. Only those moderator variables are shown that ex-
hibit consistent and statistically significant results across all weighting schemes.
**Ep < .01,"*p < .05, *p < .1

8 Robustness checks

8.1 Exclude estimates with non-clustered standard errors

The t-statistics of primary estimates with non-clustered standard errors might be less reliable
because clustered standard errors are typically higher and thus come along with a more con-
servative statistical inference@ Therefore, as robustness check, we exclude all estimates with
non-clustered standard errors from our meta-analysis. This reduces our sample to 42 studies

with 1852 estimates. Reassuringly, our main results presented above are robust to the exclusion

14 Additionally, the computation of the degrees of freedom for primary estimates with non-clustered
standard errors deviates from those with clustered standard errors. Primary estimates with non-

clustered standard errors often have much higher degrees of freedom.
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of estimates with non-clustered standard errorsE The evidence for a negative publication bias
becomes even weaker (FAT) and the overall mean effect (PET) is still close to zero (Table E[)
Weighting scheme FEE1 suggests a slightly negative true effect (0.019), which is significant at
the 10%-level. Weighting scheme FEE2 in turn indicates a slightly positive true effect with
a similar magnitude (0.013) that is significant at the 5%-level. The true effect in weighting
schemes REE1 and REE2 becomes somewhat larger in absolute terms compared to Table (3| but
still lacks statistical significance.

In our multivariate MRA framework (Table , 8 of the 13 moderator variables identified as
drivers of heterogeneity in Tables [4] and [5] remain qualitatively unchanged: country_lev, c_num,
trade_control, stay_sec, manuf, non_manuf, weighted, and long_dif. However, tenure, ict_control,
demograph_control, quartile_4, and journal are no longer robustly selected in the backwards
stepwise regression procedure. Instead, in the subsample of estimates with clustered standard
errors, controlling for productivity and firm size are identified as drivers of heterogeneity. While
controlling for productivity or value added (prod_va) slightly decreases the reported effect sizes,
controlling for the size of the firm in which workers are employed seems to exert a positive
influence on the effect size.

Moreover, the evidence for skill-biased technological change becomes stronger as subsamples
with only highly educated workers are robustly found to exhibit more positive wage effects of
industrial robots. With respect to geographic disparities, estimates for the US as well as devel-
oping countries show clearly more negative effects compared to global samples. The latter effect
could be due to reshoring activities (Krenz et al., 2021)) Regarding the construction of the robot
measure, we find evidence that robot stocks and monetary measures are associated with more
positive effect sizes. This has already been indicated by the REE weighting schemes in the full
sample of primary estimates (s. Table .

Furthermore, with regard to the estimation technique, time fixed effects are positively and in-
dustry fixed effects negatively associated with reported effects sizes. Lastly, primary estimates
for which we had to compute an average marginal effect are positively associated with the effect
size. This result leads to a further robustness check where we exclude all self-computed average

marginal effects from our meta-analysis.

8.2 Exclude average marginal effects

Some primary estimations employ an interaction or quadratic term for the robot variablem
To include such estimations in our meta-analyses we compute average marginal effects and
associated standard errors as described in equations or . Excluding these self-computed

marginal effects from our meta-analysis reduces our sample to 51 studies with 1812 estimates

15Results for the full MRA table are available upon request.
16Interacted variables are frequently binary indicators for gender, education levels, or occupational groups

but also continuous variables for ICT intensity (Hotte et al.,|2022b) or labor market concentration (Liu,
2022)
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Table 9: FAT-PET for estimates with clustered SE

(1) (2) (3) (4)
WLS FEE1 WLS FEE2 WLS REE1 WLS REE2

Publication bias (f1) -.8661 -.0238 .1407 .3591
(1.1013) (.744) (.9627) (.5124)
True effect (Bo) -.0191* .0134%* -.1086 -.0494
(.0107) (.0064) (.0813) (.056)

Observations 1852 1852 1852 1852
R-squared .0288 0 .0009 .0049

Notes: Standard errors clustered at study level are in parentheses. The weights
used in the WLS estimation are indicated in the column header. Q-test: @ =
30896.32, p-value = 0.0000; 72 = .09366; I?> = 99.70%; ***p < .01,**p < .05,
p<.1

but leaves our findings qualitatively unchangedm The overall mean effect of robots on wages
(PET) remains close to zero and is also statistically insignificant except for FEE2-weights (Table
. The evidence for publication selection remains weak: the coefficient on the standard error is
only significant in weighting scheme FEE1, like before (Table column 1). In our multivariate
MRA, the robustly and consistently selected moderator variables are largely unchanged (Table

D2).

Table 10: FAT-PET excluding average marginal effects

(1) (2) (3) (4)
WLS FEE1 WLS FEE2 WLS REE1  WLS REE2

Publication bias (8) -1.669* 6787 -.2797 4146
(.8974) (.7827) (1.1219) (.4918)
True effect (5p) -.0018 -.0088** -.0905 -.0363
(.0042) (.0037) (.0644) (.0405)

Observations 1812 1812 1812 1812
R-squared .1169 .0089 .0035 .0072

Notes: Standard errors clustered at study level are in parentheses. The weights
used in the WLS estimation are indicated in the column header. Q-test: @ =
33984.44, p-value = 0.0000; 72 = .0873; 1% = 99.95%: ***p < .01,**p < .05, *p < .1

8.3 Subsample of single-country estimates

The majority of primary estimates in our meta-analysis come from single-country studies (s.

section . These estimates as well as estimates for a sample of several European countries or

1TResults for the full MRA table are available upon request.
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developing/emerging countries can be clearly assigned to one of the geographic categories us,
europe, dev_country, or japan. However, there are also studies that analyze a global sample of
countries covering more than one of the geographic categories (e.g. OECD countries). Such
estimates cannot be unambiguously assigned to one of the geographic countries and thus form
the reference category (together with two estimates for Canada) in our multivariate MRA frame-
work in section [f] One might argue that this reference group is inappropriate as global samples
of countries also comprise our geographic categories used to identify potential geographic dif-
ferences in the wage effect of robots. As robustness check, we therefore focus only on estimates
obtained from a single country, i.e. if ccnum = 1. This reduces our MRA sample to 42 stud-
ies with 1656 estimates. Since estimates for European countries form the largest group among
single-country estimates, europe is now used as reference category to identify geographic dis-
paritiesﬁ Our main results presented in sections [5| and |§| are largely preserved in the subset of
single-country estimatesm The evidence for a negative publication bias (FAT) becomes some-
what stronger but is still not robust in weighting schemes adjusting for the number of equations
per study (Table . The true effect (PET) remains very close to zero and also lacks statistical
significance except for weighting scheme FEE1.

In our multivariate MRA, the moderator variables tenure, trade_control, ict_control, demo-
graph_control, stay_sec, manuf, non_manuf, and weighted are robustly identified as drivers of
heterogeneity in the primary literature (Table . It is important to note that country_lev
and c_num are no longer relevant in the subset of single-country estimates and thus are re-
moved from the moderator matrix. quartile_4 and journal are significant and selected by the
backwards stepwise regression procedure in only 3 out of 4 weighting schemes (non-selected for
REE1 weights).

Additionally, we obtain strong evidence that occupation-level analyses and earlier samples with
a mid-year before 2007 produce more negative findings among single-country estimates. Also,
controlling for the share of manufacturing is negatively associated with the reported effect size.
Geographic disparities in the wage effect of robot adoption are, however, still not robust and
consistent. Weighting schemes FEE1, REE1, and REE2 suggest that the findings are more neg-
ative for the US compared to Europe, whereas FEE2 indicates more positive effects in the US.
Moderator variable japan is selected and clearly positive in all weighting schemes but insignif-
icant for our preferred REE2 weights. Moderator variable dev_country is only selected when

FEE weights are used and there shows a significantly positive link with the effect size.

9 Conclusion

To our knowledge, this is the first meta-analysis on the effects of industrial robot adoption on

wages. Through systematic search and review of the existing literature we were able to code

8The two estimates for Canada are also again part of the reference group.
19Results for the full MRA table are available upon request.
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Table 11: FAT-PET for single-country estimations

(1) (2) (3) (4)
WLS FEE1 WLS FEE2 WLS REE1  WLS REE2

Publication bias (f1) -2.089** .4051 -1.9454%* -.4144
(.9472) (.8799) (1.0378) (.5183)
True effect (5p) .0024* -.0052 -.0128 -.0073
(.0012) (.005) (.0178) (.0377)

Observations 1656 1656 1656 1656
R-squared .1546 .0028 1477 .0062

Notes: Standard errors clustered at study level are in parentheses. The weights
used in the WLS estimation are indicated in the column header. Q-test: @ =
35075.65, p-value = 0.0000; 72 = .0647; I? = 99.98%; ***p < .01,**p < .05, *p < .1

53 papers with overall 2143 estimates. In line with the MRA framework in economic contexts
(Stanley and Doucouliagos, [2012, p. 25), we utilize partial correlation coefficients to analyze the
true effect of robots on wages and potential publication, omitted variable and misspecification
biases in the empirical literature. In addition to precision weighting, we adjust also by the num-
ber of estimates per study. We only find limited evidence for a negative publication bias. The
coeflicient on publication selection is only statistically significant with simple precision weighting
whereas it lacks statistical significance in all other specifications (i.e. adjusting the weighting
scheme for between-study heterogeneity and/ or the number of estimates per study). The true
effect corrected for any publication bias is close to zero and both statistically and economically
not significant. This suggests that robot adoption has so far had no visible effect on the average
wage of the total population.

We further assess the heterogeneity of effect sizes reported in primary studies by employing a
moderator matrix in our WLS estimations. A properly coded moderator matrix can help to
identify the data characteristics and estimation methods which drive both sign and strength of
the estimated effect sizes. We find that more positive results are obtained if primary estimations
a) include more countries in their sample, b) control for ICT capital, demographic developments,
or tenure, ¢) focus on employees that remain employed in the same sector, d) consider only non-
manufacturing industries, e) are specified in long-differences, and f) come from a peer-reviewed
journal article. More negative effects, in turn, are reported for primary estimations that are i)
weighted, ii) aggregated at country level, iii) control for trade exposure, iv) and consider only
manufacturing industries. We do not find evidence for data dependence. However, the treat-
ment of IFR data becomes relevant in the IV-subsample: Recalculating the IFR robot stock via
PIM yields more positive wage results. Reassuringly, reallocating the ”unspecified” robots is
not driving the results.

We also find some evidence for skill-biased technological change since wages are more positively

affected in high-skilled occupations and more negatively affected in medium- to low-skilled oc-
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cupations. The magnitude of that effect is albeit small and less robust than one might expect in
light of the widespread view of skill-biased technological change in theoretical models incorporat-
ing automation. Similarly, the often cited dichotomy in labor market outcomes between the US
and Europe cannot be robustly estimated when one controls for more research characteristics.
Instead, we find some evidence that the wage effects of industrial robots are more positive in
Japan as well as in developing or emerging countries. Furthermore, studies that consider more
recent time periods tend to find more positive effects.

The findings of our meta-analysis allow to give some recommendations for future research on
the labor market effects of robots. So far, little research has tried to measure the macroeco-
nomic effect of robotization on wages at the country level. As country-level analyses seem to
find more negative effects, there is a need of further research on the net effect of robotization
resulting from the heterogeneous effects at lower levels of aggregation. Ideally, future studies
would complement data at different levels of analysis to both measure equilibrium effects and
disentangling the adjustment mechanisms along the path to a new labor market equilibrium.
In doing so, control variables for ICT usage, trade flows, and demographic developments are
important for isolating the effect of robot adoption on wages (or related labor market outcomes
like employment or the labor share of GDP). In terms of compositional adjustments, it is crucial
to differentiate employment in manufacturing and non-manufacturing industries. Country-level
analyses may allow to track links between automation, trends in the manufacturing value added
share, and employment or wage developments in the manufacturing sector, especially in com-
parison to the service sector. Global multi-country samples can help detecting international
spillover and relocation effects with respect to output and employment by considering adjust-
ments in global value chains associated with robot adoption. Since weighted estimations seem
to systematically reduce the reported effect size, unweighted estimations as well as alternative
weightings may be useful robustness checks in future research. When it comes to employing
IV/2SLS estimations, researchers should ideally use alternative measures for robotization to
avoid any undue influence of certain constructions applied on robot data. While research on the
labor market impact of automation will grow further and the adoption of robots multiplies, it

will be interesting to update our meta-analysis at a later point in time.
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Table B1: Conversion of occupational skill levels according to ISCO-08

Subsamples in primary estimations - - Assign'ed skﬂl. fevel -
high-skilled | medium-skilled | low-skilled
Low Frey-Osborne Probability of Computerization 1 0 0
Managers, legal professionals 1 0 0
STEM (science, technology, engineering, math) profession- 1 0 0
als and other professionals
Non-routine cognitive 1 0 0
Abstract 1 0 0
White collar workers 1 1 0
Robot operators 1 1 0
Non-routine 1 0 1
Sales and clerical workers 0 1 0
Craft and related trade workers 0 1 0
Operating machines, processing, asssembling, maintenance 0 1 0
Routine cognitive 0 1 0
High Frey-Osborne Probability of Computerization 0 1 1
Non-professionals 0 1 1
Blue collar workers 0 1 1
Routine 0 1 1
Manual 0 1 1
Routine manual 0 1 1
Non-routine manual 0 1 1
Production workers 0 1 1
Routine production (e.g. welders) 0 1 1
Routine others (e.g. repairer) 0 1 1
Workers exposed to robot applications 0 1 1
Administrative assistants, first and second officers, third 0 1 1
officers and specialists, unskilled
Elementary occupations 0 1
Transportation, storage security, routine transportation 0 0 1
(material-moving, e.g. hand laborer)
Service (manual) 0 0 1

Note: The assignment follows ISCO-08 skill levels, i.e. High-skilled = 3 + 4 (majors 1-3); medium-skilled
= 2 (majors 4-8); low-skilled = 1 (major 9)
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Table B2: Conversion of educational skill levels according to ISCED-2011

Assigned skill level
Subsamples in primary estimations - - - - -
high-skilled medium-skilled low-skilled
University graduates (Masters and doctoral degree) 1 0 0
College or professional degree 1 0 0
Sixteen or More Years of School 1 0 0
Some college 0 1 0
Highschool degree 0 1 0
Upper secondary education 0 1 0
Vocational training degree 0 1 0
Upper secondary and post-secondary education 0 1 0
Twelve to Fifteen Years of School 0 1 0
Non-college 0 1 1
Apprentice 0 1 1
Elementary and/or high school diplomas 0 1 1
Less than high school 0 0 1
Compulsory school (incl. primary school and lower secondary) 0 0 1
Less than vocational training degree 0 0 1
Middle school education or below 0 0 1
Pre-primary, primary and lower secondary education 0 0 1
Less Than Twelve Years of School 0 0 1

Note: The assignment follows ISCED 2011 1st digit levels, i.e. high-skilled = 5-8; middle-skilled = 3 + 4; low-
skilled = 0-2
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Table D1: Meta-regression analysis for estimates with clustered SE

0 @) 3) ()
WLS FEE1 WLS FEE2 WLS REE1 WLS REE2
se_pcc -1.4483%** -.8249
(.5025) (.5591)
country_lev -1.3319%** -1.2357%** -1.2173%** -1.2207%%*
(.0952) (.0779) (.0909) (.0879)
c_num .0225%** .0348*** .0207*** .0313***
(.0049) (.0056) (.0037) (.0052)
us -.3082%** -.1006%** -.3198%** -.3185%**
(.0427) (.0365) (.0839) (.073)
dev_country -.3176*** -.0751%* - 251TH** -.2218%**
(.0397) (.035) (.0317) (.0609)
prod_va -.0674* -.0974* -.1048%*** -.1188%**
(.0346) (.0526) (.0267) (.0469)
firm_size 316%** L2022 ** .2446%** .1606***
(.04) (.0454) (.0369) (.0369)
trade_control -.1467HF* -.0997** .06k -.0892***
(.0283) (.0396) (.0204) (.0252)
high_educ .1352%** 1415%%* .1099* .1386**
(.0494) (.0434) (.0591) (.0676)
stay_sec .0434%** .0502%*** .0502%** .1402%**
(.0005) (.0057) (.0091) (.0435)
manuf -.0221°%* -.0098*** - 128%%* -.0961%*
(.0096) (.0014) (.0369) (.0356)
non_manuf .2033** .1643** .1848** 1127*
(.0814) (.0678) (.0823) (.0623)
rob_stock .3192%%* .1021%* A8TH¥H* .344R%F*
(.0439) (.0576) (.0452) (.0637)
monetary_rob .1463%%* .1089** .30 2%H* .2085%F*
(.0535) (.051) (.0731) (.0577)
weighted -.0914%** -.0994*** -.0706** - 1291 %%*
(.0172) (.0225) (.0268) (.0292)
long_dif A1 .1913%%* .1024** ABTTHEE
(.0441) (.047) (.0454) (.0536)
marginal_comp 1121%%* 1473%* .0878* .1192%**
(.033) (.0648) (.0436) (.0321)
time_fe 135%** 126%** .1424%** 1607***
(.0379) (.0296) (.0438) (.0465)
ind_fe -.1025%* -.1333%** - 1087*** - 122%%*
(.0469) (.0404) (.0326) (.032)
_cons .0585 -.2498%** -.1452 -.4612%%*
(.0796) (.0867) (.0987) (.1003)
Observations 1852 1852 1852 1852
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R-squared .8055 931 .8037 8313

Note: Standard errors clustered at study level are in parentheses. The
weights used in the WLS estimation are indicated in the column header.
The moderator variables were selected by means of a backwards stepwise re-
gression algorithm which sequentially selects the explanatory variables that
minimize the BIC information criterion. Only those moderator variables are
shown that exhibit consistent and statistically significant results across all

weighting schemes. ***p < .01,**p < .05, *p < .1

Table D2: Meta-regression analysis without average marginal effects

o) @) 3) )
WLS FEE1 WLS FEE2 WLS REE1 WLS REE2
se_pcc -1.8437*** -1.2517* -.6566
(.5022) (.6234) (.4333)
country_lev -.8911*** - T154%* -.5928*** - T312%**
(.3101) (.2786) (.1644) (.225)
occ_lev -.2475%H* -.3965%F* -.2327** -.3909%**
(.0549) (.0888) (.0876) (.081)
c_num .0308%** .0169** .0196%** .0242%%*
(.0073) (.0067) (.0049) (.0049)
trade_control  -.1214%** -.1264%F* -.058%** -.0693***
(.0393) (.0204) (.0196) (.0227)
ict_control .0448* .0607* .0586*** .0785%*
(.0243) (.0309) (.0199) (.0312)
stay_sec 041 2%%* .0499%%* 0547HH* .1519%%*
(.001) (.0055) (.0141) (.0551)
manuf -.0284** -.Q12%%* S 17T8*H* -.2054%**
(.0134) (.0037) (.0403) (.038)
weighted -.1213%%* -.1086*** -.0609** - 1231%%*
(.0256) (.0329) (.0257) (.03)
long_dif .2609%** .0909** .1169*** 173THEE
(.0461) (.0366) (.032) (.0624)
_cons -.0523 -.0598 -.1352 - 4815%**
(.0599) (.0684) (.0878) (.0665)
Observations 1812 1812 1812 1812
R-squared .6816 .8921 7902 7921

Note: Standard errors clustered at study level are in parentheses. The
weights used in the WLS estimation are indicated in the column header.
The moderator variables were selected by means of a backwards stepwise
regression algorithm which sequentially selects the explanatory variables
that minimize the BIC information criterion. Only those moderator vari-
ables are shown that exhibit consistent and statistically significant results

across all weighting schemes. ***p < .01,"*p < .05, *p < .1
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Table D3: Meta-regression analysis for single country estimations

0 @) 3) )
WLS FEE1 WLS FEE2 WLS REE1 WLS REE2
se_pcc -2.305%** -2.5365%** -1.7689%**
(.6162) (.4969) (.6131)
occ_lev - 1627H%* -.9996%** -.2069%** -.66127%**
(.058) (.3172) (.0919) (.1681)
period_2007 -.0437F%* -.0591%* -.0591%* -.0937%**
(.0062) (.0255) (.0251) (.0315)
tenure 417 3HH* BT724%K* .109** .3815%**
(.1398) (.1084) (.0534) (.1031)
trade_control -.1508%** -.1053%%* -.0784H** -.0752%*
(.0374) (.0378) (.0285) (.0352)
ict_control .0552 .1057%* .0931##* .1469%**
(.0472) (.0426) (.0308) (.0418)
demograph_control 247K .2689%** 1514%* .1568%**
(.0654) (.0529) (.0634) (.044)
manuf_share -.2718%** - 1887#** -.0957%* -.1228%*
(.0799) (.0591) (.0394) (.0571)
stay_sec .0414%%* .0528%** .0593%** 212%%
(.0012) (.01) (.0185) (.0901)
manuf -.0281** -.0112%%* -.1104%%* -.1362%**
(.0133) (.003) (.0323) (.0423)
non_manuf .2498%* 161%* .2053%* .1051%*
(.1043) (.0645) (.0837) (.0623)
weighted -.1606*** -.0779** -.0829%** -.069**
(.0382) (.035) (.025) (.032)
_cons -.0904 .5153* -.0084 1883
(.0805) (.3001) (.0636) (.1959)
Observations 1656 1656 1656 1656
R-squared .6992 9057 .7969 .81

Note: Standard errors clustered at study level are in parentheses. The weights

used in the WLS estimation are indicated in the column header.

The mod-

erator variables were selected by means of a backwards stepwise regression al-

gorithm which sequentially selects the explanatory variables that minimize the

BIC information criterion. Only those moderator variables are shown that ex-

hibit consistent and statistically significant results across all weighting schemes.

wp < 01, p < .05, *p < .1
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