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Abstract

We calculate the social cost of carbon (SCC) under stochastic climate volatility result-
ing from uncertainty about future climate risk regimes where weather extremes are
becoming more frequent and intense. Using a stochastic dynamic integrated climate-
economy model where representative agents are endowed with Duffie-Epstein recursive
preferences, we find that climate volatility risks substantially increase the SCC both
in the business-as-usual and optimal abatement policy scenario. We also show that
switching to a regime with more intense disasters increases the SCC more than a switch
to a regime with more frequent disasters for equal expected value. Overall we show
that stochastic volatility has a major impact on the SCC.

JEL Codes: G12, G13, Q51, Q54
Keywords: stochastic volatility, social cost of carbon, climate damage, Duffie-Epstein
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1 Introduction

Recent years have witnessed increasing volatility of climate disasters. As the global temper-

ature rises, extreme weather events once considered rare are becoming more prevalent. More

extreme deviations from climatological normals, such as the record-breaking North American

heatwaves in 2021, are happening. Climate scientists and meteorologists have warned that

extreme weather events will become more frequent and more intense with human-induced

climate change (Reidmiller et al. (2018), IPCC (2021)). Moreover, climate disasters and the

damages they inflict are not only becoming more frequent but also more volatile over time.

Uncertainty about the timing and size of increasing climate volatility has inspired climatolo-

gists to develop models to predict unprecedented extremes (Thompson et al. (2017), Kelder

et al. (2020)), but the implications of the risk that such distributional changes may occur

have not been studied by climate economists. Current climate-economy models incorporate

only the uncertainty about climate damage itself, by assuming that climate damage is a

stochastic process with known drift and volatility. Different from these existing models, our

paper focuses on higher-order climate uncertainty – the risk of changes in climate volatility –

a risk that has been pointed out by climate scientists. In particular we study how uncertainty

about climate volatility affects the social cost of carbon (SCC). In our model we emphasize

that climate volatility itself is subject to stochastic change, which has not been discussed in

the climate economics literature.

The SCC estimates the marginal economic damages resulting from one additional unit

of carbon emission into the atmosphere. It measures negative externalities of climate change

and has been adopted by many governments to motivate climate policies. In the US, the

SCC has been widely used in regulatory analysis, federal carbon tax legislation, and de-

veloping energy efficiency standards for appliances (Rennert et al. (2022)). Basic economic

theory suggests that an optimal carbon tax be set equal to the SCC, although this may

be an oversimplified answer to a complex policy problem involving global coordination and

undesirable distributional consequences. We will not address these challenges in this paper,
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although they are of vital importance in policy discourse. Our focus is on climate volatility

risk and on its implications for the SCC.

There is a large literature on estimating the SCC under various aspects of uncertainty

such as economic fluctuations and shocks to cumulative atmospheric carbon concentration

(see for example Cai and Lontzek (2019), Van den Bremer and Van der Ploeg (2021), Hambel

et al. (2021), Jensen and Traeger (2021)). But climate economists have not paid attention

yet to the fact that climate volatility itself is subject to uncertainty. Bansal et al. (2017)

introduced endogenous volatility in their model by assuming that both the frequency and

damage sizes of climate disasters increase once temperature reaches a tipping point, but did

not study the impact of climate volatility risk explicitly. Their main focus is on the long-

run impact of temperature on consumption growth and asset prices. The lack of explicit

attention to stochastic climate volatility is maybe to be expected: more frequent record-

setting weathers have only materialized recently and climate research on predicting future

climate volatility is still at its infancy. Nevertheless, given the irreversibility of shifting

to a climate regime with higher volatility and its ramifications for welfare, we consider it

important to assess this potential risk explicitly, no matter how limited our current knowledge

is.

We set up a continuous-time integrated climate-economy model and compute the SCC

under a stylized but general equilibrium asset pricing framework. The economy is modeled

as a pure-exchange economy so we abstract from the production process: agents receive

endowments over time. Endowments cannot be stored and therefore must be spent on ei-

ther consumption or abatement. Their growth is affected by economic fluctuations, economic

crises and climate damages. Climate conditions are characterized by the mean global surface

temperature and the distribution of climate damages. The mean global surface temperature

is assumed to increase linearly in cumulative carbon emissions, following Dietz et al. (2021).

Climate damages are induced solely by climate-related natural disasters. The arrival of cli-

mate disasters follows a Poisson process and the economic damage from such a disaster event
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is a stochastic variable itself. Therefore the distribution of climate damage is characterized

both by the arrival rate of climate disasters and by the distribution of the size of a given

disaster event once it arrives (i.e. once the Poisson shock hits).

To introduce climate volatility risk, we consider two climate risk regimes, the current one

and one with more frequent and extreme climate disasters which will arrive in the future but

with uncertain severity and timing. Little is known about the severity of climate disasters

in the new regime, so we solve the model under two assumptions about this new climate

regime: (A) climate disasters happen more frequently, and (B) climate disasters become more

extreme. And given our limited knowledge on the timing of the regime shift, we assume in

the main part of this paper that the arrival of the new climate risk regime follows a Poisson

process with arrival rate 0.01 so that the expected arrival time is 100 years. [ The 100

year time horizon is primarily chosen by the first IPCC reports. This choice is close to the

atmospheric lifetimes of greenhouse gases and avoids distortions of socioeconomic scenarios

in distant future (Abernethy and Jackson (2022)).1 ] For simplicity, the climate regime shift

is regarded as a one-off event and is irreversible: climate change is irreversible. In the main

part of the paper we assume that climate volatility increases abruptly upon a regime shift;

towards the end of the paper, in Section 6, we also consider a more gradual alternative where

the long run volatility jumps instantaneously but actual volatility catches up with that shift

only gradually over time after the arrival of the new regime. In addition, we examine the

effect of abatement policies on the SCC by comparing two policy scenarios. The first policy

scenario is the business-as-usual (BAU) case where little or no effort is made on reducing

greenhouse gas emissions. The second one implements optimal abatement policy which aims

to maximize total welfare through reducing carbon emissions.

We find that stochastic climate volatility leads to substantially higher risk premia but

also that it nevertheless leads to a significantly higher SCC. And the climate-volatility risk

premium is of the same order of magnitude as the risk premium stemming from climate
1Some criticize the use of 100-year horizon as unjustified. Therefore, we also show the numerical results

under other possible values of arrival rates in Appendix C.
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volatility itself. The climate-volatility risk premium increases with the frequency and inten-

sity of the climate disasters in the new climate regime, as well as with the arrival rate of the

new climate regime. Climate volatility risk also has an impact on the equilibrium risk-free

rates but overall discount rates go up. Climate volatility risk influences the SCC through

two channels: (a) the discount rate of future consumption and (b) the certainty equivalent

expected value of the consumption flows being discounted. The two channels work in oppo-

site direction but we unambiguously show that the stochasticity of climate volatility leads to

a higher SCC. Furthermore we also show that for given climate severity in the new climate

regime, the SCC under a stochastic regime shift expected to arrive in 2115 is much larger

than the SCC under a similar but deterministic climate regime shift arriving with certainty

in 2115.

And finally we establish that switching to a regime with more intense and less frequent

climate disasters induces a higher SCC than shifting to a regime with more frequent but

correspondingly less intense climate disasters for equal expected value of annual climate

damages under both regimes.2 Also the response of the SCC to changes in the characteristics

of the new regime is stronger under stringent emission control than it is in the Business-

As-Usual scenario. For example, doubling the arrival rate of climate disasters in the new

climate risk regime for given intensity raises the average SCC in 2025 from $376 to $505 per

ton of carbon in the business-as-usual scenario (up by 34%), but with optimal abatement it

rises from $385 to $548 per ton of carbon (up by 42%). And by considering a new climate

risk regime where climate disasters are twice as intense for equal arrival rate, the average

social cost of carbon in 2025 will rise from $376 to $522 (up by 39%) in the business-as-usual

scenario but from $395 to $574 per ton of carbon in optimal abatement scenario (up by

45%).

We obtain similar implications from several alternative model assumptions. First, we

repeat the same numerical exercises under endogenous emissions. The results show that
2This holds in our model and for our parameter specifications, but may not generalise to other specifi-

cations or parameter values.
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endogenizing carbon emissions does not qualitatively change the results obtained under ex-

ogenous emissions. Second, we find that smoothing the increase in climate volatility does

not have a major impact on the SCC. This contributes to the discussion on whether in-

adequately capturing the geophysical processes of irreversible phase changes in the climate

system would lead to lower economic costs of climate damages (Dietz et al. (2021)). In prior

studies on climate tipping, some explicitly model the corresponding geographical processes,

leading to gradual tipping processes. Others adopt more reduced-form climate models where

tipping processes are abrupt. Our paper considers both gradual and abrupt changes in cli-

mate volatility. We show that smoothing the tipping processes generates lower SCCs, since

a more gradual response to a positive shock in the long run value of climate volatility implies

a lower time path for volatility after the shock has arrived.

Stochastic regime shifts have been studied earlier in the more general macroeconomic

literature. For example, Lettau et al. (2008) explain the persistent above-norm US aggre-

gate stock prices by a shift to a lower macroeconomic volatility regime in the 1990s. They

model the transitions between a high and a low macroeconomic volatility state as a Markov

switching process. Our model has a similar structure. We assume that the transition from a

low-volatility to a high-volatility regime follows a Poisson process, but we differ from Lettau

et al. (2008) in that the climate regime shift is one-off and irreversible: once the stochastic

regime shifts, climate volatility rises abruptly and irreversibly.

Modelling stochastic transitions among different regimes is a simplified way to anal-

yse volatility uncertainty and can be extended to richer risk structures. The modelling of

volatility risk originates from financial economics and mathematical finance, where it has

been used extensively to explain asset market features. A thorough discussion of stochastic

volatility models is provided in Shephard and Andersen (2009). Also, already since the early

1970s various stochastic volatility models have been used to explain empirically observed

departures from Black-Scholes, such as time-varying and non-stationary volatility processes

(Clark (1973), Taylor (2018), Hull and White (1987), Wiggins (1987), Barndorff-Nielsen and
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Shephard (2001), Eraker et al. (2003), etc.). More recent studies show that higher-order

uncertainties such as the volatility of volatility and the volatility-of-volatility risk are them-

selves significant risk factors which affect option returns (Branger et al. (2018), Huang et al.

(2019), Hu and Liu (2022), Eraker and Yang (2022), etc.). To check whether a richer risk

structure of climate volatility leads to different model implications, we provide an alterna-

tive model of climate volatility risk in Section 6. There we assume that the climate disaster

frequency follows a Cox–Ingersoll–Ross (CIR) process with its long-run value subject to a

one-off irreversible Poisson jump upon the climate regime shift while the actual volatility

shifts gradually towards its new long run value. Our numerical results suggest that cli-

mate volatility risk yields similar asset pricing implications under different specifications of

volatility risk.

Our model of stochastic climate volatility differs from the climate tipping points discussed

by many climate economists. In the current literature, climate tipping has a broad definition

including nonlinear geophysical feedbacks and abrupt phase changes (Kopp et al. (2016)).

Dietz et al. (2021) provides a unified estimate of economic impacts of eight climate tipping

points covered in the economic literature using a meta-analytic integrated assessment model.

Tipping points considered in their paper can be broadly divided into three categories: positive

feedbacks between the carbon cycle and temperature, ice shelf disintegration, and changes in

large-scale circulation. However, most economic studies represent climate tipping points in

a highly stylized way. For example, Gjerde et al. (1999) models the costs of climate tipping

directly as a utility loss. Lemoine and Traeger (2014) models climate tipping as abrupt

irreversible shifts in system dynamics and studies the impact of uncertain climate tipping

on the optimal carbon tax. They consider two types of climate tipping points: an increase

in the strength of temperature feedbacks and a decrease in the ability of the earth system to

remove carbon. Lontzek et al. (2015) point out that these assumptions on climate tipping

are scientifically questionable. To study the impact of climate tipping on optimal policy

choice, Lontzek et al. (2015) model climate tipping points as abrupt reductions in GDP. In
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our baseline model, stochastic climate volatility is modelled as a one-off irreversible increase

in climate volatility which falls into the broad definition of climate tipping but so far has

not been discussed in the literature. Like climate tipping points, climate volatility risk is

not really reflected in current policy advice, presumably because its economic consequences

are subject to considerable uncertainty, and relevant parameters are nearly impossible to

calibrate.

Our stochastic dynamic integrated assessment model (IAM) builds on Olijslagers (2020)

which estimates the social cost of carbon under rare disaster risks using a high-dimensional

stochastic dynamic IAM with a realistic climate model in a continuous-time framework. Our

model includes rare disasters both from economic disruptions and climate change. These

disasters are modelled as discrete shocks to economic outputs as in Barro (2006), Barro

(2009) and Pindyck and Wang (2013). Since disaster risk can generate the high equity

premia and low risk-free rates observed in the data, it is of vital importance to include

disaster shocks in the model, because the SCC is essentially the expected discounted future

damages from climate change. To get a clear picture of how the stochastic climate regime

shift affects the social cost of carbon, we use a simplified climate model where temperature

is approximately linear in cumulative carbon emissions (as in Matthews et al. (2009) and

Van den Bremer and Van der Ploeg (2021)), and do not model explicitly other determinants

of global warming such as atmospheric carbon decay, the earth’s heat radiation, radiative

forcing, and heat absorption by the ocean. In contrast, Hambel et al. (2021) models the

dynamics of atmospheric carbon concentration with unexpected environmental shocks and

accounts for the amount of carbon absorbed by natural sinks. Temperature follows a self-

exciting process which captures the delayed climate feedback effects (IPCC (2007)) and the

right-skewed distribution of future temperatures (Roe and Baker (2007)). Olijslagers and van

Wijnbergen (2019) use the IPCC AR5 impulse-response model discussed in Mattauch et al.

(2018). This model accounts for the nonlinear response of temperature to carbon emission.

We use a simpler structure than those detailed climate models, temperature changes in our
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model are linear in emission flows. This simplification buys computational convenience at

the expense of a slight distortion of climate dynamics.

The rest of the paper is structured as follows: Section 2 describes the stochastic IAM

and Section 3 outlines the model calibration. Section 4 shows the numerical results under

different types of climate regime shifts. Section 5 compares the numerical implications under

exogenous and endogenous emissions. Section 6 provides an alternative model of climate

volatility risk and compares its numerical results with those from Section 4 under the BAU

scenario. Section 7 concludes.

2 The Model

In this section, we describe the stochastic integrated climate and economic model for esti-

mating the social cost of carbon. It consists of two blocks: an endowment economy where

representative agents are endowed with recursive preferences, and a climate system charac-

terized by the temperature and climate risk regime.

2.1 The Climate Model

While climate change has a broader meaning, here we focus on anthropogenic global warming

due to the increasing atmospheric carbon concentration caused by fossil fuel combustion

during manufacturing. Initially, in Section 4 we assume for computational convenience that

carbon emissions E are exogenous Without abatement, like in Olijslagers (2020). E increases

annually with economic growth but starts to decline at the beginning of the next century as

fossil fuel stocks are exhausted.

Of course in reality, carbon emissions are stochastic and dependent on aggregate economic

output. We therefore provide a more realistic model in Section 5 where endogenous emissions

are a function of aggregate endowment and carbon intensity. We show that both the exoge-

nous and the endogenous setups generate similar implications on how climate volatility risk
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affects the SCC. We focus initially on the exogenous case because only with that simplifica-

tion the model allows for analytical results. In the more general model with endogenous and

stochastic emissions used in Section 5 we show numerically that whether carbon emissions

are exogenous or endogenous does not matter much for our conclusions.

The growth rate rE,t of emission is given by rE,t = e−δEtrE,0+
(
1− e−δEt

)
rE,∞. Its initial

value rE,0 moves slowly to its long-run level rE,∞ at the rate δE. Without abatement, the

emission dynamics are given by dEt = rE,tEtdt, starting from the initial emission level E0.

In Section 5 we link emissions the stochastic output process. Let ut ∈ [0, 1] be the emission

control rate at t, then the actual carbon emission Ẽt := (1− ut)Et. Since large scale carbon

capture and storage seems to be out of reach technologically, the emission control rate in

our model cannot exceed 100%.

Changes in mean global surface temperature Tt are linearly dependent on the emission

flow because of our assumption that the total carbon concentration in the atmosphere affects

temperature linearly and decays slowly over time. The dynamics of temperature are then

given by

dTt = χ(1− ut)Etdt

where χ is the transient climate response to cumulative carbon emissions. For the sake of

computational simplicity we take temperature as a deterministic process increasing linearly

in carbon emission, and do not model explicitly the more complex dynamics of atmospheric

carbon concentration and temperature used in Olijslagers (2020).

We model the stochastics of climate volatility as a one-off irreversible switch of climate

regime from a low-volatility to a high-volatility one. This irreversible regime shift is mod-

elled as a one-off Poisson shock N0 to climate volatility with arrival rate λ0. Given limited

knowledge about more extreme scenarios in the new climate regime at the current stage, we

focus on the simple case where λ0 is exogenously given and is independent of climate con-
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ditions. Two different types of regime shift are considered, under which the climate system

will switch to a new regime where climate disasters either (A) happen more frequently but

at the same scale as in the current regime, or (B) become more extreme but happen at the

same frequency as in the current regime. In Section 4, we compare regime shifts where the

frequency or the expected scale of climate disasters are respectively doubled and quadrupled,

and compare the SCCs under these different climate regimes.

In particular Dietz et al. (2021) has argued that tipping points are unlikely to occur

instantaneously in real time. Therefore we provide in Section 6 an alternative model of

climate volatility risk where climate volatility increases gradually over time. Numerical

results from this alternative model shows that smoothing the response to the positive shock

in the long-run climate volatility implies a lower time path for the SCC, because a more

gradual response implies a lower time path for climate volatility after the shock arrives. For

now we simplify the risk of climate volatility as a one-off stochastic jump as described above.

Such simplification enables us to obtain clear analytical expressions for the pricing effect of

stochastic climate volatility, and is consistent with the shift in the long run distribution of

climate disasters used in Section 6.

2.2 The Economic Model

We consider a continuous-time stochastic pure exchange economy in order to generate ana-

lytical results and maintain tractability. A representative agent owns an asset which pays a

flow of dividends (endowments) at any time t. The time-t endowment flow Yt is affected by

diffusion risks and occasional crises in the economic system as well as damages from climate

disasters. Its dynamic is given by

dYt = µYtdt+ σYtdZt − J1Yt−dN1,t − J2Yt−dN2,t
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where µ and σ are the growth rate and volatility of the endowment, Zt is a standard Brow-

nian motion representing the diffusion economic risks. Economic disasters such as financial

crises are introduced by the Poisson process N1 like in Barro (2009), which is necessary to

generate empirically plausible discount rates for future payoffs which in turn is essential for

the calculation of the SCC. The Poisson process N1 has a constant arrival intensity λ1 and

reduces the endowment flow by J1 ∈ (0, 1) upon each arrival. We assume X := 1 − J1 is a

random variable with density f(x) = α1x
α1−1, which implies an average economic disaster

size EJ1 = 1
α1+1

. Endowments are also negatively affected by damages from climate disasters

which we capture by the Poisson process N2 with arrival rate λ2,t := λ̄tTt. The size of climate

damage is characterized by the random variable J2 following the same distribution as J1 but

with a different parameter α2,t, like in Olijslagers (2020).

Climate volatility is characterized by the frequency parameter λ2,t and expected damage

size EtJ2 := 1
α2,t+1

of climate disasters; both parameters together determine how uncertain

climate damages are. Upon the Poisson climate regime shift with rate λ0, λ2,t and α2,t might

increase, which correspond to the two types of climate volatility risks, Type (A) and Type

(B), that we discussed in Section 2.1. We assume that for Type (A) the value of λ̄t jumps

upwards from λ̄(L) to λ̄(H) upon the regime shift. For (B), the expected damage size of

one climate disaster EJ2 increases from EJ (L)
2 := 1

α
(o)
2 +1

to EJ (H)
2 := 1

α
(n)
2 +1

upon the one-off

climate regime shift, which is equivalent to a decrease of α2,t from α
(o)
2 to α(n)

2 . In this model,

climate volatility risk is characterized by λ0, λ̄(H)

λ̄(L) and EJ(H)
2

EJ(L)
2

, where λ0 stands for the timing

risk, λ̄(H)

λ̄(L) represents the increase in disasters frequency, and EJ(H)
2

EJ(L)
2

captures the increase in

disasters intensity in the new regime.

The endowment Yt cannot be stored for future expenditure and has to be spent on either

consumption Ct or abatement At at time t. The abatement costs follows the same structure

as in Nordhaus (2017) and are given by At = c1,tu
c2
t Yt, where c1,t captures the effect of

technology process on abatement cost and declines over time and c2 > 1 characterizes the

increase of marginal cost in the emission control rate ut. The consumption flow is then given
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by

Ct = Yt − At = (1− c1,tu
c2
t )Yt := ξtYt

where ξt = Ct

Yt
= (1− c1,tu

c2
t ) is the consumption-endowment ratio.

We model the preferences of the representative agent by stochastic differential utility

(Duffie and Epstein (1992)) which is the continuous-time version of Epstein-Zin preferences.

This allows us to separately vary risk aversion γ and the elasticity of intertemporal substitu-

tion (EIS) ϵ. By separating risk aversion and EIS, such preference can generate non-trivial

and empirically plausible risk premia by increasing risk aversion without compromising the

model’s explanatory power on historical financial data. Moreover, the value of these pref-

erence parameters affects agents’ attitude towards temporal resolution of uncertainty which

in turn is critical to explain the dynamics under expected future regime shift risks. When

γ > 1
ϵ
, agents prefer an early resolution of uncertainty about future consumption. If γ = 1

ϵ
,

this boils down to the power utility and the timing of resolution of uncertainty becomes

irrelevant.

Representative agents face a trade-off between less consumption today under abatement

or lower consumption in the future under more severe climate damages. Formally, agents’

value function is defined recursively as

V0 = max
ut

E0

∫ ∞

0

f(Ct, Vt)dt

with f(C, V ) = β

1− 1
ϵ

C1− 1
ϵ −[(1−γ)V ]

1
ζ

[(1−γ)V ]
1
ζ
−1

as in Duffie and Epstein (1992), ϵ ̸= 1, ζ = 1−γ
1− 1

ϵ

, and β

the time discount rate. Appendix A provides the numerical procedures we use to solve this

optimization problem.

2.3 The Social Cost of Carbon

The social cost of carbon (SCC) measures the marginal cost of carbon emission. It is the

present value of damages due to a marginal increase in carbon emissions today. Formally,
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SCC is defined as the marginal utility of carbon emissions scaled by marginal utility of

consumption, which allows us to express SCC in terms of units of current consumption

goods. At time 0, SCC can be written as

SCC0 = −χ ∂V0/∂T0

fC(C0, V0)
(1)

where fC(C0, V0) is the marginal utility of consumption at time 0.

3 Calibration

Following Johansson et al. (2012), we set the endowment growth rate at µ = 3% and endow-

ment volatility at σ = 2.5%. Barro and Jin (2011) estimates that rare economic disasters

arrive at rate 0.035 with size parameter α1 = 6.5, which generates an estimate of risk aver-

sion γ around 4 by approximating the observed risk premium in the market. Olijslagers

(2020) calibrates ϵ = 1.5 and β = 0.025, which, together with risk aversion γ = 4.3, yields

reasonable approximations of the estimated worldwide average risk-free rate and equity risk

premium during the period 1900-2010 in Dimson et al. (2011). Given that the arrival rate

of climate disasters is linear in temperature, we follow Karydas and Xepapadeas (2019) who

find that the arrival rate increases by λ̄(L) = 6% if temperature rises by 1◦C in the current

climate regime. The mean disaster size is 1.5% which implies α(o)
2 = 65 before the regime

shift.

Parameters of carbon emission under BAU scenario are set to resemble the projected

industrial carbon emissions in the baseline scenario in Nordhaus (2017). Taking 2015 as the

starting point of our simulation, we set the initial CO2 emission level at 35.6 gigatonnes

with initial growth rate rE,0 = 1.7%. The growth rate of carbon emission decreases over

time at an annual rate 0.75% until reaching its long-run level −2%. The abatement cost

function follows the same as in the RICE-2010 model (Nordhaus (2010)) with time-decreasing

technology effect c1,t = 0.074e−0.019t and cost nonlinearity c2 = 2.8. The mean global mean
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surface temperature is approximately 0.83◦C in 2015 (source: NASA) and gradually rises as

cumulative carbon increases. Matthews et al. (2012) shows that the 90% confidence interval

of transient climate response (TCR) to carbon emissions is between 1◦C and 2.5◦C per

teraton of carbon. We take χ = 1.8◦C/TtC in the simulation as in Olijslagers et al. (2023).

Calibrating climate volatility risk is difficult for lack of time series data. Since the negative

impact of climate change is going up fast over time, climate volatility in the future cannot

be predicted using historical climate data. In the next section we therefore run simulations

for several possible values of λ̄(H) and α
(n)
2 to characterize the post-shift climate regime. In

Appendix C, we provide numerical results under different arrival rate λ0 of the shocks to

climate volatility.

4 The SCC and Climate Volatility Risk: Numerical

results

We numerically solve the integrated assessment model of Section 2 under two different type

of shocks to the volatility process and two different assumptions about economic policy, so we

present four scenario’s. First we distinguish a new climate regime characterized by a higher

arrival rate of the Poisson shock versus one with a shift towards a bigger shock conditional

on arrival but for given arrival rate. And second we analyse both types of shocks under a

Business As Usual (BAU) scenario and under optimal abatement.3

Research has to date not told us much about higher-order uncertainties in the climate

system, in particular little is known about the timing and the scale of a future climate

regime shift. We assume that the base case climate regime shift has an arrival rate λ0 =

0.01. This implies an expected arrival time of 100 years, which is close to the atmospheric

lifetimes of greenhouse gases and avoids distortions of socioeconomic scenarios in distant
3All scenario’s are solved for using finite difference methods with 2015 as the initial year of simulation

and number of simulation K = 5000. Time range of the simulation is 500 years, and results are provided up
to Year 2100.
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future (Abernethy and Jackson (2022)).4

We now turn to analyzing the two different types of regime shift: (A) an increase in the

frequency of climate disasters (Section 4.1) and (B) a rise in their intensities (Section 4.2).

For (A) we present numerical results for λ̄(H)/λ̄(L) = 1, 2 and 4, i.e. a base case where the

arrival rate does not change and two cases where the arrival rate respectively doubles and

quadruples. For the scenario’s under (B), we apply the same multipliers but with respect to

the expected size of climate disasters in the new regime.

4.1 The New Climate Regime (A): a Higher Disaster Frequency

We first consider the case where under climate volatility risk the frequency of climate disasters

increases in the new regime while their intensity does not change. Call this regime (A). Since

the SCC depends on future consumption flows under climate damages but also on discount

rates, calculating its value fits well into the regular asset pricing framework: the SCC can be

taken as the current price of an asset which pays the amount of climate-induced future losses

in consumption flow as “dividend” in each period. The risk-free rate and the risk premium

of this asset are key components of the consumption discount rate, so we present the impact

of climate volatility risk on them first, before turning to the SCC itself.

4.1.1 The risk-free rate, climate risks and climate volatility risk

The model without regime shift allows for analytical solutions: see the first three terms of

Equation 2 for the risk-free rate rft . The fourth term represents the impact of the regime

shift on the risk-free rate and requires numerical procedures for evaluation (the derivation is
4In Appendix C we present numerical results for different values of λ0.
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in Appendix A). So the instantaneous risk-free rate at time t is given by

rft = β +
µC,t
ϵ

− γ

2

(
1 +

1

ϵ

)
σ2︸ ︷︷ ︸

Standard

+λ1

(
γ − 1/ϵ

α1 + 1− γ
− γ

α1 − γ

)
︸ ︷︷ ︸

Econ. disasters

+λ2,t

(
γ − 1/ϵ

α2 + 1− γ
− γ

α2 − γ

)
︸ ︷︷ ︸

Clim. disasters

+ λ0,tJf,t︸ ︷︷ ︸
Regime shift

. (2)

where µC,t is the consumption growth rate (see Appendix A for detail), λ0,t := λ0 (1−N0,t−)

is the arrival rate of a new climate regime, N0,t− is the corresponding Poisson variable equal

to 0 before and to 1 after the shock has occurred, and Jf,t captures the effect of climate

volatility risk due to the uncertain regime switch. Equation (2) is similar to the expression

for risk-free rate in Olijslagers (2020), except for the last term λ0,tJf,t which is due to the

climate volatility risk analyzed in this paper.

The first component of Equation (2) is the standard expression for the risk-free rate

when disaster risks are absent. β represents time preference, µC,t

ϵ
captures the intertemporal

smoothing effect, and −γ
2

(
1 + 1

ϵ

)
σ2 captures the precautionary saving effect. The second

and third component represent the impact of rare economic and climate disaster risks respec-

tively. Both depend on their respective arrival rate λ1 and λ2,t and corresponding disaster

intensities α1 and α2,t. We assume without loss of generality that the parameters for the

economic disaster process are time-invariant. Both the second and the third term are neg-

ative for the parameters chosen in Section 3: disaster risks always reduce the risk-free rate

given that we have chosen ϵ > 1. In particular climate volatility is characterized by λ2,t and

α2,t and thus also has a negative impact on the risk-free rate.

The fourth and last component captures the impact of climate volatility risk, which

affects the risk-free rate through two channels: (a) the risk of a new climate shift leads to

higher expected climate damages in the future, which leads to a lower safe real rate now,

(b) the risk of a new climate shift represents an additional source of risk. Both channels

lead to higher prices of future goods or, equivalently, a lower safe rate of interest. We refer
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to these two channels as the expectation effect and the risk effect of climate volatility risk.

Intuitively, we can take the one-off stochastic regime shift as a compound Poisson process

with its jump process characterized by N0 and its jump size captured by the climate severity

in the new regime. Then the expected value of the compound Poisson process can under

mild conditions (independence of the arrival rate and the jump size) be decomposed into

two parts using Wald’s equation: the jump risk (i.e. the risk effect) and the expected size of

each jump (i.e. the expectation effect).

The expectation effect is the difference between the effects of climate disasters with and

without regime shift risk on rf (the third term in Equation (2)). Mathematically, it is given

by

λ2,t

(
γ − 1/ϵ

α2,t + 1− γ
− γ

α2,t − γ

)
− λ̄(L)Tt

(
γ − 1/ϵ

α2,0 + 1− γ
− γ

α2,0 − γ

)
(3)

where the climate disaster frequency λ2,t = λ̄tTt is the product of frequency parameter λ̄t

and temperature Tt, the first term is the same as the effect of climate disasters on rf in

Equation (2), and the second term is the effect of climate disasters on rf without climate

volatility risk. Under stochastic climate volatility, the value of λ̄t (or α2,t) jumps from its

initial value λ̄(L) (or α(o)
2 ) to λ̄(H) (or α(n)

2 ) upon regime shift of Type (A) (or Type (B)). The

formula also shows that the impact depends on the temperature anomaly Tt in a predictable

way. The magnitude of the expectation effect depends on the frequency and intensity of

climate disasters in the new climate regime. Figures 1 and 2 show the magnitudes of these

two effects under different abatement policies.

The risk-free rate in the business-as-usual scenario Figure 1 shows the decomposi-

tion of the risk-free rate in the business-as-usual scenario based on Equation (2). Panel (a)

and (b) show how much risk-free rates are affected by stochastic climate volatility through

the expectation channel of Equation (3) and the risk channel (λ0,tJf,t) respectively. Panel

(c) shows the effect of climate disaster risk on the risk-free rate rf , and Panel (d) shows the
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time paths of the risk-free rates. Comparing Panel (a), (b) and (c), we find that climate

volatility risk affects the risk-free rate mainly through the expectation channel, which is as

important as the effect of climate disaster.

Figure 1: Decomposition of (average) risk-free rates in the BAU scenario under different
λ̄(H) in the new regime. The legends correspond to λ̄(H) = 4λ̄(L), 2λ̄(L) and λ̄(L). Panel
(a) and (b) present the expectation effect (Equation (3)) and the risk effect (the last term
in Equation (2)) describing the impact of stochastic climate volatility on the risk-free rate.
Panel (c) shows the effect of climate disaster risk itself, and Panel (d) shows the risk-free
rate over time.

Panel (a) and (b) imply that climate volatility risk negatively affects the risk-free rate

through both channels. The magnitude of the expectation effect of climate volatility risk

increases both in the frequency of climate disasters and over time. This is because both the

temperature Tt and the expected value of λ̄t increase over time. Therefore, the expected

climate disaster frequency λ2,t = λ̄tTt increases over time. Agents expect higher climate

disaster risks in the future, and thus the time path of the impact through the expectation
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channel is downward sloping. The magnitude of the risk effect of climate volatility is down-

ward sloping over the entire period as a climate regime shift is increasingly likely to have

happened as time goes by. But in the very far future, the risk effect shown in Panel (b) will

converge to zero as the uncertainty about climate volatility is eventually resolved.

Panel (c) shows that climate disaster risks affect rf negatively with its magnitude increas-

ing over time. Since both the temperature Tt and the climate disaster frequency parameter

λ̄t increase over time, the frequency of climate disasters λ2,t also increases. More frequent cli-

mate disasters in the future lead to more damages and thus a stronger precautionary saving

effect (a greater scarcity of future goods) which results in lower risk-free rates.

The risk-free rate under optimal abatement Next we repeat the numerical exercise

but now under optimal abatement. In this scenario, the average risk-free rate and its de-

composition are shown in Figure 2. Panel (a) and (b) again measure the effects of climate

volatility risk through the expectation and the risk channels, Panel (c) shows the effect of

climate disaster risks, and Panel (d) shows the time path of risk-free rates under different

climate disaster frequencies in the new climate regime.

Compared with the business-as-usual scenario, both climate disaster risk and climate

volatility risk have a smaller impact on the risk-free rate. This is because temperature rises

more slowly under abatement and thus extreme weather events are less likely to happen.

Comparing the magnitudes in Panel (a), (b) and (c), we find that climate volatility risk

has a significant impact on risk-free rates. It affects the risk-free rate largely through the

expectation effect shown in Panel (a), although the risk effect in Panel (b) is also non-

negligible. The risk effect of climate volatility risk is positive before the emission control

rate reaches 100% but declines below zero afterwards. Intuitively, abatement cannot be

more stringent in the future after the emission control rate reaches its maximum, and this

causes a stronger precautionary saving effect which leads to a sharp decline in the risk effect

in Panel (b). As the uncertainty about climate regime shift resolves over time, the risk effect
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Figure 2: Decomposition of (average) risk-free rates under optimal abatement policies. The
legends correspond to λ̄(H) = 4λ̄(L), 2λ̄(L), and λ̄(L). Panel (a) and (b) present the expectation
effect (Expression (3)) and the risk effect (i.e. the last term in Equation (2)) of stochastic
climate volatility on the risk-free rate. Panel (c) shows the effect of climate disaster risk,
and Panel (d) shows the risk-free rate over time.

will gradually converge to zero, but this happens way beyond our window of time displayed

in the figures.

Panel (d) shows that under any assumption of climate disaster frequency in the new

regime, the risk-free rate will decline in the short run and in the long run, as climate con-

ditions deteriorate under global warming and more frequent disasters. In the medium run,

the risk-free rate jumps upwards when the emission control rate reaches its maximum 100%.

Since abatement costs stop increasing afterwards, consumption growth will no longer be

negatively affected by increasing abatement costs, and thus the precautionary saving effect

becomes weaker. Therefore, the risk-free rate experiences a sharp increase at this point.

20



4.1.2 The risk premium

In Appendix A, we show that the risk premium is given by

rp,t = γσ2︸︷︷︸
Standard

+λ1

[
−1

α1 + 1
+

γ

α1 − γ
+

1− γ

α1 + 1− γ

]
︸ ︷︷ ︸

Econ. disasters

+λ2,t

[
−1

α2 + 1
+

γ

α2 − γ
+

1− γ

α2 + 1− γ

]
︸ ︷︷ ︸

Clim. disasters

+ λ0,tJrp,t︸ ︷︷ ︸
Regime shift

(4)

which again can be decomposed into four parts. The first component, γσ2, represents the

standard constant relative risk aversion (CRRA) risk premium arising from diffusive risk in

the endowment process. The second and the third terms capture the risk compensations for

economic and climate disasters; both are positive. The last term stands for the compensation

for climate volatility risk due to the uncertain one-off regime shift, where λ0,t is the arrival

rate of a new regime and Jrp,t is the instantaneous effect of the regime shift on rp. Appendix

A shows that Jrp,t has no analytical expression, so we solve this numerically.

Similar to the discussion on the risk-free rate in Section 4.1.1, the effect of climate

volatility risk on risk premia can also be decomposed into two parts: the expectation effect

and the risk effect. The expectation effect comes from an increase in the expected future

climate damage under volatility risk. It is given by

λ2,t

[
−1

α2,t + 1
+

γ

α2,t − γ
+

1− γ

α2,t + 1− γ

]
− λ̄(L)Tt

[
−1

α
(o)
2 + 1

+
γ

α
(o)
2 − γ

+
1− γ

α
(o)
2 + 1− γ

]
(5)

which is the difference between the third term in Equation (4) and its counterpart when the

climate disaster frequency does not change in the new regime. The risk effect is captured

by the last term λ0,tJrp,t in Equation (4), which measures how much climate volatility risk

affects the risk premium. Figure 3 and 4 show the relative size of these two components.
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The risk premia in the business-as-usual scenario Figure 3 shows how much the

risk premium is affected by climate disaster risks and stochastic volatility in the business-as-

usual (BAU) scenario. Panel (a) and (b) shows the expectation effect and the risk effect of

climate volatility risk, respectively. Panel (c) shows how much the risk premium is affected

by climate disaster risk, and Panel (d) shows the time paths of risk premia. Both types

of climate risks affect risk premia positively. Comparing the magnitudes in Panel (a), (b)

and (c), we find that the climate disaster effect, the expectation effect and the risk effect of

climate volatility risk are of the same order of magnitude. This implies that climate volatility

risk is as important as climate volatility itself when calculating risk premia.

Figure 3: Decomposition of risk premia in the BAU scenario under different λ̄(H) in the new
regime. The legends correspond to λ̄(H) = 4λ̄(L), 2λ̄(L), and λ̄(L). Panel (a) and (b) present
the expectation effect (Expression (5)) and the risk effect (the last term in Equation (4)) of
stochastic climate volatility on risk premia. Panel (c) shows the effect of climate disaster
risk, and Panel (d) shows the risk premia over time.
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The climate disaster effect (Panel (c)) and the expectation effect of volatility risk (Panel

(a)) both increase over time. This is because global warming is irreversible and causes more

frequent climate disasters over time. Meanwhile, the positive shock to disaster frequency

upon a regime shift further deteriorates the climate conditions. Under the threat of more

frequent disasters in the future, agents require higher risk compensation. The risk effect of

stochastic climate volatility shown in Panel (b) increases in disaster frequency, because a new

regime with more frequent disasters poses larger threats to the economic growth and thus

the risk compensation required by agents increases correspondingly. In addition, the risk

effect of climate volatility risk on risk premia increases over time under the risk of a positive

shock to climate volatility. But far outside our time window the risk effect will eventually

converge to zero as the uncertainty about a regime shift gradually resolves over time.

The risk premia under optimal abatement Figure 4 shows how much the risk premium

is affected by climate disasters and volatility risks under optimal abatement. Panel (a) and

(b) show the expectation effect and the risk effect of climate volatility risk, respectively.

Panel (c) shows the effect of climate disaster risk on the risk premium, and Panel (d) plots

the time paths of the risk premium.

Compared with the BAU scenario, the effects of climate volatility risk and climate dis-

asters on the risk premium are smaller under optimal abatement because of the stringent

abatement policies. Nevertheless, they are of the same order of magnitude. This implies

that climate volatility risk is as important as climate volatility itself when calculating risk

premia, regardless of abatement policy stringency.

Panel (a), (b) and (c) in Figure 4 imply that both the climate disaster risk and the climate

volatility risk increase the risk compensation required by agents as the deteriorating climate

condition poses larger threat to economic growth over time. In Panel (b), the short-run and

the long-run risk effects of climate volatility risk decrease over time as the uncertainty about

climate volatility resolve over time. The sharp increase in the middle happens when the
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Figure 4: Decomposition of risk premia in the optimal abatement policy scenario under
different λ̄(H) in the new regime. The legends correspond to λ̄(H) = 4λ̄(L), 2λ̄(L), and λ̄(L).
Panel (a) and (b) present the expectation effect (Expression (5)) and the risk effect (the last
term in Equation (4)) of stochastic climate volatility on the risk premium. Panel (c) shows
the effect of climate disaster risk, and Panel (d) shows the time paths of the risk premium.

emission control rate reaches its maximum of 100%. Since emission control cannot be more

stringent afterwards, more severe climate conditions in the future cannot be mitigated by

abatement. This leads to a sharp increase in the risk compensation required by the agents,

which is reflected as the sudden increase in Panel (b).

In Panel (d), we find that the risk premium does not differ much under different speci-

fications of climate condition in the new regime. This is because stringent emission control

effectively decelerates global warming and postpones the negative impact of climate change

on the economy. Therefore, agents require less compensation for climate risks than in the

BAU scenario shown in Figure 3.
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4.1.3 The stochastic discount factor

The dynamics of the stochastic discount factor πt are essential for understanding the sources

and consequences of risks in our model. Using Ito’s lemma, we show in Appendix A that

dπt
πt−

= µπ,tdt− γσdZt +
[
(1− J1)

−γ − 1
]
dN1,t +

[
(1− J2)

−γ − 1
]
dN2,t + Jπ,tdN0,t

where µπ,t = −rft −λ1 γ
α1−γ−λ2,t

γ
α2−γ−λ0,tJπ,t. The stochastic discount factor prices diffusive

risks of the economy (dZt), disaster risks from the economy (N1) and climate (N2), and the

risk of climate regime shift (N0). The price of economic diffusive risk is γσ and positive. The

sensitivity of the stochastic discount factor with respect to economic and climate disasters is

measured by
[
(1− J1)

−γ − 1
]

and
[
(1− J2)

−γ − 1
]

respectively, both taking positive values.

Jπ,t captures the exposure to regime shift risk, which is positive under either policy scenario,

as shown in Figure 5. In line with intuition, it is higher without climate mitigation or if

future climate is more volatile.

Figure 5: Exposure to the climate regime shift risk Jπ,t under BAU (left) and optimal
abatement (right). The legends correspond to λ̄(H) = 4λ̄(L) and 2λ̄(L).

4.1.4 The Social Cost of Carbon and Volatility Risk

We now pull everything together and check how climate volatility risk affects the SCC under

different abatement policies. To explain the mechanisms in detail, we first rewrite the social
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cost of carbon at time 0 using the following expression derived in Appendix A:

SCC0 ≈
∫ ∞

0

(∫ t

0

χ
∂λ2,s
∂T0

1

α2 + 1− γ
ds

)
E0Ct︸ ︷︷ ︸

(i)

· exp
(
−
∫ t

0

r(CDR)
s ds

)
︸ ︷︷ ︸

(ii)

dt (6)

which is an integral of the product of two terms (A) and (B) from initial time 0 to infinity.

Note that Equation (6) is not easy to evaluate numerically and thus we will use Equation

(1) to compute the SCC instead. However, Equation (6) provides an intuitive decomposition

which will be analysed next. This decomposition facilitates our analysis and helps identify

the channels through which the climate volatility risk affects the SCC.

Term (i) captures the marginal welfare loss induced by an increase in the current carbon

emissions. An extra unit of carbon emitted to the atmosphere accelerates global warming,

and subsequently increases the frequency of climate disasters λ2,s. The marginal increase

in the arrival rate of climate disaster λ2,s with one unit extra carbon emission today is

captured by χ∂λ2,s
∂T0

, which will jump from χλ̄(L) to χλ̄(H) upon the regime shift. The certainty

equivalent of damage from one climate disaster is measured by 1
α2+1−γ , which is constant since

the expected damage from climate disasters does not change over time under the assumption

of Type (A) regime shift. Since the intensity of climate disasters is defined as a percentage

of consumption, the integral in Term (i) is multiplied by the expected consumption E0Ct.

We show in Appendix A that the expected consumption flow E0Ct can be written as

E0Ct = C0 exp

{∫ t

0

[
µC,s −

λ1
α1 + 1

− λ2,s
α2 + 1

+ λ0,s

(
ξs
ξs−

− 1

)]
ds

}
(7)

where µC is the consumption growth rate with detailed expression provided in Appendix A.

It equals to the endowment growth rate µ plus a correction term for the abatement cost. The

last term in the integrand, ξs
ξs−

− 1, is the percentage change in the consumption-endowment

ratio ξ once the new regime arrives at time s.

Equation (7) shows that E0Ct is influenced by climate volatility risk through three terms
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in the integrand: µC,s, − λ2,s
α2+1

and λ0,s

(
ξs
ξs−

− 1
)

. The term − λ2,s
α2+1

, implies that E0Ct is

affected by the expectation effect of climate volatility risk through λ2,s. It captures the fact

that consumption flows in the future are expected to grow slowly under high expected climate

damages in the new regime. The other two terms, µC,s and λ0,s

(
ξs
ξs−

− 1
)

, capture the risk

effect of climate volatility risk on expected consumption growth. Intuitively, consumption

growth depends on the emission control rate u and thus the consumption-endowment ratio

ξ. Upon the climate regime shift, the consumption growth rate jumps because both u and ξ

change discontinuously. To see this, note that the regime shift leads to a sudden increase in

the climate disaster frequency and thus a discontinuous increase in the marginal damage from

carbon emissions. Since the optimal emission control rate equates the marginal abatement

cost and the marginal damage, the emission control rate and thus also the consumption-

endowment ratio ξ change discontinuously once the regime shift actually happens.

In the business-as-usual scenario, consumption equals endowment and Equation (7) boils

down to

E0Ct = C0 exp

[∫ t

0

(
µ− λ1

α1 + 1
− λ2,t
α2 + 1

)
dt

]
(8)

which implies that climate volatility risk affects E0Ct only through the expectation channel

without abatement. Without abatement, consumption growth rate is not directly exposed

to the jump risk of regime shift in Equation (7) discussed above.

Term (ii) is the discount factor for climate damages measured by Term (i), where r(CDR)
s

is the consumption growth-adjusted discount rate. Appendix A shows that

r
(CDR)
t = rft + rp,t + rJ,t. (9)

where rft is the risk-free rate, rp,t is the risk premium, and rJ,t is an additional term introduced

by the risk effect of stochastic climate volatility compared with the consumption discount

rate provided in Olijslagers (2020). The value of r(CDR) depends on the preference parameters
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γ and ϵ. To explain how different values of γ and ϵ affect the discount rate, we simplify the

setup by considering the business-as-usual scenario where disaster risks are absent. Without

abatement, the consumption growth rate µC,t equals the endowment growth rate µ, so the

risk-free rate becomes β+ µ
ϵ
− γ

2

(
1 + 1

ϵ

)
σ2, the risk premia equals γσ2, and rJ ≡ 0. Summing

up all these terms and subtracting µ yield the growth-adjusted discount rate

β +

(
1

ϵ
− 1

)(
µ− 1

2
γσ2

)

which increases in risk aversion γ when ϵ > 1, and decreases in γ if ϵ < 1. As higher γ leads

to lower risk-free rates but larger risk premia, its effect on the growth-adjusted discount rate

depends on the relative importance of risk-free rate and risk premium effects determined by

ϵ. Intuitively, when ϵ is small, higher γ means a stronger precautionary saving effects and

the risk-free rate effect dominates. When ϵ is large, the precautionary saving effect plays a

less important role than risk premia in determining the discount rate.

The SCC in the business-as-usual scenario Before looking at the SCC in the business-

as-usual scenario, we present the time paths of the growth-adjusted consumption discount

rate r(CDR) and the growth rate of expected consumption given in Equation (7). Since neither

of them can be evaluated analytically, we show the numerical results from our simulation to

show how climate volatility risk affects each term.

Figure 6 shows the expectation effect (Panel (a)) and the risk effect (Panel (b)) of stochas-

tic climate volatility, the effect of climate disaster risk on the growth-adjusted consumption

discount rate r(CDR) (Panel (c)), as well as the time paths of r(CDR) (Panel (d)) in the

business-as-usual scenario. Given that r(CDR) is the sum of the risk-free rate rf , risk premium

rp and rJ , the size of the expectation effect in Panel (a) is the sum of corresponding terms

in rf and rp, or formally, it can be calculated by the sum of (3) and (5). Likewise, the risk

effect of stochastic climate volatility in Panel (b) can be calculated by λ0,tJf,t+λ0,tJrp,t+rJ .

Negative values in Panel (a), (b) and (c) imply that both climate disaster risk and
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Figure 6: The expectation effect (Panel (a)) and the risk effect (Panel (b)) of stochastic
climate volatility, the effect of climate disaster risk (Panel (c)) in the growth-adjusted con-
sumption discount rate r(CDR), and the time paths of r(CDR) (Panel (d)) under BAU. The
legends correspond to λ̄(H) = 4λ̄(L), 2λ̄(L), and λ̄(L).

stochastic climate volatility reduce the growth-adjusted consumption discount rate r(CDR),

which pushes up the SCC. The negative impact of stochastic climate volatility increases over

time since rising temperature increases the frequency of climate disasters and the new climate

regime is more likely to arrive as time proceeds. Comparing the magnitudes in Panel (a)

and (b), we find that the expectation effect outweighs the risk effect in terms of determining

the growth-adjusted consumption discount rate. Panel (d) shows that our model generates

declining growth-adjusted consumption discount rates over time, due to the climate risk

effects in Panel (a), (b) and (c).

Figure 7 shows the expected consumption growth over time in the business-as-usual

scenario which is the integrand in Equation (8). As suggested by the analytical expression,
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the expected growth of future consumption is affected by climate volatility risk only through

the expectation channel characterized by the increasing climate disaster frequency λ2,t. If

climate volatility risk does not exist and the frequency parameter remains time invariant,

then the expected consumption growth still declines over time but more slowly because global

warming increases the probability of climate disasters.

Figure 7: The expected consumption growth rate in the business-as-usual scenario when
λ̄(H) = 4λ̄(L), 2λ̄(L), and λ̄(L).

The average social cost of carbon and mean global surface temperature from Year 2015 to

2100 are shown in Figure 8. Since total carbon emissions are exogenously given and indepen-

dent of the scale of climate damage in the business-as-usual scenario, changes in temperature

are deterministic too and the same under all assumptions on the disaster frequency in the

new regime, as shown in the right panel. Without abatement, the mean global surface tem-

perature will rise to 3.35◦C by the end of this century. The left panel of Figure 8 shows the

time paths of SCC. At time 0, the initial social cost of carbon rises to $385.06 and $574.41 per

ton of carbon if the climate disasters are expected to happen two and four times as frequent

in the new climate regime, compared with $298.05 per ton of carbon5 when the regime shift
5Compared with Olijslagers (2020), our estimate for the (initial) SCC is larger because the climate model

in Olijslagers (2020) features atmospheric carbon decay and a concave radiative forcing function; both slow
down the impact of carbon emissions on global warming. Our model ignores such delays, and thus leads to
more rapid global warming and more frequent (or intense) climate damages in the future.
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Figure 8: Social cost of carbon (US dollar per ton of carbon, or $/tC) and mean global
surface temperature (◦C) in the business-as-usual (BAU) scenario from 2015 to 2100, when
climate disaster frequency in the new regime rises to 4λ̄(L), 2λ̄(L), or remains unchanged.

is not considered. As Equation (6) implies, the social cost of carbon is substantially affected

by the climate volatility risk through the certainty equivalent of climate disasters and the

growth-adjusted consumption discount rate in the business-as-usual scenario. With climate

disasters happening more frequently in the new regime, the certainty equivalent of climate

disasters in Term (i) increases and the growth-adjusted consumption discount rate in Term

(ii) decrease, which leads to a rise in SCC.

We saw already in Equation (6) that stochastic climate volatility affects the certainty

equivalent of climate disasters through the expectation channel and the growth-adjusted

consumption discount rate through both the expectation channel and the risk channel. Next

we separate effects of both channels on SCC and show how they interact with preference

parameters. To see how much SCC are affected by these two channels, we calculate SCC

under two different assumptions on the regime shift: (a) it arrives as a Poisson process with

rate λ0 = 0.01 (and thus with expected arrival time 100 years), and (b) it arrives determin-

istically in the 100th year. Table 1 reports the numerical results under the assumption that

climate disaster frequency doubles in the new regime (i.e. λ̄(H) = 2λ̄(L)). Since the SCC un-

der deterministic regime shift captures the expectation effect of stochastic climate volatility

but are not exposed to volatility risk, the difference between values in Column (a) and (b)
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measures how much stochastic climate volatility affects the SCC through the risk channel.

The certainty equivalent component in the SCC are equal under both types of regime shift

but volatility risk has a negative effect on the growth-adjusted consumption discount rate,

which leads to higher SCCs when regime shift is stochastic.

γ ϵ (a) Stochastic regime shift (b) Deterministic regime shift
6 1.5 359.23 268.17
4.3 1.5 504.68 377.02
6 0.75 360.07 242.49
4.3 0.75 243.37 172.76

Table 1: The business-as-usual social cost of carbon ($/tC) in Year 2025 as a function of risk
aversion γ, EIS ϵ with and without the risk effect of climate volatility. The parameter set
(γ, ϵ) = (4.3, 1.5) is the calibrated values in Section 3. Here we assume that climate disaster
frequency doubles (λ̄(H) = 2λ̄(L)) but its size remains unchanged in the new climate regime.

As shown in Table 1, the risk channel of stochastic climate volatility leads to significant

increases in the SCC under all combinations of preference parameters γ and ϵ. Higher risk

aversion increases in the certainty equivalent of climate disasters, but its effect on the growth-

adjusted consumption discount rate r(CDR) and SCC depends on the value of ϵ. To see this,

Figure 9 presents time paths of r(CDR) under different combinations of preference parameters

when the regime shift is deterministic. When ϵ > 1, the growth-adjusted consumption

discount rate r(CDR) increases if risk aversion γ is larger; when ϵ < 1, r(CDR) decreases in γ.

Table 1 shows that the SCC goes down with higher risk aversion when ϵ > 1, and increases

in risk aversion when ϵ < 1. This implies that the discount effect dominates the certainty

equivalent effect and is in line with results in Cai and Lontzek (2019) and Olijslagers and

van Wijnbergen (2019).

The SCC under optimal abatement We now study the effect of climate volatility risk

on the social cost of carbon in an economy under optimal abatement policies. As before,

we first check the dynamics of growth-adjusted consumption discount rates r(CDR) and the

growth rate of expected consumption, since both play an important role in determining the
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Figure 9: Growth-adjusted consumption discount rate under different risk aversion γ and
EIS ϵ when regime shift is deterministic and λ̄(H) = 2λ̄(L).

SCC. We do this numerically, analytical solution is not possible.

The growth-adjusted consumption discount rate r(CDR) and its climate risk components

under optimal abatement is shown in Figure 10. Panel (a) and (b) show the expectation

effect and the risk effect of stochastic climate volatility on r(CDR), both being smaller than

those in the business-as-usual scenario because abatement mitigates the impact of climate

volatility risk on climate change. The expectation effect in Panel (a) always takes negative

values and its magnitude increases over time due to the rising probability of climate disasters

under volatility risk and global warming. The risk effect in Panel (b) rises over time initially

as the probability of climate disasters increases, and converges to zero in the long run as the

uncertainty about climate volatility resolves. In line with Figure 2 and Figure 4, it decreases

sharply in the medium run when the emission control rate reaches its maximum. Compared

with the business-as-usual scenario, the growth-adjusted consumption discount rate in Panel

(d) changes little over time. It jumps upwards in the medium run when emission control

reaches its maximum as has been observed also in the time paths of risk-free rates (Figure

2) and risk premia (Figure 4).

The comparison of Figure 11 with the corresponding figure for the BAU scenario (Figure

7) shows that expected consumption growth is much less affected under optimal abatement
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Figure 10: The expectation effect (Panel (a)), the risk effect (Panel (b)) of stochastic climate
volatility, the effect of climate disaster (Panel (c)) on growth-adjusted consumption discount
rate, and the time paths of the discount rate (Panel (d)) under optimal abatement policies
(OPT). In the new regime, climate disaster frequency rises to 4λ̄(L), 2λ̄(L), or remains un-
changed.

than it is under the business-as-usual scenario. This is because although abatement costs

take up a proportion of the endowment in each period, they also substantially reduce the

future damage from climate disasters on consumption flows because abatement leads to a

slower increase in temperature.

Expected consumption growth rate jumps up halfway the century when the emission

control rate u hits its maximum of 100%. Since the marginal damage of carbon emission

rises over time, the optimal emission control rate also increases over time. Since we do not

incorporate the possibility of carbon capture, the emission control rate stops increasing after

reaching 100% and remains at this maximum level afterwards (see Figure 12). The expected
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consumption growth rate depends on both the expected endowment growth rate and the

growth rate of abatement cost, so the sudden stop of the growth rate of abatement costs

leads to a discrete upward jump in the expected consumption growth rate.

In the short run, the decline in the expected consumption growth rate is due to expected

climate damages under regime shift risk but also to increasingly stringent emission controls

over time. In the long run, abatement is stuck at its maximum value of 100% and the

consumption growth rate is expected to decline again but this time only because expected

damages from climate disasters to aggregate endowment and consumption are expected to

be more severe over time under the regime shift risk.

Figure 11: Expected consumption growth rate under optimal abatement policies when λ̄(H) =
4λ̄(L), 2λ̄(L) and λ̄(L).

Also we find that when λ̄(H) is larger, the expected consumption growth is lower both in

the short run and long run. This is because the frequency of climate disasters in the new

climate regime λ2,t = λ̄(H)Tt increases in λ̄(H). Although more abatement effort made under

a higher λ̄(H) leads to a lower temperature T in the long run, such mitigation effect on global

warming is insufficient to counteract the increase in λ̄(H). As can be seen in Figure 12, under

optimal abatement, emission control under the threat of twice as frequent climate disasters

in the new regime (i.e. when λ̄(H) = 2λ̄(L)) leads to only about 16% decline of temperature
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in the long run. Therefore, more severe climate conditions in the new regime leads to slower

expected consumption growth under optimal abatement.

Figure 12 presents the time path of the SCC, the mean global surface temperature,

the emission control rate, annual carbon emissions and the consumption-endowment ratio

under optimal abatement policies. Under any assumption on λ̄(H), the SCC increases over

time since it is proportional to consumption which increases over time. Moreover, the SCC

becomes larger if climate disasters are expected to be more frequent in the new regime:

discount rates are lower and the certainty equivalent of climate damages is higher under

more variable weather in the future. Given that climate disasters will happen two and four

times as frequent in the new regime, the initial SCC rises to $413.64 and $637.94 per ton of

carbon, in contrast with $311.06 per ton of carbon without a climate regime shift.

Figure 12: Social cost of carbon, mean global surface temperature, emission control rate,
yearly carbon emissions and consumption-endowment ratio from Year 2015 to 2100 under
optimal abatement, when λ̄(H) = 4λ̄(L), 2λ̄(L) and λ̄(L).
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The dynamics of emission control, yearly emission, temperature, and consumption-endowment

ratio vary under different λ̄(H). More stringent emission control under higher λ̄(H) leads to

lower yearly emissions and a slower increase in temperature T . Meanwhile, through climate

disaster frequency λ2,t := λ̄tTt, temperature T affects the marginal damage of carbon emis-

sions and thus the stringency of emission control. Initially, temperatures are the same under

different values of λ̄(H) but emission control is stricter for higher λ̄(H), which leads to a slower

increase in T under higher λ̄(H). The slower temperature rise mitigates the impact of λ̄(H)

on climate disaster frequency λ2,t. However, as can be seen in Figure 12, stricter emission

control rates under both λ̄(H) = 2λ̄(L) and λ̄(H) = 4λ̄(L) lead to less than 20% decline in the

long-run temperature than we get when λ̄(H) = λ̄(L). This implies that the mitigation effect

of temperature on future disaster frequency is insufficient to counteract the direct effect of

λ̄(H). Therefore, a higher λ̄(H) leads to higher marginal damage of emissions and stricter

emission control. Indeed, without climate volatility risk, the optimal abatement rate in 2015

is slightly over 40%. With more frequent disasters in the new regime, the optimal emission

control rate increases and reaches its maximum of 100% earlier. Since the emission control

rate cannot exceed 100%, it will remain at this maximum level thereafter. With decreasing

marginal abatement cost due to technological progress, the consumption-endowment ratio

increases in the long run.

Compared with the BAU scenario, the SCC is larger under optimal abatement policy.

This comes from the joint effects of certainty equivalent of climate damages and discount

effects, as suggested in Equation (6). On the one hand, emission abatement decelerates

global warming, so future aggregate endowment and consumption are less affected by climate

damages, implying a larger certainty equivalent effect (Term (i) in Equation (6)). On the

other hand, however, the discount rate under optimal abatement (Figure 10) is larger than

in the BAU scenario (Figure 6). Intuitively, since future consumption suffers less from

climate damages under high abatement efforts, the discount factor is lower or equivalently

the discount rate becomes larger. From the observed higher SCCs under optimal abatement
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policy, we infer that the certainty equivalent effect dominates the discount effect.

Finally, we find that there is considerable uncertainty about the SCC in the future under

both policies, because the endowment process is stochastic and the climate regime shift is

uncertain. Table 2(a) lists the means and standard deviations of the social costs of carbon

in the BAU scenario in 2025, 2050 and 2100. Under any assumption of the new regime,

the mean and the standard deviation increase over time. This is consistent with the fact

that the SCC is a geometric Brownian motion (GBM) because it is a function of aggregate

endowment which is also a GBM process (Shephard and Andersen (2009)), and that both

the mean and the standard deviation of a GBM increases over time. Of course, under the

optimal abatement scenario there is uncertainty about future SCCs too: see Table 2(b),

where we compare the BAU and the optimal abatement scenario. Both the means and the

standard deviations are larger than in the BAU case under the same assumption on the new

climate regime, which is because of the differences in the certainty equivalent effects and the

discount effect of climate volatility risk on SCC, as has been discussed in the last paragraph.

Under optimal abatement, the certainty equivalent effect is larger but the discount effect is

smaller than the BAU case. Higher SCC under optimal abatement implies that the certainty

equivalent effect dominates the discount effect.

New Regime Year (a) Business as usual (b) Optimal abatement
Mean Standard Deviation Mean Standard Deviation

λ̄(H)

λ̄(L) = 1

2025 375.79 49.12 395.19 51.89
2050 666.22 166.46 717.51 177.09
2100 2013.39 804.42 2393.98 942.04

λ̄(H)

λ̄(L) = 2

2025 504.68 87.11 548.38 100.82
2050 955.47 281.33 1070.20 323.57
2100 2911.38 1208.18 3900.78 1666.68

λ̄(H)

λ̄(L) = 4

2025 770.80 164.00 863.49 204.97
2050 1475.99 457.98 1788.28 666.13
2100 3976.36 1679.76 6741.11 3120.43

Table 2: Means and standard deviations of SCC ($/tC) in Year 2025, 2050 and 2100 from
Monte Carlo simulations.
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4.2 The New Climate Regime (B): a Higher Disaster Intensity

We now introduce climate volatility risk by assuming that in the new climate regime, climate

disasters become more intense instead of more frequent. Upon the arrival of the new regime,

the expected size of damages from one extreme weather event will increase immediately

to EJ (H)
2 from the current value EJ (L)

2 . We call this regime (B). To compare the numerical

results under different types of climate volatility risk, we apply the same multipliers (2 and 4)

to the post-shift expected damage size, in other words, when EJ(H)
2

EJ(L)
2

= 2 and 46. We consider

the BAU scenario first and then for comparison the optimal abatement (OA) scenario.

Business-as-Usual Scenario Consider first the business-as-usual scenario, still with ex-

ogenous emissions, and assuming the stochastic shock structure of Regime (B). We remind

the reader that we run the same numerical exercises but with endogenous and thus stochastic

carbon emissions in Section 5.

Without abatement effort and with deterministic emissions, the emissions are the same

under all possible values of the expected disaster size EJ (H)
2 in the new regime. As a con-

sequence in the BAU scenario and the non-stochastic emissions case, temperature T follows

the same dynamic path also under all assumptions on EJ (H)
2 .7 Therefore, the expected an-

nual climate damages are also the same after regime shifts of both types as long as EJ(H)
2

EJ(L)
2

in

Regime (B) equals λ̄(H)

λ̄(L) in Regime (A). However, we will show that the SCC that comes out

is different in the two regimes (A) and (B) even though expected damages are the same.

Consider first the effect on the SCC through the Consumption Discount Rate (see the

analytical expression of the SCC (Equation (6)). Figure 13 shows the growth-adjusted

consumption discount rate r(CDR) and its components introduced by climate disaster risk

and climate volatility risk in the business-as-usual scenario. Panel (a) and (b) show the
6We quantify the impact of climate volatility risk on risk-free rates and risk premia under Regime (B)

in Appendix B.
7This is not necessarily true under optimal abatement since optimal abatement does depend on the size

and the type of shocks. And (the change in) carbon concentration is influenced by (1 − ut)Et, so different
emission and temperature patterns will emerge when abatement ut varies.
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expectation effect and the risk effect of stochastic climate volatility on r(CDR), Panel (c) shows

the effect of climate disasters on r(CDR), and Panel (d) shows the dynamic of r(CDR) under

different assumptions on the disaster intensity EJ (H)
2 in the new regime. The magnitudes in

all these panels do not differ much from those in Figure 6 under Regime (A) in the BAU

scenario. Negative values in Panel (a), (b) and (c) imply that both climate disaster risk and

climate volatility risk reduce the growth-adjusted consumption discount rate r(CDR). A lower

CDR obviously implies a higher Consumption Discount Factor which in turn implies a higher

SCC as future damages are discounted less. The expectation effect of climate volatility risk

(see Panel (a)) and the effect of climate disaster risk (see Panel (c)) are of the same order,

and both are larger than the risk effect of climate volatility risk shown in Panel (b).

Next, we check the certainty equivalent effect on the SCC which consists of two parts

according to Equation (6): the expected future consumption flow E0Ct and the marginal

increase in the certainty equivalent of climate damages on E0Ct under one extra unit of

emission today. Figure 14 shows the growth rate of expected consumption E0Ct under Regime

(B) (see for the analytical expression Equation (8)). Consumption growth is expected to

decline as climate damages become more severe under global warming. Moreover, a higher

disaster intensity EJ (H)
2 in the new regime leads to an even lower time path of expected

consumption growth because more damaging climate disasters hinder the economic growth

to a larger extent. Comparison with Figure 7 shows that the dynamic response of expected

consumption growth is almost the same under Regime (A) and (B).

But the marginal increase in the certainty equivalent component of climate damages on

expected consumption at time t,
∫ t
0
χ∂λ2,s

∂T0
1

α2,s+1−γds, is larger in Regime (B) than Regime

(A) even when the expected climate damages are the same in both new regimes (i.e. when

the multipliers on disaster frequency and intensity are the same in the new regime). Util-

ity is concave under risk aversion, therefore, when climate disasters become more intense,

the certainty equivalent of the marginal increase in climate damage is larger although the

expected climate damages are the same under both regimes.
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Figure 13: The expectation effect of climate volatility risk (Panel (a)), the risk effect of
climate volatility risk (Panel (b)) and the effect of climate disaster risk (Panel (c)) on the
growth-adjusted consumption discount rate r(CDR), as well as the time paths of r(CDR) (Panel
(d)) in the BAU scenario. The expected intensity of one climate disaster in the new regime
rises to 4EJ (L)

2 , 2EJ (L)
2 , or remains unchanged.

As a numerical example, consider the regime shift arrives at the same date τ under both

regimes when the multiplier is 2. Then

CEt(B) =

(∫ τ

0

χλ̄(L)
1

α
(o)
2 + 1− γ

ds+

∫ t

τ

χλ̄(L)
1

α
(n)
2 + 1− γ

ds

)
E0Ct

>

(∫ τ

0

χλ̄(L)
1

α
(o)
2 + 1− γ

ds+ 2

∫ t

τ

χλ̄(L)
1

α
(o)
2 + 1− γ

ds

)
E0Ct

=

(∫ t

0

χ
∂λ2,s
∂T0

1

α2,s + 1− γ
ds

)
E0Ct = CEt(A)

where CEt(A) and CEt(B) are the certainty equivalent term at t in Equation (6) under

41



Figure 14: Expected consumption growth in the BAU scenario when the expected size of
one climate disaster in the new regime rises to 4EJ (L)

2 , 2EJ (L)
2 , or remains unchanged.

regime (A) and (B). The inequality holds because the disaster intensity in the new regime

EJ (H)
2 := 1

α
(n)
2 +1

is double the current disaster intensity EJ (L)
2 := 1

α
(o)
2 +1

, and thus 1

α
(n)
2 +1−γ

>

2 · 1

α
(o)
2 +1−γ

given γ > 0.

Finally consider the dynamics of SCC. Figure 15 shows the time paths of the SCC and

temperature in the BAU scenario under Regime (B). We already saw that temperature

follows the same dynamic under any assumption of EJ (H)
2 with deterministic emissions. But

the SCC is larger when shocks follow regime (B). As we saw, the growth-adjusted discount

rates are similar under both regimes but the certainty equivalent effect of climate damages

in (B) is larger than in regime (A): SCC0 equals $298.05 per ton of carbon without climate

volatility risk, but rises rises to $398.88 per ton of carbon if the intensity of one climate

disaster is twice the current level and and $673.73 when the disaster multiplier equals four.

Optimal Abatement Policy Consider next the SCC under optimal abatement policy.

As before, we first show how climate volatility risk affects the SCC through the discount

effect and the certainty equivalent effect.

We again decompose the growth-adjusted consumption discount rate r(CDR) into an ex-

pectation effect (Panel (a)), a risk effect (Panel (b)) and a risk effect due to volatility risk
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Figure 15: SCC ($/tC) and mean global surface temperature (◦C) in the BAU scenario from
2015 to 2100. The expected size of one climate disaster in the new regime rises to 4EJ (L)

2 ,
2EJ (L)

2 , or remains unchanged.

rather than due to volatility itself (panel (c)). Panel (d) shows the net result of climate

disasters under optimal abatement on the CDR itself. Comparison of the graphs with the

corresponding ones under the BAU scenario (??) indicates that the magnitudes of climate

risks in Panel (a), (b) and (c) do not differ much from what they are under Regime (A),

and so is the time path of the growth-adjusted consumption discount rates, as can be seen

in Figure 10. Comparison with the BAU scenario implies that both the expectation effect

(Panel (a)) and the risk effect (Panel (b)) of stochastic climate volatility are smaller under

emission control, because abatement mitigates climate change and thus weakens the impact

of climate volatility risk on the discount factor.

We then check the certainty equivalent effect in SCC (Equation (6)) which consists of

two parts: the expected future consumption E0Ct and the marginal increase in the cer-

tainty equivalent of climate damages on E0Ct under one extra unit of emission today. The

growth rate of expected future consumption E0Ct is shown in Figure 17, which resembles

Figure 11 under optimal abatement in Regime (A). In the short run, it declines over time as

climate damages become more severe under global warming and emission control becomes

more stringent. In the short run, it declines over time only because expected damages from

climate disasters to aggregate endowment and consumption become more severe. In the

43



Figure 16: The effect of climate volatility risk on growth-adjusted consumption discount rate
through the expectation channel (Panel (a)) and the risk channel (Panel (b)), the effect of
climate disaster risk (Panel (c)), and the discount rate (Panel (d)) under optimal abatement
policy. In the new climate regime, the expected damage size of one climate disaster increases
to 4EJ (L)

2 , 2EJ (L)
2 , or remains unchanged in the new regime.

medium run, the expected consumption growth increases discontinuously when the emission

control rate u hits its maximum 100% and remains at this maximum level afterwards. Since

the expected consumption growth depends on the growth of both endowment and abate-

ment, the sudden stop of the growth of abatement costs leads to a discrete upward jump

in the expected consumption growth. Furthermore, the growth in expected consumption

under optimal abatement is less affected by climate change than in the BAU scenario be-

cause abatement mitigates the negative impact of climate change on the economic growth.

Although abatement comprises a proportion of endowment in each period, it substantially

reduces the damage from climate disasters on consumption, leading to a higher long-run
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endowment and consumption growth.

Figure 17: Expected consumption growth rate under optimal abatement if the expected
damage size of one climate disaster increases to 6EJ (L)

2 , 4EJ (L)
2 , 2EJ (L)

2 , or remains unchanged
in the new regime.

Figure 18 shows the time paths of the SCC, mean global surface temperature, emis-

sion control rate, annual carbon emissions and consumption-endowment ratio under optimal

abatement policies in Regime (B). As in Regime (A), the SCC increases over time since

it is proportional to consumption which increases over time. Moreover, when the disaster

intensity in the new regime is larger, the SCC is higher because of lower discount rates and

higher certainty equivalent of climate damages. Given that the average intensity of climate

disasters are twice and four times as large in the new regime, the initial SCCs rise to $429.71

and $762.70 per ton of carbon, in contrast with $311.06 per ton of carbon if climate volatility

risk is not considered. The dynamics of emission control, yearly emission, temperature, and

consumption-endowment ratio vary under different specifications of the disaster intensity

EJ (H)
2 in the new regime. Emission control becomes more strict under larger EJ (H)

2 , which

therefore leads to a lower consumption-endowment ratio, less yearly emissions and a slower

increase in temperature.

When comparing regime (B) with the results under Regime (A) (Figure 12), we find that

emission control under Regime (B) is more strict. This is because the certainty equivalent
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of climate damage increases more under Regime (B) than (A), as discussed earlier in this

section. More stringent emission control explains the lower consumption-endowment ratio,

faster decline in annual emissions and slower increase in temperature under Regime (B).

Figure 18: Social cost of carbon, mean global surface temperature, emission control rate,
yearly carbon emissions and consumption-endowment ratio from Year 2015 to 2100 under
optimal abatement in Regime (B) of climate volatility risk, where the expected size of one
climate disaster in the new regime rises to 4EJ (L)

2 , 2EJ (L)
2 , or remains unchanged.

For completeness, we provide the means and standard deviations of SCCs under both

policy scenarios in Table 3. The Table shows that under both policy scenarios the mean

and the standard deviation of SCCs are increasing over time. But comparison with Table 2

shows that a new climate regime with more intense disasters increases the SCC more than

a switch to a regime with more frequent disasters for equal expected damage value.
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New Regime Year (a) Business as usual (b) Optimal abatement
Mean Standard Deviation Mean Standard Deviation

EJ(H)
2

EJ(L)
2

= 1
2025 375.79 49.12 395.19 51.89
2050 666.22 166.46 717.51 177.09
2100 2013.39 804.42 2393.98 942.04

EJ(H)
2

EJ(L)
2

= 2
2025 521.70 93.18 573.66 109.66
2050 997.56 300.53 1130.65 357.51
2100 3043.94 1276.30 4176.99 1804.32

EJ(H)
2

EJ(L)
2

= 4
2025 901.94 196.30 1036.46 260.80
2050 1706.84 540.31 2168.28 840.28
2100 4542.63 2009.69 8332.87 4026.95

Table 3: Means and standard deviations of SCC ($/tC) in Year 2025, 2050 and 2100 when
climate disasters become more intense in the new regime.

5 Endogenous Carbon Emissions

So far we have for analytical convenience assumed that business-as-usual carbon emissions

are exogenous and deterministic, increasing initially over time but declining eventually as

fossil fuel depletion and renewable energy development kick in. This simplification allowed

us to almost completely decompose the expression of SCC analytically (cf Equation (6)) and

to analyse the climate risk impact of each component separately. But there is an obvious

cost to this simplification, in reality emissions are related to the output process and as such

a stochastic process themselves. To assess how limiting this simplification really is we redo

much of the analysis but now with emissions modeled as a stochastic process linked to the

output process.

So we now model emissions Et as

Et = ψtYt

where Yt is the endowment process that characterizes the intensity of economic activities at

t, and ψt is the carbon intensity: the amount of carbon produced per dollar of GDP. The

carbon intensity is calibrated such that expected emissions are close to those assumed in the

47



exogenous base emission case, as in Olijslagers (2020). We assume that ψt declines over time

due to technological improvements in production processes and renewable energies:

dψt = −δtψtdt

where δt increases over time and follows the dynamic

d(δt − δ∞) = −αψ(δt − δ∞)dt, αψ > 0

with initial value δ0 and long-run value δ∞, or equivalently, δt = δ∞ + e−αt(δ0 − δ∞). So

initially, carbon intensity declines at a rate smaller than the economic growth rate, and

emissions are driven up as the endowments grow. But in the long run the carbon intensity

declines at a rate δ∞ larger than the rate of economic growth, so carbon emissions eventually

decline and converge to zero. We set δ0 = −0.5%, δ∞ = −6.5% and α = 0.25%. The key

difference with the exogenous emission case is that carbon emissions are now stochastic due

to the volatility of the output process to which they are linked. This introduces a new source

of risk, realistically so but this also makes it impossible to generate analytical expressions

for SCC. We therefore just present the numerical outcomes.

5.1 Endogenous emissions and arrival rate climate shocks

Table 4 reports the numerical results under the assumption that the climate disaster fre-

quency doubles in the new regime (i.e. λ(H) = 2λ(L)) but now with endogenous carbon

emissions. As in Table 1, we calculate the SCC under two different assumptions on the

climate regime shift: Column (a) assumes the arrival of the regime shift follows a Poisson

process with rate λ0 = 0.01 (and thus with expected arrival time 100 years); Column (b)

assumes the regime shift arrives exactly in 2115 (i.e. 100 years from 2015, the starting point

of our simulation). Also we compare the SCC under different preference parameter values

for γ and ϵ.
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γ ϵ (a) Stochastic regime shift (b) Deterministic regime shift
6 1.5 345.18 256.82
4.3 1.5 439.65 347.77
6 0.75 347.71 237.83
4.3 0.75 232.16 171.51

Table 4: The business-as-usual social cost of carbon ($/tC) in Year 2025 as a function of
risk aversion γ, EIS ϵ with and without the risk effect of climate volatility. Assume that
in the new regime climate disaster frequency doubles (λ(H) = 2λ(L)) but its size remains
unchanged. Carbon emission is a function of aggregate endowment and carbon intensity.

As in the exogenous emission setup of Table 1, the SCC is significantly larger in Column

(a) than Column (b) under the same preference parameters, implying that the stochasticity of

climate volatility substantially increases the SCC and thus cannot be ignored for an adequate

assessment of the SCC. We also find the same pattern as in Table 1 regarding SCCs under

different values of γ and ϵ, which can be explained likewise.

Carbon emissions are now proportional to aggregate endowment which introduces an

additional source of stochasticity to the extended model. Not surprisingly given that repre-

sentative agents are risk averse, accounting for endogenous carbon emissions magnifies the

risk effect of stochastic climate volatility on social costs of carbon.

Figure 19 and 20 show the time path of the SCC and of temperature T , respectively

under the BAU and the optimal abatement scenario, but now with endogenous and therefore

stochastic emissions. In the BAU scenario, the dynamics of temperature no longer coincide

under different specifications of climate volatility risk, contrary to what they did under the

exogenous emissions assumption. This is because now emissions depend on the aggregate

endowment which is affected by higher climate disaster arrival rates.

An increase in λ̄(H) leads to a lower temperature T because a higher λ̄(H) generates

larger economic losses, therefore lower future endowments, as a consequence less emissions

and hence a slower increase in temperature. The effect of λ̄(H) on the SCC comes from two

channels. First, an increase in λ̄(H) leads to a higher Expected Loss effect as we just discussed

(see Term (i) in Equation (6)) and thus a larger SCC. Second, the aggregate endowment and
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Figure 19: Social cost of carbon (US dollar per ton of carbon, or $/tC) and mean global
surface temperature (◦C) in the business-as-usual (BAU) scenario when carbon emission is
endogenous. The frequency of climate disasters in the new regime rises to 4λ̄(L), 2λ̄(L), or
remains unchanged.

consumption in the future are expected to decrease under larger λ̄(H), which leads to a higher

price of future goods or, equivalently, a higher stochastic discount factor (SDF)/lower CDR.

And that in turn also leads to a higher SCC. Figure 19 demonstrates the positive impact of

a higher λ̄(H) on the SCC numerically.

Under optimal abatement, the SCC, temperature and emission control rate follow the

same pattern as in the exogenous emission setup shown in Figure 12. When λ̄(H) is higher,

the expected marginal damage from climate disasters becomes larger, which leads to more

stringent optimal emission control and therefore a lower (future) temperature. A higher

climate disaster frequency increases the SCC through both a larger certainty equivalent effect

(Term (i) in Equation (6)) and a lower discount rate (Term (ii) in Equation (6)). Under a

higher λ̄(H), the certainty equivalent of climate damage is expected to be larger. Meanwhile,

aggregate endowment and consumption become lower in a world with more frequent climate

disasters. And lower future consumption implies a higher stochastic discount factor and a

lower discount rate. Both the increase in the certainty equivalent of climate damage and the

decrease in discount rates lead to higher values for the SCC.
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Figure 20: Social cost of carbon, mean global surface temperature, emission control rate,
yearly carbon emissions and consumption-endowment ratio from Year 2015 to 2100 under
optimal abatement, where carbon emission is endogenous. The frequency of climate disasters
in the new regime rises to 4λ̄(L), 2λ̄(L), or remains unchanged.

5.2 Endogenous emissions and jump-size climate shocks

Next we show the SCCs, temperature and emission control rates in Figure 21 and 22 under

both scenarios when the climate regime shift is of Type (B), that is, the climate disaster

intensity increases in the new regime but the disaster frequency remains unchanged.

In the BAU scenario, the SCC increases in the climate disaster intensity EJ (H)
2 , although

temperature is lower under higher disaster intensity. Like in the higher frequency scenario’s

(cf Figure 19) this follows because with larger disasters output is lower and so are therefore

emissions, with a slightly lower increase in T as a result.

The effect of disaster intensity on the SCC also depends on the expected loss effect and

the discount effect. First, an increase in EJ (H)
2 leads to larger economic losses in the future.

Second, the decline in aggregate consumption under larger climate damages leads to a higher

stochastic discount factor (or a lower discount rate), which in turn increases the SCC.

Figure 22 shows the SCC, temperature and the emission control rate under optimal

abatement policy. Their dynamics follow the same patterns as in Figure 12 under optimal

abatement and exogenous emissions. When climate disasters become more intense in the

new climate regime, the expected marginal damage from climate disasters increases, leading

to stricter emission controls, less emissions and a slower increase in temperature over time.
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Figure 21: Social cost of carbon (US dollar per ton of carbon, or $/tC) and mean global
surface temperature (◦C) in the business-as-usual scenario when carbon emission is endoge-
nous. The expected size of one climate disaster in the new regime rises to 4EJ (L)

2 , 2EJ (L)
2 ,

or remains unchanged.

The SCC increases in the intensity of climate disasters. Like in Section 4.2, under a larger

EJ (H)
2 , the expected losses from climate disasters increase, so the certainty equivalent effect

of climate volatility risk on the SCC increases. Moreover, higher abatement efforts leave

less of any given endowment for consumption as abatement costs rise. Also lower aggregate

endowment and consumption due to higher climate damages and higher abatement costs

imply a higher discount factor, or equivalently, a lower discount rate. Both the higher

certainty equivalent of climate damage and the lower discount rate lead to larger SCCs.

6 An alternative Model of Climate Volatility Risk: Grad-

ually Unfolding Tipping Points

In the climate literature, tipping points play a large role, as we discuss in our survey in Section

1. But in particular Dietz et al. (2021) and Lontzek et al. (2015) have argued that what

looks like an instantaneous jump on a geographical time scale unfolds much more gradually

on a regular timescale (see also Lenton and Ciscar (2013)). Therefore in this section, we

provide an alternative model of climate volatility risk. Instead of an immediate increase in
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Figure 22: Social cost of carbon, mean global surface temperature, emission control rate,
yearly carbon emissions and consumption-endowment ratio from Year 2015 to 2100 under
optimal abatement when carbon emission is endogenous. The expected size of one climate
disaster in the new regime rises to 4EJ (L)

2 , 2EJ (L)
2 , or remains unchanged.

climate volatility upon a regime shift, we model climate volatility as a Cox–Ingersoll–Ross

(CIR) process as in Eraker and Yang (2022). We assume that its long-run value is subject

to the one-off jump risk, and the climate volatility rises gradually to its long-run level after

a regime shift. This assumption is more realistic than the baseline model, because actual

jumps in the climate system unfolds more gradually over time. We find that this alternative

model of climate volatility risk yields similar asset pricing implications, which implies that

gradual climate regime shift matters little for the SCC and the long-run impact of the regime

shift dominates.

All else the same as in Section 2, except that we now assume that the climate disaster

frequency parameter λ̄t follows a Cox–Ingersoll–Ross (CIR) process where its long-run value

is subject to a one-off irreversible Poisson jump (i.e. climate regime shift) N0 at rate λ0.

Formally,

dλ̄t = θ
(
¯̄λt − λ̄t

)
dt+ σλ

√
λ̄tdZλ,t,

¯̄λt = (1−N0,t) λ̄
(L) +N0,tλ̄

(H)

where ¯̄λt is the long-run value of λ̄t which jumps from λ̄(L) to λ̄(H) upon the regime shift, θ
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is the mean-reversion speed, σλ
√
λ̄t is the standard deviation and Zλ is a Brownian motion

independent of the economic fluctuation risk Z. We impose the Feller condition (Feller

(1951))

2θ¯̄λt ≥ σ2
λ

to ensure λ̄t > 0.

To check whether different risk structures of climate volatility affects the SCC, we next

compare the time paths of SCCs under the CIR model and the baseline one-off jump model

in Figure 23, where no abatement policy is implemented (BAU) and carbon emissions are

exogenous. We can expect similar results for the stochastic emissions model we analyzed in

Section 5.

In our simulation we use the same values of λ̄(L) and λ̄(H) as before. For illustrative

purpose we set the speed of volatility increase θ = 0.1 so climate volatility rises to the new

level in around 10 years in our simulation. To compare with the results from the baseline

model, we set σλ = 0 so the SCCs are not affected by the stochasticity from the Brownian

term of λ̄t in the CIR process.

Figure 23 shows that for the same long run value of λ̄t in the new climate regime, the

SCC is larger in the one-off jump model than in the CIR model. In other words, the SCC

is larger if climate volatility increases faster after the regime shift. This should not come as

a surprise: a more gradual response to a positive shock in the long run value of volatility

implies a lower time path for volatility after the shock has arrived.

Figure 24 shows how the speed of climate volatility increase affects the SCCs. We assume

that the climate disaster frequency parameter is doubled in the new regime, i.e. λ̄(H) = 2λ̄(L).

In this plot, we compare the SCCs when θ takes different values (0.5 and 0.05) in the CIR

model, as well as the SCC when climate volatility increases immediately in the baseline

model. Consistent with the intuition above, we find that a more gradual response of climate

volatility to the regime shift shock leads to a lower SCC, although the difference between

SCCs is relatively small under different θ. When θ is large, climate disaster frequency
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Figure 23: Social costs of carbon in the BAU scenario when λ̄t follows an CIR process
(“CIR”) and when λ̄t is subject to a one-off Poisson jump (“Jump”), where θ = 0.1 and
σλ = 0.

increases faster to the new long-run level after the regime shift, which implies larger marginal

damages of carbon emissions and thus higher SCCs in the long run. The differences in SCCs

at the beginning of our simulation are trivial. This is because the climate volatility increases

only after the uncertainty about regime shift is resolved later, and the differences in future

climate damages under different θ become smaller after having been discounted back to

today’s value.
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Figure 24: Social costs of carbon in the BAU scenario when λ̄t either jumps immediately
(“Jump”) or follows an CIR process (“CIR”) under σλ = 0 and different speed θ.
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7 Conclusion

In this paper we have focused on stochastic climate volatility, a second-order uncertainty in

the climate system that has not yet been studied in the climate economic literature. We show

that under plausible calibrations the impact of volatility risk on the SCC is certainly not

of second order. This matters since climate scientists have argued that global warming will

bring irreversible and potentially permanent increases in climate volatility as part of a switch

to a new climate risk regime, possibly already in the near future. However, when exactly such

a shift to a new regime will take place is unknown and we do not know either how severe

climate damages will be in the new regime. All this implies that climate volatility itself

should be considered as a stochastic process, thereby introducing a new source of climate

risk that we show affects the social cost of carbon significantly.

Using a dynamic stochastic integrated climate-economic model where representative

agents are endowed with Duffie-Epstein recursive preferences, we examine how and by how

much stochastic climate volatility affects the social cost of carbon under different abate-

ment policies. We model the climate volatility risk as an irreversible one-off jump in climate

volatility arriving as a Poisson process. We also test the robustness of the results using

an alternative model of the volatility process, where actual climate volatility rises slowly

after a Poisson shock to its long run value. This more realistic assumption is shown to not

materially affect any of our conclusions.

First of all we find that climate volatility risk is as important as the climate volatility itself

in terms of its impact on the Social Cost of Carbon (SCC), risk premia and the safe rate of

interest. Climate volatility risk increases equilibrium risk premia on the same scale as climate

volatility, and in spite of the higher risk premia also leads to a higher social cost of carbon.

The impact of higher expected losses following climate volatility shocks more than offsets the

impact of higher risk premia. As a consequence, and this is our second key conclusion, the

stochasticity of climate volatility substantially increases the SCC, and thus deserves explicit

analysis and inclusion in climate-economy models. We demonstrate this by also analyzing a
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volatility shock that arrives at a known date and is of a known size. In that deterministic

case both the certainty equivalent of climate damage and the stochastic discount factor will

be smaller than they are when climate volatility risk is present. Therefore, failing to account

for the stochasticity of climate volatility results in estimates of the SCC that are too low.

Third, we demonstrate that increases in the frequency and intensity of climate disasters

affect the social cost of carbon in different ways. Both type of shocks lead to a higher social

cost of carbon, but the marginal impact differs. For equal expected climate damage, both

types of climate volatility shocks have a similar effect on the discount factor. However,

the certainty equivalent effect of climate damages increases proportionally under a shock to

disaster frequency, but more than proportionally under a shock to disaster intensity. This is

possible for equal expected damages because of risk aversion. Therefore, a regime with more

intense disasters increases the certainty equivalent of climate damages more and thus leads

to a higher SCC than a switch to a regime with more frequent disasters does.

Conclusion number four is that endogenizing carbon emissions by linking them to the

output process, thereby making emissions a stochastic process themselves, adds realism but

changes none of the conclusions. Of course adding stochasticity does lead to a higher SCC,

in line with our earlier results, but does not qualitatively change any of the results obtained

under exogenous emissions. In the first part of this paper, we focused on the exogenous

emission setup because it enabled us to obtain analytical expressions which cannot be derived

under endogenous emissions, and these analytical expressions help in gaining intuition for

the results obtained numerically. But when the exogenous emission flows are calibrated

to match the endogenous emissions in expected value terms, they have the same impact on

temperature and climate change as the endogenous emissions setup. Hence, the asset pricing

implications and the SCCs are similar under both model specifications of carbon emissions.

Finally conclusion number five: we show that smoothing the increase in climate volatility

leads to lower time paths of the SCC but does not generate qualitatively different implications

from the response to the possibility of instantaneous shocks. A gradual unfolding of a
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volatility tipping point slows down the increase in climate volatility and thus the SCC over

time, but does not lead to different implications regarding the effect of climate volatility risk

on the SCC.

Of course shocks on climate volatility are mostly yet to come; therefore there is lack of

time-series data that could help in calibrating the stochastic volatility process. That makes

the impact of volatility risk a natural candidate for the multiple prior/ambiguity aversion

approach advocated by Chen and Epstein (2002) and Klibanoff et al. (2005), an issue we

intend to take up in future work.
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A Solution to the Optimization Problem and SCC
We describe details on solving the optimization problem of the representative agent in Section
2, where climate volatility risk is modelled by a stochastic arrival of a new regime in which
climate disasters happen more frequently (Type (A)). Then we provide analytical expression
of SCC. Under the other type of climate volatility risk (Type (B)), optimization problems
can be solved analogously so we will not provide the details.

The following steps follow Tsai and Wachter (2015) and Olijslagers (2020). Let Vt be the
total welfare which is a function of time t and state variables (Yt, Tt, λ̄t) with dynamics

dYt = µYtdt+ σYtdZt − J1YtdN1,t − J2YtdN2,t,

dTt = χ(1− ut)Etdt,

dλ̄t =
(
λ̄(H) − λ̄(L)

)
dN0,t

Then the Hamilton–Jacobi–Bellman (HJB) equation is given by

0 = max
ut

{
f(Ct, Vt) +

∂V

∂t
+ µYtVY + µT,tVT +

1

2
σ2Y 2

t VY Y

+ λ1E
[
V
(
(1− J1)Yt−, Tt, λ̄t, t

)
− V (Yt−, Tt, λ̄t, t)

]
+ λ2,tE

[
V
(
(1− J2)Yt−, Tt, λ̄t, t

)
− V (Yt−, Tt, λ̄t, t)

]
+ λ0(1−N0,t−)E

[
V
(
Yt, Tt, λ̄

(H), t
)
− V (Yt, Tt, λ̄

(L), t−)
]}

where µT,t = χ(1 − ut)Et, λ2,t = λ̄tTt, VX and VXX are the first- and second-order partial
derivatives of variable X.

Tsai and Wachter (2015) showed that under this model setup, the conjecture V =
g
(
T, λ̄t, t

)
Y 1−γ

1−γ can be used to reduce the dimensionality of the state space and simplify
the numerical procedure. Define ξt := Ct

Yt
as the consumption-endowment ratio, then the

flow utility can be rewritten as

f(C, V ) = βζ
(
g−

1
ζ ξ1−

1
ϵ − 1

)
V

The HJB equation can then be rewritten as

0 = min
ut

{[
βζ

(
g
− 1

ζ

t− ξ
1− 1

ϵ
t− − 1

)
+ (1− γ)

(
µ− 1

2
γσ2 − λ1

α1 + 1− γ
− λ̄tTt
α2 + 1− γ

)]
gt−

+
∂g

∂t
+ µT,tgT + λ0 (1−N0,t−)

(
gt
gt−

− 1

)}
(10)

where gt = g(Tt, λ̄t, t) and gt− = g(Tt, λ̄t−, t). If the one-off jump N0 does not happen at t,
then we have gt = gt−. Equation 10 is a minimization problem because γ > 1.
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The optimal abatement policy u∗t satisfies the first order condition

β(1− γ)g
1−1/ζ
t ξ

−1/ϵ
t

∂ξt
∂ut

− χEtgT = 0.

Stochastic discount factor To solve for the carbon price, we start with the stochas-
tic discount factor which is given by πt = exp

[∫ t
0
fV (Cs, Vs)ds

]
fC(Ct, Vt) (Duffie and Ep-

stein (1992)). Taking derivatives of f(C, V ) with respect to C and V , we get fC(C, V ) =
βC−1/ϵ

[(1−γ)V ]1/ζ−1 and fV (C, V ) = βζ
[(

1− 1
ζ

)
((1− γ)V )−1/ζ C1−1/ϵ − 1

]
. Plugging Ct = ξtYt and

the conjecture Vt = gt
Y 1−γ
t

1−γ into the derivatives above yields

fC(Ct, Vt) = βg
1−1/ζ
t ξ

−1/ϵ
t Y −γ

t , fV (Ct, Vt) = βζ

[(
1− 1

ζ

)
g
−1/ζ
t ξ

1−1/ϵ
t − 1

]
.

Substituting fC(C, V ) and fV (C, V ) into the expression of stochastic discount factor π and
using Ito’s formula, we obtain the stochastic differential equation of π

dπt
πt−

=βζ

[(
1− 1

ζ

)
g
−1/ζ
t− ξ

1−1/ϵ
t− − 1

]
dt+

dY −γ
t

Y −γ
t−

+
dg

1−1/ζ
t

g
1−1/ζ
t−

+
dξ

−1/ϵ
t

ξ
−1/ϵ
t−

+
dY −γ

t dg
1−1/ζ
t

Y −γ
t− g

1−1/ζ
t−

+
dY −γ

t dξ
−1/ϵ
t

Y −γ
t− g

1−1/ζ
t−

+
dg

1−1/ζ
t dξ

−1/ϵ
t

g
1−1/ζ
t ξ

−1/ϵ
t−

where

dY −γ
t

Y −γ
t−

= −γ
(
µ− 1

2
(1 + γ)σ2

)
dt− γσdZt +

[
(1− J1)

−γ − 1
]
dN1,t +

[
(1− J2)

−γ − 1
]
dN2,t

dg
1− 1

ζ

t

g
1− 1

ζ

t−

=

(
1− 1

ζ

)(
∂gt/∂t

gt−
+
gT
gt−

µT

)
dt+

g1− 1
ζ

t

g
1− 1

ζ

t−

− 1

 dN0,t

dξ
− 1

ϵ
t

ξ
− 1

ϵ
t−

=

(
−1

ϵ

)(
∂ξt/∂t

ξt−
+
ξT
ξt−

µT

)
dt+

(
ξ
− 1

ϵ
t

ξ
− 1

ϵ
t−

− 1

)
dN0,t.

Plugging in yields

dπt
πt−

=

{
βζ

[(
1− 1

ζ

)
g
−1/ζ
t− ξ

1−1/ϵ
t− − 1

]
− γ

(
µ− 1

2
(1 + γ)σ2

)
+

(
1− 1

ζ

)(
∂gt/∂t

gt−
+
gT
gt−

µT

)
+

(
−1

ϵ

)(
∂ξt/∂t

ξt−
+
ξT
ξt−

µT

)}
dt− γσdZt +

[
(1− J1)

−γ − 1
]
dN1,t +

[
(1− J2)

−γ − 1
]
dN2,t

+

g1− 1
ζ

t

g
1− 1

ζ

t−

− 1

+

(
ξ
− 1

ϵ
t

ξ
− 1

ϵ
t−

− 1

)
+

g1− 1
ζ

t

g
1− 1

ζ

t−

− 1

(ξ− 1
ϵ

t

ξ
− 1

ϵ
t−

− 1

) dN0,t,
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or

dπt
πt−

=
(
µπ,t + rft

)
dt− γσdZt +

[
(1− J1)

−γ − 1
]
dN1,t +

[
(1− J2)

−γ − 1
]
dN2,t + Jπ,tdN0,t,

(11)

where

µπ,t = βζ

[(
1− 1

ζ

)
g
−1/ζ
t− ξ

1−1/ϵ
t− − 1

]
− γ

(
µ− 1

2
(1 + γ)σ2

)
+

(
1− 1

ζ

)(
∂gt/∂t

gt−
+
gT
gt−

µT

)
−1

ϵ

(
∂ξt/∂t

ξt−
+
ξT
ξt−

µT

)
,

and

Jπ,t :=

g1− 1
ζ

t

g
1− 1

ζ

t−

− 1

+

(
ξ
− 1

ϵ
t

ξ
− 1

ϵ
t−

− 1

)
+

g1− 1
ζ

t

g
1− 1

ζ

t−

− 1

(ξ− 1
ϵ

t

ξ
− 1

ϵ
t−

− 1

)
.

Equation (11) implies that the stochastic discount factor captures the exposure to economic
diffusive risk dZ, economic disaster risk dN1, climate disaster risk dN2 and the climate
volatility risk dN0.

Risk-free rate Consider a risk-free bond Bt with return rft . Let µπ,t be the drift term in
the stochastic differential equation of π at time t. Under no-arbitrage condition, πtBt is a
martingale, which implies

rft = −µπ,t − λ1
γ

α1 − γ
− λ̄tTt

γ

α2 − γ
− λ0 (1−N0,t−)Jπ,t.

Note that the HJB equation (10) implies

∂gt/∂t

gt−
+ µT,t−

gT
gt−

=− βζ
(
g
−1/ζ
t− ξ

1−1/ϵ
t− − 1

)
− (1− γ)

(
µ− γ

2
σ2 − λ1

α1 + 1− γ
− λ̄tTt
α2 + 1− γ

)
− λ0 (1−N0,t−)

(
gt
gt−

− 1

)
Substituting the expression of ∂gt/∂t

gt−
+ µT,t−

gT
gt−

above into µπ,t yields the risk-free interest
rate

rft =β +
µ+ µξ,t

ϵ
− γ

2

(
1 +

1

ϵ

)
σ2 + λ1

(
γ − 1/ϵ

α1 + 1− γ
− γ

α1 − γ

)
+ λ̄tTt

(
γ − 1/ϵ

α2 + 1− γ
− γ

α2 − γ

)
+ λ0 (1−N0,t−)

[(
1− 1

ζ

)(
gt
gt−

− 1

)
− Jπ,t

]
.
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where µξ = ∂ξt/∂t
ξt−

+ ξT
ξt−
µT . Note that the dynamic of consumption process Ct is given by

dCt
Ct−

=
d (ξtYt)

ξt−Yt−
=
dξt
ξt

+
dYt
Yt−

+
dξtdYt
ξtYt−

=µC,tdt+ σdZt − J1dN1,t − J2dN2,t +

(
ξt
ξt−

− 1

)
dN0,t (12)

where µC,t = µ+ µξ,t. Therefore the risk-free rate is equivalent to

rft =β +
µC,t
ϵ

− γ

2

(
1 +

1

ϵ

)
σ2 + λ1

(
γ − 1/ϵ

α1 + 1− γ
− γ

α1 − γ

)
+ λ̄tTt

(
γ − 1/ϵ

α2 + 1− γ
− γ

α2 − γ

)
+ λ0 (1−N0,t−)Jf,t

where

Jf,t =
(
1− 1

ζ

)(
gt
gt−

− 1

)
− Jπ,t.

Risk premium Consider an asset which pays continuous dividends equal to the consump-
tion Ct, then its ex-dividend price St also measures the total wealth of the agent. The risk
premium is given by the difference between the asset return and the risk-free rate rft .

Let κt := Ct

St
be the consumption-wealth ratio (or price-dividend ratio). Given that fC =

VS under optimal condition (Tsai and Wachter (2015)) and VS = κtVC (chain rule), we have
κt =

fC
VC

= βg
−1/ζ
t ξ

1−1/ϵ
t and thus the ex-dividend price of the asset is St = Ct

κt
= β−1g

1/ζ
t ξ

1/ϵ
t Yt.

Using Ito’s lemma, we have

dSt
St−

=
dYt
Yt−

+
dg

1
ζ

t

g
1
ζ

t−

+
dξ

1
ϵ
t

ξ
1
ϵ
t−

+
dYtdg

1/ζ
t

Yt−g
1/ζ
t−

+
dYtdξ

1/ϵ
t

Yt−ξ
1/ϵ
t−

+
dg

1/ζ
t dξ

1/ϵ
t

g
1/ζ
t− ξ

1/ϵ
t−

where dYt
Yt−

= µdt+ σdZt − J1dN1,t − J2dN2,t is given, and by Ito’s formula

dg
1/ζ
t

g
1/ζ
t−

=
1

ζ
µg,tdt+

(
g
1/ζ
t

g
1/ζ
t−

− 1

)
dN0,t,

dξ
1/ϵ
t

ξ
1/ϵ
t−

=
1

ϵ
µξ,tdt+

(
ξ
1/ϵ
t

ξ
1/ϵ
t−

− 1

)
dN0,t

where µg,t = ∂gt/∂t
gt−

+ gT
gt−
µT and µξ,t = ∂ξt/∂t

ξt−
+ ξT

ξt−
µT . Then we can derive the dynamic of the

cum-dividend price Sdt

dSdt
St−

=
dSt
St−

+ κtdt =µS,t−dt+ σdZt − J1dN1,t − J2dN2,t + JS,tdN0,t

65



where

µS,t− =β +
µC,t
ϵ

+
1

2
γσ2

(
1− 1

ϵ

)
+ λ1

1− 1/ϵ

α1 + 1− γ
+ λ̄Tt

1− 1/ϵ

α2 + 1− γ
− λ0 (1−N0,t−)

1

ζ

(
gt
gt−

− 1

)
,

JS,t =

(
g
1/ζ
t

g
1/ζ
t−

− 1

)
+

(
ξ
1/ϵ
t

ξ
1/ϵ
t−

− 1

)
+

(
g
1/ζ
t

g
1/ζ
t−

− 1

)(
ξ
1/ϵ
t

ξ
1/ϵ
t−

− 1

)
.

Therefore the risk premium rp is given by

rp,t =µS,t − rft − λ1EJ1 − λ̄tTtEJ2 + λ0(1−N0,t−)JS,t

=γσ2 + λ1

[
−1

α1 + 1
+

γ

α1 − γ
+

1− γ

α1 + 1− γ

]
+ λ̄tTt

[
−1

α2 + 1
+

γ

α2 − γ
+

1− γ

α2 + 1− γ

]
+ λ0 (1−N0,t−)

[
−1

ζ

(
gt
gt−

− 1

)
− Jf,t + JS,t

]
=γσ2 + λ1

[
−1

α1 + 1
+

γ

α1 − γ
+

1− γ

α1 + 1− γ

]
+ λ̄tTt

[
−1

α2 + 1
+

γ

α2 − γ
+

1− γ

α2 + 1− γ

]
+ λ0 (1−N0,t−)

[
JS,t + Jπ,t −

(
gt
gt−

− 1

)]
SCC By definition, the social cost of carbon at time 0 is

SCC0 = −χ ∂V0/∂T0

fC(C0, V0)
= − χY0

β (1− γ) g
1− 1

ζ

0 ξ
− 1

ϵ
0

gT,0 = − χC0

1− 1/ϵ

∂(κ−1
0 )

∂T0
− χS0

∂ξ0/∂T0

ξ0
(13)

where κ−1
0 = S0

C0
by definition, and the last line comes from the substitution g0 = βζξ1−γκ−ζ0 .

The second term in Equation (13) measures the effect of abatement on carbon price. The
first term can be further expanded as follows. Note that the initial asset price S0 is the sum
of all future consumption flows discounted back to time 0, i.e. S0 =

∫∞
0

E
(
πsCs

π0

)
ds, where

E
(
πtCt

π0

)
is the time-0 value of time-t consumption Ct. Applying Ito’s lemma on πtCt, we

have

d (πtCt)

πt−Ct−
=

[
µC,t − rft − λ1

γ

α1 − γ
− λ̄tTt

γ

α2 − γ
− λ0 (1−N0,t−)Jπ,t − γσ2

]
dt

+ (1− γ)σdZt +
[
(1− J1)

1−γ − 1
]
dN1,t +

[
(1− J2)

1−γ − 1
]
dN2,t

+

[
Jπ,t +

(
ξt
ξt−

− 1

)
+

(
ξt
ξt−

− 1

)
Jπ,t

]
dN0,t
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which implies

E0
πtCt
π0C0

=exp

{∫ t

0

[
µC,s − rfs −

λ1γ

α1 − γ
− λ̄sTsγ

α2 − γ
− γσ2 + λ1

γ − 1

α1 + 1− γ
+ λ̄sTs

γ − 1

α2 + 1− γ

+ λ0 (1−N0,s−)

((
ξs
ξs−

− 1

)
+

(
ξs
ξs−

− 1

)
Jπ,s

)]
ds

}
=exp

{
−
∫ t

0

[
rfs + rp,s − λ0 (1−N0,s−)

(
ξs
ξs−

Jπ,s + JS,s −
(
gs
gs−

− 1

))
−
(
µC,s −

λ1
α1 + 1

− λ̄sTs
α2 + 1

+ λ0 (1−N0,s−)

(
ξs
ξs−

− 1

))]
ds

}
.

Given that E0Ct = C0 exp

{∫ t
0

[
µC,s − λ1

α1+1
− λ̄sTs

α2+1
+ λ0 (1−N0,s−)

(
ξs
ξs−

− 1
)]
ds

}
from

Equation (12), we can rewrite E0
πtCt

π0C0
as

E0
πtCt
π0C0

=exp

{
−
∫ t

0

[
rfs + rp,s + rJ,s

]
ds

}
E0Ct
C0

where

rJ,s = −λ0 (1−N0,s−)

(
ξs
ξs−

Jπ,s + JS,s −
(
gs
gs−

− 1

))
= −λ0 (1−N0,s−)

(
g
1−1/ζ
t

g
1−1/ζ
t−

− ξ
1/ϵ
t

ξ
1/ϵ
t−

)(
ξ
1−1/ϵ
t

ξ
1−1/ϵ
t−

− g
1/ζ
t

g
1/ζ
t−

)

The numerical value of rJ,s is much smaller than rf and rp because both g
1−1/ζ
t

g
1−1/ζ
t−

− ξ
1/ϵ
t

ξ
1/ϵ
t−

and
ξ
1−1/ϵ
t

ξ
1−1/ϵ
t−

− g
1/ζ
t

g
1/ζ
t−

are approximately zero. The rate rf + rp+ rJ at which future consumption flows
are discounted is called the (consumption) growth-adjusted consumption discount rate.

The inverse of consumption-wealth ratio is given by

κ−1
0 =

S0

C0

=

∫ ∞

0

E
(
πtCt
π0C0

)
dt =

∫ ∞

0

exp

[
−
∫ t

0

(
rfs + rp,s + rJ,s

)
ds

]
E0Ct
C0

dt (14)
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Substituting Equation (14) into the first term in Equation (13) yields

− χC0

1− 1/ϵ

∂(κ−1
0 )

∂T0
= − χ

1− 1/ϵ

∫ ∞

0

∂

∂T0

{
exp

[
−
∫ t

0

(
rfs + rp,s + rJ,s

)
ds

]
E0Ct

}
dt

=
χ

1− 1/ϵ

∫ ∞

0

{∫ t

0

∂

∂T0

[
rfs + rp,s + rJ,s −

(
µC,s −

λ1
α1 + 1

− λ̄sTs
α2 + 1

+ λ0 (1−N0,s−)

(
ξs
ξs−

− 1

))]
ds

}
exp

[
−
∫ t

0

(
rfs + rp,s + rJ,s

)
ds

]
E0Ctdt

=
χ

1− 1/ϵ

∫ ∞

0

{∫ t

0

[
∂λ2,s
∂T0

(
1− 1/ϵ

α2 + 1− γ

)]
ds

}
· exp

[
−
∫ t

0

(
rfs + rp,s + rJ,s

)
ds

]
E0Ctdt

=

∫ ∞

0

{∫ t

0

χ

(
1

α2 + 1− γ

)
∂λ2,s
∂T0

ds

}
· exp

[
−
∫ t

0

(
rfs + rp,s + rJ,s

)
ds

]
E0Ctdt (15)
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B Numerical Results for the New Climate Regime (B)
Below we provide the numerical results for the risk-free rate and the risk premium in Regime
(B), as a supplementary analysis for Section 4.2.

We consider the case where under climate volatility risk the intensity of climate disasters
increases while their frequency does not change. Call this regime (B). Since the SCC can be
regarded as the current price of an asset which pays the amount of climate-induced future
losses in consumption flow as “dividend” in each period, the calculation of SCC fits well
into the regular asset pricing framework. Based on the analytical framework in Section 4,
we provide the numerical results for the key components of the consumption discount rate,
the risk-free rate and the risk premium. We consider three different cases of the disaster
intensity in the new regime: EJ (H)

2 = 4EJ (L)
2 , 2EJ (L)

2 , and EJ (L)
2 .

B.1 Risk-free rate
The risk-free rate in the business-as-usual scenario Figure 25 shows the decompo-
sition of risk-free rates in the business-as-usual scenario, according to Equation (2). Panel
(a) and (b) show the expectation effect and the risk effect of the stochastic climate volatility
on risk-free rates, Panel (c) shows the effect of climate disasters on the risk-free rate, and
Panel (d) plots the time paths of the risk-free rate itself. Both the climate disaster risk and
the climate volatility risk negatively affect the risk-free rate, as can be seen in Panel (a),
(b) and (c). Moreover, their magnitudes are larger under higher disaster intensity EJ (H)

2 ,
because the economy is subject to more climate risks when EJ (H)

2 is larger. Besides, the sizes
of all risks in Panel (a), (b) and (c) increase over time, because rising temperature leads
to more frequent climate damages and the expected climate damage increases as the shock
to climate volatility is more likely to happen in the future. The expected effect of climate
volatility risk and the climate disaster effect are of the same order, while the risk effect of
climate volatility risk is much smaller. The time path of risk-free rate is downward-sloping
since the negative effects of both types of climate risks increase over time. Compared with
Regime (A) in the BAU scenario, the magnitudes in Panel (a), (b) and (c) are larger under
Regime (B), which therefore leads to lower time paths of the risk-free rate.

The risk-free rate under optimal abatement Figure 26 shows the average risk-free
rate and its decomposition under optimal abatement policies. Panel (a) and (b) measure
the effects of climate volatility risk through the expectation and the risk channels, Panel (c)
shows the effect of climate disaster risks, and Panel (d) shows the time path of risk-free rates
under different climate disaster intensities in the new climate regime. Compared with the
BAU scenario, both climate disaster risk and climate volatility risk have a smaller impact
on the risk-free rate, because temperature rises more slowly under emission control and thus
extreme weather events are less likely to happen. Climate volatility risk has a significant
impact on risk-free rates. From Panel (a) and (b), we find that climate volatility risk affects
the risk-free rate largely through the expectation channel. The risk effect of climate volatility
risk is positive before the emission control rate reaches its maximum of 100% and declines
below zero afterwards. As the climate volatility risk gradually resolves over time, the effect
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Figure 25: Decomposition of (average) risk-free rates in the BAU scenario under climate
volatility risk (B). The expected size of one climate disaster in the new regime rises to
4EJ (L)

2 , 2EJ (L)
2 , or remains unchanged. Panel (a) and (b) show the expectation effect and

the risk effect of the stochastic climate volatility on risk-free rates, Panel (c) shows the effect
of climate disasters on the risk-free rate, and Panel (d) plots the time paths of the risk-free
rate itself.

of volatility risk in Panel (b) will converge to zero, but this happens beyond our window of
time displayed in the figures.

B.2 Risk premium
The risk premia in the business-as-usual scenario Figure 27 shows the risk premia
and its climate-related components in the business-as-usual scenario in (B). Panel (a) and
(b) shows the expectation effect and the risk effect of climate volatility risk, respectively.
Panel (c) shows how much the risk premium is affected by climate disaster risk, and Panel
(d) shows the time paths of risk premia. Compared with the BAU scenario in (A) (Figure
3), Regime (B) leads to a larger compensation for both climate disaster risk and the volatilty
risk, as shown in Panel (a), (b) and (c). The expectation effect, the risk effect and the climate
disaster effect contribute to risk premia in the same order of magnitude, which corroborate
the main conclusion in the main body of this paper: climate volatility risk is as important
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Figure 26: Decomposition of risk-free rates under optimal abatement policies under climate
volatility risk (B). The expected size of one climate disaster in the new regime rises to
4EJ (L)

2 , 2EJ (L)
2 , or remains unchanged. Panel (a) and (b) show the expectation effect and

the risk effect of the stochastic climate volatility on risk-free rates, Panel (c) shows the effect
of climate disasters on the risk-free rate, and Panel (d) plots the time paths of the risk-free
rate itself.

as the climate volatility itself in calculating the discount rate and the SCC.
Effects from climate volatility and the expectation effect of volatility risk rise over time,

since the intensity of climate disasters increases over time and rising temperature leads
to more disasters in the future. Expecting more intense natural disasters in the future,
agents require higher risk compensation. The risk effect of stochastic climate volatility risk
shown in Panel (b) increases in disaster frequency, because a new regime with more intense
disasters poses larger threats to the economy and thus the risk compensation required by
agents increases correspondingly. As the climate volatility risk gradually resolves over time,
the effect of volatility risk in Panel (b) will converge to zero, but this happens beyond our
window of time displayed in the figures.

The risk premia under optimal abatement Figure 28 shows the risk premium and its
decomposition under optimal abatement. Panel (a) and (b) show the expectation effect and
the risk effect of climate volatility risk, respectively. Panel (c) shows the effect of climate
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Figure 27: Decomposition of risk premia in the BAU scenario under climate volatility risk
of Type (B). The expected size of one climate disaster in the new regime rises to 4EJ (L)

2 ,
2EJ (L)

2 , or remains unchanged. Panel (a) and (b) shows the expectation effect and the risk
effect of climate volatility risk, respectively. Panel (c) shows how much the risk premium is
affected by climate disaster risk, and Panel (d) shows the time paths of risk premia.

disaster risk on risk premia, and Panel (d) plots the risk premia over time. The impact of
climate volatility risk and climate disasters is smaller under optimal abatement than the
BAU scenario because of the stringent abatement policies, but their sizes are of the same
order of magnitude. This implies that climate volatility risk is as important as climate
volatility itself when calculating risk premia and the SCC, regardless of abatement policy
stringency.

Panel (a), (b) and (c) imply that the climate disaster risk and the climate volatility
risk increase in EJ (H)

2 . Since the new climate regime poses larger threat to the economic
condition, agents require higher compensation for the climate risk. In Panel (b), the initial
and the long-run effects of climate volatility risk through the risk channel decrease over time
as uncertainties about climate volatility resolve gradually, and the upward jumps happening
in the middle of the century result from the kinked point in the emission control rate. Panel
(d) implies that risk premia do not differ much under different climate conditions in the new
regime, because emission control effectively decelerates global warming and postpones the
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Figure 28: Decomposition of risk premia in the optimal abatement policy scenario under
climate volatility risk of Type (B). The expected size of one climate disaster in the new regime
rises to 4EJ (L)

2 , 2EJ (L)
2 , or remains unchanged. Panel (a) and (b) show the expectation effect

and the risk effect of climate volatility risk, respectively. Panel (c) shows the effect of climate
disaster risk on risk premia, and Panel (d) plots the risk premia over time

negative impact of climate change.
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C Numerical Results under Different Arrival Rates of
Climate Regime Shift

Due to the lack of time series data and credible models of climate volatility risk, it is difficult
to calibrate the arrival rate of the new climate regime λ0. In the main body of this paper, we
set λ0 = 0.01, so the expected arrival time of a new regime is 100 years which is consistent
with the time horizon considered in the first IPCC reports. In this section, we consider
different possible values of λ0 (0.01, 0.02, and 0.05) in the BAU scenario under the assumption
that the disaster frequency parameter in the new regime is doubled (i.e. λ̄(H) = 2λ̄(L)). Below
we show how λ0 affects the risk-free rate, the risk premium, and the SCC.

Risk-free rate Figure 29 shows the risk-free rate and its decomposition under λ0 = 0.01,
0.02, and 0.05. Panel (a) and (b) show the expectation effect and the risk effect of the
stochastic climate volatility on risk-free rates, Panel (c) shows the effect of climate disasters
on the risk-free rate, and Panel (d) plots the time paths of the risk-free rate itself.

Figure 29: Decomposition of (average) risk-free rates in the BAU scenario under λ0 =
0.01, 0.02, and 0.05, where λ̄(H) = 2λ̄(L). Panel (a) and (b) present the expectation effect
(Expression (3)) and the risk effect (i.e. the last term in Equation (2)) of stochastic climate
volatility on the risk-free rate. Panel (c) shows the effect of climate disaster risk, and Panel
(d) shows the risk-free rate over time.

Panel (a), (b) and (c) shows that both the climate disaster risk and the climate volatility

74



risk negatively affect the risk-free rate. Moreover, their magnitudes are larger under higher
λ0. This is because the economy is subject to more climate risks if the new climate regime
arrives earlier. The magnitudes of the expected effect of climate volatility risk and the effect
of climate disaster risk in Panel (a) and (c) increase over time, because rising temperature
leads to more frequent climate damages and the expected climate damage increases under
the stochastic arrival of the new regime. The expected effect of climate volatility risk and
the climate disaster effect are of the same order, while the risk effect of climate volatility
risk is much smaller.

The risk effect of climate volatility risk shown in Panel (b) is non-monotonic over time.
When λ0 is high, the uncertainty about climate regime shift is expected to be resolved
in the near future and thus the risk effect converges to zero earlier. Under smaller λ0,
the uncertainty about climate regime shift is expected to be resolved later and thus the
magnitude of the risk effect increases for a longer period and converges to zero in the farther
future. Since the risk effect of climate volatility risk is relatively small, the risk-free rate
shown in Panel (d) is largely determined by the expectation effect of climate volatility risk
and the climate disaster risk. Therefore, the time paths of the risk-free rate are downward
sloping.

Risk premium Figure 27 shows the risk premia and its climate-related components in the
business-as-usual scenario in (B). Panel (a) and (b) shows the expectation effect and the risk
effect of climate volatility risk, respectively. Panel (c) shows how much the risk premium
is affected by climate disaster risk, and Panel (d) shows the time paths of risk premia. All
types of climate risks in Panel (a), (b) and (c) have positive impacts on the risk premium.
The expectation effect of climate volatility risk and the climate disaster effect contribute to
risk premia in the same order of magnitude, while the risk effect of climate volatility risk is
smaller.

Panel (a) and (c) show that both the expectation effects of climate volatility risk and
the disaster effect increase in λ0, since agents would require higher compensation for climate
risks if the new climate regime with more frequent extreme weathers is expected to arrive
soon. The risk effect of stochastic climate volatility will converge to zero in the long run
when uncertainty about climate volatility is resolved. In the short run, a smaller λ0 means
a later arrival of the new regime, and its effect on risk premia is larger and converges to zero
in the farther future.

Social cost of carbon Before looking at the SCC, we first present the time paths of
the growth-adjusted consumption discount rate r(CDR) and the growth rate of expected
consumption given in Equation (7). Since neither of them can be evaluated analytically, we
show the numerical results from our simulation to show how climate volatility risk affects
each term.

Figure 31 shows the expectation effect (Panel (a)) and the risk effect (Panel (b)) of
stochastic climate volatility, the effect of climate disaster risk on the growth-adjusted con-
sumption discount rate r(CDR) (Panel (c)), and the growth-adjusted consumption discount
rate r(CDR) (Panel (d)). Negative values in Panel (a), (b) and (c) imply that both climate
disaster risk and stochastic climate volatility reduce the growth-adjusted consumption dis-
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Figure 30: Decomposition of risk premia in the BAU scenario under λ0 = 0.01, 0.02, and
0.05, where λ̄(H) = 2λ̄(L). Panel (a) and (b) present the expectation effect (Expression (5))
and the risk effect (the last term in Equation (4)) of stochastic climate volatility on risk
premia. Panel (c) shows the effect of climate disaster risk, and Panel (d) shows the risk
premia over time.

count rate r(CDR), which drives up the SCC. The magnitudes of the climate disaster effect
and the expectation effect of climate volatility risk increase over time under the irreversible
global warming and the threat of a new regime with more severe climate conditions. Be-
sides, the magnitudes of both effects increases in λ0, since an earlier positive shock to the
climate volatility leads to a faster deterioration of climate condition and a larger impact on
the discount rate. The risk effect of climate volatility risk shown in Panel (b) converges to
zero earlier under larger λ0 when uncertainty about climate volatility risk is expected to be
resolved earlier. Its magnitude is much smaller than those in Panel (a) and (c). Therefore,
the downward-sloping time paths of r(CDR) in Panel (d) results from the climate disaster
effect and the expectation effect of climate volatility risk.

Figure 32 shows the expected consumption growth over time. As suggested by Equation
(8), it is affected by climate volatility risk only through the expectation channel. Under
any possible value of λ0, the expected consumption growth rate declines over time due to
the deteriorating climate condition. Moreover, a higher λ0 implies an earlier arrival of the
new climate regime with more frequent disasters, which hinders the growth in aggregate
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Figure 31: The expectation effect (Panel (a)) and the risk effect (Panel (b)) of stochastic
climate volatility, the effect of climate disaster risk (Panel (c)) in the growth-adjusted con-
sumption discount rate r(CDR), and the time paths of r(CDR) (Panel (d)) in the BAU scenario
under λ0 = 0.01, 0.02, and 0.05, where λ̄(H) = 2λ̄(L).

endowment and consumption, and results in a lower time path of the expected consumption
growth.

Figure 33 shows the average social cost of carbon and mean global surface temperature
from Year 2015 to 2100 in the BAU scenario under different arrival rates of a new climate
regime. Since carbon emissions are exogenously given and independent of the scale of climate
damage in the business-as-usual scenario, changes in temperature is deterministic and same
under all λ0’s, as shown in the right panel. The left panel shows the SCC, which is larger
under a higher λ0 but the difference is small under all λ0’s. This is because in the short
run before the shock to climate volatility is realized, the welfare loss due to climate damages
rises if more severe climate condition is expected to happen earlier (i.e. when λ0 is large).
However, as the uncertainty about climate regime shift is resolved in the long term, the
difference in the arrival time of new climate regime is less important than the long-run
climate condition in the new regime.
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Figure 32: Expected consumption growth rate in the BAU scenario under λ0 = 0.01, 0.02,
and 0.05, where λ̄(H) = 2λ̄(L).

Figure 33: Social cost of carbon (US dollar per ton of carbon, or $/tC) and mean global
surface temperature (◦C) in the business-as-usual (BAU) scenario from 2015 to 2100 under
λ0 = 0.01, 0.02, and 0.05, where λ̄(H) = 2λ̄(L).
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