
Cross, Jamie; Hoogerheide, Lennart; Labonne, Paul; van Dijk, Herman K.

Working Paper

Bayesian Mode Inference for Discrete Distributions in
Economics and Finance

Tinbergen Institute Discussion Paper, No. TI 2023-038/III

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Cross, Jamie; Hoogerheide, Lennart; Labonne, Paul; van Dijk, Herman
K. (2023) : Bayesian Mode Inference for Discrete Distributions in Economics and Finance,
Tinbergen Institute Discussion Paper, No. TI 2023-038/III, Tinbergen Institute, Amsterdam and
Rotterdam

This Version is available at:
https://hdl.handle.net/10419/273849

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/273849
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

TI 2023-038/III 

Tinbergen Institute Discussion Paper  

 

 

 

Bayesian Mode Inference for 

Discrete Distributions in Economics 

and Finance 

 

 
Jamie Cross1  

Lennart Hoogerheide2,5 

Paul Labonne3 

Herman K. van Dijk4,5 
 

 

 
 

 

 

1 University of Melbourne 

2 Vrije Universiteit Amsterdam 

3 Norwegian Business School 

4 Erasmus University Rotterdam 

5 Tinbergen Institute 



 

 

 

 

 

Tinbergen Institute is the graduate school and research institute in economics of 

Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit 
Amsterdam. 

 
Contact: discussionpapers@tinbergen.nl  
 

More TI discussion papers can be downloaded at https://www.tinbergen.nl  
 

Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 

Gustav Mahlerplein 117 
1082 MS Amsterdam 

The Netherlands 
Tel.: +31(0)20 598 4580 
 

Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 

3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/


Bayesian Mode Inference for Discrete Distributions in

Economics and Finance*

Jamie Cross, Lennart Hoogerheide, Paul Labonne & Herman K. van Dijk

June 27, 2023

Abstract

Detecting heterogeneity within a population is crucial in many economic and

financial applications. Econometrically, this requires a credible determination of

multimodality in a given data distribution. We propose a straightforward yet ef-

fective technique for mode inference in discrete data distributions which involves

fitting a mixture of novel shifted-Poisson distributions. The credibility and util-

ity of our proposed approach is demonstrated through empirical investigations on

datasets pertaining to loan default risk and inflation expectations.

JEL codes : C11, C25, C81, C82, E00, D00

Keywords : Bayesian Inference, Mixture Models, Mode Inference, Multimodality, Shifted-

Poisson.

*We thank Nalan Basturk for useful discussions in the development of this research. The mode

inference method can be implemented using the R package BayesMultiMode (Baştürk et al., 2023).
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1 Introduction

Detecting heterogeneity within a population has a long tradition in economics and fi-

nance. Common examples include loan default risk in the field of credit risk analysis

(e.g., Dionne et al., 1996), and the study of expectations formation among individuals or

market participants (e.g., Haltiwanger and Waldman, 1985). Central to such studies is

the requirement of credible mode determination. We here outline a simple method for

credible mode inference on number and locations of modes and their uncertainty in such

cases. The practicality of our method is demonstrated in datasets on loan default risk

and inflation expectations. Details regarding computational implementation are provided

in a companion R package titled BayesMultiMode (Baştürk et al., 2023). Our procedure

may serve as a useful addition to the mode detection toolkit available to researchers,

policymakers and industry practitioners within these fields.

2 A Bayesian Framework for Mode Inference

Stage 1: Estimation using a novel discrete mixture. We introduce a mixture of

novel shifted-Poisson (SP) distributions specified as:

yi − κk ∼ Poisson(λk) if zik = 1 for i = 1, . . . , n; k = 1, . . . , K, (1)

where zik = 1 if yi belongs to cluster k, and 0 otherwise and the latent variable distribution

is defined as Pr[zik = 1] = πk, for i = 1, . . . , n, k = 1, . . . , K, and where the shift parameter

κk is a non-negative integer. The shift parameter κk is introduced to identify the amount

of dispersion between the mean and variance for each component in the mixture. A

single SP distribution allows for underdispersion, and mixing of multiple components

accommodates overdispersion. The main advantage of the SP over a regular Poisson,

is that an equidispersion restriction is not present even when the number of mixture
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components is 1. The model is estimated with Bayesian methods using the following

uninformative but proper priors:

λk ∼ Unif(λmin, λmax), (2)

κk ∼ DiscUnif(κmin, κmax), (3)

(π1, . . . , πK) ∼ Dirichlet(α, . . . , α), (4)

in which [λmin, λmax] = [κmin, κmax] = [0,M ] with M = max(yi|yi = 1, . . . , n).

Given a number of components, K, and priors (2)–(4), it is straightforward to show

that the conditional posterior distributions are given by:

p (λk|y, z, θ−λk
) ∝ Gamma[λmin,λmax]

 1

nk

, 1 +
∑

i|zik=1

(yi − κk)

 , (5)

p (κk|y, z, θ−κk
) ∝ λ

∑
i|zik=1

yi−nkκk

k∏
i|zik=1

(yi − κk)!
, (6)

p (π|y, z, θ−π) ∝ Dirichlet (n1 + α, . . . , nJ + α) , (7)

where Gamma[λmin,λmax] denotes the truncated Gamma density on the interval [λmin, λmax],

nk =
∑n

i=1 zik is the number of observations in component k and κk is an integer in

[max{κmin,mini|zik=1 (yi)}, κmax]. For nk = 0 the conditional posteriors of λk and κk re-

duce to the uniform and discrete uniform priors on the intervals [λmin, λmax] and [κmin, κmax].

Sampling from these conditional posterior densities can be done with standard MCMC.

The algorithm is completed by estimating a credible number of mixture components.

We implement the sparse finite mixture SFM MCMC algorithm (Malsiner-Walli et al.,

2016). The SFM approach is a simple, efficient and flexible algorithm that facilitates

estimation of finite mixture models with unknown number of components. The basic idea

is to deliberately overfit the mixture by specifying a larger number of components than

is expected to describe the data distribution and next shrink the number of components
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to a credible number with substantial posterior probability using Bayesian regularization.

This is done by specifying a hyperprior of the form:

α ∼ Gamma(aα, bα), (8)

where E(α) = aα/bα = 1
200

strongly favors small values. By Bayes theorem the condi-

tional posterior distribution of α given the partition P of components across observations,

p(α|P) ∝ p(α)p(P|α), is given by

p(α) ∝ αaα−1 exp(−bαα), (9)

p(P|α) ∝ Γ(Jα)

Γ(n+ Jα)

K∏
k=1

Γ(nk + α)

Γ(α)
. (10)

Sampling from these distributions can be done with a Metropolis-Hastings step.

Stage 2: Mode inference Stage two consists of estimating the number of modes and

their locations, and quantifying uncertainty around these estimates. By definition, modes

must satisfy either:

1. pk(ym − 1) < pk(ym) > pk(ym + 1), or

2. pk(ym − 1) < pk(ym) = pk(ym + 1) = . . . = pk(ym + l − 1) > pk(ym + l).

Case 1 is a unique mode which is clearly identified. Case 2 is a mode in which l consecutive

values of the posterior predictive probability mass function are of equal value. We count

this as a single mode, but keep track of each location.
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3 Applications

3.1 Loan default risk

The quantification of loan default risk is common in finance. We use count data on the

number of defaulted payment instalments with a total of 4329 observations in the range

of 0 to 34 defaulted instalments by clients of a financial institution in Spain in 1990, see

Dionne et al. (1996) and Karlis and Xekalaki (2001), Woo and Sriram (2007).

The empirical distribution of the data along with output from our mode inference

procedure is provided in Figure 1. The left panel shows that these data are a typical

example of zero-inflated count data, but also possess a fat tail. A standard Poisson

mixture may therefore fail to approximate this data distribution. In contrast, the fitted

mixture suggests that our SP mixture is well suited. The center panel of the figure

shows that our mode inference procedure provides strong evidence for the existence of

two modes. In contrast, application of three well-known frequentist tests to the data fails

to reject the null of unimodality (see row 1 of Table 1), while the Bayesian mode inference

procedure indicates a very low probability of one mode. A major benefit of our approach

over frequentist tests is the credible determination of number and locations of modes. The

right panel of Figure 1 shows strong evidence for the existence of such modes at zero and

four (or five), respectively, emphasizing that the mode in the empirical distribution at

four is probably not just a random result, but that there is truly a second mode in the

underlying distribution at four (or five). There is a small posterior probability of a third

mode between 14 and 19, but it is more likely that the large observations stem from a fat

tail than from an actual mode at such a high value.

In further research with microdata on explanatory variables, differences between indi-

vidual characteristics can be used to detect which types of clients fall into these categories

and probabilities of default can be inferred. Thus, our methods may be used as a tool for

risk assessment and sharper institution’s policies surrounding the granting of loans.
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Figure 1: Empirical distribution of defaulted payment installments and estimated prob-
ability mass function (left), number of modes (center) and mode locations (right) using
1000 stored iterations of the MCMC algorithm.

Table 1: P-values from three frequentist tests with null hypothesis of unimodality alongside
the posterior probability of unimodality from our Bayesian mode inference (BMI)

SI HY HH BMI

Default data 0.50 0.10 0.33 0.04
Michigan survey Feb 2020 0.17 0.01 0.03 0.03
Michigan survey Feb 2023 0.28 0.01 0.00 0.00

Note: SI = Silverman (1981), HY = Hall and York (2001), HH = Hartigan and Hartigan (1985)

3.2 Inflation expectations

Heterogeneity within the joint distribution of private agents’ inflation expectations has

been linked with learning (Pfajfar and Santoro, 2010) and economic literacy (Burke and

Manz, 2014). In these studies multimodality is typically “eyeballed” from the data but

our framework can be used to formally detect and explore this phenomenon. To that

end, we use discrete data from survey responses to the question: “By what percentage do

you expect prices to go up, on average, during the next 12 months?”, from the Survey
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Research Center (SRC) at the University of Michigan. The first row in Figure 2 contains

response data in February 2020 and 2023 – 558 and 533 observations, respectively – along

with fitted mixtures from our mode inference procedure. It is notable that a substantial

subgroup of respondents select round numbers 5%, 10%, 15% or even 50%. For example,

27 out of the 558 respondents expect 10% inflation in 2020. Binder (2017) suggests that

such behavior is indicative of high uncertainty.
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Figure 2: Empirical distribution of inflation expectations data and estimated probability
mass function (top row), mode locations (center row) and number of modes (bottom row)
using 1000 stored iterations of the MCMC algorithm.
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On the detection of heterogeneity via multimodality, the frequentist tests in rows 2

and 3 of Table 1 provide conflicting results. The SI test does not reject unimodality in

2020 and 2023. The HI test gives borderline results at the 1 percent significance level for

2020 and 2023 while the HH test does not reject at the 1 percent significance level in 2020.

Our procedure provides credible information regarding number of modes and their

locations. Results in rows 2 and 3 of Figure 2, provide strong evidence for multimodality,

with increased heterogeneity of responses in 2023 exhibited by the increase from two

modes to four. In 2020 there are likely two modes; one around 1%-2% and another one

centered around higher inflation at 9%-10%. The latter figure seems excessive in normal

times and the existence of this subgroup may stem from economic illiteracy (Burke and

Manz, 2014). In 2023, the lower mode is split into two modes at 0% and 3-4%, suggesting

a de-anchoring of inflation expectations away from the central bank’s target of 2%. There

is also a new mode around very high inflation expectations of 34-35% albeit with large

dispersion. Overall, our analysis suggests that inflation expectations were well-anchored

around 1 to 2% in 2020, but exhibit important changes with widespread disagreement

in 2023, both within the subgroup with ‘credible’ expectations and the subgroup with

‘incredible’ expectations. Our results provide a useful starting point for a more detailed

study into the causes of heterogeneity in inflation expectation formation during this period.
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