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Abstract

Multimodal empirical distributions arise in many fields like Astrophysics, Bioinformat-
ics, Climatology and Economics due to the heterogeneity of the underlying populations.
Mixture processes are a popular tool for accurate approximation of such distributions and
implied mode detection. Using Bayesian mixture models and methods, BayesMultiMode
estimates posterior probabilities of the number of modes, their locations and uncertainty,
yielding a powerful tool for mode inference. The approach works in two stages. First, a
flexible mixture with an unknown number of components is estimated using a Bayesian
MCMC method due to Malsiner-Walli, Frühwirth-Schnatter, and Grün (2016). Second,
suitable detection algorithms are employed to estimate modes for continuous and dis-
crete probability distributions. Given these mode estimates, posterior probabilities for
the number of modes, their locations and uncertainties are constructed. BayesMultiMode
supports a range of mixture processes, complementing and extending existing software
for mixture modeling. The mode detection algorithms implemented in BayesMultiMode
also support MCMC draws for mixture estimation generated with external software. The
package uses for illustrative purposes both continuous and discrete empirical distributions
from the four listed fields yielding credible multiple mode detection with substantial pos-
terior probability where frequentist tests fail to reject the null hypothesis of unimodality.

Keywords: multimodality, mixture distributions, Bayesian estimation, sparse finite mixtures,
R.



2 BayesMultiMode: Bayesian Mode Inference in R

1. Introduction

There exist several computer packages for investigating multimodality; see, e.g., the R pack-
age multimode (Ameijeiras-Alonso, Crujeiras, and Rodriguez-Casal 2021) which implements
Silverman’s test and its extensions (Silverman 1981; Fischer, Mammen, and Marron 1994) and
the dip test (Hartigan and Hartigan 1985; Hartigan 1985). However, these tests are usually
not suitable for discrete data despite their widespread occurrence in areas such as Bioinfor-
matics. Furthermore, most methods that test for the existence of multiple modes do not
provide any information about the number of modes, their locations and uncertainty about
these estimates. BayesMultiMode combines state-of-the-art methods in Bayesian statistics
to provide a novel tool for mode inference in both continuous and discrete empirical distribu-
tions. We illustrate that BayesMultiMode is capable of detecting multiple modes in situations
where frequentist methods fail to reject unimodality.
The Bayesian mode inference approach implemented in BayesMultiMode works in two stages.
First, a mixture model is fitted on the data of the empirical distribution using the sparse fi-
nite mixture Markov chain Monte Carlo (SFM MCMC) method due to Malsiner-Walli et al.
(2016). The SFM MCMC algorithm can be viewed as a two-step process. In step one,
the researcher starts by overfitting the mixture model by selecting a larger number of com-
ponents than is expected to describe the data. In step two, a regularization prior is used
which, in combination with likelihood and data information, shrinks the effective number of
mixture components towards a credible number with substantial posterior probability. This
method of selecting the number of components is particularly appealing because it overcomes
well-known problems associated with using marginal likelihoods for component selection, see
Frühwirth-Schnatter (2006), and it avoids the computational burden of having to estimate
infinite mixture models using non-parametric approaches (Frühwirth-Schnatter and Malsiner-
Walli 2019). This approach has the substantial benefit of capturing the uncertainty attached
to the number of mixture components inherently present in mixture models.
Once the mixture model is estimated, the second stage consists of detecting the modes.
The fixed-point algorithm of Carreira-Perpinan (2000) is used for Gaussian mixtures whereas
modes in other continuous mixtures are found with the modal EM (MEM) algorithm of Li,
Ray, and Lindsay (2007). Finding modes in discrete mixtures is more straightforward and
we follow the recent work of Cross, Hoogerheide, Labonne, and van Dijk (2023) in that in-
stance. Given the estimated modes, posterior probabilities are derived for the number of
modes, their locations and associated uncertainty. Thus BayesMultiMode provides a com-
prehensive characterization of the uncertainty surrounding mode inference. Communicating
uncertainty effectively contributes to better understanding of science (Van Der Bles, Van
Der Linden, Freeman, Mitchell, Galvao, Zaval, and Spiegelhalter 2019) and it is a critical
factor in analyzing implied uncertainty properties of forecasting and policy.
Mixture models can be estimated using frequentist or Bayesian methods. When using max-
imum likelihood, the expectation-maximization (EM) algorithm (see Dempster, Laird, and
Rubin 1977) is typically employed because maximizing the likelihood function directly is often
difficult. A Bayesian approach using MCMC offers three substantial advantages compared to
the EM algorithm. First, computing standard errors using the EM algorithm is non-trivial,
whereas estimation uncertainty is readily available from MCMC output. Second, while the
exact number of mixture components has to be specified a priori using the EM algorithm,
the Bayesian framework allows for an unknown number of mixture components. This leads
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to the third important advantage of using MCMC methods: their ability to easily quantify
the uncertainty associated with the estimated number of components and their locations.
BayesMultiMode is the first R package to implement the SFM MCMC algorithm for esti-
mating mixtures with an unknown number of components across a comprehensive range of
mixture processes for approximating empirical distributions of continuous as well as discrete
data. Specifically, we use the Normal and skew-Normal distributions for continuous data and
Poisson and shifted-Poisson distributions for discrete data. We emphasize that the mode
inference tools provided in the package are also designed to be compatible with external soft-
ware implementations of Bayesian MCMC mixture modeling, e.g., JAGS, Stan and WinBUGS.
Thus the user can make use of the mode inference functions implemented in BayesMultiMode
even if the mixture is not estimated with the package.
The next section discusses related software. Section 3 sets out the mixture models and priors
available in BayesMultiMode. Section 4 explains the SFM MCMC and mode detection algo-
rithms. Section 5 provides a brief tutorial on the use of BayesMultiMode. Section 6 illustrates
the package with continuous data distributions from Astrophysics and Economics and discrete
data distributions from Bioinformatics. The results yield credible multiple mode detection
with substantial posterior probability where frequentist tests fail to reject the null hypothesis
of unimodality. An example describes in a stepwise manner the mode-inference capabilities of
BayesMultiMode when working with an external MCMC output using continuous data from
Climatology.
We end with a remark on notation. Formally, we deal with empirical distributions of observed
data (continuous and discrete), probability distributions, probability density functions and
probability mass functions (continuous and discrete) in our models. For convenience, we use
the short terminology of, respectively, data, distributions, densities and mass functions, when
no ambiguity arises.

2. Related software implementations
BayesMultiMode provides tools for both mixture modeling and mode estimation which yield
powerful inferential information. As such BayesMultiMode contributes to three statistical
topics: multimodality tests, mixture modeling and mode estimation. This section discusses
how BayesMultiMode compares with other open-source software implementing similar meth-
ods, in particular, R (R Core Team 2021) packages.

2.1. Mixture estimation

A comprehensive overview of the packages available for estimating mixture models in R can
be found in the section on model-based clustering of the CRAN Task View "Cluster Analysis
& Finite Mixture Models" (Leisch and Gruen 2023). Many of these packages estimate the
model via the EM algorithm. Since BayesMultiMode makes use of MCMC, we limit our
discussion here to packages that adopt Bayesian estimation methods. Packages for MCMC
estimation of mixture models in R are relatively scarce. Among them, BayesMix (Gruen and
Plummer 2021) provides an interface to finite mixture models coded in JAGS, and BNPmix
(Corradin, Canale, and Nipoti 2021) provides a very fast and flexible implementation of non-
parametric Bayesian mixtures. Besides R, custom mixtures can also be estimated with MCMC
techniques using Stan (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker,
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Guo, Li, and Riddell 2017), BUGS (Lunn, Thomas, Best, and Spiegelhalter 2000) and JAGS
(Plummer 2003). Researchers working with Python can also use the popular PyMC package
(Wiecki, Salvatier, Vieira, Kochurov, Patil, Osthege, Willard, Engels, Carroll, Martin, Sey-
boldt, Rochford, Paz, rpgoldman, Meyer, Coyle, Gorelli, Abril-Pla, Kumar, Lao, Andreani,
Yoshioka, Ho, Kluyver, Beauchamp, Andorra, Pananos, Spaak, Edwards, and Ma 2023). All
of these packages can be used in conjunction with BayesMultiMode. The only requirement
for running BayesMultiMode is a suitably defined MCMC output (details are provided in
Subsection 5.2).

2.2. Mode inference

To the best of our knowledge BayesMultiMode is the first R package that is capable of
mode inference in mixture models using Bayesian methods. Specifically, BayesMultiMode
implements two efficient algorithms for estimating modes in mixtures of univariate continuous
distributions: the fixed-point algorithm of Carreira-Perpinan (2000) for Normal mixtures and
the Modal EM (MEM) algorithm of Li et al. (2007) for general continuous mixtures. For the
case of discrete mixtures we implement a simple and efficient algorithm proposed in Cross
et al. (2023).
If a mixture model is not needed to characterize the data, then other packages for mode
inference in R include: ModEstM (Collet 2022) which provides a function to find modes in
univariate distributions using a kernel approach following Eddy (1980); multimode which
implements the mode tree (Minnotte and Scott 1993), mode forest (Minnotte, Marchette,
and Wegman 1998) and SiZer map Chaudhuri and Marron (1999) for visualizing modes in
kernel density estimates; and modehunt implements the multiscale inference of Dümbgen and
Walther (2008) which relies on local order statistics instead of mixtures or kernel methods.
Unlike the Bayesian approach implemented in BayesMultiMode, these methods yield limited
information regarding the uncertainty attached to mode estimates.
Conventional frequentist tests for multimodality (Silverman 1981; Hall and York 2001; Har-
tigan and Hartigan 1985; Cheng and Hall 1998; Fisher and Marron 2001) can all be accessed
with multimode. Unlike these tests, however, BayesMultiMode provides posterior probabili-
ties for the number of modes given a family of mixture distributions.

3. Mixture models and priors
We provide a brief introduction to mixture models intended to provide users with sufficient
knowledge to use the package on their own datasets. More general treatments can be found in
the textbooks of McLachlan and Peel (2004) and Frühwirth-Schnatter (2006), among others.
Let yi, i = 1, . . . , n, denote random variables that can be either discrete valued, i.e., yi ∈ N,
or continuous valued, i.e., yi ∈ R. A mixture of K distributions from the same parametric
family P (·|θk), continuous or discrete, is given by:

yi ∼
K∑
k=1

πkP (·|θk), (1)

where the mixture component probabilities are constrained such that
∑K
k=1 πk = 1 and πk ≥ 0,

k = 1, . . . ,K, and θk denotes the parameter vector belonging to the k-th component.
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BayesMultiMode estimates the unknown parameters: πk and θk using Bayesian MCMC meth-
ods. To that end, a symmetric Dirichlet prior is used for the mixture weights:

πk ∼ Dirichlet(e0, . . . , e0). (2)

The concentration parameter e0 has traditionally been viewed as a hyperparameter that is
selected by the researcher. In a recent article, Malsiner-Walli, Frühwirth-Schnatter, and Grün
(2016) show that estimating this parameter allows for simple and efficient inference on the
number of mixture components. They recommend to overfit the mixture distribution by
selecting a large value of K, and specifying a regularization prior on e0 to shrink the effective
number of mixture components to a credible number with large posterior probability. This is
accomplished through a Gamma hyperprior on the concentration parameter e0 of the form

e0 ∼ Gamma (a0,A0) , (3)

in which the hyperparameters control the unconditional moments of e0, e.g., the uncondi-
tional mean is a0

A0
and the unconditional variance is a0

A2
0
. A theoretical justification for this

approach stems from asymptotic results in Rousseau and Mengersen (2011), and a compari-
son of the approach with the popular Dirichlet process prior is given by Frühwirth-Schnatter
and Malsiner-Walli (2019). Following Frühwirth-Schnatter and Malsiner-Walli (2019, p. 48)
default values of the hyperparameters are selected to be a0 = 1, A0 = 200.
BayesMultiMode supports four parametric mixture distributions: Normal and skew-Normal
continuous mixtures, Poisson and shifted-Poisson discrete mixtures. We briefly cover each of
these in turn.

Normal model A component of a mixture of Normal densities takes the form:

p(yi|µk, σk) = 1√
2π σk

exp
(
− 1

2

(
yi − µk
σk

)2
)
, (4)

where µk is a location parameter and σ2
k a scale parameter. We use independent conjugate

priors for µk and σ2
k (see for instance Malsiner-Walli et al. 2016; Richardson and Green 1997):

µk ∼ Normal(b0,B0), (5)
σ−2
k ∼ Gamma(c0,C0), (6)
C0 ∼ Gamma(g0,G0). (7)

The default values are set to be b0 = mean(y), B0 = range(y)2, where range(y) = max(y)−
min(y), c0 = 2.5, g0 = 0.5, and G0 = 100g0/c0/R

2. These values are common in applications
based on Normal mixtures, e.g., Frühwirth-Schnatter (2006, p. 192) and Malsiner-Walli et al.
(2016, eq. 5).

Skew-Normal model We use the skew-Normal density of Azzalini (1985) (see also Azzalini
2013) which takes the form:

p(yi|ξk, ωk, αk) = 1
ωk
√

2π
exp

(
− 1

2

(
yi − ξk
ωk

)2) (
1 + erf

(
αk

(
yi − ξk
ωk
√

2

)))
, (8)
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where ξk is a location parameter, ωk a scale parameter, and αk the shape parameter intro-
ducing skewness. To estimate the model we follow Frühwirth-Schnatter and Pyne (2010) and
use the following reparameterized random-effects model:

zi ∼ TN[0,∞)(0, 1), (9)
yi|(Si = k) = ξk + ψkzi + εi, εi ∼ N(0, σ2

k), (10)

where Si indicates from which component the observation i stems and where the parameters
of the skew-Normal density in (8) are recovered as

ωk = ψk
σk
, ω2

k = σ2
k + ψ2

k. (11)

By defining a vector of regressors xi = (1, zi)′ with the representation (9), the skew-Normal
mixture can be seen as a random-effects model with Normal errors. Its parameters can
be sampled from their posterior using standard techniques for Normal mixtures as outlined
above. Therefore we specify similar priors for the Normal mixture model:

(ξk, ψk)′ ∼ Normal(b0,B0) (12)
σ−2
k ∼ Gamma(c0,C0) (13)
C0 ∼ Gamma(g0,G0). (14)

The only difference in the default choice of hyperparameters is that we set b0 = (median(y), 0)′
and B0 = diag(2).

Poisson model A component of a mixture of Poisson mass functions takes the form:

p(yi|λk) = 1
yi!

λyi
k exp(−λk), (15)

where

λk ∼ Gamma(l0,L0). (16)

Following Viallefont, Richardson, and Green (2002), the default shape parameter l0 is selected
to be just above one so as to avoid the exponential shape of the Gamma density while
preserving a reasonable amount of variation, while the scale parameter, L0, is set such that
the prior mean is equal to the arithmetic mean of the observed data (E[λk] = l0L0 = mean(y)).

Shifted-Poisson model The shifted-Poisson mass function augments the standard Poisson
with a shift (or location) parameter such that:

p(yi|λk, κk) = 1
(yi − κk)!

λ
(yi−κk)!
k exp(−λk). (17)

As discussed in Cross et al. (2023), there are two key advantages offered by the shifted-Poisson
over the regular Poisson. First, it is useful for non-zero count data. Second, the variance of a
shifted-Poisson component can be different from its mean which brings additional flexibility to
the model. Following Cross et al. (2023), we specify a non-informative discrete uniform prior
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Parameter Mixture Description Default
a0 All Shape parameter of the gamma hyperprior 1

applied to the concentration parameter
e0 of the Dirichlet prior.

A0 All Scale parameter of the gamma hyperprior 200
applied to the concentration parameter
e0 of the Dirichlet prior.

b0 Normal Mean parameter of the normal median(data)
skew-Normal prior applied to the mean parameters µk. (median(data), 0)’

B0 Normal Variance parameter of the normal range(y)2

skew-Normal prior applied to the mean parameters µk. diag(2)
c0 Normal Shape parameter of the inverse gamma 2.5

skew-Normal prior applied to the variance parameters σ2
k. 2.5

C0 Normal Scale parameter of the inverse gamma Gamma
skew-Normal prior applied to the variance parameters σ2

k. hyperprior
g0 Normal Shape parameter of the gamma 0.5

skew-Normal hyperprior applied to C0.
G0 Normal Scale parameter of the gamma 100g0 c0range(y)2

skew-Normal hyperprior applied to C0. g0/(0.5× var(y))
l0 Poisson Shape parameter of the gamma 1.1

shifted-Poisson prior applied to λk. 5
L0 Poisson Scale parameter of the gamma 1.1/median(y)

shifted-Poisson prior applied to λk. 1− l0

Table 1: Summary of the prior parameters implemented in BayesMultiMode.

for the shift parameter κk, i.e. U(0,max(y)), where a different large value (not depending on
the data y) could also be used instead of max(y).
A summary of the default priors set in BayesMultiMode is provided in Table 1.

4. Algorithms
This section discusses the algorithms for mixture estimation and mode detection implemented
in BayesMultiMode.

4.1. SFM MCMC

Numerous MCMC methods exist for the estimation of the model parameters and number of
components of a mixture process. To the best of our knowledge, there does not exist a theorem
that shows which MCMC method is uniformly superior in terms of computational efficiency
and robustness for the simulation from posterior distributions of mixture processes. That
is, model specification, prior information and data information content play an important
role in choosing which MCMC method is most suitable in a certain case. BayesMultiMode
implements the sparse finite mixture MCMC (SFM MCMC) algorithm, see Malsiner-Walli
et al. (2016) and Frühwirth-Schnatter and Malsiner-Walli (2019). A major advantage of this
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procedure is its simplicity and ease of implementation. It consists of initially overfitting the
mixture model by selecting a larger number of components than is expected to describe the
data and then using a sparse hierarchical prior on the mixture weights to shrink the model
space to a credible number of components with substantial posterior probability. The authors
show that the SFM approach is more reliable than Dirichlet process mixtures (DPM) which
are known to overfit the number of components (Miller and Harrison 2013) and that the SFM
approach is conceptually simpler and substantially easier to implement than the Reversible
Jump MCMC (see Green 1995; Richardson and Green 1997). For background we refer to
Malsiner-Walli et al. (2016) and Frühwirth-Schnatter and Malsiner-Walli (2019).

Label-switching It is notoriously difficult to identify individual components when fitting
mixtures with MCMC methods; a problem referred to as label-switching. Label-switching
occurs when the likelihood is invariant to permutation of the mixture components, which is
often the case when the data are not very informative. This is, however, not an issue for
mode inference. Estimation of the modes only requires estimates of the mixture distribution
at each MCMC draw, regardless of the components’ order. Therefore, while label-switching
can be a feature of the MCMC results derived with BayesMultiMode, this should not concern
the user for the case of mode detection.

4.2. Mode estimation

Given equation (1), the density or mass function consisting of a mixture of K densities or
mass functions from the same parametric family p(·|θk) is given by:

yi ∼
K∑
k=1

πkp(·|θk), (18)

We want to find the local maxima of p(yi|θ), with θ = (θ1, ..., θk)′. To that end, we implement
two algorithms for detecting modes for a mixture of densities and one algorithm for a mixture
of mass functions. The reason for using two algorithms for detecting modes for continuous
mixtures is that efficient algorithms exist for the case of Normal mixtures that are not easily
transferable to cases of non-Normality.

Fixed-point algorithm for Normal mixtures For a mixture of Normal densities the
following algorithm from Carreira-Perpinan (2000, section 4) is used. A mode y is found by
iterating the two steps:

(i) p(k|y(n)) = πkp(y(n)|θk)
p(y(n))

, (19)

(ii) y(n+1) = f(y(n)), (20)

where

p(y) =
∑
k

πkp(y|θk), (21)

f(y) =
(∑

k

p(k|y)σ−2
k

)−1∑
k

p(k|y)σ−2
k µk, (22)
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until numerical convergence to the fixed point of f(·), which is defined by abs(y(n+1)−y(n)) <
tolconv, where tolconv is an argument with default value 1e− 8. Following Carreira-Perpinan
(2000) we start the algorithm multiple times, once at each component’s location. Separately,
it is necessary to identify identical modes which diverge only up to a small value. By default
BayesMultimode will merge modes which are closer than sd(y)/10; this tolerance value can
be controlled with the argument tol_y.

The Modal EM (MEM) For continuous mixtures other than the Normal the following
algorithm from Li et al. (2007) is used. The MEM algorithm consists of iterating the two
steps:

(i) p(k|y(n)) = πkp(y(n)|θk)
p(y(n))

, (23)

(ii) y(n+1) = arg max
y

∑
k

p(k|y(n))logp(y|θk), (24)

until convergence, that is, until abs(y(n+1) − y(n)) < tolconv. The maximization is carried out
with a limited-memory BFGS algorithm (specifically the L-BFGS-B method with the optim
function in R). Iterating these two steps is typically more reliable than maximizing (18), or
its logarithm, directly. Like with the fixed-point algorithm, the convergence tolerance is set
to 1e− 8 and the MEM algorithm is repeatedly started at each component’s location.
While it is also possible to use the MEM algorithm for Normal mixtures, this is not recom-
mended because the algorithm is less efficient than the fixed-point method in this particular
case.

Mode-detection in discrete mixtures Detecting modes in discrete mixtures is easier
than in continuous mixtures. Here we follow Cross et al. (2023) and implement the following
simple and efficient method. By definition, modes must satisfy either:

1. pk(ym − 1) < pk(ym) > pk(ym + 1),

2. pk(ym − 1) < pk(ym) = pk(ym + 1) = . . . = pk(ym + l − 1) > pk(ym + l).

In the first case there is a unique mode which is clearly identified. In the second case in which
l consecutive values of the posterior predictive probability mass function are equally high,
we consider all values as mode locations (flat modes), but only count the first as a single
mode when computing the posterior probability of the number of modes. From a practical
perspective, this amounts to a simple five-step procedure:

1. Compute the posterior mixture at a given draw of parameters

2. Evaluate the posterior mass function at each (discrete) observation

3. Take the first difference of the resulting series

4. Find the points where the series of first differences have a non-positive value after a
positive value
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5. Extract all of the locations of modes of these mass function estimates

4.3. Mode inference

Each draw from the MCMC output after burnin, θ(d), d = 1, . . . , D, leads to a posterior
predictive density/mass function:

p(y|θ(d)) =
K∑
k=1

π
(d)
k p(y|θ(d)

k ). (25)

Using this function, the modes in draw d, y(d)
m , m = 1, ...,M (d), where M (d) is the number of

modes in draw d, are estimated using the algorithms mentioned above.
After running this procedure across all retained posterior draws, we compute the posterior
probability for the number of modes being M as:

P (#modes = M) = 1
D

D∑
d=1

1(M (d) = M), (26)

with M (d) the number of modes in a given draw from MCMC estimation (after burnin),
d = 1, ..., D. Similarly, posterior probabilities for mode locations are:

P (y = mode) = 1
D

D∑
d=1

1(y = y(d)
m ), (27)

for each local mode y(d)
m in the range [min(y),max(y)]. As an example if y = 0 is a mode at

each draw i.e., 1(y = y
(d)
m ), d = 1, . . . , D, then P (0 = mode) = 1. Alternatively, if y = 1 is

detected as a mode at 75% of draws then P (1 = mode) = 0.75.
Computing this posterior probability over the range [min(y),max(y)] yields a full character-
ization of the uncertainty attached to mode locations. Obviously, empirical distributions of
continuous variables are not defined on a discrete support; it is therefore necessary to choose a
rounding decimal to discretize their support. The computation of the posterior probabilities
of mode locations requires a discrete range (or equivalently a width of intervals/bins). A
rounding decimal to discretize their support can be chosen by the user in BayesMultiMode.

5. Using BayesMultiMode
BayesMultiMode offers a flexible approach for estimating mixtures given its range of sup-
ported density/mass functions and its implementation of an SFM MCMC algorithm where
the number of mixture components does not have to be known a priori. However, the algo-
rithms for mode inference implemented in the package are also available for users who prefer
using external software for MCMC estimation. This section details the use of BayesMulti-
Mode in both cases.

5.1. Using BayesMultiMode for both estimation and mode inference

The typical workflow using BayesMultiMode is:
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1. Estimate the mixture model with bayes_estimation(data, K, dist, priors, nb_iter,
burnin) where the user selects

(a) A vector of observations to investigate with the data argument;
(b) Family of the mixture with the dist argument i.e. "normal", "skew_normal", "pois-

son" or "shifted_poisson";
(c) The maximum number of components with the K argument;
(d) Priors (optional) with the priors = list() argument;
(e) The number of MCMC draws with the nb_iter argument;
(f) The number of draws used as burnin with the burnin argument;

2. Visualize the mixture alongside the data with plot();

3. Conduct mode inference with bayes_mode();

4. Visualize the mode inference with plot();

5. Summarize the mode inference with summary().

5.2. BayesMultiMode for mode inference with external MCMC output

Alternatively, if the user prefers carrying out MCMC estimation with an external software,
steps one and two presented above are skipped. The user needs to convert the external MCMC
results into an object of class BayesMixture using the function new_BayesMixture(mcmc,
data, K, burnin, dist = "NA", pars_names, pdf_func = NULL, dist_type) where the
arguments are

1. mcmc: MCMC output matrix with parameters as columns and MCMC draws as rows;

2. data: the data used to estimate the model;

3. K: the number of mixture components;

4. burnin: the number of MCMC draws to be discarded as burnin;

5. dist: the name of the components’ distribution, i.e. "normal", "skew_normal", "poisson"
or "shifted_poisson";

6. pars_names: the names of the parameters featuring in the MCMC output;

7. pdf_func: the density or mass function of the components;

8. dist_type: the type of distribution, either continuous or discrete.

The argument dist should be provided only if it is a distribution supported by bayes_estimation();
if it is not supported then this argument should be ignored and the density or mass function
should be provided with the argument pdf_func. The function given in pdf_func should take
a vector as first argument and a named vector as second argument, with the names correspond-
ing to the parameters of the function. Importantly these names should match the variable
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Function Description
bayes_estimation() Estimate a mixture distribution using SFM MCMC methods.
bayes_mode() Estimate modes and retrieve posterior probabilities

for their number and locations.
bayes_trace() Trace plots of MCMC draws using package bayesplot.
new_BayesMixture() Take external MCMC results and return an object of class

BayesMixture which can then be used with bayes_mode().
fixed_point() Estimate the modes of a mixture of Normal distributions

using the fixed-point algorithm of Carreira-Perpinan (2000).
MEM() Estimate the modes of a mixture of continuous distributions

using the Modal EM algorithm of Li et al. (2007).
discrete_MF() Find the modes of a mixture of discrete distributions.

Table 2: Overview of the functions available in BayesMultiMode.

names of the MCMC output; see the example in the documentation of the new_BayesMixture
function.
Table 2 provides a summary of the functions exported in BayesMultiMode.
Given that the methods and main functions of BayesMultiMode have been described, we now
illustrate its use.

6. Case studies
To facilitate the illustration and use of the capabilities of BayesMultiMode, we have included
the galaxy data used in Richardson and Green (1997) downloaded from
https://people.maths.bris.ac.uk/∼mapjg/mixdata in the package. This is a widely used
empirical distribution for illustrating estimating continuous mixtures and mode inference.
Next, we make use of data discussing the potential convergence in per capita income across
economies, see, e.g., Bianchi (1997), Henderson, Parmeter, and Russell (2008) and Paap and
van Dijk (1998). For this application we make use of the average GDP per capita over 10
year intervals, collected from 170 countries, in the Penn World Tables (Feenstra, Inklaar,
and Timmer 2015). We also included a dataset on cyclone lifetime maximum intensity. The
galaxy and cyclone data are lazy-loaded and can be retrieved with galaxy and cyclone.
Finally, we included a DNA set of discrete data to show the benefit of analyzing discrete empir-
ical distributions with BayesMultiMode. These data are obtained from 270 unrelated human
DNA samples from Asian, African and Caucasian origin, see Schaap, Lemmers, Maassen,
van der Vliet, Hoogerheide, van Dijk, Baştürk, de Knijff, and van der Maarel (2013). It is of
substantial interest to analyze the number and location of modes in the data, since differences
in these values may be linked to genetic diseases. Like for the continuous data, the DNA data
are lazy-loaded and can be retrieved with d4z4 and ct47.

6.1. Galaxy data

We use the galaxy data to illustrate the use of the package with continuous data. These
data, introduced in Roeder (1990), show the velocity at which 82 galaxies in the Corona

https://people.maths.bris.ac.uk/~mapjg/mixdata
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Borealis region are moving away from our galaxy. The data are commonly scaled by 1000
and have been analyzed extensively to illustrate mixture methods, see for instance Roeder
(1990), Roeder and Wasserman (1997), Richardson and Green (1997) and more recently Grün,
Malsiner-Walli, and Frühwirth-Schnatter (2022). Studies analyzing these data typically find
evidence about at least three modes (Roeder 1990; Roeder and Wasserman 1997; Richardson
and Green 1997; Grün et al. 2022).

R> library(BayesMultiMode)
R> y = galaxy

First, we analyze the data using the frequentist tests for unimodality from Silverman (1981)
(SI), Hall and York (2001), Hartigan and Hartigan (1985) (HH or dip test), Cheng and Hall
(1998) (CH) and Fisher and Marron (2001) (FM). They can all be accessed with the R
package multimode. The authors of multimode have also introduced a new test (ACR) (see
Ameijeiras-Alonso, Crujeiras, and Rodriguez-Casal 2019) which is the default method in their
package. We perform all these tests together and show their p-values:

R> set.seed(123)
R> library(multimode)
R> tests_mode <- function(y) {
+
+ tests = c(modetest(y, method = "SI")$p.value,
+ modetest(y, method = "HY")$p.value,
+ modetest(y, method = "FM")$p.value,
+ modetest(y, method = "HH")$p.value,
+ modetest(y, method = "CH")$p.value,
+ modetest(y, method = "ACR")$p.value)
+
+ names(tests) = c("SI", "HY", "FM", "HH", "CH", "ACR")
+
+ return(tests)
+ }
R> tests_mode(y)

SI HY FM HH CH ACR
0.208 0.012 0.000 0.696 0.262 0.188

The null hypothesis in all these tests is unimodality and the alternative hypothesis is at least
two modes. The only tests rejecting unimodality at a 95% confidence level are the FM and HY
tests, the other four tests fail to detect multimodality. This goes against the consensus view
that these data include at least three modes. We obtain similar results with other packages,
such as diptest.
Next we analyze the galaxy data with BayesMultiMode. The first step consists of fitting a
mixture; here we choose Normal components, which is a common choice for these data (Grün
et al. 2022). We choose a maximum number of 10 components and run 2000 draws with half
of them used as burnin.
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R> plot(mix_mcmc, max_size = 100, transparancy = 0.8)
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Figure 1: Empirical distribution of galaxy data and mixture estimate.

R> mix_mcmc = bayes_estimation(data = y,
+ K = 10,
+ dist = "normal",
+ nb_iter = 2000,
+ burnin = 1000,
+ printing = FALSE)

The function bayes_estimation generates an object of class BayesMixture which can be
visualized with plot(). Figure 1 shows the estimated density for 100 draws alongside the
data. We observe estimates of three modes, one on each extremity and one in the center. The
mcmc element of the BayesMixture object can be used as input to most functions in bayesplot
if diagnostic plots are required.
Now that the mixture model has been estimated, we use the MCMC output for mode inference:

R> mode_mcmc = bayes_mode(mix_mcmc)

The function bayes_mode() returns an object of class BayesMode which can be visualized
using plot() and summarized with summary(). Here the fixed-point algorithm of Carreira-
Perpinan (2000) is used for mode detection because we have estimated a Gaussian mixture.
A summary of the results yields:

R> summary(mode_mcmc)

The posterior probability of the data being multimodal is 0.989

Number of estimated modes and their posterior probabilities:
Number of modes Posterior probabilty
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[1,] 1 0.011
[2,] 2 0.152
[3,] 3 0.828
[4,] 4 0.009

The results are clearly in favor, in a credible way, of multimodality, with three modes being
the number of modes with the highest posterior probability. Next we investigate the location

R> plot(mode_mcmc, max_size = 100, transparancy = 0.8)
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Figure 2: Posterior probabilities for the number of modes and their locations using the
galaxy data.

of the modes with the third panel of Figure 2.
BayesMultiMode provides a full characterization of the uncertainty attached to mode lo-
cations. We observe, for instance, that the location of the right mode is subject to more
uncertainty than the other two modes.
Note that, when working with continuous data, it is necessary to choose a rounding precision
to compute the posterior probabilities of mode locations (or equivalently to choose a width of
the intervals/bins when displaying histograms of draws or graphs of the estimated probability
of mode locations). The default in BayesMultiMode is to round the location axis at the first
decimal. Figure 3 compares the implication of using different rounding precision. Here we
make use of the graphs argument of the plot function which allows to select a subset of the
three graphs plotted by default. We use ggplot2 (Wickham 2016) to add features to the plots
generated by the plot() method from BayesMultiMode (which also makes use of ggplot2).
Combining individual plots can be done with the ggpubr package.
It is possible to investigate graphically estimated modes using the argument show_plot of
bayes_mode with argument nb_iter determining the number of draws to use. For example
Figure 4 shows the estimated mixture at one MCMC iteration together with the estimated
modes shown as vertical bars. Choosing different priors than the default priors can affect
MCMC estimation and can thus also affect the estimates of the modes. The choice of priors
can be seen as similar to choosing the bandwidth parameter in kernel estimation; the estima-
tion technique used in nonparametric tests. But unlike bandwidth parameters, we can rely
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R> library(ggpubr)
R> library(ggplot2)
R> mode_mcmc_a = bayes_mode(mix_mcmc, rd = 1)
R> mode_mcmc_b = bayes_mode(mix_mcmc, rd = 0)
R> plot_a = plot(mode_mcmc_a, graphs = "loc") +
+ ggtitle("Rounding at the first decimal")
R> plot_b = plot(mode_mcmc_b, graphs = "loc") +
+ ggtitle("Rounding at the unit level")
R> ggarrange(plot_a, plot_b,
+ ncol = 1, nrow = 2, widths = c(0.5, 0.5))
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Figure 3: Illustration of mode inference for the galaxy data using different rounding precision.

on extensive research for specifying priors. In the case of the galaxy data, Grün et al. (2022)
provide a comprehensive discussion on the effect that prior specifications have on the final
mixture estimates.
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R> par(mar = c(2, 2, 2, 2))
R> mode_mcmc = bayes_mode(mix_mcmc, nb_iter = 1, show_plot = TRUE)
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Figure 4: Estimated mixture (curve) and modes (vertical bars) from one draw of the MCMC
algorithm for the galaxy data.



18 BayesMultiMode: Bayesian Mode Inference in R

6.2. International economic growth data

There exists a rich literature in economics discussing the potential convergence in per capita
income across economies. Mode analysis is a useful tool to tackle this highly debated topic.
The data used are the average GDP per capita over 10 year intervals, collected from 170
countries, in the Penn World Tables. These empirical distributions are made available in
R through the package pwt10 (Zeileis 2023). We apply a mixture of normal densities to
approximate the data and to credibly estimate the number of modes over time.1

R> library(pwt10)
R> library(dplyr)
R> estimation_growth <- function(start, end) {
+ y = pwt10.0 %>%
+ select(year,country,rgdpe,pop) %>%
+ filter(year %in% rep(start:end, 1)) %>%
+ group_by(country) %>%
+ summarise(rgdpe = as.numeric(mean(rgdpe/pop, na.rm=T)/1000)) %>%
+ na.omit() %>%
+ select(rgdpe) %>%
+ unlist()
+
+ y = sort(y, decreasing = T)
+ y = y[-c(1:5)]
+
+ mix = bayes_estimation(y, dist = "normal", K = 10, printing = F)
+ plot_mix = plot(mix, max_size = 100, transparency = 0.1) + ylab(NULL) +
+ ggtitle(paste0(start,"'s"))
+ modes = bayes_mode(mix, rd = 0)
+ tests = tests_mode(y)
+
+ return(list(mix = mix,
+ plot_mix = plot_mix,
+ modes = modes,
+ tests = tests))
+ }
R> res_60s = estimation_growth(1960, 1969)
R> res_70s = estimation_growth(1970, 1979)
R> res_80s = estimation_growth(1980, 1989)
R> res_90s = estimation_growth(1990, 1999)
R> res_00s = estimation_growth(2000, 2009)
R> res_10s = estimation_growth(2010, 2019)

The posterior probability of multimodality and the p-values of conventional tests are shown
in Table 3. The posterior probabilities of the number of modes are shown in Table 4. The
support of the data is continuous but the computation of the posterior probabilities of mode

1The five largest economies in terms of per capita income (usually Middle East economies and tax haven
islands) are excluded because they are large outliers.
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Figure 5: Estimated densities at 1000 MCMC iteration and empirical distributions of average
real GDP per capita from the Penn World Tables.

locations in Figure 6 requires a discrete range; for this purpose we have rounded the support
to unity levels. Our results suggest that the density of per capita income across countries has
been multimodal since the 1960’s. There are three credible modes, with the left-side mode
being the most concentrated; there is greater uncertainty regarding the location of the other
two modes. The uncertainty attached to the mode location has increased over time while the
modes have gradually diverged. There is a fourth mode emerging from the 1990’s.

For possible GDP convergence analysis over time, we consider the estimated densities over
different periods. Estimates at the beginning of the period have higher peaks and almost no
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Figure 6: Posterior probabilities attached to mode locations using the Penn World Tables
data.

probability mass in the mid-point of the data range. At the end of the period, despite the
decreasing number of modes, the probability mass at the mid-point increases while the peaks
at the tails of the densities are less pronounced. We therefore conclude that the dynamic
behavior of the number of modes over time do not necessarily indicate ‘convergence’ and
according to these results a ‘middle income’ category seems to be emerging over time.
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SI HY FM HH CH ACR BayesMultiMode
1960’s 0.53 0.25 0.01 0.93 0.63 0.46 0.01
1970’s 0.53 0.15 0.00 0.99 0.82 0.73 0.00
1980’s 0.35 0.09 0.00 0.98 0.74 0.63 0.00
1990’s 0.08 0.00 0.00 0.51 0.10 0.04 0.00
2000’s 0.19 0.01 0.00 0.94 0.52 0.38 0.00
2010’s 0.69 0.36 0.09 0.26 0.01 0.00 0.00

Table 3: P-values from conventional tests of multimodality for the Penn World Tables data.
Null hypothesis of unimodality with alternative hypothesis of at least two modes.

decade 1 2 3 4 5
1960’s 0.01 0.35 0.63 0.01 0.00
1970’s 0.00 0.19 0.72 0.08 0.00
1980’s 0.00 0.20 0.76 0.04 0.00
1990’s 0.00 0.07 0.80 0.14 0.00
2000’s 0.00 0.01 0.97 0.02 0.00
2010’s 0.00 0.04 0.72 0.23 0.01

Table 4: Posterior probabilities attached to the number of modes for the Penn World Tables
data.
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6.3. DNA count data
Count data are a specific type of discrete empirical distributions that are collections of non-
negative integers representing the number of times a discrete event is observed. They are
prevalent in many areas of Bioinformatics. Examples of such data are counts of macrosatel-
lite repeats (MSRs), hospital admissions, and rates of cardiac arrest. Despite the widespread
occurrence, there is no unified framework for detecting multimodality in discrete data; Bayes-
MultiMode fills an important gap in that respect.
Here we use macrosatellite repeats (MSRs) copy number variation in worldwide populations
as examined by Schaap et al. (2013), among others see, e.g., Giacalone, Friedes, and Francke
(1992) and Jones, King, Himeda, Homma, Chen, Beermann, Yan, Emerson, Miller, Wag-
ner et al. (2015). MSRs typically span hundreds of kilobases of genomic DNA and have
a highly polymorphic nature that has been linked to the detection of genetic disease (see,
e.g. van Overveld, Lemmers, Sandkuijl, Enthoven, Winokur, Bakels, Padberg, van Ommen,
Frants, and van der Maarel 2003; Bruce, Sachs, Rudnicki, Lin, Willour, Cowell, Conroy, Mc-
Quaid, Rossi, Gaile, Nowak, Holmes, Sklar, Ross, Delisi, and Margolis 2009; Balog, Miller,
Sanchez-Curtailles, Carbo-Marques, Block, Potman, De Knijff, Lemmers, Tapscott, and Van
Der Maarel 2012; Mitsuhashi, Nakagawa, Takahashi Ueda, Imanishi, Frith, and Mitsuhashi
2017). Reliable statistical approaches for testing unimodal against multimodal size distribu-
tions in MSRs are consequently of great practical importance.
We analyze two data sets with different modal features. One data set (sequence d4z4) ex-
hibits a clear sign of multimodality while the other (sequence ct47) does not. Testing for
multimodality using the frequentist tests specified above yields

R> table_tests = rbind(tests_mode(d4z4),
+ tests_mode(ct47))
R> row.names(table_tests) = c("d4z4", "ct47")
R> table_tests

SI HY FM HH CH ACR
d4z4 0.652 0.404 0.182 0.956 0.562 0.584
ct47 0.718 0.586 0.050 0.946 0.474 0.600

While sequence d4z4 is likely to be multimodal, none of the tests rejects the null hypothesis
of unimodality, and this by a comfortable margin. Regarding sequence ct47, two tests reject
the null hypothesis of unimodality with a 90% confidence level whereas we expect these data
to have a unimodal distribution. Thus the frequentist tests provide results which are at odds
with our results as well as with previous studies using these data (see Schaap et al. 2013).
They fail to spot evident multimodality while falsely rejecting unimodality in data likely to be
unimodal. Frequentist tests are apparently unreliable when applied to count data, of which
DNA data are a typical example, partially because these tests assume continuous underlying
data.
We now use BayesMultiMode to analyze the DNA sequences. First, we estimate a mixture
of shifted-Poisson distributions. We use 2000 draws and discard half of those as burnin. We
use the default priors of the package.

R> mcmc_d4z4 = bayes_estimation(data = d4z4,
+ K = 10,
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+ dist = "shifted_poisson",
+ nb_iter = 2000,
+ burnin = 1000,
+ printing = FALSE)
R> mcmc_ct47 = bayes_estimation(data = ct47,
+ K = 10,
+ dist = "shifted_poisson",
+ nb_iter = 2000,
+ burnin = 1000,
+ printing = FALSE)

Figure 7 shows the estimated mass functions for 100 draws together with the data for both
sequences. Visually, we notice that the MCMC estimation yields a mass function with about
four modes for the d4z4 sequence and a unique mode for the ct47 sequence. We can formally

R> p1 = plot(mcmc_d4z4, max_size = 100, transparancy = 0.8) +
+ ggtitle("d4z4")
R> p2 = plot(mcmc_ct47, max_size = 100, transparancy = 0.8) +
+ ggtitle("ct47")
R> ggarrange(p1, p2,
+ ncol = 2, nrow = 1, widths = c(0.5, 0.5))
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Figure 7: Two DNA empirical distributions and their mixture estimates.

investigate the modes in the estimated probability mass functions with the BayesMultiMode’s
bayes_mode function; graphical outputs are shown in Figure 8. Posterior probabilities for the
number of modes favor four modes for the d4z4 sequence and one mode (with posterior
probability of one) for ct47 sequence.
We have illustrated how BayesMultiMode can correct the failure of frequentist tests analyzing
discrete data.
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R> p1 = plot(bayes_mode(mcmc_d4z4)) +
+ ggtitle("d4z4")
R> p2 = plot(bayes_mode(mcmc_ct47)) +
+ ggtitle("ct47")
R> ggarrange(p1, p2, labels = c("d4z4","ct47"),
+ ncol = 1, nrow = 2, widths = c(0.5, 0.5))
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Figure 8: Posterior probabilities of the number of modes and their locations using the DNA
count data d4z4 and ct47.



Bastürk, Cross, de Knijff, Hoogerheide, Labonne and van Dijk 25

6.4. BayesMultiMode with external MCMC output using cyclone data

BayesMultiMode provides a self-contained tool for exploring modal features by first fitting a
Bayesian mixture model and subsequently estimating modes using the MCMC draws. The
choice of available distributions in the package, which can be either continuous or discrete,
and the implementation of an SFM MCMC algorithm for estimating the number of mixture
components makes BayesMultiMode a competitive tool for estimating mixture distributions.
However, given that Bayesian methods for fitting mixtures are diverse and evolving rapidly,
users might prefer an alternative MCMC approach. Therefore, BayesMultiMode is deliber-
ately designed to be compatible with MCMC outputs generated using external software.
To illustrate how the package can be used in conjunction with external software we make use
of the package BNPmix. The latter provides nonparametric Bayesian methods for estimating
mixtures. It is notably very fast because it is partly written in C++, which makes it useful
for analyzing large datasets.
In this section we analyze data on tropical cyclone intensity, an ongoing subject of interest in
climate studies (Lee, Tippett, Sobel, and Camargo 2016; Kossin, Olander, and Knapp 2013;
Manganello, Hodges, Kinter, Cash, Marx, Jung, Achuthavarier, Adams, Altshuler, Huang,
Jin, Stan, Towers, and Wedi 2012; Lee et al. 2016; Elsner, Kossin, and Jagger 2008; Web-
ster, Holland, Curry, and Chang 2005; Song, Klotzbach, and Duan 2021). Data on tropical
cyclones are made available at the International Best Track Archive for Climate Steward-
ship (IBTrACS) (Knapp, Kruk, Levinson, Diamond, and Neumann 2010; Knapp, Diamond,
Kossin, Kruk, and Schreck 2018). Intensity is typically measured as the lifetime maximum
intensity (LMI) which we derive as the maximum wind speed of each cyclone. The dataset
cyclone in BayesMultiMode shows cyclones’ year, identification and LMI; the code to gen-
erate it is available in the source code of the package.
Figure 9 shows LMI data of cyclones in the Eastern North Pacific basin from 1981 with an
estimated mixture.2

The data of tropical cyclone intensity across the planet are known to have a bimodal distri-
bution which has important implications for climate modeling. Tropical cyclones are thus a
singular natural event in that their likelihood of occurrence can increase with intensity past a
certain threshold. Lee et al. (2016) show that this can be explained by a phenomenon called
rapid intensification which affects most cyclones with high intensity forming the right mode
of the estimated density.
Estimating a mixture on these data with BNPmix can be done as follows.

R> library(BNPmix)
R> y = cyclone %>%
+ filter(BASIN == "EP",
+ SEASON > "1981") %>%
+ select(max_wind) %>%
+ unlist()
R> PY_result = PYdensity(y,
+ mcmc = list(niter = 2000,

2We do not use the entire global data for all basins because estimation and generating the plots would take
more computing time, but it is entirely feasible. We follow other studies on these data in using cyclones only
from the 1980’s.
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+ nburn = 1000,
+ print_message = FALSE),
+ output = list(out_param = TRUE))

Most software for Bayesian mixture modeling generate an output in the form of a matrix of
MCMC draws with one column per variable. However, BNPmix returns results in a different
format. Thus before using the MCMC output from BNPmix into the bayes_mode() function
we must manipulate the result slightly, which gives us the opportunity to illustrate how this
can be done for similar MCMC output formats.

R> mcmc_py = list()
R> for (i in 1:length(PY_result$p)) {
+ k = length(PY_result$p[[i]][, 1])
+
+ draw = c(PY_result$p[[i]][, 1],
+ PY_result$mean[[i]][, 1],
+ sqrt(PY_result$sigma2[[i]][, 1]),
+ i)
+
+ names(draw)[1:k] = paste0("eta", 1:k)
+ names(draw)[(k+1):(2*k)] = paste0("mu", 1:k)
+ names(draw)[(2*k+1):(3*k)] = paste0("sigma", 1:k)
+ names(draw)[3*k + 1] = "draw"
+
+ mcmc_py[[i]] = draw
+ }
R> mcmc_py = bind_rows(mcmc_py)

Now that we have a MCMC matrix with one column per variable (e.g. eta1, eta2, ..., mu1,
mu2, ... etc) we can create an object of class BayesMixture; the necessary input type for
function bayes_mode().

R> pars_names = c(eta = "eta",
+ mu = "mu",
+ sigma = "sigma")
R> py_BayesMix = new_BayesMixture(mcmc = mcmc_py,
+ data = y,
+ K = (ncol(mcmc_py)-1)/3,
+ burnin = 0, # the burnin has already been discarded
+ dist = "normal",
+ pars_names = pars_names,
+ dist_type = "continuous")

Figure 9 shows the estimated mixture in 100 MCMC draws. The estimated density is credibly
multimodal with two clear modes emerging.
The remaining steps are similar to those described above when estimating the mixture density
with BayesMultiMode. We retrieve the mode estimates with
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R> plot(py_BayesMix, max_size = 100, transparancy = 0.8)
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Figure 9: Mixture estimates using package BNPmix alongside the empirical distribution of
the cyclone data.

R> bayesmode = bayes_mode(py_BayesMix)

Figure provides a graphical representation of the Bayesian mode inference. The posterior

R> plot(bayesmode, max_size = 100, transparancy = 0.8)
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Figure 10: Posterior probabilities for the number of modes and their locations using cyclone
data.

probability of the density being multimodal is

R> 1-bayesmode$p1

[1] 1
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with approximately a 3/4 posterior probability of two modes and 1/4 posterior probability of
three modes. The first mode emerges around 40ks while there is a small mode around 60ks
and a stronger mode around 120ks. The latter mode corresponds to cyclones with very large
intensity. This result is consistent with the global results of Lee et al. (2016).

7. Concluding remarks
BayesMultiMode fills an important gap in statistical software by providing a robust mode
inference approach which (i) yields information on the number of modes, their locations and
associated uncertainties and (ii) is also suitable for discrete empirical distributions contrary
to frequentist methods. Using a set of data ranging from the fields of Astrophysics, Bioinfor-
matics, Climatology and Economics as well as a set of mixture models, we have shown that
BayesMultiMode spots multiple modes in a credible way with substantial posterior probabil-
ity where frequentist methods fail; conversely our method can credibly indicate unimodality
where frequentist methods can only reject or not reject this hypothesis. The mode infer-
ence tools of BayesMultiMode are also compatible with external software using other MCMC
methods for mixture estimation. Thus, while BayesMultiMode provides a unique implemen-
tation of the SFM MCMC algorithm using several families of probability distributions, the
user is not limited to this choice and can integrate our mode inference tool in her statistical
workflow easily.
Finally, we emphasize that our results may be used as a first step in forecasting and pol-
icy analysis of issues where the heterogeneity of the underlying population distribution is
important.
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