ECDNETOR

Make Your Publications Visible.

Akram, Tanweer; Mamun, Khawaja

Working Paper
 A GARCH approach to modeling Chilean long-term swap yields

Working Paper, No. 1008

Provided in Cooperation with:

Levy Economics Institute of Bard College

Suggested Citation: Akram, Tanweer; Mamun, Khawaja (2022) : A GARCH approach to modeling Chilean long-term swap yields, Working Paper, No. 1008, Levy Economics Institute of Bard College, Annandale-on-Hudson, NY

This Version is available at: https://hdl.handle.net/10419/273870

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]

Institute
of Bard College

Working Paper No. 1008

A GARCH Approach to Modeling Chilean Long-Term Swap Yields

by
Tanweer Akram
Citibank
and
Khawaja Mamun
Sacred Heart University

May 2022

The Levy Economics Institute Working Paper Collection presents research in progress by Levy Institute scholars and conference participants. The purpose of the series is to disseminate ideas to and elicit comments from academics and professionals.

Levy Economics Institute of Bard College, founded in 1986, is a nonprofit, nonpartisan, independently funded research organization devoted to public service. Through scholarship and economic research it generates viable, effective public policy responses to important economic problems that profoundly affect the quality of life in the United States and abroad.

Levy Economics Institute
P.O. Box 5000

Annandale-on-Hudson, NY 12504-5000
http://www.levyinstitute.org
Copyright © Levy Economics Institute 2022 All rights reserved
ISSN 1547-366X

Abstract

This paper econometrically models the dynamics of the Chilean interbank swap yields based on macroeconomic factors. It examines whether the month-over-month change in the short-term interest rate has a decisive influence on the long-term swap yield after controlling for other factors, such as the change in inflation, change in the growth of industrial production, change in the \log of the equity price index, and change in the log of the exchange rate. It applies the generalized autoregressive conditional heteroskedasticity (GARCH) approach to model the dynamics of the long-term swap yield. The change in the short-term interest rate has an economically meaningful and statistically significant effect on the change of the interbank swap yield. This means that the Banco Central de Chile's (BCCH) monetary policy exerts an important influence on interbank swap yields in Chile.

KEYWORDS: Interest Rate Swaps; Swap Yield; Short-Term Interest Rate; Banco Central de Chile (BCCH); Chile

JEL CLASSIFICATIONS: E43; E50; E58; E60; G10; G12

I. INTRODUCTION

Interbank interest rate swaps are an important component of the global over the counter (OTC) derivatives market. The notional value of outstanding interest rate swaps amounts to more than $\$ 370$ trillion 1 as of the second half of 2021 , while the gross market value of interest rate swaps was $\$ 8$ trillion during the same period, according to the Bank for International Settlements (BIS) (2022). Interest rate swaps constitute more than 60 percent of over the OTC outstanding derivatives by notional value and almost 64 percent of outstanding derivatives by the gross market value. Yet, careful and detailed empirical analysis of the determinants of interbank swap yields has been limited. Even though there is considerable literature on swaps, there is a dearth of empirical modeling of interbank swap yields not just for emerging markets, such as Chile, but also for the interbank interest rate swap yields in advanced countries.

Interest rate swaps are increasingly important for financial markets and financial institutions even in emerging markets. While the bulk of interest rate swaps are denominated in the major currencies, such as the US dollar, the euro, the British pound, and the Japanese yen, the amount of outstanding interest rate swaps in other currencies, including emerging market currencies, is still substantial. As of the second half of 2021, BIS (2022) reports that for nonmajor currencies the notional amount of outstanding interest rate swaps is $\$ 60$ trillion and the gross market value is over $\$ 720$ billion.

As financial markets develop in emerging markets and these emerging markets undergo financialization, the analysis of the dynamics of interbank swap yields in emerging markets shall warrant vigilant attention and econometric analysis. This paper initiates this inquiry. It fills a consequential gap in the empirical literature regarding the macroeconomic determinants of interbank swap yields. The dynamics of Chilean long-term swap yields are analyzed in this paper through examining whether the month-over-month change in the short-term interest rate has an influence on the month-over-month change in the long-term swap yields after controlling for other factors, such as the change in inflation, the change in the growth of industrial production, the change in the log of the equity price index, and the change in the log of the exchange rate.

[^1]This paper is arranged as follows. Section II explains what an interest rate swap is. It also briefly reviews the literature on interest rate swaps. Section III presents a simple model that connects the interbank swap yield to the short-term interest rate and other macroeconomic factors. Section IV provides the macroeconomic backdrop to the evolution of the interbank swap yield in Chile. Section V gives the data sources of the variables used in the econometric modeling of the swap yield, explains these variables, and undertakes unit root and stationarity tests. Section VI reports the findings from the econometric modeling of the interbank swap yield. Section VII briefly discusses the implications of these findings. Section VIII concludes.

II. INTEREST RATE SWAPS AND A BRIEF REVIEW OF THE LITERATURE

A swap is a type of a financial contract. In an interbank interest rate swap contract, two parties exchange cash flows with different characteristics. Usually two banks (and/or other any financial institutions) exchange cash flows on two different types of interest payments. The principal amount is the same for both banks. This is known as the notional principal. One bank typically pays a fixed interest rate on the principal amount to the other bank, while in return it a receives a variable interest rate from the other bank. The bank that receives the variable interest rate buys the interbank swap, whereas the bank that pays the variable interest rate sells the interbank swap (figure 1).

Figure 1. The Bank That Buys the Interbank Interest Rate Swap Makes a Payment Based on a Fixed Interest Rate and Receives a Payment Based on a Variable Interest Rate

If a bank expects the interest rate to rise it would buy the swap because it would lock in the amount that it would have to pay in exchange for the variable interest rate payments that it would receive from the other bank. Likewise, if a bank expects the interest rate to decline, it will sell the swap because it would lock in the amount that it would receive in exchange for the variable interest rate payments it would pay to the other bank.

The fixed interest rate payment of the swap is paid semiannually for the maturity tenor of the swap. This is known as the swap yield or the swap rate for the tenor under consideration. The variable interest rate payment is linked to some benchmark interest rate. As the benchmark interest rate changes, the variable interest rate also changes. The variable payments are calculated based on the variable interest rate. In each quarter the benchmark interest rate is registered to determine the variable interest rate and the variable interest payment. The variable interest payment is made at the end of the quarter. The present value of the fixed and variable legs of the swap are the same at its inception. Swaps are conducted among the contracting parties over the counter rather than on a financial exchange. The tenor of the swaps can vary, ranging from overnight to over 30 years.

There is substantial literature on interest rate swaps. Bicksler and Chen (1986) give an economic analysis of interest rate swaps and their use in finance and business. They describe alternative uses of and the appropriate valuation procedure for interest rate swaps. Corb (2012) provides a broad overview, explains the concepts behind interest rate swaps, and explores key themes concerning swaps, such as their risk characteristics, traditional use, and pricing, as well as swaptions and recent innovations in swaps. Remolona and Wooldridge (2003) survey eurodenominated interest rate swaps. They examine the size of the euro swap market, the role of swaps as benchmark instruments, and the pricing of swaps. Chernenko and Faulkender (2011) canvass firms on the use of interest rate swaps. They report that hedging of interest rate risk is concentrated among high-investment firms. They also find that firms appear to use interest rate swaps to manage earnings and sometimes to engage in speculation. Duffie and Huang (1996) develop a model that relates the credit quality of a corporation to the swap yield. Kim and Koppenhaver (1993) find that the likelihood and extent of swap market participation by lowcapitalized banks is less than for other banks. Visvanathan (1998) finds that firms that expect
high financial distress costs use swaps to transform short-term debt into long-term fixed-rate debt. Debt maturity structure is significant in the decision to use a swap. Empirical research on swaps, such as Lekkos and Milas (2001), has been confined to relating the swap yield to business cycle conditions rather than fundamental macroeconomic and financial variables. Duffie and Singleton (1997) develop a multifactor econometric model of the term structure of interest rate swap yields. They report that both credit and liquidity factors are crucial drivers of the swap yield, but they too do not analyze the macro dynamics of the swap yield. It is apparent that the scholarly literature on interest rate swaps has revealed many insights but the relationship between the short-term interest rate and the long-term swap yield have not been explored in the finance literature.

The relationship between the short-term interest rate and the long-term government bond yield, which has been thoroughly investigated, provides a useful basis for examining the dynamics of the long-term swap yield from a macroeconomic vantage point and filling a consequential gap in the literature. Keynes (1930, [1936] 2007) maintains that the central bank's actions have decisive effects on the long-term government bond yield, primarily through the influence of the policy rate on the short-term interest rate. Keynes's conjecture about this relationship drew upon Riefler's (1930) inference, which came from detailed statistical analysis of interest rate dynamics in the 1920s in the United States and Keynes's own observations about interest rate dynamics in the United Kingdom during the same period. Kregel (2011) explores and reprises Keynes's views on the influence of the central bank's policy rate on long-term government bonds yields, investors' behavior in financial behavior, and fundamental uncertainty.

Recent empirical research on long-term government bonds yields, such as Akram and Li (2020a, 2020b, 2020c), has bolstered support for the conjecture that the short-term interest rate is a key driver of the long-term government bond yield. Moreover, these researchers and others show that the change in the short-term interest rate is a key driver of the change in the long-term government bond yield. Keynes's conjecture that relates monetary policy actions to the dynamics of the long-term government bond yield provides a fecund theoretical and empirical basis for modeling the swap yield as a function of the short-term interest rate and examining whether there
is an empirical relationship between the short-term interest rate and the swap yield after controlling for relevant macroeconomic and financial variables.

III. A MODEL OF THE INTERBANK SWAP YIELD

A model of the interbank swap yield is presented here. Akram's $(2021,2022)$ models operationalize Keynes's insight that the short-term interest rate is the primary driver of the longterm government bond yield. The model presented here modifies Akram's $(2021,2022)$ models to make them suitable for analyzing the dynamics of the long-term swap yield.

The long-term interbank swap yield is $S_{L T}$. The short-term interest rate is $i_{S T}$. The central bank's policy rate is $i_{C B}$. The inflation is π, while the central bank's inflation target is $\bar{\pi}$. χ represents financial market volatility, while $\tau(t)$ is an exogenous shock. $W(t)$ is the Weiner process. The parameters of the models are: $\alpha_{1}, \alpha_{2}, \beta, \gamma, \delta$.
$d S_{L T}(t)=\left(\alpha_{1} i_{S T}(t)+\alpha_{2} \pi(t)\right) d t+\chi(t) \sqrt{i_{S T}(t)} d W(t)$
$d i_{S T}(t)=\beta\left(i_{C B}(t)-i_{S T}(t)\right) d t+\chi(t) \sqrt{i_{S T}(t)} d W(t)$
$d \pi(t)=\gamma(\bar{\pi}-\pi(t)) d t+\chi(t) \sqrt{\pi(t)} d W(t)$
$d \chi(t)=\delta(\bar{\chi}-\chi(t)) d t+\tau(t) \sqrt{\chi(t)} d W(t)$

Equation [1] relates the dynamics of the long-term swap yield to the change in the short-term interest rate, the change in inflation, and the change in the Weiner process adjusted by the volatility of financial markets and the short-term interest rate. Equation [2] expresses the dynamics of the short-term interest rate as a function of (1) the difference between the central bank's policy rate and the short-term interest rate, and (2) the Weiner process adjusted by the volatility of the financial market and the short-term interest rate. Equation [3] relates the
dynamics of inflation to (1) the difference between the central bank's inflation target and inflation, and (2) the Weiner process adjusted by the volatility of financial market and inflation. Equation [4] relates the dynamics of the financial market's volatility to a mean reverting process and the Weiner process adjusted by an exogenous shock and the volatility of the financial market.

The above model ties the dynamics of the interbank swap yield to fundamental macroeconomic and financial variables, such as the change in the short-term interest rate, change in inflation, and financial market volatility. It can be seamlessly extended to incorporate any other pertinent macroeconomic factor, such as the change in the growth of industrial production, change in the logarithm of the equity price index, and change in the logarithm of the exchange rate, if these factors are deemed as important drivers of the interbank swap yield.

Later in this paper the standard $\operatorname{GARCH}(1,1)$ approach is applied to econometrically model the dynamics of the swap yield and relate it to the change in the short-term interest rate and other macroeconomic and financial variables.

IV. MACROECONOMIC BACKDROP TO THE EVOLUTION OF THE INTERBANK SWAP YIELD IN CHILE

Even a perfunctory analysis of the stylized facts of macroeconomic and financial data would reveal that monetary policy and overall interest rate dynamics have a profound influence on the change in the swap yield. Chile's interbank swap yield follow similar patterns.

Figure 2 shows the evolution of the interbank swap yield and the short-term interest rate in Chile between 2005 and 2021. Between 2005 and 2007, the interbank swap yield on swaps of different maturity tenors steadily increased as the Banco Central de Chile (BCCH) raised its policy rate. The interbank swap yield declined sharply during the global financial crisis (GFC) as the shortterm interest rate declined in lockstep with the BCCH's policy rate. The interbank swap yield gradually rose from early 2009 to mid-2011. From mid-2011 to 2019 the interbank swap interest
yield gradually declined. As BCCH cut its policy rate in response to the global lockdown during the COVID-19 pandemic, the interbank swap yield fell markedly. Since mid-2021 the interbank swap yield rose noticeably as the BCCH raised its policy rate.

Figure 2. The Evolution of Interest Rate Swap Yields and the Short-term Interest Rate in Chile, 2005-21

Figure 3 displays the coevolution of the interbank swap yield and consumer price index (CPI) inflation in Chile. The swap yield and inflation generally appear to move together, though the relationship between the swap yield and inflation is often rather weak.

Figure 3. The Coevolution of 10-year Interbank Swap Yield and CPI Inflation, 2005-21

Figure 4 shows the evolution of inflation and core inflation in Chile from 2005 to 2021. Overall inflation and core inflation tend to move together. Inflation rose sharply in mid-2007 and continued to rise until later in 2008. Inflation fell between 2009-10. Except for a brief spell of high inflation between late 2014 and early 2015, inflation stayed in the range of 2-4 percent year over year between mid-2010 and mid-2021. Inflation began rising in mid-2021. By late 2021, inflation exceed 6 percent, while core inflation was just shy of 6 percent.

Figure 4. Inflation and Core Inflation in Chile, 2005-21

Figure 5 displays the growth of industrial production. The growth of industrial production is a useful indicator of business cycle conditions of economic activity in Chile. The time series on the growth of industrial production is volatile, but it shows that industrial production usually trends to grow. However, industrial production declined during the GFC. Industrial production rose in the subsequent quarters, exhibiting recovery from the GFC. However, between early 2013 to late 2019 the country's industrial production exhibited considerable volatility from month to month. During the global lockdown, industrial production declined sharply amid restrictions and social distancing but its growth resumed as restrictions were later scaled back and the pandemic subsided.

Figure 5. The Growth of Industrial Production in Chile, 2005-21

Figure 6 exhibits the evolution of the Chilean peso against the US dollar. The Chilean peso appreciated more than 20 percent between January 2005 to mid-2008. It subsequently depreciated sharply about 40 percent between mid-2008 and early 2009. This depreciation was reversed between 2009 and early 2011. The peso remained steady for the next two years. The peso depreciated between early 2013 to early 2016, followed by moderate appreciation until early 2018. It depreciated from April 2018 to April 2020, followed by appreciation until May 2021. However, the peso soon reversed course; it depreciated from mid-2021 to the end of the year.

Figure 6. The Evolution of the Chilean Peso, USDCLP, 2005-21

Figure 7 displays the evolution of the Chilean equity price index, as measured by the Indice General de Precios de Acciones (IGPA), between 2005-21. It was generally rising throughout the period, though there were some periods during which IGPA either declined or stayed flat. For instance, between mid-2007 until late 2008 it declined. It was range bound between mid-2011 and mid-2016. After climbing from early 2016 to early 2018, the index declined until mid-2020. It was range bound from 2020 until the end of 2021.

Figure 7. The Evolution of the Chilean Equity Price Index, IGPA, 2005-21
Chile, Equity price index, IGPA

V. DATA DESCRIPTION, UNIT ROOT TESTS, AND STATIONARITY TESTS

Table 1 below provides a summary of the variables used in the paper. The first column lists the variable names. The second column gives the data description and the date range for the data. The third column enumerates the data frequency and indicates whether high frequency data have been converted to low frequency data. The final column provides the source of the data.

Two different variables are used for the short-term interest rate. These short-term interest rates are based on the Pagaré Descontable del Banco Central de Chile (PDBC) instruments, which are discountable promissory notes issued by the BCCH , the nation's central bank. There are three
different interbank swap yields in two-year, five-year, and ten-year maturity tenors. Inflation is measured using both total inflation and core inflation. Total inflation is based on the total CPI, while core inflation is the total CPI excluding food and energy prices. Economic activity is measured by the growth of industrial production year over year. The exchange rate is based on the value of Chilean peso per US dollar. IGPA general is the equity price index.

Monthly data for the above-mentioned variables are used. For all variables (except core inflation) the data's time range is from January 2005 to December 2021, consisting of more than 200 observations.

Table 1. Summary of the Data

Variables	Data description, date range	Frequency	Sources
Short-term interest rates			
PDBC30D	Interest rate on BCCH instrument, PDBC 30 days, \%, Jan 2005-Dec 2021	Daily; converted to monthly	Banco Central de Chile
PDBC90D	Interest rate on BCCH instrument, PDBC 90 days, \%, Jan 2005-Dec 2021	Daily; converted to monthly	Banco Central de Chile
Long-term swap rates			
SWAP2Y	Interbank swap yield, 2 year, \%, January 2005-December 2021	Daily; converted to monthly	Banco Central de Chile
SWAP5Y	Interbank swap yield, 5 year, \%, January 2005-December 2021	Daily; converted to monthly	Banco Central de Chile
SWAP10Y	Interbank swap yield, 10 year, \%, January 2005-December 2021	Daily; converted to monthly	Banco Central de Chile
Inflation			
CPIYOY	Consumer price index, all items, seasonally adjusted, $2018=100, \%$ change, y / y, January 2005-December 2021	Monthly	Instituto Nacional de Estadística de Chile
COREYOY	Consumer price index, all items excluding food and energy, seasonally adjusted, $2018=$ 100 , \% change, y / y, January 2010 December 2021	Monthly	Instituto Nacional de Estadística de Chile
Economic activity			
IPYOY	Industrial production index, seasonally adjusted, $2014=100, \%$ change, y / y, January 2005-December 2021	Monthly	Sociedad de Fomento Fabril
Financial variables			
CLP	Exchange rate, Chilean peso per U.S. dollar, USDCLP, January 2005-December 2021	Daily; converted to monthly	Banco Central de Chile
IGPA	Equity price index, IGPA General, 12/31/1980 = 100, January 2005-December 2021	Daily; converted to monthly	Financial Times

Note that in the text below, LNIGPA indicates the (natural) logarithm of IGPA. Likewise, LNCLP is the (natural) logarithm of CLP, the exchange rate.

Table 2A and table 2B provide the summary statistics of these variables. Table 2A displays the summary statistics of the variables, while table 2 B provides the summary statistics of the first differences of the same variables. Table 2A shows that most variables, except for CPIYOY, IPYOY, LNIGPA, and LNCLP, are not normally distributed. However, table 2B reveals that the first differences of all the variables are all normally distributed.

Table 2A. Summary Statistics of the Variables

	Obs	Mean	Std. Dev.	Max	Min	Skewness	Kurtosis	J-B	Probability
SWAP2Y	204	4.03	1.62	8.30	0.54	-0.01	2.74	0.56	0.76
SWAP5Y	204	4.65	1.43	7.94	1.17	-0.32	2.89	3.52	0.17
SWAP10Y	204	5.15	1.26	7.82	2.16	-0.31	2.67	4.27	0.12
PDBC30D	204	3.43	1.80	8.74	0.24	0.27	3.00	2.55	0.28
PDBC90D	204	3.51	1.80	8.36	0.24	0.18	2.80	1.47	0.48
CPIYOY	204	3.42	2.03	9.90	-2.22	0.79	5.00	55.28	0.00
COREYOY	144	2.48	1.34	6.42	-1.70	0.39	3.23	3.97	0.14
IPYOY	204	1.28	5.95	30.53	-17.84	0.32	5.81	70.61	0.00
LNIGPA	204	9.80	0.30	10.27	9.08	-0.79	2.73	21.57	0.00
LNCLP	204	6.38	0.16	6.75	6.09	0.37	2.06	12.13	0.00

Table 2B. Summary statistics of the first differences of the variables

	Obs	Mean	Std. Dev.	Max	Min	Skewness	Kurtosis	J-B	Probability
Δ SWAP2Y	203	0.01	1.09	-1.34	0.30	-0.77	8.12	242.12	0.00
Δ SWAP5Y	203	0.00	0.96	-1.02	0.26	-0.21	5.88	71.76	0.00
Δ SWAP10Y	203	-0.01	0.88	-0.96	0.23	-0.02	5.50	52.84	0.00
Δ PDBC30D	203	0.01	1.26	-2.66	0.37	-2.18	19.47	2454.84	0.00
Δ PDBC90D	203	0.01	1.50	-2.31	0.37	-1.76	16.83	1722.40	0.00
Δ CPIYOY	203	0.02	1.47	-1.92	0.51	-0.63	4.83	41.68	0.00
Δ COREYOY	143	0.06	0.32	1.82	0.65	1.30	8.58	225.62	0.00
Δ IPYOY	203	-0.01	26.64	-22.41	5.85	0.24	5.52	55.68	0.00
Δ LNIGPA	203	0.00	0.11	-0.23	0.04	-1.23	8.44	301.45	0.00
Δ LNCLP	203	0.00	0.15	-0.07	0.03	1.04	7.84	235.17	0.00

The unit root tests are conducted using the automated Dickey-Fuller (ADF) tests (Dickey and Fuller 1979, 1981), while the stationarity tests are conducted using the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) tests (Kwiatkowski et al. 1992).

Table 3A displays the results of the unit root tests and the stationary tests for these variables. The results are mixed regarding swap yields, while PDBC rates are stationary with the intercept and trend inclusion in the test equation for an ADF unit root test but nonstationary otherwise. Similar mixed results are obtained in the KPSS stationary tests. Among the control variables, only the growth of industrial production yielded a stationary result in both types of tests. Other control variables are either nonstationary or show mixed results under different assumptions.

Table 3A. Unit Root and Stationarity Tests of the Variables

	ADF Unit Root Tests (H0: Nonstationary)		KPSS Tests (H0: Stationarity) tests		
	None	Intercept	Trend	Intercept	Trend
SWAP2Y	-0.79	-2.57	$-3.49^{* *}$	$1.11^{* * *}$	0.05
SWAP5Y	-0.62	-2.16	$-3.61^{* *}$	$1.42^{* * *}$	0.05
SWAP10Y	-0.66	-2.13	$-3.88^{* *}$	$1.52^{* * *}$	0.05
PDBC30D	-1.00	-2.67^{*}	-2.96^{*}	$0.60^{* *}$	0.08
PDBC90D	-1.17	$-3.21^{* *}$	$-3.70^{* *}$	$0.65^{* *}$	0.05
CPIYOY	-0.53	-2.38	-2.27	0.10	0.05
COREYOY	0.82	-0.99	-1.26	0.37	$0.20^{* *}$
IPYOY	$-3.38^{* * *}$	$-3.50^{* * *}$	$-3.50^{* *}$	0.07	0.07
LNIGPA	-1.47	-2.39	-1.78	$1.32^{* * *}$	$0.24^{* * *}$
LNCLP	-0.79	-0.67	-2.51	$1.27^{* * *}$	$0.28^{* * *}$

Note: Significance levels ${ }^{* * *}$ for 1 percent, ${ }^{* *}$ for 5 percent, and * for 10 percent

Table 3B presents the unit root and the stationarity tests for the first differences of the variables. All the ADF unit root tests indicate the null hypothesis on nonstationarity can be rejected at the 1 percent level of significance for the first differences of all variables. The KPSS tests show that the null hypothesis of stationarity cannot be rejected for the first differences of these variables (except for the growth of industrial production at 10 percent significance under trend inclusion).

Table 3B. Unit Root and Stationarity Tests of the First Differences of the Variables

	ADF Unit Root Test ($\mathbf{H}_{0}:$ Nonstationary)		KPSS Test ($\mathbf{H}_{0}:$ Stationarity)		
	None	Intercept	Trend	Intercept	0.07
Δ SWAP2Y	$-7.11^{* * *}$	$-7.09^{* * *}$	$-7.09^{* * *}$	0.08	0.08
Δ SWAP5Y	$-8.43^{* * *}$	$-8.41^{* * *}$	$-8.40^{* * *}$	0.09	0.06
Δ SWAP10Y	$-8.96^{* * *}$	$-8.94^{* * *}$	$-8.93^{* * *}$	0.08	0.05
Δ PDBC30D	$-7.27^{* * *}$	$-7.24^{* * *}$	$-7.24^{* * *}$	0.05	0.06
Δ PDBC90D	$-5.31^{* * *}$	$-5.30^{* * *}$	$-5.28^{* * *}$	0.06	0.05
Δ CPIYOY	$-6.06^{* * *}$	$-6.06^{* * *}$	$-6.06^{* * *}$	0.06	0.19
Δ COREYOY	$-5.90^{* * *}$	$-6.09^{* * *}$	$-6.07^{* * *}$	0.20	0.50^{*}
Δ IPYOY	$-15.92^{* * *}$	$-15.88^{* * *}$	$-10.15^{* * *}$	0.45	0.05
Δ LNIGPA	$-12.16^{* * *}$	$-12.25^{* * *}$	$-12.36^{* * *}$	0.26	0.03
Δ LNCLP	$-10.28^{* * *}$	$-10.31^{* * *}$	$-10.39^{* * *}$	0.19	0.

Note: Significance levels $* * *$ for 1 percent, ${ }^{* *}$ for 5 percent, and $*$ for 10 percent

The unit root tests and the stationary tests imply that it is appropriate to econometrically model the month-over-month change in the swap yield using month-over-month change in the shortterm interest rate, change in inflation, change in the growth of industrial production, change in the \log of the equity price index, and change in the exchange rate.

VI. ECONOMETRIC MODELS AND EMPIRICAL RESULTS

The autoregressive conditional heteroskedasticity (ARCH) Lagrange multiplier (LM) tests on ordinary least square (OLS) regressions of swap yield models are conducted to ascertain whether an ARCH framework is a suitable approach for econometrically modeling the dynamics of the swap yield. These models and their generalized version (GACRH) are specifically designed to model and forecast conditional variances.

ARCH models were introduced by Engle (1982) and GARCH by Bollerslev (1986) and Taylor (1986). ${ }^{2}$ In ARCH and GARCH models, the variance of the dependent variable is a function of the past values of the dependent variable and independent, or exogenous, variables. This allows the analyst to model volatility over time.

[^2]The ARCH LM tests are given in table 4. The tests show that the presence of ARCH in the OLS regression models of the month-over-month change in the swap yield of different maturity tenors. These results clearly indicate that an ARCH-type model will be useful for estimating the relationship between the month-over-month change in the swap yield and the month-over-month change in the short-term interest rate in Chile, after controlling for other factors, by modeling the volatility.

Table 4. ARCH LM Test

Models	Δ SWAP2Y	Δ SWAP5Y	Δ SWAP10Y	Δ SWAP2Y	Δ SWAP5Y	Δ SWAP10Y
Lags	Δ PDBC30D					
$\mathbf{1}$	9.23	7.25	13.85	15.71	9.91	13.38
	(0.00)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
$\mathbf{4}$	5.14	5.77	6.31	7.73	5.83	6.60
	(0.00)	(0.00)	(0.00)	(0.03)	(0.00)	(0.00)
$\mathbf{8}$	2.72	4.05	3.96	4.23	4.33	4.00
	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
$\mathbf{1 2}$	1.91	2.73	2.84	2.89	3.23	2.96
	(0.04)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)

Note: OLS model includes the change in the short-term interest rate ($\triangle \mathrm{PDBC} 30 \mathrm{D}, \triangle \mathrm{PDBC} 9 \mathrm{oD}$) and the controls (namely \triangle CPIYOY, \triangle IPYOY, Δ LNIGPA, and $\triangle \mathrm{LNCLP}$). p-values are in parenthesis.

To address these issues and allow the conditional variance of the error term to depend upon its previous own lags, the following standard $\operatorname{GARCH}(1,1)$ model is used here to econometrically analyze the dynamic of the swap yield.
$Y_{t}=\beta_{0}+\beta_{1} X_{t}+\varepsilon_{t}$
$\sigma_{t}^{2}=\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}+\gamma_{1} \sigma_{t-1}^{2}$

Here the current volatility of the error term is explained by the long-run average variance $\left(\alpha_{0}\right)$, the past values of the shocks, and the history of volatility.

The following $\operatorname{GARCH}(1,1)$ models are estimated as specified below:
$\Delta \mathrm{SWAP} 2 \mathrm{Y}=\varphi^{1}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \operatorname{AR}(1)) \quad$ [7]
$\Delta \mathrm{SWAP} 2 \mathrm{Y}=\varphi^{2}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \operatorname{IPYOY}, \operatorname{AR}(1))$
$\Delta \mathrm{SWAP} 2 \mathrm{Y}=\varphi^{3}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \Delta \mathrm{LNIGPA}, \Delta \mathrm{LNCLP}, \operatorname{AR}(1))$[9]
Δ SWAP5Y $=\varphi^{4}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \operatorname{AR}(1))$ [10]
Δ SWAP5Y $=\varphi^{5}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \operatorname{AR}(1))$
$\Delta \mathrm{SWAP} 5 \mathrm{Y}=\varphi^{6}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \Delta \mathrm{LNIGPA}, \Delta \mathrm{LNCLP}, \operatorname{AR}(1))$[11]
$\Delta \mathrm{SWAP} 10 \mathrm{Y}=\varphi^{7}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \operatorname{AR}(1))$

$$
\Delta \mathrm{SWAP} 10 \mathrm{Y}=\varphi^{8}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \operatorname{AR}(1))
$$

$$
\Delta \mathrm{SWAP} 10 \mathrm{Y}=\varphi^{9}(\mathrm{C}, \Delta \mathrm{PDBC} 90 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \Delta \mathrm{LNIGPA}, \Delta \mathrm{LNCLP}, \operatorname{AR}(1))
$$[15]

Δ SWAP2Y $=\psi^{1}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \operatorname{AR}(1))$[16]
$\Delta \mathrm{SWAP} 2 \mathrm{Y}=\psi^{2}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \operatorname{IPYOY}, \operatorname{AR}(1))$[17]
$\Delta \mathrm{SWAP} 2 \mathrm{Y}=\psi^{3}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \Delta \mathrm{LNIGPA}, \Delta \mathrm{LNCLP}, \operatorname{AR}(1))$[18]

$$
\begin{align*}
& \Delta \mathrm{SWAP} 5 \mathrm{Y}=\psi^{4}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \operatorname{AR}(1)) \tag{19}\\
& \Delta \mathrm{SWAP} 5 \mathrm{Y}=\psi^{5}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \operatorname{IPYOY}, \operatorname{AR}(1)) \tag{20}\\
& \Delta \mathrm{SWAP} 5 \mathrm{Y}=\psi^{6}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \Delta \mathrm{LNIGPA}, \Delta \mathrm{LNCLP}, \operatorname{AR}(1)) \tag{21}\\
& \Delta \mathrm{SWAP} 10 \mathrm{Y}=\psi^{7}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \operatorname{AR}(1)) \tag{22}\\
& \Delta \mathrm{SWAP} 10 \mathrm{Y}=\psi^{8}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \operatorname{AR}(1)) \tag{23}\\
& \Delta \mathrm{SWAP} 10 \mathrm{Y}=\psi^{9}(\mathrm{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \Delta \mathrm{LNIGPA}, \Delta \mathrm{LNCLP}, \operatorname{AR}(1)) \tag{24}
\end{align*}
$$

The main results for the $\operatorname{GARCH}(1,1)$ models are presented in table 5A and table 5B using $\triangle \mathrm{PDBC} 90 \mathrm{D}$ and $\triangle \mathrm{PDBC} 30 \mathrm{D}$ respectively as the month-over-month change in the short-term interest rate. The swap rates for two, five and ten years are modeled by adding various control variables (namely \triangle CPIYOY, \triangle IPYOY, \triangle LNIGPA, and \triangle LNCLP). An autoregressive term $(\operatorname{AR}(1))$ is added to control for the autocorrelation in the models. Model diagnostic information and the results of postestimation diagnostic tests are also displayed in these tables. The correlograms (autocorrelations and partial autocorrelations) of the standardized residuals from the estimated $\operatorname{GARCH}(1,1)$ models with $\triangle \mathrm{PDBC} 90 \mathrm{D}$ and $\triangle \mathrm{PDBC} 30 \mathrm{D}$, respectively, are provided in appendix A and appendix B .

In the mean equation of table 5 A , the effect of \triangle PDBC90D on \triangle SWAP2Y and \triangle SWAP5Y is positive and statistically significant. However, its effect on \triangle SWAP10Y is positive but not statistically significant. This means that the change in the short-term interest rate has clear, definitive, and statistically significant effects on the frontend and the belly of the interbank swap yield curve but not on the backend of the swap yield curve. The effects of \triangle CPIYOY and Δ IPYOY on the swap yield of different maturity tenors are positive but mostly not statistically significant. Among the control variables, the change in the \log of the Chilean equity price index has a positive and statistically significant effect on the change in the swap yield of all maturity
tenors. This means as that a rise (fall) in the equity price index is associated with an increase (decline) in the swap yields of different maturities. The results also show the change in the log of the exchange rate of the Chilean peso against the US dollar has a positive and statistically significant effect on \triangle SWAP5Y and \triangle SWAP10Y. However, its effect on \triangle SWAP2Y is negative but not statistically significant. The AR(1) term has positive and statistically significant effect on the swap yield of all three maturity tenors.

The parameters in the variance equation are statistically significant. The significant ARCH coefficient implies that a volatility shock today feeds into the next month's volatility. The significant GARCH coefficient indicates a large shock (either positive or negative) will lead to a large variance in the forecast for a long period of time. The sum of the ARCH and the GARCH coefficients measures the rate at which the volatility effect fades over time. Since the sum is high, the shocks to the conditional variance are persistent and clustered over time.

Table 5B shows that $\triangle \mathrm{PDBC} 30 \mathrm{D}$ has pretty much the same effect as that of $\triangle \mathrm{PDBC} 90 \mathrm{D}$ on the swap yield of different maturity tenors. The effect of \triangle PDBC30D on not just \triangle SWAP2Y and Δ SWAP5Y but also on Δ SWAP10Y is positive and statistically significant. However, the effect's magnitude on the change in the swap yields of longer maturity tenors is smaller. The effects of \triangle CPIYOY and \triangle IPYOY on the swap yield of different tenors are positive but mostly not statistically significant. The effect of \triangle LNIGPA on the swap yield is always positive and statistically significant while the effect of \triangle LNCLP on the swap yield is always positive and sometimes statistically significant. The effect of the AR(1) term is always positive and statistically significant.

In the models with $\triangle \mathrm{PDBC} 30 \mathrm{D}$, the ARCH and the GACRH coefficients in the variance equation are both statistically significant. The sum of the two coefficients is closer to one than in the models presented earlier in table 5A. This indicates strong evidence of the persistence and clustering of the variance in the error terms. Here, too, the positive and statistically significant ARCH coefficient implies that a volatility shock today feeds into the next month's volatility. The positive and statistically significant GARCH coefficient indicates a large shock (either positive or negative) will lead to a large variance in the forecast for a long period of time.

It is useful to have some perspective on the financial market volatility that can affect the interbank swap yields and financial conditions in Chile. Chile is a high-income emerging market but it is subject to financial shocks, international trade slowdowns, and global economic pressures. Exports of goods and services account for nearly one-third of the country's nominal GDP. Commodities make up nearly 60 percent of Chile's total exports. Copper is the country's main export, providing around 20 percent of government revenue. Due to the high share of exports in nominal GDP and its dependence on the revenue from the export of copper, Chile's financial markets and its economy can exhibit volatility emanating from the uncertainty regarding fluctuations in commodity prices (especially the international price of copper) and global industrial production, as well as turbulence in overseas financial markets and economic shocks.

Postestimation tests for these models show support for the GARCH approach to the econometric modeling of the swap yield of various maturity tenors as evinced by the ARCH LM tests. The models do not have any autocorrelation problems and the standardized residuals are normally distributed. The correlograms in appendix A and appendix B show that there is no remaining autocorrelation in the mean equation and that the chosen models are correctly specified.

The models are re-estimated by replacing inflation with core inflation as a control variable. The results, which are displayed in appendix C, are comparable to the original models.

Table 5A. GARCH $(1,1)$ Model (with \triangle PDBC90D)

	\triangle SWAP2Y	\triangle SWAP2Y	\triangle SWAP2Y	\triangle SWAP5Y	\triangle SWAP5Y	- SWAP5Y	SSWAP10Y	\triangle SWAP10Y	\triangle SWAP10Y
Mean Equation									
Intercept	$\begin{aligned} & \hline-0.01 \\ & (0.84) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.01 \\ & (0.83) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.01 \\ & (0.71) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.005 \\ & (0.83) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.01 \\ & (0.72) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.01 \\ & (0.54) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.003 \\ & (0.84) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.005 \\ & (0.82) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.01 \\ (0.64) \\ \hline \end{gathered}$
\triangle PDBC90D	$\begin{aligned} & \hline 0.29 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.29 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.31 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.12 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & (0.24) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.04 \\ & (0.31) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.04 \\ & (0.35) \\ & \hline \end{aligned}$
\triangle CPIYOY		$\begin{aligned} & 0.02 \\ & (0.61) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & (0.57) \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.03 \\ & (0.31) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & (0.53) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.02 \\ & (0.48) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & (0.81) \\ & \hline \end{aligned}$
Δ IPYOY		$\begin{aligned} & 0.004 \\ & (0.07) \end{aligned}$	$\begin{aligned} & \hline 0.003 \\ & (0.14) \end{aligned}$		$\begin{aligned} & \hline 0.003 \\ & (0.25) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.35) \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.002 \\ & (0.20) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.18) \end{aligned}$
\triangle LNIGPA			$\begin{aligned} & 0.81 \\ & (0.01) \\ & \hline \end{aligned}$			$\begin{aligned} & 0.80 \\ & (0.03) \\ & \hline \end{aligned}$			$\begin{aligned} & 0.43 \\ & (0.27) \\ & \hline \end{aligned}$
$\triangle \mathrm{LNCLP}$			$\begin{gathered} -0.18 \\ (0.73) \\ \hline \end{gathered}$			$\begin{aligned} & 0.98 \\ & (0.05) \end{aligned}$			$\begin{aligned} & \hline 1.55 \\ & (0.00) \\ & \hline \end{aligned}$
AR(1)	$\begin{aligned} & \hline 0.41 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.40 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.38 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.33 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.33 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.34 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.37 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.35 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.37 \\ & (0.00) \\ & \hline \end{aligned}$
Variance Equation									
Intercept	$\begin{aligned} & \hline 0.01 \\ & (0.15) \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & (0.16) \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & (0.15) \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & (0.20) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & (0.21) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & (0.23) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.005 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.004 \\ & (0.17) \\ & \hline \end{aligned}$
ARCH	$\begin{aligned} & 0.13 \\ & (0.03) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.15 \\ & (0.03) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.19 \\ & (0.04) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & (0.08) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & (0.07) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.08) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & (0.01) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & (0.01) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.02) \\ & \hline \end{aligned}$
GARCH	$\begin{aligned} & \hline 0.73 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.70 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.72 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.75 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.75 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.71 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.74 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.77 \\ & (0.00) \\ & \hline \end{aligned}$
Model Information									
Obs	202	202	202	202	202	202	202	202	202
Adj \mathbf{R}^{2}	0.43	0.43	0.44	0.26	0.25	0.26	0.19	0.18	0.19
AIC	-0.14	-0.13	-0.14	-0.20	-0.19	-0.19	-0.35	-0.34	-0.36
Diagnostic Tests									
$\begin{aligned} & \hline \text { ARCH LM } \\ & \text { (12 lags) } \end{aligned}$	$\begin{aligned} & \hline 0.76 \\ & (0.69) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.88 \\ (0.57) \\ \hline \end{array}$	$\begin{aligned} & \hline 1.06 \\ & (0.40) \end{aligned}$	$\begin{aligned} & \hline 0.93 \\ & (0.51) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.85 \\ & (0.60) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.67 \\ & (0.77) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.67 \\ & (0.78) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.54 \\ & (0.88) \end{aligned}$	$\begin{aligned} & \hline 0.42 \\ & (0.95) \\ & \hline \end{aligned}$
DW Stat	1.88	1.90	1.90	1.80	1.82	1.82	1.84	1.85	1.82
JQB	$\begin{aligned} & \hline 46.69 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33.78 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 18.39 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13.96 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13.61 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 11.09 \\ (0.00) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7.25 \\ & (0.03) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.73 \\ & (0.04) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.28 \\ & (0.05) \\ & \hline \end{aligned}$

Note: all vars are in diff, p-values are in parenthesis

Table 5B. GARCH $(1,1)$ Model (with \triangle PDBC30D)

	\triangle SWAP2Y	-SWAP2Y	\triangle SWAP2Y	\triangle SWAP5Y	\triangle SWAP5Y	USWAP5Y	\triangle SWAP10Y	\triangle SWAP10Y	\triangle SWAP10Y
Mean Equation									
Intercept	$\begin{aligned} & \hline-0.003 \\ & (0.89) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.004 \\ & (0.86) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.01 \\ (0.75) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.002 \\ & (0.92) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.82) \end{aligned}$	$\begin{gathered} \hline-0.01 \\ (0.56) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.004 \\ & (0.85) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.01 \\ (0.76) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.01 \\ (0.64) \\ \hline \end{gathered}$
\triangle PDBC30D	$\begin{aligned} & \hline 0.38 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.38 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.38 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.23 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.23 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.14 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.14 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.04 \\ & (0.35) \\ & \hline \end{aligned}$
\triangle CPIYOY		$\begin{aligned} & \hline 0.02 \\ & (0.51) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & (0.50) \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.03 \\ & (0.35) \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.03 \\ & (0.33) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & (0.81) \\ & \hline \end{aligned}$
\triangle IPYOY		$\begin{aligned} & \hline 0.003 \\ & (0.15) \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.19) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.002 \\ & (0.26) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.33) \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.002 \\ & (0.19) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.18) \\ & \hline \end{aligned}$
\triangle LNIGPA			$\begin{aligned} & 0.79 \\ & (0.01) \\ & \hline \end{aligned}$			$\begin{aligned} & 0.82 \\ & (0.03) \\ & \hline \end{aligned}$			$\begin{aligned} & 0.43 \\ & (0.27) \\ & \hline \end{aligned}$
$\Delta \mathrm{LNCLP}$			$\begin{aligned} & 0.40 \\ & (0.50) \end{aligned}$			$\begin{aligned} & \hline 1.42 \\ & (0.02) \\ & \hline \end{aligned}$			$\begin{aligned} & 1.55 \\ & (0.00) \\ & \hline \end{aligned}$
AR(1)	$\begin{aligned} & \hline 0.39 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.38 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.37 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.34 \\ (0.00) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.32 \\ (0.00) \\ \hline \end{array}$	$\begin{aligned} & 0.34 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.35 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.33 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.37 \\ & (0.00) \\ & \hline \end{aligned}$
Variance Equation									
Intercept	$\begin{aligned} & \hline 0.002 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.17) \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.17) \end{aligned}$	$\begin{aligned} & \hline 0.003 \\ & (0.30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.22) \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.28) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.004 \\ & (0.17) \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.004 \\ & (0.17) \end{aligned}$
ARCH	$\begin{aligned} & 0.08 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (0.04) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.04) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.08 \\ (0.08) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.08 \\ (0.03) \\ \hline \end{array}$	$\begin{aligned} & 0.09 \\ & (0.06) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.11 \\ & (0.03) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.11 \\ & (0.02) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.02) \\ & \hline \end{aligned}$
GARCH	$\begin{aligned} & \hline 0.88 \\ & (0.00) \end{aligned}$	$\begin{aligned} & \hline 0.87 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.84 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.85 \\ & (0.00) \end{aligned}$	$\begin{aligned} & \hline 0.88 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.87 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.79 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.84 \\ & (0.00) \end{aligned}$	$\begin{aligned} & \hline 0.77 \\ & (0.00) \end{aligned}$
Model Information									
Obs	202	202	202	202	202	202	202	202	202
Adj R ${ }^{\text {2 }}$	0.47	0.47	0.48	0.31	0.30	0.31	0.22	0.21	0.19
AIC	-0.21	-0.20	-0.21	-0.24	-0.23	-0.25	-0.37	-0.37	-0.36
Diagnostic Tests									
ARCH LM (12 lags)	$\begin{aligned} & \hline 1.46 \\ & (0.14) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.56 \\ & (0.11) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.09 \\ & (0.37) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.46 \\ & (0.93) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.49 \\ & (0.92) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.34 \\ & (0.98) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.51 \\ & (0.90) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.41 \\ & (0.96) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.67 \\ & (0.79) \\ & \hline \end{aligned}$
DW Stat	1.88	1.90	1.88	1.80	1.82	1.80	1.82	1.81	1.82
JQB	$\begin{aligned} & \hline 9.36 \\ & (0.01) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.59 \\ & (0.01) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.60 \\ & (0.10) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 12.60 \\ (0.00) \\ \hline \end{array}$	$\begin{aligned} & \hline 11.72 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.22 \\ & (0.03) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.95 \\ & (0.08) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.04 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.28 \\ & (0.05) \\ & \hline \end{aligned}$

Note: all vars are in diff, p-values are in parenthesis

VII. THE IMPLICATIONS OF THE EMPIRICAL FINDINGS

The empirical findings reported in this paper have consequential implications for macroeconomic and financial theory, monetary policy, banking regulations, asset allocation, and risk management.

First, the findings show that the BCCH's actions on its policy rate and other monetary policy measures can have a noticeable effect on the interbank swap yield through the changes in the short-term interest rate. An increase (decrease) in the short-term interest rate is associated with
the rise (fall) in the swap yield. This shows that the BCCH's monetary policy can have a powerful impact on the financial conditions of financial institutions and other enterprises, as well as on the financial system.

Second, the empirical findings show that a rise (decline) in inflation and the growth of industrial production is usually associated with a higher (lower) swap yield, even though these effects are not statistically significant. This means that when the effective demand increases (decreases), which is often associated with inflation and the growth of industrial production, the interbank swap yield will tend to rise (fall).

Third, the findings associate the rise (decline) of the log of the equity price index with a higher (lower) swap yield. This implies that the swap buyer will receive a higher (lower) variable interest payments on swaps when financial markets are buoyant (sluggish) and rising (declining).

Fourth, the findings also relate the depreciation (appreciation) of the \log of the exchange rate (the Chilean peso per US dollar) to a higher (lower) swap yield. This means that as the Chilean peso depreciates (appreciates) the buyer of the interest rate swap will receive a higher (lower) variable interest payment from the seller of the interest rate swap.

The empirical findings of the paper reinforce the view that the central bank can exert enormous influence on financial markets. The findings also support the notion that the central bank's actions influence the pricing of fixed income securities and derivatives, such as interbank interest rate swaps, through its monetary policy (Bindseil 2004; Fullwiler [2008] 2017).

VIII. CONCLUSION

The empirical analysis reveals that the month-over-month change in the short-term interest rate has an economically and statistically significant effect on the month-over-month change in the interbank swap yield of different maturity tenors after controlling for the month-over-month changes in several important macroeconomic and financial variables, such as inflation, the
growth of industrial production, the logarithm of the equity price index, and the logarithm of the exchange rate. This shows that the central bank's monetary policy action, through its effect on the change in the short-term interest rate, influences the interbank swap yield. This finding demonstrates the central bank's ability to influence financial institutions' borrowing and lending rates over different time horizons. Given the growing importance of interbank interest rate swaps and other derivatives on the banking industry, financial intermediation, financial markets, and corporate finance, it is a substantive finding with implications for monetary policy, bank regulations, asset allocation, and risk management. This finding has repercussions for the private sector's marginal efficiency of capital, investment decisions, profitability, and leveraging decisions.

There is a paucity of literature on the empirical modeling of the interbank swap yield. The findings of this paper illuminate the macroeconomic and financial factors that produce interbank swap yield dynamics. These findings are not only germane to understanding such dynamics in Chile and other Latin American countries, but also elsewhere in both emerging markets and advanced countries. It is hoped that these findings with generate more detailed empirical studies of swap yields in other emerging markets and advanced countries and advance the empirical modeling of long-term swap yields.

REFERENCES

Akram, T. 2021. "A Simple Model of the Long-Term Interest Rate." Journal of Post Keynesian Economics 45(1): 130-44.
——. 2022. "Multifactor Keynesian Models of the Long-Term Interest Rate." Applied Economics Letters. http://dx.doi.org/10.1080/13504851.2022.2041174 (online first).

Akram, T., and H. Li. 2020a. "An Inquiry Concerning Long-Term U.S. Interest Rates." Applied Economics 52(24): 2594-2621.
——. 2020b. "JGBs' Chronically Low Nominal Yields: A VEC Approach." Applied Economics 52(53): 5873-5893.
———. 2020c. "An Analysis of the Impact of the Bank of Japan's Monetary Policy on Japanese Government Bonds' Low Nominal Yields." In Alexis Stenfors and Jan Toporowski, eds., Unconventional Monetary Policy and Financial Stability: The Case of Japan. London: Routledge.

Bank for International Settlements. 2022. "OTC Derivatives Outstanding." https://www.bis.org/statistics/derstats.htm (online only).

Bicksler, J., and A. H. Chen. 1986. "An Economic Analysis of Interest Rate Swaps." The Journal of Finance 41(3): 645-55.

Bindseil, U. 2004. Monetary Policy Implementation: Theory, Past, and Present. Oxford, and New York: Oxford University Press.

Bollerslev, T. 1986. "Generalized Autoregressive Conditional Heteroskedasticity." Journal of Econometrics 31(3): 307-27.

Bollerslev, T., R. Y. Chou, and K. F. Kroner. 1992. "ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence." Journal of Econometrics 52(1-2): 5-59.

Bollerslev, T., R. F. Engle, and D. B. Nelson 1994. "ARCH Models." Chapter 49. In Robert F. Engle and Daniel L. McFadden (eds.), Handbook of Econometrics, Volume 4. Amsterdam, The Netherlands: Elsevier Science B.V.

Chernenko, S., and M. Faulkender. 2011. "The Two Sides of Derivatives Usage: Hedging and Speculating with Interest Rate Swaps." Journal of Financial and Quantitative Analysis 46(6): 1727-54.

Corb, H. 2012. Interest Rate Swaps and Other Derivatives. New York: Columbia University Press.

Dickey, D. A., and W. A. Fuller. 1979. "Distribution of the Estimators for Autoregressive Time Series with a Unit Root." Journal of the American Statistical Association 74(366): 42731.
—_. 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root." Econometrica 49(4): 1057-1072.

Duffie, D. and K. J. Singleton. 1997. "An Econometric Model of the Term Structure of Interestrate Swap Yields." The Journal of Finance 52(4): 1287-321.

Duffie, D., and M. Huang. 1996. "Swap Rates and Credit Quality." The Journal of Finance 51(3): 921-49.

Engle, R. F. 1982. "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation." Econometrica 50(4): 987-1008.
——. 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics." Journal of Economic Perspectives 15(4): 157-68.

Fullwiler, S. T. (2008) 2017. "Modern Central Bank Operations: The General Principles." In Louis-Philippe Rochon and Sergio Rossi, ed., Advances in Endogenous Money Analysis, Northampton, MA: Edward Elgar.

Keynes, J. M. 1930. A Treatise on Money, Vol. II: The Applied Theory of Money. London: Macmillan.
_-. (1936) 2007. The General Theory of Employment, Interest, and Money. New York: Palgrave Macmillan.

Kim, S. H., and G. D. Koppenhaver. 1993. "An Empirical Analysis of Bank Interest Rate Swaps." Journal of Financial Services Research 7(1): 57-72.

Kregel, J. 2011. "Was Keynes's Monetary Policy, à Outrance in the Treatise, the Model for ZIRP and QE?" Levy Institute Policy Note 2011/4. Annandale-on-Hudson, NY: Levy Economics Institute of Bard College.

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin. 1992. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root." Journal of Econometrics 54 (13): 159-78.

Lekkos, I., and C. Milas. 2001. "Identifying the Factors that Affect Interest-Rate Swap Spreads: Some Evidence from the United States and the United Kingdom." Journal of Futures Markets: Futures, Options, and Other Derivative Products 21(8): 737-68.

Riefler, W. W. 1930. Money Rates and Money Markets in the United States. New York and London: Harper \& Brothers.

Remolona, E. M., and P.D. Wooldridge. 2003. "The Euro Interest Rate Swap Market." BIS Quarterly Review (March): 47-56.

Smith Jr., C. W., C. W. Smithson, and L. M. Wakeman. 1988. "The Market for Interest Rate Swaps." Financial Management 17(4): 34-44.

Taylor, S. 1986. Modeling Financial Time Series. New York: John Wiley \& Sons.
Visvanathan, G. 1998. "Who Uses Interest Rate Swaps? A Cross-Sectional Analysis." Journal of Accounting, Auditing \& Finance 13(3): 173-200.

APPENDIX A: CORRELOGRAMS FOR GARCH(1,1) MODELS WITH \triangle PDBC90D

Table A1. Δ SWAP2Y $=\varphi^{1}(\mathbf{C}, \triangle \mathrm{PDBC90D}, \operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1	1 1	1	0.050	0.050	0.5081	
1 \|	1 \|	2	-0.014	-0.017	0.5485	0.459
1	1	3	0.071	0.072	1.5782	0.454
$1 \mid 1$	111	4	-0.010	-0.018	1.6011	0.659
11_{1}	111	5	-0.039	-0.036	1.9232	0.750
$1{ }^{1}$	11	6	-0.008	-0.010	1.9368	0.858
10^{1}	101	7	-0.063	-0.062	2.7716	0.837
1 1	1 1	8	-0.008	0.004	2.7846	0.904
1 1	1 1	9	0.014	0.012	2.8236	0.945
	11	10	0.002	0.008	2.8241	0.971
101	1i 1	11	-0.027	-0.029	2.9776	0.982
$1{ }^{1}$	1 1	12	0.009	0.005	2.9949	0.991
141	141	13	-0.027	-0.030	3.1519	0.994
$1{ }_{1}$	$1{ }_{1}$	14	0.039	0.044	3.4870	0.996
11	11	15	0.004	-0.003	3.4908	0.998
C1	14	16	-0.115	-0.112	6.4210	0.972
C1	■1	17	-0.119	-0.116	9.5930	0.887
141	141	18	-0.067	-0.068	10.601	0.877
141	111	19	-0.044	-0.024	11.035	0.893
111	111	20	-0.023	-0.011	11.154	0.919
1	1	21	0.060	0.066	11.968	0.917
¢1	¢1	22	-0.143	-0.164	16.622	0.734
1 1	11	23	0.004	-0.002	16.627	0.784
$1 \square^{1}$	민	24	-0.068	-0.114	17.685	0.774
101	111	25	-0.044	-0.021	18.129	0.797
1 万	1 1	26	0.089	0.092	19.969	0.748
101	101	27	-0.041	-0.060	20.368	0.774
141	101	28	-0.067	-0.066	21.417	0.766
$1 \mid 1$	101	29	0.014	-0.041	21.463	0.806
$1 \square$	$1 \square$	30	0.120	0.131	24.888	0.684
1 口1	$1 \square$	31	0.104	0.120	27.484	0.598
11	11	32	0.002	-0.004	27.485	0.648
111	141	33	0.017	-0.037	27.553	0.691
111	101	34	0.028	-0.026	27.742	0.726
1	11_{1}	35	0.069	0.039	28.924	0.715
1	1	36	0.072	0.103	30.210	0.699

Table A2. $\Delta \mathbf{S W A P 2 Y}=\varphi^{2}(\mathbf{C}, \triangle$ PDBC90D $, \Delta \mathbf{C P I Y O Y}, \Delta$ IPYOY, $\operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	
1 1	1 1	1	0.047	0.047	0.4557		
1i1 1	101	2	-0.026	-0.028	0.5955	0.440	
1 1	1	3	0.084	0.087	2.0513	0.359	
$1 \mid 1$	181	4	-0.022	-0.031	2.1502	0.542	
141	111	5	-0.026	-0.018	2.2885	0.683	
$1 \mid 1$	111	6	-0.009	-0.016	2.3067	0.805	
1[1	141	7	-0.066	-0.062	3.2261	0.780	
111	1 1	8	-0.002	0.007	3.2269	0.863	
111	1 1	9	-0.003	-0.007	3.2294	0.919	
$1 \mid 1$	$1 \\|_{1}$	10	0.024	0.035	3.3553	0.949	
101	101	11	-0.038	-0.046	3.6701	0.961	
$1 \mid 1$	1 \| 1	12	0.010	0.015	3.6923	0.978	
1\|1	111	13	-0.012	-0.023	3.7234	0.988	
11_{1}	111	14	0.033	0.040	3.9563	0.992	
11	11	15	0.005	-0.003	3.9609	0.996	
단	1	16	-0.105	-0.104	6.4171	0.972	
C1	C1	17	-0.129	-0.125	10.151	0.859	
$1 L^{1}$	$1 \square^{1}$	18	-0.066	-0.069	11.131	0.850	
101	111	19	-0.040	-0.021	11.484	0.873	
$1 \mid 1$	11	20	-0.019	-0.007	11.568	0.903	
171	1	21	0.061	0.072	12.412	0.901	
단	$\square 1$	22	-0.147	-0.171	17.337	0.690	
111	11	23	0.002	0.004	17.339	0.744	
151	단	24	-0.064	-0.121	18.279	0.742	
101	111	25	-0.044	-0.013	18.740	0.766	
1	$1 \square_{1}$	26	0.089	0.086	20.606	0.714	
101	$1)_{1}$	27	-0.035	-0.045	20.899	0.747	
1近	$1 \square_{1}$	28	-0.084	-0.084	22.557	0.709	
1 1	$1 \mid 1$	29	0.032	-0.022	22.794	0.743	
1 1)	$1 \square$	30	0.101	0.117	25.215	0.667	
1 1	$1 \square$	31	0.106	0.116	27.920	0.575	
11	11	32	-0.003	0.006	27.922	0.625	
$1 \mid 1$	141	33	0.016	-0.046	27.983	0.670	
11_{1}	101	34	0.027	-0.025	28.157	0.707	
$1{ }_{1} 1$	$1{ }_{1}$	35	0.064	0.034	29.182	0.703	
1	1	36	0.066	0.094	30.271	0.696	

Table A3. Δ SWAP2Y $=\varphi^{3}(\mathbf{C}, \Delta$ PDBC90D,Δ CPIYOY, Δ IPYOY, Δ LNIGPA, Δ LNCLP, AR(1))

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*	
$1 \square_{1}$	1 ¢	10.059	0.059	0.7216		
$1)^{1}$	101	$2-0.040$	-0.043	1.0479	0.306	
1	$1 \square_{1}$	30.086	0.091	2.5685	0.277	
111	141	$4-0.021$	-0.034	2.6598	0.447	
$1{ }^{1 /}$	141	$5-0.047$	-0.036	3.1195	0.538	
11	11	60.005	0.001	3.1255	0.681	
161	14.	$7-0.069$	-0.070	4.1449	0.657	
111	111	$8-0.008$	0.008	4.1596	0.761	
11	111	$9-0.007$	-0.016	4.1698	0.841	
111	$1 \\|_{1}$	100.018	0.031	4.2403	0.895	
151	141	$11-0.071$	-0.080	5.3318	0.868	
111	11_{1}	120.022	0.031	5.4340	0.908	
111	141	$13-0.011$	-0.027	5.4614	0.941	
111	$1 \\|_{1}$	140.016	0.031	5.5203	0.962	
$1 \\|_{1}$	11	150.030	0.019	5.7138	0.973	
$1{ }^{1}$	C1	$16-0.113$	-0.122	8.5466	0.900	
C1	1	$17-0.118$	-0.100	11.644	0.768	
$10^{1 / 1}$	141	$18-0.040$	-0.056	11.997	0.800	
141	111	$19-0.040$	-0.016	12.361	0.828	
11^{1}	111	$20-0.031$	-0.023	12.577	0.860	
1	1	210.082	0.089	14.119	0.824	
C1	$\square 1$	22-0.133	-0.168	18.191	0.637	
11	111	230.002	0.021	18.192	0.695	
161	C1	$24-0.086$	-0.156	19.909	0.647	
11_{1}	11	$25-0.045$	-0.004	20.374	0.675	
$1 \square_{1}$	1	260.081	0.077	21.908	0.641	
111	141	$27-0.011$	-0.041	21.934	0.692	
141	141	28-0.079	-0.070	23.396	0.664	
11^{1}	141	290.029	-0.029	23.601	0.702	
17	$1 \square$	300.122	0.140	27.191	0.561	
1	1	310.106	0.094	29.917	0.470	
111	11	32-0.017	0.001	29.985	0.518	
11_{1}	101	330.038	-0.038	30.332	0.551	
111	141	$34-0.011$	-0.042	30.362	0.599	
$1{ }^{1}$	$1{ }^{1}$	350.067	0.050	31.485	0.592	
1 ¢	1	360.101	0.110	34.013	0.516	

Table A4. $\Delta \mathbf{S W A P 5 Y}=\varphi^{4}(\mathbf{C}, \Delta \mathrm{PDBC90D}, \operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	
1 1	1 口	1	0.091	0.091	1.7133		
$1 \\|_{1}$	$1{ }_{1}$	2	0.035	0.027	1.9643	0.161	
171	11	3	0.055	0.050	2.5992	0.273	
$1[1$	$1[1$	4	-0.066	-0.077	3.5013	0.321	
1[10	1[10	5	-0.058	-0.049	4.2078	0.379	
111	$1]_{1}$	6	0.027	0.039	4.3646	0.498	
141	14,	7	-0.091	-0.087	6.1002	0.412	
	1[1]	8	-0.063	-0.049	6.9503	0.434	
1\|1	11	9	-0.012	-0.008	6.9816	0.539	
101	141	10	-0.046	-0.031	7.4440	0.591	
111	111	11	0.002	0.007	7.4447	0.683	
11	171	12	0.056	0.041	8.1170	0.703	
11	11	13	0.007	0.002	8.1291	0.775	
$1{ }_{1}$	1 \|	14	0.031	0.018	8.3348	0.821	
1	$1{ }_{1}$	15	0.080	0.061	9.7593	0.780	
1	C1	16	-0.114	-0.128	12.663	0.628	
단	단	17	-0.122	-0.115	15.989	0.454	
11	111	18	0.004	0.023	15.993	0.524	
141	141	19	-0.092	-0.060	17.883	0.463	
111	1 \| 1	20	-0.008	0.009	17.898	0.529	
1	$1{ }_{1}$	21	0.046	0.026	18.378	0.562	
단)	단)	22	-0.128	-0.119	22.104	0.394	
$1{ }_{1}$	$1{ }^{1}$	23	0.026	0.037	22.255	0.445	
1i1	141	24	-0.047	-0.091	22.768	0.474	
141	$1[1$	25	-0.104	-0.094	25.297	0.390	
1	$1{ }_{1}$	26	0.069	0.060	26.423	0.385	
141	14	27	-0.046	-0.089	26.929	0.413	
C1	C1	28	-0.137	-0.120	31.381	0.256	
1	$1{ }_{1}$	29	0.052	0.049	32.020	0.274	
$1 \square$	$1 \square$	30	0.159	0.172	38.079	0.121	
11	111	31	-0.008	-0.012	38.093	0.147	
11_{1}	11	32	0.052	-0.011	38.747	0.160	
$1 \mid 1$	141	33	0.017	-0.036	38.815	0.189	
$1 \square_{1}$	1	34	0.038	0.068	39.162	0.213	
וך	$1 \\|_{1}$	35	0.068	0.036	40.313	0.211	
1	1\|1	36	0.059	0.015	41.168	0.219	

Table A5. $\Delta \mathrm{SWAP5Y}=\varphi^{5}(\mathbf{C}, \Delta \mathrm{PDBC90D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 口	1	1	0.086	0.086	1.5305	
1 \| 1	$1 \mid 1$	2	0.021	0.013	1.6176	0.203
1	1	3	0.085	0.083	3.1069	0.212
1[1	1[1	4	-0.081	-0.096	4.4565	0.216
141	101	5	-0.048	-0.036	4.9409	0.293
1 \|	$1 \square_{1}$	6	0.024	0.027	5.0597	0.409
121	141	7	-0.093	-0.084	6.9028	0.330
141	101	8	-0.049	-0.035	7.4118	0.387
141	101	9	-0.032	-0.035	7.6281	0.471
101	111	10	-0.040	-0.016	7.9656	0.538
111	11	11	0.000	0.001	7.9657	0.632
$1{ }_{1} 1$	$1]_{1}$	12	0.054	0.046	8.5973	0.659
$1 \mid 1$	111	13	0.024	0.016	8.7199	0.727
$1 \square_{1}$	111	14	0.038	0.022	9.0376	0.770
17	$1]_{1}$	15	0.063	0.044	9.9057	0.769
141	11	16	-0.099	-0.114	12.099	0.672
C1	C1	17	-0.130	-0.124	15.868	0.462
1 1	$1 \square_{1}$	18	0.016	0.033	15.925	0.529
141	141	19	-0.090	-0.061	17.732	0.473
1\|1	1 1	20	-0.021	0.003	17.829	0.534
11	111	21	0.043	0.024	18.250	0.571
단	단	22	-0.118	-0.102	21.433	0.433
$1 \mid 1$	111	23	0.012	0.021	21.467	0.492
141	141	24	-0.048	-0.093	21.997	0.520
14,	10^{1}	25	-0.109	-0.093	24.741	0.420
1	$1{ }_{1}$	26	0.071	0.050	25.920	0.412
101	$1 \square^{1}$	27	-0.040	-0.072	26.295	0.447
단)	단)	28	-0.153	-0.143	31.852	0.238
1	$1{ }_{1}$	29	0.066	0.061	32.904	0.239
$1 \square$	$1 \square$	30	0.137	0.161	37.415	0.136
1\|1	1\|1	31	-0.015	-0.018	37.468	0.164
$1{ }_{1} 1$	11	32	0.055	-0.005	38.214	0.174
$1 \mid 1$	141	33	0.024	-0.031	38.357	0.203
$1 \square_{1}$	11_{1}	34	0.028	0.052	38.552	0.233
1	$1{ }_{1} 1$	35	0.065	0.036	39.609	0.234
1	1\|1	36	0.059	0.025	40.470	0.242

Table A6. Δ SWAP5Y $=\varphi^{6}(\mathbf{C}, \Delta$ PDBC90D, Δ CPIYOY, Δ IPYOY, Δ LNIGPA, Δ LNCLP, AR(1))

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 \square^{1}	1	1	0.090	0.090	1.6652	
11	1 1	2	0.000	-0.008	1.6652	0.197
1 1	1	3	0.086	0.087	3.1959	0.202
$1]^{1}$	14	4	-0.076	-0.093	4.3825	0.223
1i1 1	111	5	-0.045	-0.029	4.8094	0.307
11_{1}	11	6	0.036	0.035	5.0825	0.406
$1 \square_{1}$	10^{10}	7	-0.075	-0.069	6.2743	0.393
101	111	8	-0.036	-0.022	6.5447	0.478
1il 1	1il 1	9	-0.039	-0.049	6.8762	0.550
141	111	10	-0.038	-0.014	7.1911	0.617
141	141	11	-0.041	-0.042	7.5623	0.672
11_{1}	$1{ }_{1}$	12	0.031	0.036	7.7751	0.733
11_{1}	1 1	13	0.030	0.024	7.9651	0.788
$1 \mid 1$	111	14	0.015	0.008	8.0173	0.842
1	17	15	0.070	0.057	9.1086	0.824
141	단	16	-0.106	-0.130	11.582	0.710
단)	11	17	-0.124	-0.103	15.029	0.523
111	111	18	0.020	0.022	15.118	0.587
141	141	19	-0.077	-0.059	16.460	0.560
11	$1 \mid 1$	20	-0.003	0.019	16.462	0.626
17	1 1	21	0.049	0.017	17.012	0.652
$1 \square_{1}$	141	22	-0.094	-0.079	19.055	0.582
11	111	23	0.002	0.011	19.056	0.642
141	14	24	-0.050	-0.084	19.637	0.664
141	141	25	-0.113	-0.094	22.601	0.543
11	17	26	0.058	0.048	23.394	0.555
111	141	27	-0.009	-0.043	23.414	0.609
단	41	28	-0.145	-0.148	28.395	0.391
1	1	29	0.070	0.076	29.563	0.384
$1 \square$	$1 \square$	30	0.132	0.135	33.740	0.249
1)1	11	31	-0.018	-0.017	33.822	0.288
$1 \mid 1$	$1 \mid 1$	32	0.024	-0.021	33.959	0.327
11_{1}	111	33	0.045	-0.017	34.460	0.351
$1 \mid 1$	$1{ }_{1}$	34	0.023	0.044	34.589	0.392
1	1	35	0.064	0.038	35.612	0.392
$1 \square^{\prime}$	1	36	0.088	0.047	37.550	0.353

Table A7. $\Delta \mathbf{S W A P 1 0 Y}=\varphi^{7}(\mathbf{C}, \Delta \mathrm{PDBC90D}, \operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1	1 \downarrow	1	0.087	0.087	1.5388	
11	1 I	2	0.008	0.000	1.5511	0.213
1 \|	1 1	3	0.017	0.016	1.6108	0.447
1[1	$1[1$	4	-0.072	-0.075	2.6895	0.442
1[1	$1[1$	5	-0.062	-0.050	3.5057	0.477
11	$1 \mid 1$	6	0.001	0.010	3.5057	0.623
$1]^{1}$	141	7	-0.096	-0.095	5.4510	0.487
1[1	141	8	-0.072	-0.060	6.5511	0.477
1\|1	$1 \mid 1$	9	-0.012	-0.010	6.5840	0.582
1[1	141	10	-0.056	-0.055	7.2602	0.610
$1{ }^{1}$	11_{1}	11	0.064	0.064	8.1346	0.616
$1{ }_{1} 1$	111	12	0.035	0.005	8.4065	0.676
11	111	13	0.006	-0.003	8.4148	0.752
141	141	14	-0.026	-0.046	8.5658	0.805
1	1	15	0.084	0.083	10.122	0.753
1i1	141	16	-0.027	-0.037	10.283	0.802
141	14	17	-0.078	-0.086	11.656	0.767
$1 \mid 1$	$1 \mid 1$	18	0.009	0.021	11.676	0.819
1[1	141	19	-0.072	-0.059	12.859	0.800
1\|1	111	20	-0.023	-0.004	12.978	0.840
1 \|	111	21	0.023	0.010	13.094	0.873
단	41	22	-0.137	-0.146	17.420	0.685
1	$1 \square$	23	0.095	0.125	19.479	0.616
1i1	1	24	-0.039	-0.100	19.840	0.652
C1	C1	25	-0.130	-0.115	23.770	0.475
1 1	$1{ }_{1}$	26	0.056	0.046	24.504	0.490
1近1	11	27	-0.062	-0.110	25.409	0.496
1[1	101	28	-0.080	-0.047	26.934	0.467
$1{ }_{1}$	$1 \mid 1$	29	0.053	0.020	27.598	0.486
1 П1	1	30	0.109	0.095	30.425	0.393
11_{1}	$1 \mid 1$	31	0.027	0.011	30.603	0.435
1	1 1	32	0.071	0.018	31.821	0.425
$1[1$	141	33	-0.053	-0.059	32.504	0.442
$1{ }^{1}$	$1{ }_{1}$	34	0.032	0.037	32.754	0.479
1	$1{ }_{1}$	35	0.048	0.039	33.333	0.500
1	1	36	0.062	0.050	34.283	0.503

Table A8. Δ SWAP10Y $=\varphi^{8}(\mathbf{C}, \Delta \mathrm{PDBC90D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 口	1	1	0.088	0.088	1.5812	
111	1 \| 1	2	-0.002	-0.010	1.5821	0.208
11_{1}	171	3	0.040	0.041	1.9074	0.385
10^{1}	$1{ }^{1}$	4	-0.089	-0.097	3.5497	0.314
1i 1	101	5	-0.046	-0.029	3.9946	0.407
11	11	6	-0.007	-0.004	4.0053	0.549
10^{1}	$1{ }^{1}$	7	-0.097	-0.090	5.9826	0.425
101	10^{1}	8	-0.061	-0.051	6.7825	0.452
101	141	9	-0.033	-0.033	7.0189	0.535
101	101	10	-0.041	-0.032	7.3795	0.598
11_{1}	171	11	0.063	0.058	8.2351	0.606
11	11	12	0.033	0.008	8.4781	0.670
111	$1{ }^{1}$	13	0.018	0.009	8.5498	0.741
$1 \mid 1$	101	14	-0.023	-0.048	8.6621	0.798
1	1	15	0.069	0.075	9.7227	0.782
111	111	16	-0.010	-0.026	9.7451	0.835
11_{1}	$1 \square_{1}$	17	-0.092	-0.095	11.640	0.768
1 \| 1	11	18	0.024	0.036	11.765	0.814
141	1发1	19	-0.077	-0.069	13.091	0.786
101	111	20	-0.029	0.001	13.277	0.824
$1 \mid 1$	11	21	0.024	0.006	13.404	0.859
[1	C1	22	-0.134	-0.134	17.500	0.680
1	$1 \square$	23	0.080	0.106	18.982	0.646
111	민	24	-0.041	-0.099	19.368	0.680
[1	11.	25	-0.130	-0.107	23.288	0.503
17	11	26	0.055	0.032	24.002	0.519
141	$1{ }^{1}$	27	-0.055	-0.090	24.725	0.535
$1 \square_{1}$	10^{1}	28	-0.091	-0.066	26.688	0.481
$1 \square_{1}$	1 1	29	0.060	0.024	27.537	0.489
1 1	1	30	0.093	0.092	29.624	0.433
$1 \mid 1$	111	31	0.023	-0.006	29.755	0.478
1	111	32	0.069	0.033	30.916	0.470
101	141	33	-0.047	-0.063	31.465	0.494
$1 \mid 1$	$1{ }^{1}$	34	0.023	0.024	31.599	0.537
171	11	35	0.048	0.046	32.175	0.557
1	1	36	0.061	0.048	33.094	0.560

Table A9. Δ SWAP10Y $=\varphi^{9}(\mathbf{C}, \triangle$ PDBC90D,Δ CPIYOY, \triangle IPYOY, \triangle LNIGPA, Δ LNCLP, AR(1))

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	
1	1	1	0.092	0.092	1.7420		
1 \| 1	101	2	-0.020	-0.029	1.8226	0.177	
11_{1}	1	3	0.063	0.068	2.6464	0.266	
$1]^{1}$	$1{ }_{1}$	4	-0.085	-0.100	4.1543	0.245	
1i 1	1 1	5	-0.027	-0.005	4.3069	0.366	
$1 \mid 1$	1 \| 1	6	-0.005	-0.012	4.3124	0.505	
10^{1}	10^{1}	7	-0.066	-0.054	5.2341	0.514	
1i 1	$1 \\|_{1}$	8	-0.038	-0.033	5.5357	0.595	
101	101	9	-0.031	-0.031	5.7404	0.676	
101	101	10	-0.038	-0.028	6.0538	0.735	
$1{ }_{1}$	$1 \mid 1$	11	0.025	0.024	6.1871	0.799	
11	$1 \mid 1$	12	-0.008	-0.020	6.2011	0.860	
11_{1}	1 1 1	13	0.035	0.038	6.4653	0.891	
1i1	10^{1}	14	-0.037	-0.061	6.7697	0.914	
$1{ }_{1}$	1	15	0.047	0.063	7.2633	0.924	
1\|1	141	16	-0.014	-0.042	7.3088	0.949	
$1 \square_{1}$	$1 \square^{1}$	17	-0.103	-0.090	9.6867	0.882	
111	1 1	18	-0.003	-0.000	9.6885	0.916	
101	10^{1}	19	-0.053	-0.053	10.332	0.921	
1 \|	1 \| 1	20	-0.014	0.011	10.377	0.943	
$1{ }_{1}$	11	21	0.027	0.003	10.543	0.957	
1딘	CI	22	-0.113	-0.116	13.462	0.892	
1	1	23	0.067	0.091	14.510	0.882	
101	$1{ }^{1}$	24	-0.040	-0.094	14.874	0.899	
[1	141	25	-0.135	-0.103	19.119	0.746	
$1 \square_{1}$	111	26	0.059	0.035	19.925	0.751	
1i1	141	27	-0.031	-0.047	20.146	0.785	
$1{ }^{1}$	$1]^{1}$	28	-0.096	-0.086	22.339	0.720	
1 1	1 1	29	0.062	0.041	23.267	0.720	
$1{ }_{1} 1$	$1{ }_{1}$	30	0.056	0.051	24.024	0.728	
11_{1}	1 \| 1	31	0.028	0.011	24.212	0.762	
$1 \square_{1}$	$1 \mid 1$	32	0.058	0.024	25.024	0.767	
111	10^{1}	33	-0.041	-0.058	25.435	0.788	
$1{ }_{1}$	$1{ }_{1}$	34	0.048	0.046	25.999	0.802	
$1 \square_{1}$	111	35	0.048	0.034	26.570	0.814	
$1{ }_{1}$	$1 \mid 1$	36	0.038	0.019	26.927	0.834	

APPENDIX B: CORRELOGRAMS FOR GARCH(1,1) MODELS WITH \triangle PDBC30D

Table B1. Δ SWAP2Y $=\psi^{1}(\mathbf{C}, \Delta \mathrm{PDBC} 30 \mathrm{D}, \operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1	$1 \square_{1}$	1	0.035	0.035	0.2502	
$1{ }_{1}$	$1{ }_{1}$	2	0.055	0.054	0.8826	0.347
$1{ }_{1}$	$1{ }_{1}$	3	0.052	0.049	1.4453	0.485
11	1	4	0.004	-0.002	1.4489	0.694
10^{1}	14.	5	-0.070	-0.076	2.4625	0.651
$1 \mid 1$	11	6	-0.012	-0.010	2.4922	0.778
111	$1{ }^{1}$	7	-0.005	0.004	2.4974	0.869
141	141	8	-0.065	-0.056	3.3826	0.848
$1{ }_{1}$	$1{ }_{1}$	9	0.032	0.038	3.5999	0.891
11	11	10	-0.005	-0.006	3.6060	0.935
141	141	11	-0.046	-0.046	4.0665	0.944
1 1	1	12	0.085	0.087	5.6329	0.897
101	141	13	-0.058	-0.068	6.3559	0.897
$1{ }_{1}$	1	14	0.044	0.049	6.7779	0.913
101	101	15	-0.038	-0.044	7.1029	0.931
$1 \square_{1}$	11	16	-0.091	-0.101	8.9180	0.882
단)	C1	17	-0.157	-0.138	14.424	0.567
10^{1}	10^{1}	18	-0.072	-0.062	15.592	0.553
101	101	19	-0.062	-0.036	16.445	0.562
10_{1}	11	20	-0.055	-0.023	17.129	0.581
$1 \square$	$1 \square$	21	0.112	0.105	19.960	0.460
111	[10	22	-0.114	-0.134	22.955	0.346
111	11	23	-0.010	-0.022	22.978	0.403
141	1010	24	-0.068	-0.106	24.043	0.401
111	101	25	-0.047	-0.043	24.561	0.430
1 1	1	26	0.056	0.075	25.290	0.446
$1{ }^{1}$	1	27	-0.078	-0.098	26.723	0.424
10^{1}	$1{ }^{1}$	28	-0.078	-0.096	28.146	0.403
$1{ }_{1} 1$	$1{ }_{1}$	29	0.032	0.051	28.394	0.444
1 万	1 万1	30	0.128	0.114	32.323	0.306
1	1	31	0.061	0.090	33.218	0.313
1	1	32	0.063	0.033	34.175	0.318
$1 \square_{1}$	141	33	0.045	-0.066	34.674	0.342
11^{1}	1 11	34	0.022	0.016	34.792	0.383
11	111	35	0.031	-0.032	35.034	0.419
1 ¢	$1 \square$	36	0.097	0.123	37.385	0.360

Table B2．Δ SWAP2Y $=\psi^{2}(\mathbf{C}, \Delta \mathbf{P D B C 3 0 D}, \Delta \mathbf{C P I Y O Y}, \Delta \operatorname{IPYOY}, \operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q－Stat	Prob＊
$1{ }_{1}$	$1 \square_{1}$	1	0.031	0.031	0.1970	
1	$1{ }_{1}$	2	0.046	0.045	0.6307	0.427
$1{ }_{1} 1$	$1{ }_{1}$	3	0.065	0.062	1.5014	0.472
111	111	4	－0．006	－0．012	1.5098	0.680
141	$1[1$	5	－0．060	－0．066	2.2739	0.686
$1 \mid 1$	111	6	－0．011	－0．011	2.3013	0.806
111	111	7	－0．008	－0．000	2.3143	0.889
141	101	8	－0．054	－0．045	2.9399	0.891
$1 \mid 1$	$1 \mid 1$	9	0.016	0.019	2.9913	0.935
1 ｜	$1 \mid 1$	10	0.012	0.012	3.0225	0.963
1近	141	11	－0．056	－0．054	3.6925	0.960
1	1	12	0.088	0.087	5.3546	0.913
141	1［10	13	－0．041	－0．049	5.7150	0.930
$1{ }_{1}$	$1{ }_{1}$	14	0.039	0.043	6.0433	0.945
1i1	1近	15	－0．042	－0．052	6.4327	0.954
1建1	1［1	16	－0．083	－0．088	7.9758	0.925
단	단	17	－0．159	－0．149	13.619	0.627
$1]^{1}$	11_{1}	18	－0．071	－0．054	14.736	0.614
141	$1)^{1}$	19	－0．061	－0．040	15.583	0.622
$1 L^{1}$	141	20	－0．054	－0．025	16.255	0.640
1 П1	$1 \square^{1}$	21	0.112	0.115	19.127	0.514
단	단）	22	－0．114	－0．140	22.123	0.392
111	111	23	－0．011	－0．014	22.149	0.451
141	디 1	24	－0．065	－0．111	23.117	0.454
10^{1}	141	25	－0．056	－0．046	23.847	0.470
1	1	26	0.060	0.071	24.689	0.480
	141	27	－0．072	－0．082	25.898	0.469
$1 \square_{1}$	141	28	－0．092	－0．113	27.916	0.415
$1{ }_{1}$	$1{ }_{1}$	29	0.040	0.059	28.302	0.449
$1 \square$	1 －1	30	0.113	0.111	31.361	0.349
1	1	31	0.069	0.091	32.504	0.344
1	$1{ }^{1}$	32	0.055	0.038	33.241	0.359
$1{ }_{1} 1$	$1[1$	33	0.046	－0．071	33.757	0.383
$1 \mid 1$	$1 \mid 1$	34	0.022	0.014	33.880	0.425
$1{ }_{1}$	141	35	0.025	－0．034	34.039	0.466
1 ${ }^{1}$	$1 \square$	36	0.094	0.117	36.254	0.410

Table B3．Δ SWAP2Y $=\psi^{3}(\mathbf{C}, \Delta$ PDBC30D，Δ CPIYOY，Δ IPYOY，Δ LNIGPA，Δ LNCLP， AR（1））

Autocorrelation	Partial Correlation		AC	PAC	Q－Stat	Prob＊
1炜	1 1	1	0.039	0.039	0.3167	
$1 \square_{1}$	$1 \square_{1}$	2	0.026	0.025	0.4580	0.499
$1 \square_{1}$	$1]_{1}$	3	0.061	0.059	1.2235	0.542
11	11	4	0.001	－0．004	1.2236	0.747
$1 \square_{1}$	$1]^{1}$	5	－0．066	－0．069	2.1342	0.711
111	$1{ }^{1}$	6	0.005	0.006	2.1387	0.830
11	11	7	0.003	0.006	2.1404	0.906
$1]_{1}$	141	8	－0．066	－0．059	3.0582	0.880
$1{ }_{1}$	11^{1}	9	0.028	0.032	3.2239	0.920
1 ｜	11	10	0.009	0.005	3.2410	0.954
141	141	11	－0．087	－0．083	4.8841	0.899
1	1	12	0.085	0.091	6.4580	0.841
141	141	13	－0．035	－0．048	6.7283	0.875
1 1	11_{1}	14	0.015	0.029	6.7786	0.913
101	101	15	－0．025	－0．033	6.9167	0.938
1［1	1－1	16	－0．093	－0．106	8.8139	0.887
¢1	C1	17	－0．147	－0．128	13.644	0.625
10^{1}	101	18	－0．059	－0．047	14.428	0.637
141	101	19	－0．049	－0．040	14.962	0.665
1［1］	111	20	－0．056	－0．024	15.678	0.679
$1 \square$	$1 口$	21	0.131	0.129	19.589	0.484
$1 \square_{1}$	C1	22	－0．096	－0．129	21.695	0.417
$1 \mid 1$	11	23	－0．022	－0．007	21.808	0.471
$1]^{1}$	C1	24	－0．077	－0．126	23.184	0.450
141	141	25	－0．053	－0．047	23.848	0.470
$1{ }_{1}$	1	26	0.047	0.074	24.367	0.498
141	141	27	－0．040	－0．065	24.752	0.533
141	ㄷ．1	28	－0．085	－0．103	26.460	0.493
$1 \square_{1}$	171	29	0.037	0.060	26.778	0.530
$1 \square$	1 1	30	0.124	0.104	30.469	0.391
1	1	31	0.066	0.078	31.509	0.391
$1{ }_{1} 1$	$1{ }_{1}$	32	0.037	0.036	31.843	0.424
1	1近	33	0.067	－0．051	32.946	0.421
111	111	34	0.004	0.005	32.950	0.470
11_{1}	$1 \mid 1$	35	0.033	－0．016	33.215	0.506
1 1	$1 \square$	36	0.110	0.114	36.199	0.412

Table B4. Δ SWAP5Y $=\psi^{4}(\mathbf{C}, \Delta$ PDBC30D, AR(1))

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	
1	ון	1	0.082	0.082	1.3755		
11_{1}	$1{ }_{1} 1$	2	0.039	0.032	1.6838	0.194	
11_{1}	11_{1}	3	0.045	0.040	2.1093	0.348	
$1[1$	$1{ }^{1}$	4	-0.078	-0.087	3.3695	0.338	
1[1	$1[1$	5	-0.093	-0.084	5.1741	0.270	
$1{ }_{1}$	$1{ }_{1}$	6	0.031	0.050	5.3820	0.371	
10^{10}	141	7	-0.067	-0.060	6.3174	0.389	
$1 \square_{1}$	14.	8	-0.088	-0.081	7.9455	0.337	
111	111	9	0.015	0.015	7.9929	0.434	
141	101	10	-0.052	-0.045	8.5633	0.479	
$1 \mid 1$	1 1	11	-0.013	-0.002	8.6005	0.570	
$1 \square^{1}$	1	12	0.092	0.072	10.423	0.493	
111	11	13	0.011	-0.004	10.451	0.576	
11_{1}	11_{1}	14	0.032	0.026	10.674	0.638	
1	$1{ }^{1}$	15	0.052	0.021	11.261	0.665	
[10	-1	16	-0.120	-0.123	14.441	0.492	
딘	叫	17	-0.131	-0.110	18.247	0.310	
1 1	$1{ }^{1}$	18	-0.005	0.009	18.253	0.373	
$1{ }^{1}$	141	19	-0.085	-0.052	19.865	0.340	
111	1 11	20	0.002	0.020	19.866	0.403	
11_{1}	$1 \\|_{1}$	21	0.061	0.029	20.717	0.414	
[10	[10	22	-0.115	-0.121	23.740	0.306	
$1{ }_{1}$	11^{1}	23	0.044	0.057	24.177	0.338	
101	11010	24	-0.046	-0.100	24.665	0.368	
민	11	25	-0.112	-0.111	27.597	0.277	
$1{ }_{1}$	11	26	0.045	0.044	28.062	0.305	
141	1	27	-0.058	-0.113	28.856	0.318	
딘	C1	28	-0.153	-0.128	34.384	0.155	
$1 \square_{1}$	ו	29	0.055	0.070	35.118	0.166	
$1 \square$	$1 \square$	30	0.164	0.162	41.543	0.062	
1i1	$1 \mid 1$	31	-0.027	-0.020	41.718	0.076	
1	11	32	0.075	-0.001	43.079	0.073	
$1{ }_{1}$	101	33	0.031	-0.044	43.319	0.087	
1 1	171	34	0.014	0.052	43.369	0.107	
11_{1}	111	35	0.042	-0.001	43.800	0.121	
1 1	1	36	0.084	0.046	45.548	0.109	

Table B5. $\Delta \mathrm{SWAP5Y}=\psi^{5}(\mathrm{C}, \Delta \mathrm{PDBC30D}, \Delta \mathrm{CPIYOY}, \Delta \mathrm{IPYOY}, \mathrm{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*	
1	1	1	0.074	0.074	1.1113		
$1{ }_{1} 1$	$1 \\|_{1}$	2	0.035	0.029	1.3580	0.244	
1	1	3	0.076	0.071	2.5417	0.281	
$1{ }^{1}$	141	4	-0.083	-0.096	3.9842	0.263	
$1]^{1}$	1[1	5	-0.089	-0.082	5.6522	0.227	
$1{ }^{1} 1$	$1{ }_{1} 1$	6	0.030	0.043	5.8383	0.322	
10^{1}	$10_{1} 1$	7	-0.061	-0.048	6.6194	0.357	
$1]^{1}$	1近	8	-0.067	-0.058	7.5667	0.372	
1\|1	111	9	-0.011	-0.019	7.5910	0.474	
1近	$1)_{1}$	10	-0.054	-0.042	8.2220	0.512	
$1 \mid 1$	1 1	11	-0.011	0.004	8.2464	0.605	
1 11	1	12	0.092	0.080	10.073	0.524	
$1{ }_{1} 1$	$1 \mid 1$	13	0.027	0.014	10.231	0.596	
$1{ }_{1}$	$1 \mid 1$	14	0.038	0.022	10.553	0.648	
11	11	15	0.032	0.001	10.783	0.703	
141	, 1	16	-0.105	-0.104	13.218	0.585	
$\square 1$	C1	17	-0.140	-0.127	17.597	0.348	
111	$1]_{1}$	18	0.010	0.029	17.619	0.413	
$1{ }^{1}$	141	19	-0.089	-0.059	19.408	0.367	
$1 \mid 1$	1 1	20	-0.020	0.000	19.495	0.426	
11	111	21	0.049	0.024	20.046	0.455	
11	141	22	-0.106	-0.104	22.602	0.366	
$1{ }_{1}$	$1{ }^{1}$	23	0.030	0.044	22.816	0.412	
101	11	24	-0.049	-0.099	23.373	0.439	
C1	C1	25	-0.121	-0.121	26.765	0.316	
11	11_{1}	26	0.048	0.034	27.304	0.341	
10^{1}	$1{ }^{1}$	27	-0.052	-0.092	27.940	0.361	
$\square 1$	¢1	28	-0.163	-0.147	34.251	0.159	
$1{ }_{1}$	1	29	0.062	0.070	35.180	0.165	
$1 \square$	$1 \square$	30	0.136	0.150	39.627	0.090	
101	111	31	-0.034	-0.023	39.899	0.107	
1	11	32	0.071	-0.003	41.132	0.105	
1	141	33	0.042	-0.034	41.566	0.120	
111	11_{1}	34	0.005	0.029	41.572	0.145	
11	111	35	0.038	0.005	41.921	0.165	
1	1	36	0.087	0.052	43.801	0.146	

Table B6. Δ SWAP5Y $=\psi^{6}(\mathbf{C}, \Delta$ PDBC30D, Δ CPIYOY, Δ IPYOY, Δ LNIGPA, Δ LNCLP, AR(1))

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 1	1 1	1	0.075	0.075	1.1532	
1)1	111	2	0.017	0.012	1.2144	0.270
1	1	3	0.080	0.079	2.5534	0.279
141	141	4	-0.081	-0.094	3.9295	0.269
141	141	5	-0.077	-0.066	5.1570	0.272
$1{ }_{1}$	11_{1}	6	0.041	0.049	5.5134	0.356
1)1	111	7	-0.031	-0.022	5.7145	0.456
141	141	8	-0.057	-0.052	6.4127	0.492
111	111	9	-0.010	-0.021	6.4352	0.599
141	141	10	-0.055	-0.045	7.0783	0.629
141	10^{1}	11	-0.054	-0.037	7.7168	0.656
$1{ }_{1}$	$1{ }^{1}$	12	0.053	0.051	8.3347	0.683
$1 \square_{1}$	111	13	0.038	0.033	8.6538	0.732
$1 \mid 1$	1	14	0.014	0.008	8.6988	0.795
$1{ }_{1}$	11	15	0.034	0.007	8.9478	0.834
C1	C1	16	-0.123	-0.134	12.325	0.654
C1	11	17	-0.127	-0.103	15.917	0.459
11	111	18	-0.003	0.010	15.920	0.530
141	$1)^{1}$	19	-0.069	-0.049	16.981	0.524
111	111	20	0.005	0.016	16.986	0.591
$1{ }_{1}$	$1 \square_{1}$	21	0.059	0.025	17.780	0.602
14.	141	22	-0.074	-0.077	19.040	0.583
111	111	23	0.010	0.023	19.064	0.641
10^{1}	141	24	-0.049	-0.082	19.614	0.665
C1	C1	25	-0.126	-0.120	23.302	0.502
$1 \square_{1}$	$1 \square_{1}$	26	0.035	0.029	23.585	0.543
11	141	27	-0.020	-0.060	23.682	0.594
당	단	28	-0.160	-0.159	29.745	0.326
$1 \square_{1}$	$1 \square_{1}$	29	0.064	0.077	30.736	0.329
$1 \square$	$1 \square$	30	0.120	0.126	34.191	0.232
141	111	31	-0.034	-0.018	34.477	0.262
11^{1}	111	32	0.040	-0.022	34.860	0.289
$1{ }_{1} 1$	111	33	0.065	-0.016	35.905	0.290
11	111	34	0.006	0.022	35.912	0.334
181	111	35	0.038	0.008	36.267	0.363
1 口	$1 \square_{1}$	36	0.105	0.058	38.999	0.295

Table B7. Δ SWAP10Y $=\psi^{7}(\mathbf{C}, \Delta$ PDBC30D, $\operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 1	1	1	0.083	0.083	1.4189	
1 \| 1	1 1	2	0.010	0.003	1.4396	0.230
$1{ }^{1}$	$1{ }^{1}$	3	-0.003	-0.004	1.4411	0.486
11^{1}	$1[1$	4	-0.080	-0.080	2.7851	0.426
1	$1{ }^{1}$	5	-0.083	-0.071	4.2240	0.377
1 1	$1{ }^{1}$	6	-0.000	0.014	4.2240	0.518
$1{ }^{1}$	$1{ }^{1}$	7	-0.091	-0.093	5.9861	0.425
1近	10^{1}	8	-0.073	-0.066	7.1138	0.417
111	11	9	0.006	0.006	7.1223	0.523
141	141	10	-0.050	-0.057	7.6509	0.570
$1{ }_{1}$	171	11	0.046	0.042	8.1117	0.618
1	11_{1}	12	0.058	0.028	8.8500	0.636
111	11	13	0.010	-0.006	8.8710	0.714
$1 \mid 1$	111	14	-0.019	-0.033	8.9475	0.777
$1{ }_{1}$	1	15	0.063	0.056	9.8260	0.775
101	101	16	-0.031	-0.030	10.038	0.817
$1 \square_{1}$	$1{ }^{1}$	17	-0.089	-0.092	11.814	0.757
$1{ }^{1}$	$1 \mid 1$	18	0.011	0.022	11.839	0.810
10^{1}	10^{10}	19	-0.074	-0.060	13.058	0.788
$1 \mid 1$	111	20	-0.011	0.004	13.087	0.834
$1{ }_{1}$	11	21	0.037	0.020	13.399	0.860
단)	¢1	22	-0.134	-0.149	17.513	0.680
$1 \square$	$1 \square$	23	0.104	0.130	19.981	0.584
111	1	24	-0.036	-0.098	20.275	0.625
C1	C1	25	-0.133	-0.132	24.383	0.440
111	111	26	0.026	0.033	24.546	0.488
10	-1	27	-0.070	-0.124	25.689	0.480
$1 \square^{1}$	101	28	-0.089	-0.055	27.573	0.433
$1{ }_{1}$	$1{ }^{1}$	29	0.040	0.010	27.955	0.467
$1 \square$	1 П1	30	0.123	0.099	31.559	0.340
$1 \mid 1$	11	31	0.017	0.001	31.632	0.385
1	11	32	0.081	0.021	33.225	0.359
101	10^{1}	33	-0.056	-0.076	33.987	0.372
111	1 \|	34	0.006	0.019	33.996	0.419
1	$1{ }_{1}$	35	0.045	0.034	34.491	0.444
$1 \square^{1}$	1	36	0.083	0.065	36.200	0.412

Table B8. Δ SWAP10Y $=\psi^{8}(\mathbf{C}, \Delta$ PDBC30D $, \Delta \mathrm{CPIYOY}, \Delta \operatorname{IPYOY}, \operatorname{AR}(1))$

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 1	1 1	1	0.086	0.086	1.5034	
111	11	2	0.005	-0.002	1.5089	0.219
$1{ }^{1} 1$	1 \|	3	0.022	0.022	1.6085	0.447
$1{ }^{1}$	10	4	-0.095	-0.099	3.4839	0.323
11^{1}	141	5	-0.072	-0.056	4.5615	0.335
$1 \mid 1$	1 1	6	-0.009	0.001	4.5788	0.469
$1{ }^{1}$	$1 \square_{1}$	7	-0.089	-0.085	6.2381	0.397
141	141	8	-0.061	-0.054	7.0232	0.426
111	111	9	-0.015	-0.018	7.0704	0.529
$1)_{1} 1$	101	10	-0.036	-0.035	7.3466	0.601
17	$1 \square_{1}$	11	0.045	0.038	7.7848	0.650
1	11_{1}	12	0.058	0.031	8.5100	0.667
$1{ }^{1} 1$	1 \|	13	0.024	0.009	8.6381	0.733
$1 \mid 1$	101	14	-0.013	-0.033	8.6735	0.797
17	171	15	0.047	0.044	9.1565	0.821
$1 \mid 1$	11	16	-0.016	-0.017	9.2147	0.866
1	11	17	-0.104	-0.103	11.628	0.769
11_{1}	$1 \square_{1}$	18	0.028	0.044	11.799	0.812
$1{ }^{1}$	$1[1$	19	-0.084	-0.079	13.406	0.767
$1 \mid 1$	11	20	-0.020	0.007	13.494	0.812
$1{ }_{1}$	111	21	0.034	0.016	13.762	0.842
C1	C1	22	-0.131	-0.140	17.698	0.668
1	$1 \square$	23	0.089	0.111	19.539	0.612
111	1	24	-0.041	-0.103	19.928	0.646
C1	[1]	25	-0.137	-0.127	24.300	0.445
$1{ }^{1}$	$1 \mid 1$	26	0.024	0.016	24.440	0.494
101	딘	27	-0.063	-0.104	25.389	0.497
11	10^{1}	28	-0.099	-0.074	27.689	0.427
17	$1 \mid 1$	29	0.043	0.009	28.131	0.458
$1 \square^{1}$	1	30	0.106	0.095	30.847	0.373
$1{ }^{1} 1$	$1 \mid 1$	31	0.011	-0.019	30.878	0.421
1	11_{1}	32	0.075	0.031	32.243	0.405
111	1近	33	-0.047	-0.078	32.779	0.429
111	1 1	34	-0.004	-0.001	32.784	0.478
1 1	17	35	0.046	0.047	33.297	0.502
1	1	36	0.086	0.064	35.131	0.462

Table B9. Δ SWAP10Y $=\psi^{9}(\mathbf{C}, \Delta$ PDBC30D, Δ CPIYOY, Δ IPYOY, Δ LNIGPA, $\Delta L N C L P$, AR(1))

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 1	1	1	0.087	0.087	1.5422	
$1 \mid 1$	$1 \mid 1$	2	-0.010	-0.018	1.5630	0.211
$1{ }_{1} 1$	$1{ }_{1}$	3	0.045	0.048	1.9842	0.371
$1{ }^{1}$	141	4	-0.092	-0.102	3.7640	0.288
1[1	1i1 1	5	-0.052	-0.033	4.3254	0.364
111	11	6	-0.008	-0.006	4.3382	0.502
10^{1}	141	7	-0.053	-0.044	4.9221	0.554
101	$1)_{1}$	8	-0.038	-0.035	5.2317	0.632
11	$1 \mid 1$	9	-0.006	-0.009	5.2401	0.732
101	101	10	-0.038	-0.037	5.5538	0.784
$1{ }^{1}$	1 1	11	0.006	0.007	5.5619	0.851
11	111	12	0.006	-0.008	5.5686	0.901
1	$1{ }_{1} 1$	13	0.046	0.046	6.0270	0.915
101	1if 1	14	-0.027	-0.047	6.1867	0.939
$1 \mid 1$	$1 \mid 1$	15	0.018	0.022	6.2571	0.960
141	141	16	-0.031	-0.044	6.4704	0.971
11	1发1	17	-0.109	-0.096	9.1136	0.909
1\|1	11	18	-0.011	-0.002	9.1411	0.936
141	141	19	-0.060	-0.061	9.9406	0.934
111	$1 \mid 1$	20	0.000	0.018	9.9406	0.954
1	$1 \mid 1$	21	0.043	0.018	10.366	0.961
단	C1	22	-0.109	-0.125	13.073	0.906
1	1	23	0.073	0.089	14.291	0.891
$1)_{1}$	$1{ }^{1}$	24	-0.040	-0.090	14.661	0.906
단	C1	25	-0.148	-0.130	19.744	0.711
$1{ }_{1}$	111	26	0.031	0.019	19.965	0.749
141	141	27	-0.037	-0.058	20.285	0.778
141	14.	28	-0.106	-0.098	22.925	0.689
$1{ }_{1}$	$1 \mid 1$	29	0.036	0.011	23.228	0.722
$1{ }_{1} 1$	$1{ }^{1}$	30	0.064	0.055	24.216	0.718
$1 \mid 1$	111	31	0.021	0.004	24.325	0.757
$1 \square_{1}$	$1 \mid 1$	32	0.061	0.018	25.235	0.757
101	141	33	-0.041	-0.077	25.639	0.779
$1 \mid 1$	1 \| 1	34	0.017	0.015	25.711	0.813
$1{ }_{1} 1$	111	35	0.047	0.034	26.250	0.826
1	$1{ }^{1} 1$	36	0.057	0.028	27.069	0.829

APPENDIX C: ADDITIONAL GARCH(1,1) MODELS

Table C1. GARCH $(1,1)$ Model (with \triangle PDBC90D and \triangle COREYOY)

	\triangle SWAP2Y	\triangle SWAP2Y	\triangle SWAP5Y	\triangle SWAP5Y	\triangle SWAP10Y	\triangle SWAP10Y
Mean Equation						
Intercept	$\begin{gathered} \hline-0.01 \\ (0.77) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.01 \\ (0.60) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.01 \\ & (0.59) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.02 \\ & (0.54) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.01 \\ & (0.62) \end{aligned}$	$\begin{gathered} -0.02 \\ (0.36) \end{gathered}$
\triangle PDBC90D	$\begin{aligned} & 0.28 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.29 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.02) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.12 \\ & (0.00) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.94) \end{aligned}$	$\begin{aligned} & 0.02 \\ & (0.75) \end{aligned}$
\triangle COREYOY	$\begin{gathered} -0.02 \\ (0.60) \\ \hline \end{gathered}$	$\begin{gathered} -0.02 \\ (0.74) \\ \hline \end{gathered}$	$\begin{gathered} -0.03 \\ (0.53) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline-0.06 \\ (0.26) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.06 \\ (0.19) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline-0.08 \\ (0.07) \\ \hline \end{array}$
Δ IPYOY	$\begin{aligned} & \hline 0.003 \\ & (0.30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.39) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.004 \\ & (0.08) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.17) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.003 \\ (0.14) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.002 \\ (0.17) \\ \hline \end{array}$
\triangle LNIGPA		$\begin{aligned} & 0.90 \\ & (0.01) \end{aligned}$		$\begin{aligned} & \hline 0.85 \\ & (0.03) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.58 \\ & (0.18) \end{aligned}$
$\triangle \mathrm{LNCLP}$		$\begin{aligned} & \hline 0.80 \\ & (0.39) \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 2.33 \\ & (0.00) \end{aligned}$		$\begin{aligned} & 2.45 \\ & (0.00) \end{aligned}$
AR(1)	$\begin{aligned} & \hline 0.38 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.36 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.29 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.29 \\ (0.00) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.27 \\ (0.01) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.27 \\ (0.00) \\ \hline \end{array}$

Variance Equation						
Intercept	0.01	0.01	0.004	0.004	0.004	0.003
	(0.23)	(0.19)	(0.29)	(0.24)	(0.19)	(0.23)
ARCH	0.15	0.19	0.11	0.15	0.13	0.16
	(0.16)	(0.13)	(0.10)	(0.11)	(0.03)	(0.04)
GARCH	0.59	0.56	0.79	0.78	0.77	0.78
	(0.04)	(0.04)	(0.00)	(0.00)	(0.00)	(0.00)
Model Information						
Obs	142	142	142	142	142	142
Adj R						
AIC	0.30	0.30	0.15	0.18	0.07	0.12

Diagnostic Tests							
ARCH LM	1.41	1.12	0.93	0.59	0.84	0.67	
(12 lags)	(0.17)	(0.35)	(0.52)	(0.84)	(0.61)	(0.78)	
DW Stat	1.96	1.93	1.87	1.79	1.88	1.80	
JQB	24.49	15.43	11.78	9.56	7.96	5.24	
	(0.00)	(0.00)	(0.00)	(0.01)	(0.02)	(0.07)	

Note: All vars are in diff, p-values are in parenthesis

Table C2. GARCH $(1,1)$ Model (with \triangle PDBC30D and \triangle COREYOY)

	\triangle SWAP2Y	\triangle SWAP2Y	Δ SWAP5Y	\triangle SWAP5Y	\triangle SWAP10Y	\triangle SWAP10Y
Mean Equation						
Intercept	$\begin{gathered} \hline-0.01 \\ (0.83) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.01 \\ (0.58) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.01 \\ (0.64) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.02 \\ & (0.34) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.01 \\ & (0.63) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline-0.02 \\ (0.64) \\ \hline \end{array}$
\triangle PDBC30D	$\begin{aligned} & \hline 0.42 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & (0.00) \end{aligned}$	$\begin{aligned} & \hline 0.22 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.24 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.14 \\ & (0.02) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.16 \\ (0.00) \\ \hline \end{array}$
\triangle COREYOY	$\begin{aligned} & \hline-0.04 \\ & (0.53) \\ & \hline \end{aligned}$	$\begin{gathered} -0.03 \\ (0.59) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.04 \\ & (0.33) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.06 \\ & (0.15) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.05 \\ & (0.22) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline-0.07 \\ (0.09) \\ \hline \end{array}$
\triangle IPYOY	$\begin{aligned} & 0.003 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.24) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.16) \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & (0.17) \end{aligned}$
\triangle LNIGPA		$\begin{aligned} & 0.92 \\ & (0.01) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.84 \\ & (0.04) \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline 0.54 \\ (0.22) \\ \hline \end{array}$
$\Delta \mathrm{LNCLP}$		$\begin{aligned} & 1.05 \\ & (0.20) \end{aligned}$		$\begin{aligned} & 2.53 \\ & (0.02) \end{aligned}$		$\begin{aligned} & \hline 2.60 \\ & (0.00) \\ & \hline \end{aligned}$
AR(1)	$\begin{aligned} & \hline 0.36 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.32 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.31 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.29 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.27 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.26 \\ (0.00) \\ \hline \end{array}$
Variance Equation						
Intercept	$\begin{aligned} & \hline 0.002 \\ & (0.31) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.003 \\ & (0.17) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.004 \\ & (0.46) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.003 \\ & (0.36) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.004 \\ & (0.26) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.26) \end{aligned}$
ARCH	$\begin{aligned} & 0.05 \\ & (0.22) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.09 \\ & (0.03) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.11 \\ & (0.07) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.14 \\ & (0.05) \\ & \hline \end{aligned}$
GARCH	$\begin{aligned} & \hline 0.89 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.83 \\ & (0.00) \end{aligned}$	$\begin{aligned} & 0.81 \\ & (0.00) \end{aligned}$	$\begin{aligned} & \hline 0.81 \\ & (0.00) \end{aligned}$	$\begin{aligned} & \hline 0.80 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.81 \\ (0.00) \\ \hline \end{array}$
Model Information						
Obs	142	142	142	142	142	142
Adj R ${ }^{2}$	0.35	0.36	0.21	0.24	0.13	0.18
AIC	-0.32	-0.32	-0.37	-0.43	-0.49	-0.55
Diagnostic Tests						
ARCH LM (12 lags)	$\begin{aligned} & \hline 2.25 \\ & (0.01) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.79 \\ & (0.06) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.70 \\ & (0.75) \end{aligned}$	$\begin{aligned} & \hline 0.59 \\ & (0.84) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.81 \\ & (0.64) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.66 \\ (0.79) \\ \hline \end{array}$
DW Stat	1.90	1.83	1.86	1.73	1.87	1.73
JQB	$\begin{aligned} & \hline 14.27 \\ & (0.00) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.76 \\ & (0.06) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.38 \\ & (0.07) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.87 \\ & (0.24) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.02 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1.85 \\ (0.40) \\ \hline \end{array}$

Note: All vars are in diff, p-values are in parenthesis

[^0]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

[^1]: ${ }^{1}$ All figures are in US dollars unless specified otherwise.

[^2]: ${ }^{2}$ For additional background information, including the econometric theory and some applications, see Bollerslev, Chou, and Kroner (1992) and Bollerslev, Engle, and Nelson (1994). These two papers provide comprehensive surveys of ACRH and GARCH models and their applications.

