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A Multilevel Factor Model for Economic Activity
with Observation-Driven Dynamic Factors

Mariia Artemova, Francisco Blasques, Siem Jan Koopman

Vrije Universiteit Amsterdam and Tinbergen Institute, the Netherlands

April 6, 2023

Abstract

We analyze the role of industrial and non-industrial production sectors in the

US economy by adopting a novel multilevel factor model. The proposed model

is suitable for high-dimensional panels of economic time series and allows for

interdependence structures across multiple sectors. The estimation procedure

is based on a multistep least squares method which is simple and fast in its

implementation. By analyzing the shock propagation process throughout the

network of interconnections, we corroborate some of the key findings about the

role of industrial production in the US economy, quantify the importance of

propagation effects and shed new light on dynamic sectoral linkages.

Keywords: Dynamic factor model, Interconnectedness, Output growth.
JEL classification codes: C22, C32, C38, C51.

1 Introduction

In the last few decades, the world has witnessed a significant relocation of manufacturing

jobs, with production migrating across countries and resulting in the emergence of a global

supply chain structure of unprecedented size and complexity. As a result, many western

countries, like the United States (US) have seen a decline in manufacturing jobs. In the US,

the weight of industrial production (IP) sector has diminished from 25% to 18% of gross

domestic product (GDP) in the period 1977-2011. However, recent evidence from Foerster



et al. (2011) and Andreou et al. (2019) suggests that the IP sector still plays a key role

in aggregate economic activity and GDP fluctuations in the United States. Particularly,

Andreou et al. (2019) decompose sectoral dynamics across industrial production and non-

industrial production (non-IP) sectors into three unobservable factors, (i) a common factor

which explains variations in both IP and non-IP sectors; (ii) a group-specific factor which

is exclusive to IP sectors, and (iii) a group-specific factor which is exclusive to non-IP

sectors. The authors find that the common factor explains about 90% of the variability in

the aggregate growth index of IP sectors and that the IP group-specific factor has very little

additional explanatory power during the period 1977-2011. This means effectively that a

single common factor can be interpreted as an IP factor. So while the role of manufacturing

itself is declining, the IP sectors as a whole are still very much relevant.

Foerster et al. (2011) make further use of a structural factor analysis to conclude that

within the IP sector, nearly all the variability of quarterly growth rates is associated with

common factors. They note that month-to-month and quarter-to-quarter variations in

the IP index are puzzlingly large as apparently the variability across IP sectors does not

“average out”. Foerster et al. (2011) point out that there are competing explanations for

this puzzling observation, including (i) that IP fluctuations may be driven by common

shocks affecting IP sectors as a whole, (ii) that sector-specific shocks affecting large IP

sectors may be responsible for high aggregate IP variability, or (iii) that input-output

linkages may help shocks to propagate across IP sectors, meaning that sector-specific shocks

will not average out.

In this paper, we revisit the role of the IP and non-IP sectors in the US economy, as well

as the linkages between the sectors. However, we approach the data using a novel dynamic

multilevel factor model which captures temporal dynamics in the time-series data. In

contrast to the previous studies, this allows us to (i) analyze sectoral shocks as uncorrelated

temporal ‘innovations’, (ii) study the dynamic propagation of these shocks across sectors,
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(iii) forecast common and group-specific factors at any horizon, and (iv) analyze sectoral

linkages in a one-step-ahead predictability sense. In the empirical analysis, we have found

that propagation effects are important sources of the variability of the aggregate indices.

A key novel finding is that non-IP sectors are closely connected to both the IP and non-IP

groups once the dynamic cumulative effects are taken into account.

Factor models are popular and important tools for dimensionality reduction in large

data sets which, in economics and finance, often consist of panels of time series variables.

Specifically, each individual time series variable in the panel is modelled as a linear combi-

nation of the factors, with the factor weights referred to as loadings. The interpretations

of the factors are implicitly given by the loadings but are ambiguous for larger panels.

To facilitate the interpretation of the factors and investigate group-specific dynamic co-

movements, the factor model can be made subject to more structural dependencies. For

example, when variables are related to geographical entities (regions, countries), it can be

expected that neighboring regions may share common (dynamic) features. Similarly, when

variables are related to different industries, the time series variables may be subject to

shocks common to these industries. Such panel data structures arise naturally in many ap-

plications in economics and finance. We can relate our model to a large body of literature

on hierarchical and/or multilevel factor models, which are also referred to as block-factor

models. The block-factor models are considered by Kose et al. (2003), Crucini et al. (2011)

and Choi et al. (2018) for extracting international business cycles, by Wang (2008) for an-

alyzing co-movements between variables in the real and financial sectors, by Diebold et al.

(2008) and Bai & Wang (2015) in their studies of international bond yields co-movements,

among many others. A different class of hierarchical dynamic factor models is explored for

macroeconomic forecasting by Moench et al. (2013).

Our modelling framework distinguishes itself from the existing models in two important

directions. First, we model the factors as observation-driven time-varying parameters where
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the concept of observation-driven is discussed in general terms by Cox et al. (1981). This

enables us to develop an estimation method that is straightforward in comparison to other

approaches. For example, when the factors are parameter-driven and specified as dynamic

stochastic (autoregressive) processes, more involved Bayesian estimation procedures may

need to be adopted; see, e.g. Kose et al. (2003), Diebold et al. (2008), Moench et al. (2013)

and Bai & Wang (2015). In contrast, our estimation procedure relies on basic least squares.

The interest in fast and simple estimation procedure for the multilevel factor model has

also been highlighted in Breitung & Eickmeier (2014).

Second, our dynamic model specification allows us to obtain forecast and impulse re-

sponse functions which are formulated straightforwardly and require no additional deriva-

tions and computations. In the studies of Wang (2008), Breitung & Eickmeier (2014), Choi

et al. (2018) and Andreou et al. (2019), a static version of the multilevel factor model is

adopted with estimation relying on principal component analysis and canonical correlation

analysis. While the estimation procedure for their static version of the model also relies on

basic methods, it is more challenging to obtain forecasts and impulse response functions

which can clearly be a shortcoming in empirical studies.

We propose a new model formulation where the dynamic factors are driven by the

weighted linear combination of the cross-sectional data. In the spirit of Westerlund &

Urbain (2015) and Karabiyik & Westerlund (2021), we allow the factors to be driven by

the cross-sectional averages of the data which leads to a straightforward interpretation of

the factors. For example, when considering a two-level model, the common factor represents

the conditional (or predicted) mean of the group averages, while the group-specific factor

is the conditional mean of the group in deviations from the common factor. We establish

the stationarity and ergodicity of the limit dynamic factors and show that the filter of

the true factors is invertible. We also give conditions for the consistency and asymptotic

normality of the multistep least squares estimator. In a set of Monte Carlo experiments,
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we demonstrate that the estimators behave well in finite samples and that the model is

approximating the dynamics of several data generating processes accurately.

Using the proposed model, we analyze the co-movements within and between different

US economy sectors and their interconnections. We confirm the finding of Andreou et

al. (2019) that industrial production is a dominant factor in the US economy, however,

we approach this question from the quarter-ahead predictive sense. We also find that

non-IP sectors are less related to the common factor than the IP sectors. However, there

is also empirical evidence of sectoral interconnectedness, especially for the sectors with

input-output relations (Long & Plosser, 1987). Our model gives us additional insight on

how economic shocks propagate and dissipate through the network of connections across

sectors and across time. Particularly, based on the dynamic impulse response analysis, we

find that there are immediate effects of shocks between IP sectors. However, cumulative

effects are more pronounced when non-IP sectors are involved. Therefore, even though the

non-IP sectors are less related to the common factor, non-IP sectors are tightly linked both

to IP and non-IP sectors. Overall, we find that shock propagation plays an important role

in explaining the variation in the aggregate indices and that the role of the propagation

effects is larger for the non-IP sectors than for the IP ones.

The outline of the paper is as follows. In Section 2, we introduce our multilevel factor

model framework and describe a multistep estimation procedure. We establish stochastic

properties of the model as well as consistency and asymptotic normality of the estimators.

Section 3 summarizes the results of the Monte Carlo experiments. In Section 4, we present

and explore the results of our empirical study for US economic activity. Section 5 concludes.

The Appendix contains the proofs of the main theoretical results. The Supplementary

Appendix (SA) contains information about the dataset, additional empirical and Monte

Carlo results, details on forecasts, impulse response functions and group connectedness

measures as well as further technical lemmas and proofs.
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2 The Model

2.1 Dynamic observation-driven multilevel factors

Let yt be an N -variate random variable which is observed for time periods t = 1, . . . , T .

Suppose the elements of the vector yt can be categorized into S groups with Ns variables

in each group, such that N =
∑S

s=1Ns. We let each variable be related to a common factor

and a group-specific factor. The observation-equation of our dynamic factor model is then

given by

ys
t = Λc

sft +Λg
sg

s
t + ε

s
t , for t = 1, . . . , T and s = 1, . . . , S,

where ys
t = (ys1,t, . . . , y

s
Ns,t

)⊤ is the Ns × 1 dimensional vector corresponding to variables

in group s, ft and g
s
t are the unobserved common and group-specific factors, respectively,

with Λc
s and Λg

s being the corresponding Ns × 1 vectors of loadings, respectively, and

εst = (εs1,t, . . . , ε
s
Ns,t

)⊤ is the mean-zero vector of identically distributed shocks, possibly

subject to idiosyncratic serial dependence. Depending on the application at hand, the

factors ft and g
s
t can also be interpreted as global and region-specific factors, respectively.

In matrix notation, the model can be written as

yt = Λcft +Λggt + εt, for t = 1, . . . , T, (1)

where yt =
(
y1
t
⊤
, . . . ,yS

t
⊤
)⊤

is an N × 1 dimensional vector of cross-sectional variables

which collects all variables in all groups, gt is an S × 1 vector containing all group-specific

factors, that is gt =
(
g1t , . . . , g

S
t

)⊤
, Λc =

(
Λc

1
⊤, . . . ,Λc

S
⊤)⊤ is an N × 1 vector of unknown

loadings associated with the common factor ft, Λ
g = block-diag(Λg

1, . . . ,Λ
g
S) is an N × S

block-diagonal matrix of unknown coefficients for the group-specific factors gt, and εt =
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(
ε1t
⊤
, . . . , εSt

⊤
)⊤

is an N -variate stationary mean-zero sequence with covariance matrix

Cov(εt) = Σ.

The dynamic factors are modeled as observation-driven processes. The common factor

ft takes into account between-group co-movements and is driven by all cross-sectional

variables,

ft+1 = α + β

(
1

S

S∑
s=1

(
1

Ns

Ns∑
i=1

ysi,t

)
− ft

)
+ γft. (2)

Intuitively, when β ≥ 0 and |γ| < 1, ft tracks the time-varying “group conditional ex-

pectation”. We filter the “group conditional expectation”, rather than the conditional

expectation of yt, to account for possibly different number of variables in each group. In

contrast, the conditional expectation of yt would easily be dominated by the groups with

large number of elements.

The group-specific factors take into account the information on the co-movements only

from the variables of the corresponding group. Naturally, these co-movements can be

common as well as group-specific. To exclude the impact of the common factor, we model

the group-specific factors as the conditional mean of ys
t in deviations. Thus, they are driven

by the within-group co-movements in deviations from the common factor. Therefore, we

have the following updating equation for the group-specific factors,

gst+1 = αs + βs

(
1

Ns

Ns∑
i=1

ysi,t − ft
1

Ns

Ns∑
i=1

λci,s − gst

)
+ γsg

s
t , (3)

for s = 1, . . . , S, with Λc
s = (λc1,s, . . . , λ

c
Ns,s

)⊤ and λci,s being the exposure of variable i in

group s to the common factor ft. Hence, if βs ≥ 0 and |γs| < 1, gst captures a time-varying

location of the group s in deviations from the common factor. Since the factors are driven

by the averages, we standardize the series beforehand. Hence, we can set α = αs = 0 for
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s = 1, . . . , S.

We focus on this formulation with one common and one group-specific factor per each

group as it is in line with our application. Besides, in the majority of applications for mul-

tilevel factor models there is evidence of the presence of only one common factor affecting

all groups; see, for example, Moench et al. (2013), Bai & Wang (2015) and Andreou et

al. (2019). On the other hand, further factor levels can be explicitly incorporated into the

model by introducing similarly the next level updating equations for them. For instance,

variable-specific factors can be added. Furthermore, to better capture the factors’ dynam-

ics, more autoregressive terms and more lags of the mean reversion terms could be included

into the updating equations (2)–(3).

The proposed model is closely related to the parameter-driven local level model as in

Durbin & Koopman (2012) and to the score-driven models of Creal et al. (2013), Creal et

al. (2014) when the innovations are Gaussian. We opt for the observation-driven approach

since, in contrast to the parameter-driven models, nonlinearities in the updating equations

can be easily incorporated. For example, the filter can be made robust to the extreme values

by bounding their influence on the update. Moreover, even in the case of standard factor

model, full maximum likelihood estimation methods of large-dimensional parameter-driven

models using Kalman filter are computationally demanding as discussed, for example, in

Engle & Watson (1981) and Jungbacker & Koopman (2015). Our model formulation, as

discussed in the next section, enables us to develop fast and simple estimation procedure

based on the least squares criterion functions.

2.2 Estimation procedure

In this section, we discuss the estimation of the parameters θ = (θc,Λc,θg, (Λg
1, . . . ,Λ

g
S))
⊤,

where the vector θc = (β, γ)⊤ contains the parameters of the common factor and θg =

(θg1, . . . ,θ
g
S)
⊤ of the group-specific factors with θgs = (βs, γs)

⊤ for s = 1, . . . , S.
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In factor models, the loadings and factors are not separately identifiable. However, once

the factors are known, their loadings can be estimated. Moreover, in the multilevel factor

model, both the common and group-specific factors are unobserved and need to be esti-

mated. We propose a sequential estimation procedure. First, we estimate the parameters

θc of the updating equation for the common factor ft, and filter the factor ft itself. Next,

given the common factor estimates, we obtain the loadings Λc, and estimate the residuals

of this regression. Finally, using the residuals, we estimate the parameters θg featured in

the updating equation for the group-specific factors, filter the group-specific factors gt, and

estimate their respective loadings Λg. The sequential estimation of the factors is in some

sense similar to the two-step principal component estimator approach for the multilevel

factor models; see, for example, Beck et al. (2009). Below we state in details the steps of

the estimation procedure.

Step I. Estimate the static parameters θc of the common factor by minimizing the

following criterion function,

Q
(1)
T (θc) =

1

T

T∑
t=2

(
1

S

S∑
s=1

(
1

Ns

Ns∑
i=1

ysi,t

)
− ft(θ

c, f̂1)

)2

,

where the criterion function depends on the common factor ft(θ
c, f̂1) initialized at f̂1. Given

the estimate of θc, the common factor itself can be filtered recursively using equation (2).

Step II. Given the filtered common factor, estimate the vector of loadings Λc by

minimizing the ordinary least squares loss function Q
(2)
T (Λc). Hence,

Λ̂c
T =

(
T∑
t=2

(
f̂t(θ̂

c
T , f̂1)

)2)−1 T∑
t=2

f̂t(θ̂
c
T , f̂1)yt,

which is a standard linear regression where the loadings are coefficients and the estimated

common factor is a regressor.
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The residuals from the last regression, ξ̂t = yt− Λ̂c
T f̂t, capture the effects that influence

individual series but are not common to all of them. This includes not only the individual

effects but also the group-specific ones. Hence, the residuals contain information about

the group-specific co-movements as well as about the variable-specific ones. We use the

residuals from Step II to estimate the group-specific factors and loadings on them. We again

do it in steps as factors and loadings are not separately identifiable without restrictions.

Steps III and IV are similar to Steps I and II in the sense that we first evaluate the group-

specific factors and then turn to the estimation of the loadings on them.

Step III. Estimate the parameters of the group-specific factors θg using the following

least squares criterion function:

Q
(3)
T (θg) =

1

T

T∑
t=2

S∑
s=1

(
1

Ns

(
Ns∑
i=1

ξ̂si,t

)
− gst (θ

g, ĝs1)

)2

,

where ξ̂t = ((ξ̂1t )
⊤, . . . , (ξ̂St )

⊤)⊤ and ĝs1 is a filter initialization of the group-specific factors.

Given the estimated factor parameters θg, the group-specific factors can be filtered out

using updating equation (3).

Step IV. The loadings on the group-specific factors are estimated using again OLS by

minimizing the sum of the squared residuals Q
(4)
T (Λg) given the estimated factors.

The sequential procedure allows us not to impose restrictions on the factors or load-

ings explicitly. Alternatively, the first two steps could be combined in one by imposing

constraint 1
S

∑S
s=1

1
Ns

∑Ns

i=1 λ
c
i,s = 1, and steps III and IV could be combined by imposing

1
Ns

∑Ns

i=1 λ
g
i,s = 1, s = 1, . . . , S, where λgi,s is the loading of variable i in sector s on its

group-specific factor gst . However, when the cross-sectional dimension is large the joint

estimation can be computationally demanding. Therefore, the sequential procedure is still

preferable.
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2.3 Forecasts, impulse response functions and network analysis

Besides the simple and convenient step-by-step estimation of the parameters, the model

in Section 2.1 also offers immediate access to forecasts and impulse response functions

(IRFs). In particular, the simple forward-iteration of the filtering equations allows us to

produce h-step-ahead forecasts of the unobserved dynamic factors fT+h and gT+h, as well

as of the data yT+h, for any h = 1, 2, . . . . The IRFs can further be used to analyze the

impact of unit-specific shocks over the cross-section and over time, giving us an overview

of group interconnectedness and network structures (Diebold et al., 2008). Section C in

the SA provides the details on how forecasts and impulse response functions are defined,

and how they can be obtained in practice. Additionally, it discusses different measures of

interconnectedness which can be calculated to obtain insights into the network structure

of the data.

2.4 Stochastic properties of the observation-driven filters

In this section, we analyze the properties of our model as a filter for unobserved factors.

Naturally, the observation-driven filters are initialized at some values f̂1 ∈ R and ĝ1 ∈ RS

at time t = 1, take observations {yt}t∈N as given and update the filtered dynamic factors

according to equations (2) and (3), providing us with filtered sequences {f̂t(θ, f̂1)}t∈N and

{ĝt(θ, ĝ1)}t∈N. To shorten the notation, we sometimes suppress the dependence of the

filtered sequences on the initializations f̂1 and ĝ1 as well as on θ, and denote the filtered

sequences as {f̂t}t∈N and {ĝt}t∈N.

Propositions 1 and 2 state conditions for the invertibility of the sequences {f̂t(θ, f̂1)}t∈N

and {ĝt(θ, ĝ1)}t∈N as well as the stationarity, ergodicity and bounded moments of the

limit sequences {ft(θ)}t∈Z and {gt(θ)}t∈Z. Since the initial values f̂1 and ĝ1 are almost

surely incorrect, filter invertibility plays a crucial role in ensuring that the influence of
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the initialization vanishes suitably fast as t → ∞. Additionally, establishing suitable

stochastic properties for the limit sequences {ft(θ)}t∈Z and {gt(θ)}t∈Z is important for

the proof of consistency and asymptotic normality of the least squares estimators, since

the stochastic properties of the filtered sequences are directly related to the stochastic

properties of the least squares objective functions. For further discussion of the importance

of filter invertibility we refer to Straumann & Mikosch (2006) and Wintenberger (2013).

The following assumptions state conditions on the parameter space and the properties

of the data for the filters to be invertible.

Assumption 1. Θc, Θg, Θλc, and Θλg are compact parameter spaces. Θ := Θc × Θg ×

Θλc ×Θλg ⊆ R2(S+1+N).

Assumption 2. {yt}t∈Z is a strictly stationary and ergodic sequence.

Assumption 3. E|ysi,t|2 <∞, i = 1, . . . , Ns and s = 1, . . . , S.

Proposition 1. Let assumptions 1–3 hold. The sequence {f̂t(θ, f̂1)}t∈N initialized at f̂1 ∈ R

converges exponentially almost surely (e.a.s.) to a unique strictly stationary and ergodic

(SE) sequence {ft(θ)}t∈Z uniformly over the parameter space,

sup
θ∈Θ

|f̂t(θ, f̂1)− ft(θ)|
e.a.s.−−−→ 0 as t −→ ∞,

if and only if Θ is such that |γ−β| < 1 ∀θ ∈ Θ. Moreover, the filter limit sequence satisfies

E supθ∈Θ |ft(θ)|2 <∞.

Proposition 2. Let the conditions of Proposition 1 hold. The sequence {ĝst (θ, ĝs1)}t∈N

initialized at ĝs1 ∈ R converges e.a.s. to a unique SE sequence {gst (θ)}t∈Z uniformly on Θ,

supθ∈Θ |ĝst (θ, ĝs1) − gst (θ)|
e.a.s.−−−→ 0 as t −→ ∞, if and only if Θ is such that |γs − βs| < 1

∀θ ∈ Θ and s = 1, . . . , S. Additionally, the limit sequences satisfy E supθ∈Θ |gst (θ)|2 <∞.
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2.5 Asymptotic properties of the estimators

In this section, we formulate conditions for the consistency and asymptotic normality of

the least squares estimators detailed in Steps I – IV. For ease of exposition, we use the

following notation for the Step I criterion function, Q̂
(1)
T (θc) = 1

T

∑T
t=2 q

(1)(yt, f̂t(θ
c),θc),

where q(1)(yt, f̂t(θ
c),θc) :=

(
1
S

∑S
s=1

(
1
Ns

∑Ns

i=1 y
s
i,t

)
− f̂t(θ

c, f̂1)
)2

and superscript (1) de-

notes the step of the estimation procedure. We use a similar notation for the criterion

functions Q̂
(2)
T (Λc), Q̂

(3)
T (θg), and Q̂

(4)
T (Λg).

Theorems 1–3 establish the consistency of the estimators for each step of the estimation

procedure described in Section 2.2 as well as the consistency of the plug-in filters f̂t(θ̂
c
T , f̂1)

and ĝt(θ̂
g
T , ĝ1). To proceed with the proofs of consistency of the loadings and group-specific

factors we first establish that the common factor itself converges. The next theorem reveals

that the filter invertibility ensures both strong consistency of the estimator of the common

factor static parameters as well as the convergence of the plug-in estimator.

Theorem 1 (Consistency: Step I). Let assumptions 1–3 hold. Then the least squares

estimator θ̂cT (f̂1) is strongly consistent for θc0 for any initialization f̂1 ∈ R,

θ̂cT (f̂1)
a.s.−−→ θc0 as T −→ ∞.

Furthermore, a plug-in filter f̂t(θ̂
c
T , f̂1) converges almost surely (a.s.),

|f̂t(θ̂cT , f̂1)− ft(θ
c
0)|

a.s.−−→ 0 as t, T −→ ∞,

where θc0 ∈ Θc is a minimizer of a limit criterion function Q
(1)
∞ (θc).

The next theorem establishes consistency of the estimator of the loadings. The estimates

are obtained using OLS, hence the conditions for the consistency are overall the same as

for the regular least squares estimator. For the consistency of the least squares estimator
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we usually need to impose some assumptions on the regressors such as stationarity and

ergodicity. However, in our case, they can only hold for the limit sequence and not for the

filter itself. Moreover, the common factor is evaluated at θ̂cT and not at θc0.

Theorem 2 (Consistency: Step II). Let assumptions 1–3 hold. Then the least squares

estimator Λ̂c
T is strongly consistent for Λc

0, Λ̂
c
T

a.s.−−→ Λc
0 as T −→ ∞, where Λc

0 ∈ Θλc is a

minimizer of a limit criterion function Q
(2)
∞ (Λc).

Theorem 3 covers the consistency of the Steps III and IV estimators. Finally, Theorem 4

establishes the asymptotic normality of the stepwise least squares estimator.

Theorem 3 (Consistency: Steps III and IV). Let assumptions 1-3 hold. Then the estimator

θ̂gT (ĝ1) is strongly consistent for θg0 for any initialization ĝ1 ∈ RS,

θ̂gT (ĝ1)
a.s.−−→ θg0 as T −→ ∞,

where θg0 ∈ Θg is a minimizer of a limit criterion function Q
(3)
∞ (θg).

Furthermore, the plug-in filter ĝt(θ̂
g
T , ĝ1) converges a.s., ∥ĝt(θ̂

g
T , ĝ1)− gt(θ

g
0)∥

a.s.−−→ 0 as

t, T −→ ∞. The least squares estimator Λ̂g
T is strongly consistent for Λg

0, i.e. Λ̂g
T

a.s.−−→ Λg
0

as T −→ ∞, where Λg
0 ∈ Θλg is a minimizer of a limit criterion function Q

(4)
∞ (Λg).

Assumption 4. {yt}t∈Z is near epoch dependent (NED) of size −1 on a strongly mixing

process of size −r/(r − 1) for some r > 2.

Assumption 3.a. E∥yt∥2r <∞ with r defined in Assumption 4.

Assumption 5. θc0 ∈ int(Θc), Λc
0 ∈ int(Θλc), θg0 ∈ int(Θg), Λg

0 ∈ int(Θλg).

Theorem 4 (Asymptotic Normality). Let assumptions 1, 2, 3.a and 4–5 hold. Then for

every f̂1 ∈ R and ĝ1 ∈ Rs the four-step least squares estimator θ̂T satisfies

√
T
(
θ̂T − θ0

)
d−→ N (0,A−1(θ0)B(θ0)A

−1(θ0)) as T → ∞,

14



where B(θ0) := limT→∞
1
T
Var

(∑T
t=2∇θqt(θ0)

)
, with

∇θqt(θ0) :=
(
∇⊤θcq

(1)
t (θ0),∇⊤vecΛcq

(2)
t (θ0),∇⊤θgq

(3)
t (θ0),∇⊤(Λg

1,...,Λ
g
S)
q
(4)
t (θ0)

)⊤
and

A(θ0) :=



A1(θ0) 0 0 0

A21(θ0) A2(θ0) 0 0

A31(θ0) A32(θ0) A3(θ0) 0

A41(θ0) A42(θ0) A43(θ0) A4(θ0)


.

As expected the asymptotic variance of the Step I estimator has a standard form, while

the variance of the Step II estimator is affected by the previous estimation step, the variance

of the Step III estimator is affected by the two previous steps, and so on. This is implied

by a lower triangular structure of matrix A(θ). The exact expressions for the elements of

the matrices A(θ) and B(θ) are provided in SA Section D.1.

As noted earlier the common factor captures the “group conditional expectation” of the

data, while the group-specific factors describe the conditional means of ys
t , in deviations

from the common factor. From the observation equation (1) we notice, however, that

1
S

∑S
s=1

1
Ns

∑Ns

i=1 y
s
i,t = ft +

1
S

∑S
s=1 g

s
t + ε̃t, where ε̃t = 1

S

∑S
s=1

1
Ns

∑Ns

i=1 ε
s
i,t. Hence, the

forecast for the “group conditional expectation” is based on the common factor as well as

on the averages of the group-specific factors. Intuitively, this means that if in the current

period many groups experience downturn then in the next period we expect the downturn

in the common factor as well. From the perspective of “factors disentangling”, this means

that the group-specific factors can introduce a ‘bias’ on the filtered common factor. The

following remark highlights however that this bias vanishes for large S, or when the group

factors represent a martingale difference sequence.

Remark. Let either (i) E
[
1
S

∑S
s=1 g

s
t |Ft−1

]
= 0; or (ii) {gst}t∈Z is a martingale difference

sequence for all s = 1, . . . , S; or (iii) S −→ ∞. Then, f̂t is an unbiased filter of the common
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factor ft, i.e. E
[
f̂t(θ

c
0)|Ft−1

]
= E

[
ft(θ

c
0)|Ft−1

]
.

3 Monte Carlo study

To investigate the performance of the proposed estimation procedure for the multilevel

factor model, we perform a series of Monte Carlo experiments. The primary data generating

process (DGP) under consideration is:

yt = Λ̃cf̃t + Λ̃gg̃t + ε̃t, ε̃t
i.i.d.∼ N(0, Σ̃), t = 1, . . . , T, (4)

f̃t+1 = κf̃t + ξt+1, ξt
i.i.d.∼ 0.5N(0, 1),

g̃t+1 = ψ
⊤g̃t + ηt+1, ηt

i.i.d.∼ 0.5N(0S, IS).

We use the following parameter values in the simulations: κ = 0.9, ψs ∼ U([0.75, 0.9]),

λ̃ci,s ∼ U([0, 1]) and λ̃gi,s ∼ U([0, 1]) for s = 1, . . . , S. Furthermore, to interpret the factors

as conditional means, we normalize the loadings such that 1
S

∑S
s=1

1
Ns

∑Ns

i=1 λ̃
c
i,s = 1 and

1
Ns

∑Ns

j=1 λ̃
g
j,s = 1 for each group s where Λ̃g

s := (λ̃g1,s, . . . , λ̃
g
Ns,s

).

The aim of this study is to investigate the finite sample properties of the static and time-

varying parameters as well as the fit of the data. The number of Monte Carlo simulations

is set to 1000. In the primary setup, we put Ns = 10, S = 10 and T = 300. For each

simulation, we generate observations for 500 time periods and discard those for the first

200 time periods to reduce the influence of the starting point. In some experiments we

additionally consider other DGPs, different sample sizes T and different numbers of groups

S. When this is the case, it is explicitly stated in the text.
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3.1 Static parameters

First, we analyze the finite sample properties of the static parameter estimates. This

includes the factor parameters in θc and θg in model equations (2) and (3) as well as

the loadings Λc and Λg in model equation (1). We consider three different sample sizes

T = {300, 600, 1200}. The kernel density plots of the estimated parameters for different

sample sizes are presented in Figure 1. Since we simulate data from the parameter-driven

model (4) and we estimate the parameters from the observation-driven model discussed in

Section 2, all the parameters are reparameterized. Therefore, to obtain the reparameterized

values we simulate large time series of length T = 1, 000, 000 for yt and then estimate the

model (1)–(3) using the estimation procedure discussed in Section 2.2. We then check that

for this length of the time series the estimates are invariant to the seed used in the simulation

and do not change with an increase in the sample size. The results in Figure 1 confirm

that the estimated parameters are concentrated around the reparameterized parameters

and collapse towards them as the sample size increases.
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Figure 1: Kernel density plots of the estimated parameters. The results are based on
1000 Monte Carlo simulations for 3 sample sizes and with S = 10 and Ns=10. Since the dimension of the
parameter vector is large, not all results are shown, but the results for other parameters are similar. The
vertical red line indicates the reparameterized value of the parameter obtained using the large sample.

3.2 Filtering

Next, we analyze how well our model and estimation procedure can forecast the group

conditional mean, which is 1
Ns

∑Ns

i=1 λ
c
i,sf̃t + g̃st . For this purpose, we consider the DGP as

stated above as well as a range of other patterns for the common and group-specific factors.
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The patterns for the factors are summarized in Table E.10 in the SA. The patterns include

smooth dynamics such as an AR(1) process or a sine curve, but also abrupt changes such

as breaks and ramps.

We simulate time series of size T = 300 and estimate observation-driven model presented

in Section 2. In Figure 2 we demonstrate that our model captures well the dynamics of the

group conditional mean given different dynamic specifications for ft and gt. In most cases,

the true value of the group mean (red dashed line) is within the 95% confidence bounds.

Hence, the model as able to adapt to an abrupt single break but also to changes caused by

multiple breaks. The additional results of the filtering of the common and group-specific

factors are presented in SA Section E.
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Figure 2: One-step ahead forecast of the group 1 conditional mean. The results
are based on 1000 Monte Carlo simulations for different patterns for ft and gt presented in Table E.10.
Red dashed line denotes the true value of the group mean, solid black line represents the median value of
the group mean computed over 1000 simulations and the gray shaded area indicates the 95% confidence
bounds. For illustrative purposes, in some cases we also present the dynamics of the group-specific factor
using the black dotted line to highlight the influence of the break, steps, or ramp.
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3.3 Out-of-sample forecast performance

Finally, we evaluate out-of-sample forecast performance of the proposed model. We again

use the primary DGP (4) to simulate the data. We conduct one, two, and three-step-ahead

out-of-sample forecasts M = 50 times using a rolling-window of size T . In particular, we

simulate time series of size T +M , estimate parameters using yt, . . . ,yT+t, then produce

one, two, or three-step ahead forecasts for each of the series and repeat this procedure

M = 50 times. In these experiments, we consider a small sample size T = 100 as well as a

large sample size T = 300.

For each of the forecasts we compute an N × 1 vector of mean squared errors, MSE =

1
M

∑M
m=1(yT+m − ŷT+m)

2, and of mean absolute errors, MAE = 1
M

∑M
m=1 |yT+m − ŷT+m|,

where ŷT+m is either one, two, or three-step-ahead forecast. We compare results of our

model to the results of the static factor model with one, two and three factors included which

we indicate as PC1, PC2 and PC3, respectively. The static factor models are estimated

using a two-step estimation procedure and the forecasts for them are produced iteratively.

In Table 1, we present the average of the MSE and MAE ratios where the average is taken

across the simulations and cross-sections. We find that according to both MSE and MAE

ratios our model outperforms all static factor model specifications for one- and two-step-

ahead forecasts and it performs equally well as the static factor models in the case of the

three-step-ahead forecasts.

4 IP and Non-IP sectors in US Economic Activity

Our empirical study investigates the importance of Industrial Production (IP) and non-IP

sectors in US economic activity as well as the linkages between the two sectors. IP and non-

IP sectors constitute the Gross Domestic Product (GDP) index which is the most important

measure of economic activity. Since many sectors are interconnected, they can be subject
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Obs-driv/PC1 PC2/PC1 PC3/PC1
MSE MAE MSE MAE MSE MAE

T = 100
h = 1 0.863 0.732 0.978 0.951 0.961 0.915
h = 2 0.937 0.871 0.985 0.966 0.973 0.941
h = 3 0.980 0.959 0.990 0.977 0.981 0.959

T = 300
h = 1 0.880 0.758 0.978 0.950 0.959 0.911
h = 2 0.949 0.893 0.985 0.965 0.972 0.939
h = 3 0.993 0.982 0.989 0.975 0.981 0.957

Table 1: Average out-of-sample MSE and MAE ratios for the observation driven,
PC2, and PC3 models relative to the PC1 model. The averages are taken across the
simulations and cross-section. PCk denotes a factor model with k factors, h is the forecast horizon and T
the rolling window size.

to shock spillovers as well as to common economic shocks. These shocks can potentially

explain the large variability of the aggregate IP index that was documented by Foerster et

al. (2011). We adopt our proposed multilevel factor model to analyze the co-movements

within and between different US industries as well as their interconnectedness.

4.1 Data description

The dataset consists of quarterly standardized growth rates between 1977Q1 and 2011Q4

of IP and non-IP sectors in the US. In particular, we have the growth rates of 87 IP sectors

and 42 non-IP sectors. The IP data is provided by the Board of Governors of the Federal

Reserve System (FED) and the seasonally adjusted quarterly time series data for each of

the sectors is retrieved from the FRED database1. The IP data is disaggregated up to the

four-digit level in the North American Industry Classification System (NAICS) for the year

2002. The non-IP data is provided by Andreou et al. (2019).

We aim to identify both common and group-specific factors. To accommodate the

within-group co-movements, we distribute sectors into groups. The groups are defined

according to the NAICS and correspond to the two and three-digit aggregation levels of

the year 2002 for the non-IP and IP sectors, respectively. In this way, we obtain 24 groups

1https://fred.stlouisfed.org
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for the IP data and 11 groups for the non-IP data; see the SA for more information.

For the period under consideration, the variables are published at different time fre-

quencies. The IP sector data is released on a monthly basis, while non-IP sector data is

published on an annual basis. We follow Andreou et al. (2019) by considering yearly non-IP

sector data and quarterly IP sector data. Hence, we have 35 years of observations for the

low-frequency (non-IP) variables and 140 quarters of observations for the high-frequency

(IP) variables. To obtain a fully quarterly dataset, we disaggregate the annual (non-IP)

data into quarterly series using a mix of the Al-Osh (1989) and Silva & Cardoso (2001)

methods; see the SA for more information.

4.2 Common factor estimates

Figure 3a presents the observed data and the filtered common factor. This estimated

factor appears to correctly capture the “group conditional expectation” of the data and

the variation in this factor is closely related to the economic cycles. In particular, strong

downturns of the common factor are well aligned with the US recessions. Specifically, large

falls are evident during the early 1980s recession, early 1990s recession, September 9/11

attacks, and perhaps most profoundly, during the great recession. Therefore, we conclude

that the common factor indeed summarizes the aggregate shocks in the economy accurately.

We also provide a comparison with the common factor reported in Andreou et al.

(2019) and which is similar to our filtered dynamic common factor (Figure 3b). Both

factor estimates are based on a similar dataset and group-factor model. However, the

estimates of Andreou et al. (2019) are based on principal components (using all data)

while our estimates are coming from an observation-driven “real-time” filter (only using

past data). Overall, we find that the correlation between the two sets of factor estimates

is high (approximately, 72% contemporaneous and 90% with one lag/forward).

Furthermore, we measure the importance of the common factor to the sectors by the
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Figure 3: The estimated common factor. Light purple shaded areas correspond to the recession
periods as established by the National Bureau of Economic Research (https://www.nber.org/cycles
.html). In panel (b), the estimated common factor from our model is standardized to facilitate comparison
with Andreou et al. (2019).

coefficient of determination R2 from the regressions of the sectoral growth rates on our

filtered common factor. In Table 2 we present the rankings based on this R2 for the IP

and non-IP sectors. We find that the R2 for the IP sectors is higher than for the non-IP

sectors. Hence, the common factor explains more variability in the IP sectors data. This is

in line with the findings in Andreou et al. (2019) where the authors find that the common

factor is more related to IP data. We also find that among the non-IP sectors the common

factor plays the most important role in explaining the variability of the Administration and

support services, Construction, and Wholesale trade sectors. Among the top ten ranked IP

sectors, most of them belong to the Fabricated metal products (FMP), Furniture (Furnit),

and Machinery (Mach) groups.

Overall, We find that the fit (R2) is low for many sectors when regressed only on the

common factor; hence, a few sectors contain all information about the dynamics of the

common factor. Interestingly, the sectors for which the common factor provides a good fit

do not necessarily have the largest weight in the IP or GDP indices.

The close similarity of our results compared to those obtained by Andreou et al. (2019)

is interesting since we use (partially) different datasets, different models, different methods

for factor estimation, and also different ways of treating mixed frequencies and of defining
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IP sectors Group R2(%) non-IP sectors Group R2(%)

Com. and serv. ind. machin. &
other gen. purpose machin.

Mach 53.263 Administr. and support servic. PBS 44.475

Forging and stamping FMP 46.361 Construction Constr 41.145
Metalworking machinery Mach 45.712 Wholesale trade WT 34.627
Coating, engraving, heat treating FMP 43.953 Accommodation AER 32.936
Other fabricated metal prod. FMP 43.234 Miscel. prof., scientif.&tech. servic. PBS 27.82
Machine shops, turned product FMP 41.67 Other transport.&support activ. TW 26.563
Architectural and structur. metals FMP 39.7 Gov. enterprises (Federal) Gov 25.241
Household and instit. furniture Furnit 37.982 Retail trade RT 24.125
Other miscell. manufact. Miscel 33.817 Rail transportation TW 22.767
Office and other furniture Furnit 33.767 Warehousing and storage TW 22.475

Table 2: Regression results of the sectoral growth rates on the common factor.
We demonstrate the top ten ranked IP and non-IP sectors together with the group name according to
the R2 of the regression of the sectoral growth rates on the estimated common factor. The group name
abbreviations are outlined in Tables A.1 and A.2 in the SA.

sector groups 2. However, in contrast, our model and methods can provide forecasts and

impulse response functions.

4.3 Granularity and network analysis

Next, we examine group interconnectedness in terms of the shock spillovers. Given that

our results are coming from a dynamic model, we can examine the contribution of the

contemporaneous shocks as well as of the propagation effects on the industrial production

aggregate index. Furthermore, we study how these shocks propagate and dissipate through

the network of connections by means of the network representation based on impulse re-

sponse functions (IRFs).

A high IP index variability may arise because of (i) common contemporaneous shocks

affecting all the sectors, (ii) large sectors having large non-averaging out effects, and (iii)

propagation of the shocks; see Foerster et al. (2011). The covariance terms of the sectoral

growth rates contain information on these three effects while the ‘uncorrelated’ innova-

tions summarize the contemporaneous effects (i) and (ii) excluding the propagation effects.

Therefore, for making an effort to explain the large variability in the IP index, we pro-

2We did a robustness check where we split the data into 2 groups as in Andreou et al. (2019). The
results are rather similar and are available upon request.
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vide an insight into the importance of contemporaneous common shocks by analyzing the

covariance matrix of the residuals. In particular, we compare the standard deviations of

the aggregate indexes by taking account of the covariances and by not taking account of

these (Table 3). Moreover, to quantify the importance of the propagation effects, we con-

sider both the aggregated indexes computed as the weighted averages of the sectoral (IP or

non-IP) growth rates as well as the weighted average of the residuals. The results of this

analysis show that both the contemporaneous shocks and propagation effects are impor-

tant sources of the IP index variation, together accounting for approximately 65% of the

variation. While propagation is less important, it still accounts for a non-negligible part of

the variation (around 24%). The aggregate non-IP index has substantially less variability

while it has contemporaneous and propagation effects jointly accounting for 50% of the

total variability and propagation effects accounting for around 32%. We may conclude

that the effects of the contemporaneous shocks are stronger for IP than for non-IP sectors.

I. ‘Uncorrelated innovations’ II. Sectoral growth rates

IP sectors non-IP sectors IP sectors non-IP sectors

With sectoral covariation 4.25 0.26 5.58 0.38
Without sectoral covariation 1.77 0.14 1.97 0.19

Table 3: Standard deviations with and without the sectoral covariance terms.
Similar to Foerster et al. (2011), the entries of the rows labeled ‘with sectoral covariation’ are the sample

standard deviations of
∑N

i=1 wi,tu
G
i,t (I), where u

G
i,t denote ‘uncorrelated’ innovations adjusted for the origi-

nal standard deviations of the sectoral growth rates, and
∑N

i=1 wi,ty
G
i,t (II), where y

G
i,t are non-standardized

sectoral growth rates. Superscript G = {IP,non-IP} highlights that the sum is taken over the series that
either belong to IP or non-IP group. The rows labeled ‘without sectoral covariance’ refer to the standard
deviation computed without taking into account the sectoral covariance terms. As a robustness check we
also considered equal weights, the results are similar and not included.

To analyze the importance of the large sectors in explaining large variability of the

aggregate indices, in Figure 4, we report the top ten sectors with the largest standard

deviation of the destandardized ‘uncorrelated’ innovations, namely potentially influential

shock-transmitters. These results demonstrate that among the large shock transmitters

only 2-3 of them have a large weight in the aggregate index which indicates that the large
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sectors are unlikely to be the dominant source of the large variations in the aggregate IP

index.
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Figure 4: Sectors with the largest standard deviations of the residuals. The figure

presents the top ten IP sectors with the largest standard deviation of the destandardized ‘uncorrelated’

innovations. The blue cells correspond to the sectors that are also in the top ten according to the weight

of the aggregate industrial production index in year 1997Q1 and 2011Q4.

Moreover, given that our model is dynamic, it allows tracking shocks propagation

through the networks of connections using the approach of Diebold & Yılmaz (2014). How-

ever, we adapt this approach to account for group rather than sector interconnectedness by

considering the averages of the generalized impulse responses of Koop et al. (1996) within

each group. Moreover, we examine how the shocks propagate and accumulate through

the network by focusing on the cumulative impulse responses with different time periods

after the shock occurrence. The networks summarize information on the effect of the shock

from one group to another with the strength of the connection being determined by the

strength of the (cumulative) responses. To quantify this effect we look at the (average)

group impulse responses due to the shock in one of the groups. Specifically, by considering

the shocks to one group (all the sectors within the group) we quantify the responses of

all other groups. This provides us with the pairwise connectedness measures between the

shock-transmitter group and all other groups. We assume that the size of the shock in

the group-transmitter is proportional to the number of the sectors in the group as well as
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to the size of the residuals of the series within this group. Then we repeat the analysis

by considering another group as a shock-transmitter and quantifying the responses of all

other groups. The network adjacency matrix is obtained once all the groups have been

considered as potential shock transmitters.
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Figure 5: Networks based on the group pairwise directional connectedness for
different periods after the shock. The nodes correspond to the different groups of economic
activity. The color of the node indicates whether the group is IP (blue) or non-IP (yellow). The size
of the node is based on the (rescaled) degree centrality. The group name abbreviations are explained in
Tables A.1 and A.2 in the SA. The nodes with weak connections, are not shown in the plot.

The networks based on the cumulative group average impulse responses are presented

in Figure 5. We consider different horizons after the shock occurrence: contemporaneous

response (h = 0), 1 quarter (h = 1) and one year (h = 4) after the shock. For illustrative

purposes, we only present the pairs that have the strongest connection (defined as the 95th

percentile of all average pairwise connections, in absolute terms). The networks reveal

several interesting results. First, at h = 0 there are many links between IP groups, a

few from non-IP to IP groups and between non-IP groups, and no links from IP to non-

IP groups. Furthermore, we find that the edges between the non-IP groups at h = 0

are preserved at h = 4, although many new edges between non-IP groups appear as the

horizon increases. In contrast, the number of links between IP groups decreases as the

horizon h increases, while the number of links between IP and non-IP groups substantially

increases. Therefore, we observe immediate effects of the shocks between IP groups which
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can potentially be explained by the presence of the input-output relations between the

sectors. The cumulative effects are more pronounced between IP and non-IP sectors and

between non-IP sectors. The latter indicates that when non-IP groups are involved it takes

time for the shocks to accumulate. It confirms our earlier finding that the role of the

propagation effects is larger for non-IP than for IP sectors. Further, the results show that

one year after the shock (h = 4) the “hub” groups become more evident. In particular,

Construction (Constr) and Wholesale trade (WT) are involved in most of the edges which

implies that these groups have larger cumulative effects on the others.

0 1 2 3 4 5 6

FoodBTMinTEUtilFinAFFHInformLogPetrolCEAERMachTWEHSGovPBSFMPChemPMTMEESAMNMPWoodPaperNewspMiscelALWTPrintFurnitRTConstrPlast

non-IP
IP

(a) out-degree centrality h = 0

0 5 10 15 20 25 30

TEMinBTFoodAFFHUtilPetrolFinLogMachPMCEInformChemTMEEFMPTWAERGovEHSPBSNMPWoodMiscelPaperSAMNewspALFurnitPrintPlastWTRTConstr

non-IP
IP

(b) out-degree centrality h = 4

0 1 2 3 4 5

BTFoodUtilMinAFFHFinInformPetrolLogGovEHSSAMCENewspWTPBSChemMachTEConstrTWMiscelPMALAEREERTPrintPaperTMFurnitFMPNMPPlastWood

non-IP
IP

(c) in-degree centrality h = 0

0 5 10 15 20

FoodBTAFFHUtilLogPetrolMinFinInformWoodChemTEPaperGovPMEHSSAMCEEENMPTWTMAERALPlastNewspMiscelMachPrintRTPBSFurnitFMPWTConstr

non-IP
IP

(d) in-degree centrality h = 4

Figure 6: Ranking based on the absolute value of the in- and out-degree central-
ity measures at h = 0 and h = 4. Details on the centrality measures can be found in the SA C.
The group name abbreviations are explained in Tables A.1 and A.2 in the SA.
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As the network representation only shows the strongest connections, in Figure 6 we

present a ranking based on the in- and out-degree centrality measures for the different

periods after the shock occurrence. This allows us to identify the most central groups

based on how the node responds to the shock in other groups (the in-degree centrality)

and how other groups respond to the shock in the node (the out-degree centrality). For

the bottom ten ranked groups, we find that at h = 0 and h = 4 the composition remains

almost unchanged according to both in- and out-degree centrality. Hence, several groups are

constantly isolated in the network since they do not strongly respond to the shocks in other

groups and do not transmit shocks to the neighbors much. For the top ten ranked groups

based on the out-degree centrality, the composition remains almost unchanged when the

horizon increases. Consequently, there are few groups that transmit pronouncedly shocks

to others and the effect accumulates over time. Among the top ten ranked groups based

on the in-degree centrality the number of non-IP groups increases substantially when the

horizon increases. Hence, while the effect on the IP groups is immediate, for the shocks to

non-IP groups it takes time to accumulate. We again find that Construction, Retail and

Wholesale trade sectors are the most central according to both in- and out-degree centrality

measures. Among the IP groups, Plastics, Furniture and Printing groups have large in-

and out-degree centrality measures both at h = 0 and h = 4. In Figure 5 it is shown that

these groups are tightly linked (in both directions) to Construction, Wholesale and Retail

trade groups which transmit large shocks, leading to high in-degree centrality but also high

out-degree centrality.

5 Conclusion

We have introduced a new parsimonious multilevel factor model with observation-driven

factor dynamics. The model accounts for different types of factors such as common and
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group-specific factors, which can be relevant in many applications. The method is easy to

apply in practice since our proposed estimation procedure is simple and fast. Moreover, the

dynamic model generates forecasts and impulse response functions in a standard fashion.

This dynamic feature can provide insight on how economic shocks propagate and dissipate

through the network of connections across groups/sectors and across time. We further

have established theoretical stochastic properties of the filters and asymptotic properties

of the estimators. In Monte Carlo experiments, we have established that our estimators

behave well in finite samples. In the empirical study, we have studied the role of the IP

and non-IP industries in the US economy. The results confirm the importance of the IP

sectors in explaining the variability of aggregate shocks. A key novel finding is that the

non-IP groups/sectors are more tightly linked to both the IP and non-IP groups when

the cumulative effects over time are accounted for. Our proposed dynamic factor model is

able to measure these propagation effects in an effective way and without relying on heavy

computational methods.
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Appendix

This appendix contains the proofs of the theorems stated in Section 2.5. Other theoretical

details can be found in the SA Section D. We adopt the common notation for the norms.
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Particularly, we use a Euclidean norm for vectors, that is for any vector x, ∥x∥ =
√
x′x,

and a Frobenius norm for matrices, that is for any matrix A, ∥A∥ =
√
trace(A′A).

The vector θ collects all the unknown parameters. To shorten further notation, we

introduce θ := (θ(1)
⊤
,θ(2)

⊤
,θ(3)

⊤
,θ(4)

⊤
)⊤ where superscript i corresponds to the step of

the estimation procedure. For example, θ(1) ≡ θc.

Proof of Theorem 1: The existence and measurability of the estimator θ̂
(1)
T follow straight-

forwardly from Theorem 2.11 in White (1996) since the criterion function is continuous on

all arguments and the parameter space Θc is compact.

To prove consistency it is sufficient to verify the uniform convergence of the criterion

function to the limit criterion function and the identifiable uniqueness of the minimizer θ
(1)
0

of the limit criterion function (White, 1996, Theorem 3.4). For notational convenience, we

define Q
(1)
∞ (θ(1)) := E

[
q(1)

(
yt, ft(θ

(1)),θ(1)
)]
, Q

(1)
T (θ(1)) := 1

T

∑T
t=2 q

(1)
(
yt, ft(θ

(1)),θ(1)
)
,

and Q̂
(1)
T (θ(1)) := 1

T

∑T
t=2 q

(1)
(
yt, f̂t(θ

(1), f̂1),θ
(1)
)
. To show the uniform convergence of

the criterion function we proceed in a similar manner as in Blasques et al. (2022). By the

triangle inequality we have

sup
θ∈Θc

∣∣∣Q̂(1)
T (θ)−Q(1)

∞ (θ)
∣∣∣ ≤ sup

θ∈Θc

∣∣∣Q̂(1)
T (θ)−Q

(1)
T (θ)

∣∣∣+ sup
θ∈Θc

∣∣∣Q(1)
T (θ)−Q(1)

∞ (θ)
∣∣∣ . (5)

The strong uniform convergence of the second term in (5) follows by Lemma TA.1. For the

first term on the right hand side, by the triangle inequality we have

sup
θ∈Θc

∣∣∣Q̂(1)
T (θ)−Q

(1)
T (θ)

∣∣∣ ≤ 1

T

T∑
t=2

sup
θ∈Θc

|(ϕ(yt)− f̂t(θ))
2 − (ϕ(yt)− ft(θ))

2|

≤ 1

T

T∑
t=2

sup
θ∈Θc

|f̂ 2
t (θ)− f 2

t (θ)|+
2

T

T∑
t=2

|ϕ(yt)| sup
θ∈Θc

|f̂t(θ)− ft(θ)|, (6)

where ϕ(yt) := 1
S

∑S
s=1

1
Ns

∑Ns

i=1 y
s
i,t. By Proposition 1 supθ∈Θc |f̂t(θ) − ft(θ)|

e.a.s.−−−→ 0 as

t→ ∞ and E supθ∈Θ |ft(θ)|2 <∞. Hence, by Lemma 2.1 in Straumann & Mikosch (2006)
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and Corollary TA.15 in Blasques et al. (2022), the expression (6) converges to 0 a.s. since

sequence {|ϕ(yt)|}t∈Z is SE (implied by Assumption 2) with E log+ |ϕ(yt)| < ∞ (implied

by Assumption 3). Hence, the uniform convergence of the criterion function in (5) holds.

Now we turn to the identifiable uniqueness of θ
(1)
0 ∈ Θ. For a nonlinear least squares

criterion function the minimum is achieved at the conditional mean. Therefore, the unique-

ness condition is that ft(θ
(1)) ̸= ft(θ

(1)
0 ) for all θ(1) ̸= θ(1)0 on a set of non-zero probability

(Newey & McFadden (1994)). To prove uniqueness we proceed by contradiction. We as-

sume that there is θ(1) ̸= θ(1)0 such that ft(θ
(1)
0 ) = ft(θ

(1)) on a set of non-zero probability.

This implies that for every t,

(β − β0)ϕ(yt) = (γ0 − β0 − (γ − β))ft(θ
(1)
0 ). (7)

We notice that the left hand side in (7) is Ft measurable, while the right hand side is Ft−1

measurable. For this equality to hold we should have β = β0 and γ = γ0 which leads

to the contradiction. Given the uniqueness of θ
(1)
0 , identifiable uniqueness immediately

follows from the continuity of the limit criterion function and compactness of the set Θ;

see Pötscher & Prucha (1997). Hence, θ̂
(1)
T

a.s.−−→ θ
(1)
0 as T → ∞. The convergence of the

plug-in estimator follows by Lemma TA.2 thus completing the proof. ■

Proof of Theorem 2: We denote the critetion function evaluated at the filtered time-varying

parameter as Q̂
(2)
T (θ(2),θ(1)) := 1

T

∑T
t=2 q

(2)
(
yt, f̂t(θ

(1)),θ(2)
)
, the criterion function evalu-

ated at the limit time-varying parameter asQ
(2)
T (θ(2),θ(1)) := 1

T

∑T
t=2 q

(2)
(
yt, ft(θ

(1)),θ(2)
)
,

and the limit criterion function as Q
(2)
∞ (θ(2),θ(1)) := E

[
q(2)(yt, ft(θ

(1)),θ(2))
]
, where super-

script (2) refers to the step of the estimation procedure.

The existence and measurability of the estimator θ̂
(2)
T follows from Theorem 2.15 for two-

stage estimators in White (1996) since Θλc is compact and criterion function is continuous.

We highlight that the criterion function Q̂
(2)
T (θ(2), θ̂

(1)
T ) depends on the filtered time-
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varying parameter that was initialized at some value f̂1 at time t = 1 and evaluated at the

first stage parameter estimate θ̂
(1)
T . By the triangle inequality

sup
θ∈Θλc

∣∣∣Q̂(2)
T

(
θ, θ̂

(1)
T

)
−Q(2)

∞

(
θ,θ

(1)
0

)∣∣∣ ≤ sup
θ∈Θλc

∣∣∣Q̂(2)
T

(
θ, θ̂

(1)
T

)
−Q

(2)
T

(
θ, θ̂

(1)
T

)∣∣∣
+ sup

θ∈Θλc

∣∣∣Q(2)
T

(
θ, θ̂

(1)
T

)
−Q(2)

∞

(
θ,θ

(1)
0

)∣∣∣ . (8)

The first term in the expression above goes to zero almost surely by the same argument as

in the proof of Theorem 1 since the filter is uniformly invertible. The uniform convergence

of the criterion function then follows since the second term in (8) converges to zero almost

surely by Lemma TA.3.

Identifiable uniqueness condition is satisfied, since Λcft(θ
c
0) is a conditional mean and

Λcft(θ
c
0) ̸= Λ̃cft(θ

c
0) for Λ

c ̸= Λ̃c and every t (Newey & McFadden (1994)), the criterion

function is continuous and the parameter space Θλc is compact. ■

Proof of Theorem 4: In the proof of asymptotic normality of the four-stage estimator, we

rely on the theorems in White (1996) for two-stage estimators and theory developed in

Blasques et al. (2023) for establishing the asymptotic normality of the estimators that are

based on the filtered time-varying parameters.

For convenience, we denote as Q̂T (θ) a 4-dimensional vector with the criterion func-

tions of each step of the estimation procedure as the elements of the vector, i.e. Q̂T (θ) =

(Q̂
(1)
T (θ(1)), Q̂

(2)
T (θ(2)), Q̂

(3)
T (θ(3)), Q̂

(4)
T (θ(4)))⊤, where the ‘hat’ highlights that the criterion

functions depend on the filtered time-varying parameters f̂t and ĝt. The ‘blocks’ of the esti-

mator θ̂T are obtained sequentially in four steps by minimizing corresponding criterion func-

tions given the filtered time-varying parameters f̂t and ĝt, i.e. θ̂T = (θ̂
(1)
T , θ̂

(2)
T , θ̂

(3)
T , θ̂

(4)
T )⊤ =

argminθ∈Θ Q̂T (θ).

First, we derive the asymptotic distribution of the estimator θ̃T which minimizes the

criterion function QT (θ) evaluated at the limit sequences ft and gt. Then, we show that
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θ̂T has the same asymptotic distribution as θ̃T .

The proof of the asymptotic normality of θ̃T is based on Theorem 6.10 in White

(1996) which we generalize to the 4-step estimator. By the mean value theorem, we

have ∇θQT (θ̃T ) = ∇θQT (θ0) + AT (θ
⋆
T )
(
θ̃T − θ0

)
, where, with some abuse of nota-

tion, θ⋆T lies (row-wise) between θ0 and θ̃T and AT (θ) := 1
T
At(θ) with At as defined

in (D.37). Since θ̃T is an m-estimator and assuming that AT (θ
⋆
T ) is invertible, we obtain

√
T
(
θ̃T − θ0

)
= − (AT (θ

⋆
T ))
−1√T∇θQT (θ0). Therefore, the asymptotic normality of θ̃T

follows if (a.) ∇θQT (θ0)
d−→ N (0,B(θ0)) as T → ∞; (b.) AT (θ

⋆
T )

P−→ A(θ0) as T → ∞;

(c.) A(θ0) is nonsingular.

Condition (a.) holds since it is implied by Lemma TA.7. The non-singularity of the

limit, condition (c.), follows by the uniqueness of the minimum θ0 which is established

in the proofs of Theorems 1–3. Theorems 1–3 and Theorem 18.10 (vi) in Van der Vaart

(2000) imply θ̃⋆T
P−→ θ0 as T → ∞ thus ensuring condition (b.), see Lemma TA.9. By

Slutsky lemma we obtain
√
T
(
θ̃T − θ0

)
d−→ N (0,A−1(θ0)B(θ0)A

−1(θ0)) as T → ∞.

If
√
T
∥∥∥θ̃T − θ̂T

∥∥∥ P−→ 0 as T → ∞, then by Theorem 18.10(iv) in Van der Vaart (2000),

θ̂T has the same asymptotic distribution as θ̃T . By the mean value theorem

∇θQT (θ̃T ) = ∇θQT (θ̂T ) +AT (θ
⋆
T )
(
θ̃T − θ̂T

)
, (9)

where θ⋆T lies, with an abuse of notation, (row-wise) between θ̂T and θ̃T . Rearranging

the terms in (9) and exploiting the fact that ∇θQT (θ̃T ) = ∇θQ̂T (θ̂T ) = 0, we obtain

√
T
(
∇Q̂T (θ̂T )−∇QT (θ̂T )

)
= AT (θ

⋆
T )
√
T
(
θ̃T − θ̂T

)
.

By Lemma TA.8, the left hand side converges to 0 almost surely. Lemma TA.9 to-

gether with θ⋆T
P−→ θ0 imply that AT (θ

⋆
T )

P−→ A(θ0) as T → ∞. Therefore, we have

√
T
∥∥∥θ̃T − θ̂T

∥∥∥ P−→ 0 as T → ∞, which completes the proof. ■
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SUPPLEMENTARY APPENDIX

A Multilevel Factor Model

with Observation-Driven Dynamics

Mariia Artemova, Francisco Blasques, Siem Jan Koopman

A Data

Group Group N NAICS Group Group N NAICS
abbreviation abbreviation

1. Agriculture,
forestry, fishing, and
hunting

AFFH 2 11 7. Finance, insurance,
real estate, rental, and
leasing

Fin 6 52-53

2. Construction Constr 1 23 8. Professional and
business services

PBS 6 54-56

3. Wholesale trade WT 1 42 9. Educational ser-
vices, health care, and
social assistance

EHS 4 61-62

4. Retail trade RT 1 44-45 10. Arts, entertain-
ment, recreation,
accommodation, and
food services

AER 5 71-72, 81

5. Transportation and
warehousing

TW 8 48-49 11. Government Gov 4 92

6. Information Inform 4 51

Total: 11 groups, 42 se-
ries

Table A.1: Non-Industrial Production groups and number (N) of series in each
group. The table presents the names of the groups together with their abbreviations as well
as the number (N) of series in each group. The column NAICS code corresponds to the NAICS
code that was used to define the groups. The abbreviation stated in the table is further used in
the network analysis.
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Group Group N NAICS Group Group N NAICS
abbreviation abbreviation

12. Logging Log 1 1133 24. Chemicals Chem 6 325
13. Mining Min 4 211, 212 25. Plastics and rubber

products
Plast 2 326

14. Support activities
for mining

SAM 1 213 26. Nonmetallic min-
eral product

NMP 5 327

15. Utilities Util 2 221 27. Primary metals PM 4 331
16. Food Food 9 311 28. Fabricated metal

product
FMP 9 332

17. Beverage and to-
bacco

BT 2 312 29. Machinery Mach 6 333

18. Textile mills and
textile product mills

TM 5 313, 314 30. Computer and elec-
tronic product

CE 6 334

19. Apparel, leather
and allied products

AL 2 315, 316 31. Electrical equip-
ment, appliance, and
component

EE 4 335

20. Wood products Wood 3 321 32. Transportation
equipment

TE 7 336

21. Paper Paper 2 322 33. Furniture and re-
lated product

Furnit 2 337

22.Printing and related
support activ.

Print 1 323 34. Miscellaneous Miscel 2 339

23. Petroleum and coal
prod.

Petrol 1 324 35. Newspaper, peri-
odical, book, and direc-
tory publishers

Newsp 1 5111

Total: 24 groups, 87 se-
ries

Table A.2: Industrial Production groups and number (N) of series in each group.
Most of the groups were defined based on the three-digit NAICS level except Logging and News-
papers groups for which only four-digit level is available according to the Board of Governors
of the Federal Reserve System. Several groups were further united roughly according to their
appearance in the input-output table. Particularly, we unite the following groups: Mining = Oil
and gas extraction + Mining (excluding Oil and gas extraction); Utilities=Electric power gen-
eration, transmission and distribution+Natural gas distribution; Textile mills+Textile product
mills; Apparel+Leather and allied product. For further explanations, we refer to Table A.1 in
Supplementary Appendix.
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Group abbreviation Sector NAICS code Weight

Log Logging 1133 0.24
Min Oil and gas extraction 211 6.5
Min Coal mining 2121 1.06
Min Metal ore mining 2122 0.4
Min Nonmetallic mineral mining and quarrying 2123 0.65
SAM Support activities for mining 213 1.21

Util
Electric power generation, transmission, and
distribution

2211 8.06

Util Natural gas distribution 2212 1.61
Food Animal food 3111 0.43
Food Grain and oilseed milling 3112 0.8
Food Sugar and confectionery product 3113 0.53
Food Fruit and vegetable preserving and specialty food 3114 1.03
Food Dairy product 3115 0.83
Food Animal slaughtering and processing 3116 1.34
Food Seafood product preparation and packaging 3117 0.14
Food Bakeries and tortilla 3118 1.21
Food Other food 3119 1.21
BT Beverage 3121 1.34
BT Tobacco 3122 1.13
TM Fiber, yarn, and thread mills 3131 0.19
TM Fabric mills 3132 0.58
TM Textile and fabric finishing and fabric coating mills 3133 0.26
TM Textile furnishings mills 3141 0.33
TM Other textile product mills 3149 0.21
AL Apparel 315 1.47
AL Leather and allied product 316 0.26
Wood Sawmills and wood preservation 3211 0.39
Wood Veneer, plywood, and engineered wood product 3212 0.31
Wood Other wood product 3219 0.68
Paper Pulp, paper, and paperboard mills 3221 1.63
Paper Converted paper product 3222 1.43
Print Printing and related support activities 323 2.28
Petrol Petroleum and coal products 3241 2.11
Chem Basic chemical 3251 2.34
Chem Resin, synthetic rubber, and synthetic fibers 3252 1.1
Chem Pesticide, fertilizer, and other agricultural chemical 3253 0.48
Chem Pharmaceutical and medicine 3254 2.89
Chem Paints, coating, and adhesive 3255 0.53

Table A.3: Industrial Production sectors (I/II).
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Group abbreviation Sector NAICS code Weight

Chem Soap, cleaning compound, and toilet preparation 3256 2.35
Plast Plastics product 3261 2.39
Plast Rubber product 3262 0.76
NMP Clay product and refactory 3271 0.24
NMP Glass and glass product 3272 0.58
NMP Cement and concrete product 3273 0.84
NMP Lime and gypsum product 3274 0.11
NMP Other nonmetallic mineral product 3279 0.37
PM Iron and steel products 3311 1.47
PM Alumina and aluminum production and processing 3313 0.46

PM
Nonferrous Metal (Except Aluminum)
Production and Processing

3314 0.47

PM Foundries 3315 0.7
FMP Forging and stamping 3321 0.49
FMP Cutlery and handtool 3322 0.32
FMP Architectural and structural metals 3323 1.14
FMP Boiler, Tank, and Shipping Containers 3324 0.53
FMP Hardware 3325 0.26
FMP Spring and wire product 3326 0.19
FMP Machine shops, turned product, and screw, nut, and bolt 3327 1.07
FMP Coating, engraving, heat treating, and allied activities 3328 0.42
FMP Other fabricated metal product 3329 1.28
Mach Agriculture, construction, and mining machinery 3331 1.17
Mach Industrial machinery 3332 0.69

Mach
Commercial and service industry machinery
and other general purpose machinery

3333 2.09

Mach
Ventilation, heating, air-conditioning, and
commercial refrigeration equipment

3334 0.68

Mach Metalworking machinery 3335 0.77
Mach Engine, turbine, and power transmission equipment 3336 0.71
CE Computer and peripheral equipment 3341 1.51
CE Communications equipment 3342 1.39
CE Audio and video equipment 3343 0.15
CE Semiconductor and other electronic component 3344 2.53

CE
Navigational, measuring, electromedical,
and control instruments

3345 2.56

CE Magnetic and Optical Media 3346 0.18
EE Electric lighting equipment 3351 0.32
EE Household appliances 3352 0.46
EE Electrical equipment 3353 0.83
EE Other electrical equipment and component 3359 0.82
TE Motor vehicle 3361 2.49
TE Motor vehicle body and trailer 3362 0.39
TE Motor vehicle parts 3363 2.92
TE Aerospace product and parts 3364 3.21
TE Railroad rolling stock 3365 0.19
TE Ship and boat building 3366 0.51
TE Other transportation equipment 3369 0.18
Furnit Household and institutional furniture and kitchen cabinet 3371 0.85
Furnit Office and other furniture 3372,9 0.63
Miscel Medical equipment and supplies 3391 1.32
Miscel Other Miscellaneous Manufacturing 339 1.31
Newsp Newspaper, Periodical, Book, and Directory Publishers 5111 3.55

Table A.4: Industrial Production sectors (II/II).
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As mentioned in the main text, to obtain a fully quarterly dataset, we disaggregate the

annual (non-IP) data into quarterly series using a mix of the Al-Osh (1989) and Silva &

Cardoso (2001) methods. Here, we provide the details on the disaggregation methodology.

Overall, the methods for temporal disaggregation can be divided into two groups: meth-

ods that use some high-frequency related series, indicator variables, and smoothing ap-

proaches that do not rely on any indicator variable. The indicator variables exploit the

fact that economic time series tend to co-move together. For example, due to economic

events affecting them in the same way. Hence, temporal disaggregation methods with in-

dicator variables estimate the unobserved sub-period values of the target series such that

the short-term dynamics of the indicator variable is preserved and the temporal additivity

constraint is satisfied.

Whenever an indicator variable is available we apply a dynamic Chow-Lin regression

method as proposed in Silva & Cardoso (2001). In total, we find indicators for 21 out

of 42 non-IP sectors. The list of the used indicators is presented in Table A.5. The

choice of the indicator variables is based on a correlation between the target series and

aggregated indicator, and the explanatory power of the indicator in the regression used for

the disaggregation. The indicator variables are also chosen such that they are related to

the target variable from the economic perspective. Overall, in many cases, we use growth

rates of employed people in the corresponding group as an indicator variable; for the trade

and transportation groups, we often use the growth rates of the real imports.

Since it is not always possible to find a good indicator for the disaggregation, we also

use the method proposed in Al-Osh (1989), which is based on a linear dynamic model and

ARMA representation of the unknown series corresponding to the disaggregated target

variable. The measurement equation comes from the temporal additivity constraint, while

the transition equation is based on ARMA representation, which is cast to a state space

form. To choose the order of the ARMA model we follow the procedure proposed by Al-Osh
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(1989). For the majority of the series we use AR(1) representation.

Sector Indicator (growth rates) ρ(%) R̄2(%)
Farms Gross value added 82.45 67
Construction All Employees 83.6 69
Wholesale trade Imports 52.37 25.2

Retail trade
Imports 70

58
Real PCE 73

Air transportation
Average Weekly Hours 51.96

42Exports 46.1
Real PCE: Transport. services 46.4

Rail transportation
Exports 54.7

33.5
Imports 50.2

Truck transportation
Average Weekly Hours 32.4

67
Employment/Population (Men) 80

Other transport.&support activ.
Imports 64.77

57.8Real PCE: Transport. serv. 40.5
Employm./Popul. (Men) 69.1

Warehousing and storage
Imports 71.67

53.2
Production and Nonsuperv. Employees 66.23

Legal services Real PCE: Services 62.47 37.2
Computer systems design and related services All Employees 66.84 43
Miscel. profes., scientific, and technical services Employment/Population 63.25 38.1

Administrative and support services
All Employees 75.4

60
Employment/Population 76.4

Ambulatory health care services Real PCE: Household Consumption Expendi-
tures: Health Care

54.65 27.7

Performing arts, spectator sports, museums All Employees 52.8 25.7
Accommodation Employment/Population (Men) 78.9 61
Food services and drinking places All Employees 65.5 41.2
Other services, except government All Employees 71.98 50.4
General government (FEDERAL) All Employees 69.27 46.4

Government enterprises (FEDERAL)
Population 46.1

44.4
Employment/Population 52.7

General government (States and Local) All Employees 65.5 41.1

Table A.5: Indicators used in the dynamic Chow-Lin regression for disaggrega-
tion of the non-IP sectoral growth rates. All indicator variables are seasonally adjusted
and were collected using the FRED economic database. The series all employees, average weekly
hours, and production and nonsupervisory employees correspond to the particular group. For
example, the series All Employees used for the disaggregation of the Administrative and support
services sector series is All Employees in Professional and business services group.

B Additional empirical results

B.1 Factors and loadings

This section contains additional empirical results for the estimated factors and loadings.

Particularly, in Figure B.1, we demonstrate the estimated loadings for all the IP and non-IP

sectors. We find that most of the loadings on the common factor are positive. Hence, most

of the sectors respond procyclically to the aggregate shocks. The largest negative loadings
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correspond, for example, to the General government (federal) (Gov group) and Federal

reserve banks, credit intermediation, and related activities sectors (Fin group). Intuitively,

we expect these sectors to respond counter-cyclically, because, for example, during crises

they reflect the adoption of stimulus packages. Nevertheless, we find that the R2 for all the

sectoral series with the negative loadings on the common factor are low, hence aggregate

shocks do not play important role in explaining the variability in them.
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Figure B.1: Estimated loadings on the common factor: non-IP sectors (top) and
IP sectors (bottom). The color of the bar indicates the group that the series belong to. The
groups’ name abbreviations are provided in Tables A.1 and A.2.

Once the group-specific factors and respective loadings have been estimated, we can

investigate the importance of the group-specific factors in explaining the variability of the

sectoral data. Specifically, to rank the sectors based on the importance of the group-

specific factor, we compute the increments in R2 (Table B.6). The increments are defined

as a difference between the R2 calculated after Step IV of the estimation procedure, hence

when regressed on both the common and corresponding group-specific factors, and the R2

when regressed only on the common factor, thus R2 after Step II.
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IP sectors ∆R2(%) non-IP sectors ∆R2(%)

Ten sectors with largest increment in R2

Support activities for mining 29.878 Hospitals & nursing & residen. care facil. 36.066
Apparel 15.456 Forestry, fishing, & related activ. 29.162
Leather & allied prod. 14.769 Wholesale trade 28.845
Medical equipment & supplies 12.941 General gov. (States & Local) 27.822
Textile & fabric finishing and coating mills 10.374 Motion picture & sound record. industr. 27.341
Newspaper, period., book & direct. publishers 10.032 Water transportation 26.933
Computer & peripheral equipm. 9.97 Rent. & leasing services 26.634
Basic chemical 9.549 Construction 24.868
Metalworking machinery 9.470 Management of companies & enterprises 22.076
Printing & related support activ. 8.658 Miscel. prof., scientific & technical services 21.714

Ten sectors with smallest increment in R2

Oil & gas extraction 0.055 Insurance carriers and related activities 2.538
Converted paper product 0.051 Rail transportation 2.470
Nonmetal. mineral mining & quarr. 0.043 Food services & drinking places 2.166
Ventilat.,heating,air-condition. 0.041 Warehousing & storage 2.060
Pharmaceut. and medicine 0.015 Other services, except gov. 1.675
Animal slaught. and processing 0.015 Other transportation & support activ. 1.635
Metal ore 0.005 Accommodation 1.291
Railroad rolling stock 0.001 Truck transportation 1.002
Ship & boat building 0.001 Air transportation 0.096
Coal mining 0.000 Funds, trusts, & other financial vehi. 0.075

Table B.6: Regression of the sectoral growth rates on the common and group-
specific factors. We demonstrate the top and bottom ten ranked IP and non-IP-sectors ac-
cording to the increments in the R2. The increment is computed as a difference between the R2

of the regression of the sectoral growth rate on the common and corresponding group-specific
factors and the R2 of the regression of the sectoral growth rate on only the common factor.

We find that the increments are larger for the non-IP sectors, hence the group-specific

factors explain more variation in the non-IP sectors. Therefore, the common factor is

more related to IP sectors while the group-specific factor dynamics are more important for

non-IP sectors. Overall, the largest increments in the R2 appear for Hospitals and nursing

and residential care facilities, Support activities for mining, Forestry, fishing and related

activities, and Wholesale trade sectors. We note that many of the top ten ranked non-IP

sectors had low R2 when regressed only on the common factor. Therefore, these sectors are

mostly related to the group-specific factors. The exceptions are Construction, Wholesale

trade and Miscellaneous professional, scientific and technical service sectors, which have

both high R2 when regressed only on the common factor and large increments, hence both

factors are important for these sectors.

In Figure B.2, we also demonstrate that most of the loadings on the group-specific
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factors are positive, especially for the non-IP sectors, therefore the majority of the sectors

co-move within the group. Moreover, the loadings are larger for the non-IP sectors than

for the IP sectors. We also find that the non-IP group specific factors have on average

larger variation than the common factor while for the IP sectors we observe the opposite

(Table B.7).
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Figure B.2: Histogram of the estimated loadings on the group-specific factor. For
comparison of the loadings between the different groups, we report the rescaled loadings where
the scale is equal to the standard deviation of the corresponding group-specific factor.

Common factor IP factors non-IP factors

All 0.104 0.044 0.155
Top 3 - 0.195 0.259
Top 5 - 0.146 0.227

Table B.7: Variance of the factors. We report the sample variance of the common factor,
the average of the sample variances of the group-specific factors that correspond to either IP
sectors or non-IP sectors. We also report the average of the variances among the top 3 and top 5
sectors with the largest variance among the IP and non-IP sectors.

B.2 Model specification

Before proceeding with the granularity and network analysis we examine the residuals

obtained after Step IV of the estimation procedure to make sure that they correspond to

proper uncorrelated ‘innovations’ in the time-series sense. From the standard diagnostics
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we find the traces of significant autocorrelation in the residuals after the extraction of the

dynamic factors. This means that further idiosyncratic dynamics is present in the data. To

account for this we additionally model the residuals as AR(1) processes. The coefficients

of the estimated AR(1) model are shown in Figure B.3. We find that coefficients for the

non-IP sectors are typically larger than for the IP sectors. Once we fit the AR(1) models

on the residuals we test again for the presence of the autocorrelation. The results of the

multivariate autocorrelation test (Lütkepohl, 2005) are presented in Table B.8. We find

no evidence of autocorrelation up to lag 9. Therefore, we model residuals using AR(1)

model. Additionally, we test whether the residuals are Gaussian since our (G)IRF analysis

is based on this assumption. However, we reject the hypothesis of the normally distributed

innovations. Therefore, we stress that we should interpret our network empirical results

with cautious.
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Figure B.3: Histogram of the estimated coefficients of the AR(1) models. The
univariate AR(1) models were estimated using the residuals after Step IV.

N of lags 1 2 3 4 5 6 7 8 9

p-value 0.325 0.277 0.279 0.260 0.260 0.262 0.273 0.265 0.273

Table B.8: Results of the multivariate autocorellation test.
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C Forecasts, IRFs and connectedness

One-step-ahead forecasts (h = 1) directly follow from the updating equations since the

factors are updated based on a mean reversion term and an autoregressive part: the update

only uses current values of fT , gT and yT . Forecasts at longer horizons can be obtained by

using predicted values in a recursive way. For example, h-step-ahead forecast for ŷT+h can

be produced as follows:

ŷT+h = E[yT+h|FT ] = ΛcE[fT+h|FT ] +ΛgE[gT+h|FT ],

where E[fT+h|FT ] and E[gT+h|FT ] are h-step-ahead predictions for the common and group-

specific factors, respectively. Intuitively, using this model we can assess which part of the

increase or decrease in yi,t+h is expected to be attributed to the common factor and/or to

the group-specific factor.

In policy analysis it is also important to produce Impulse Response Functions (IRFs)

that show how variables respond to the impulse in another variable (or group of variables).

For example, if we are interested in the IRF of each variable due to a shock in one of the

groups s, then numerically we set the size of the shock εst = 1Ns/Ns (or proportionally

to the standard deviations) and all other elements of the vector of innovations to zero.

Additionally, we set ft = 0 and gt = 0. Then we iteratively obtain impulse response

function as a function of h by generating yt+h according to the system equations (1)–(3).

Analytically, this procedure can be summarized as follows:

∂yt+h

∂εst
= E[yt+h|Ft, ε

s
t ]− E[yt+h|Ft],

where Ft denotes the information set up to time t that contains observations before the

shock occurrence.
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When covariance matrix Σ of innovations is not diagonal, generalized impulse response

(GIRF) analysis proposed by Koop et al. (1996) can be considered instead. Particularly, in

our application we assume that in group s an exogenous shock occurs with the size of the

shock εst = Σ
1/2
s es where es is an Ns × 1 vector such that es = (1/Ns, . . . , 1/Ns)

⊤. When

innovations are Gaussian contemporaneous responses in other variables can be obtained as

follows:

∂ysi,t
∂εst

=
∂εsi,t
∂εst

= Σi,sΣ
−1
s ε

s
t ,

where Σi,s is an Ns × 1 vector that contains covariance terms between sector i and sectors

in group s. For further horizons GIRFs are obtained according to system equations (1)–(3)

as discussed above. The square root of the group s covariance matrix Σs can be obtained

using, for example, Cholesky or Schur decomposition.

In our application, we measure group interconnectedness using the generalized impulse

response functions. Specifically, we use approach proposed in Diebold & Yılmaz (2014),

but instead of variance decompositions we focus on (G)IRFs. We also modify the approach

to account for the group rather than individual interconnectedness. Below we give the

details about our group connectedness measures.

Assume that at time t = 0 a shock occurs in each of the innovations of variables in

group s and we are interested in how other groups respond to this shock. For this, we

can compute (generalized) impulse responses of all variables due to a shock arising in one

of the other groups as discussed above. We denote period t response of variable k due

to a shock in group s as IRFk←s,t for k = 1, . . . , N and s = 1, . . . , S. We are further

interested in the connectedness between the groups, hence we denote average pairwise

connectedness measures from group s to group i t periods after the shock occurrence as

θis,t :=
1
Ni

∑Ni

k=1 IRFk←s,t, which is the average impulse responses of group i due to a shock
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in group s. In Table C.9, we schematically illustrate the connectedness matrix, which

consists of the average pairwise connectedness measures for each group.

The average pairwise connectedness measure will be uninformative about the strengths

of the connections when the responses of the units within a group are of different signs.

Therefore, if we are interested in the strengths of the links we denote the average absolute

pairwise connectedness measure from group s to i as θis,t :=
1
Ni

∑Ni

k=1 |IRFk←s,t|, which is

not sensitive to the sign of the response.

Group 1 Group 2 · · · Group S In-degree

Group 1 θ11,t θ12,t · · · θ1S,t
∑S

j=1,j ̸=1 θ1j,t
Group 2 θ21,t θ22,t · · · θ2S,t

∑S
j=1,j ̸=2 θ2j,t

...
...

...
...

Group S θS1,t θS2,t · · · θSS,t
∑S

j=1,j ̸=S θSj,t

Out-degree
∑S

i=1,i ̸=1 θi1,t
∑S

i=1,i ̸=2 θi2,t · · ·
∑S

i=1,i ̸=S θiS,t

Table C.9: Connectedness table. θij,t := 1
Ni

∑Ni
k=1 IRFk←j,t is a group average impulse

response to a shock in sector j. IRFk←j,t denotes impulse response in sector k due to a shock
arising in group j t periods after the shock occurrence.

To further identify the most central groups in the network we compute their centrality.

Specifically, we use pairwise connectedness measures (in- and out-degree centrality mea-

sures) as in Diebold & Yılmaz (2014), which take into account the direction of the relations

and the strength. In-degree centrality shows how the node responds to its neighbors, while

out-degree centrality indicates how big is the response of the neighbors due to the impulse

in the node (Table C.9). We use these measures in our application to summarize results

from the impulse response analysis.
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D Technical Appendix

To shorten further notation in the proofs of Propositions 1 and 2, we introduce

ϕ(yt) :=
1

S

S∑
s=1

1

Ns

Ns∑
i=1

ysi,t,

ψ(ys
t , ft;Λ

c
s) :=

1

Ns

Ns∑
i=1

(
ysi,t − λci,sft

)
,

then the factors’ updating equations take the following form

ft+1 = βϕ(yt) + (γ − β)ft, (D.1)

gst+1 = βsψ(y
s
t , ft;Λ

c
s) + (γs − βs)g

s
t , s = 1, . . . , S. (D.2)

We also denote the stochastic recurrence equations for the common factor as ft+1 := Φ(yt, ft;θ)

and for the group-specific factors gst := Ψ(ys
t , ft, g

s
t ;θ), s = 1, . . . , S.

D.1 Derivatives

Derivatives of the time-varying parameters

In this section, we provide the analytical expressions for the derivatives of ft(θ) and gt(θ) with

respect to parameters θ(1), θ(2), θ(3), θ(4), where θ(1) ≡ θc, θ
(2)
s ≡ Λc

s, θ
(3)
s ≡ θgs , θ

(4)
s ≡ Λg

s for

s = 1, . . . , S. These expressions are further required for the asymptotic covariance matrix of the

estimators.

f ′t+1(θ) :=
∂ft+1(θ)

∂θ(1)
= ζf (yt, ft(θ)) + (γ − β)f ′t(θ), (D.3)

f ′′t+1(θ) :=
∂2ft+1(θ)

∂θ(1)∂θ(1)
⊤ = C(f ′t(θ)) + (γ − β)f ′′t (θ), (D.4)

where ζf (yt, ft) := (ϕ(yt)− ft(θ), ft(θ))
⊤ and C(x(θ)) :=

(
x(θ)[−1, 1] + (x(θ)[−1, 1])T

)
.
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We further introduce the following notation for the derivatives of gt(θ),

g′t+1(θ) :=

(∂g1t+1(θ)

∂θ
(3)
1

)⊤
, . . . ,

(
∂gSt+1(θ)

∂θ
(3)
S

)⊤⊤ ,
g′′t+1(θ) := block-diag


 ∂2g1t+1(θ)

∂θ
(3)
1 ∂θ

(3)
1

⊤

⊤ , . . . ,
 ∂2gSt+1(θ)

∂θ
(3)
S ∂θ

(3)
S

⊤

⊤

⊤

,

∂gt(θ)

∂θ(2)
:=

(
∂g1t (θ)

∂θ
(2)
1

, . . . ,
∂gSt (θ)

∂θ
(2)
S

)⊤
,

∂gt(θ)

∂f
:=

(
∂g1t (θ)

∂f
, . . . ,

∂gSt (θ)

∂f

)⊤
.

For s = 1, . . . , S we have

gs ′t+1(θ) :=
∂gst+1(θ)

∂θ
(3)
s

= ζg(y
s
t , ft(θ), g

s
t (θ);Λ

c
s) + (γs − βs)g

s
t
′(θ), (D.5)

gs ′′t+1(θ) :=
∂2gst+1(θ)

∂θ
(3)
s ∂θ

(3)
s

⊤ = C(gst
′(θ)) + (γs − βs)g

s
t
′′(θ), (D.6)

∂gst+1(θ)

∂θ(1)
=
∂gst+1(θ)

∂f
f ′t+1(θ),

∂gst+1(θ)

∂f
= −βs

1

Ns

Ns∑
i=1

λi,s + (γs − βs)
∂gst (θ)

∂f
, (D.7)

∂gst+1(θ)

∂θ
(2)
s

= −βs
1

Ns
ιNsft(θ) + (γs − βs)

∂gst (θ)

∂θ
(2)
s

,

∂2gst+1(θ)

∂θ
(3)
s θ(1)

⊤ = [−1, 0]⊤

(
1

Ns

Ns∑
i=1

λi,s

)
f ′t(θ)

⊤
+ [−1, 1]⊤

∂gst (θ)

∂θ(1)
⊤ + (γs − βs)

∂2gst (θ)

∂θ
(3)
s θ(1)

⊤ ,

∂2gst+1(θ)

∂θ
(3)
s θ

(2)
s

⊤ = [−1, 0]⊤
1

Ns
ft(θ)ι

⊤
Ns

+ [−1, 1]⊤
∂gst (θ)

∂θ
(2)
s

⊤ + (γs − βs)
∂2gst

∂θ
(3)
s θ

(2)
s

⊤ ,

where ζg(y
s
t , ft(θ), g

s
t (θ);Λ

c
s) := (ψ(ys

t , ft(θ);Λ
c
s)− gst (θ), g

s
t (θ))

⊤.

In practice, we approximate the derivates recursively, that is

f̂ ′t+1(θ) = ζf (yt, f̂t(θ)) + (γ − β)f̂ ′t(θ),

where the filtered sequence depends on the initial values f̂1 and f̂ ′1. Similarly,

f̂ ′′t+1(θ) = C(f̂ ′t(θ)) + (γ − β)f̂ ′′t (θ).

15



Similar recursions follow for ĝ′t(θ), ĝ
′′
t (θ),

∂gt(θ)

∂θ(2) ,
∂gt(θ)
∂f ,

∂2gst+1(θ)

∂θ
(3)
s θ(1)⊤

and
∂2gst+1(θ)

∂θ
(3)
s θ

(2)
s

⊤ .

Expressions for the derivatives of the criterion functions

Below, we provide the expressions for the derivatives of the stepwise criterion functions with

respect to the corresponding parameter of interest. The superscript indexes correspond to the

step of the estimation procedure. We also introduce the notation θ(i:1) := (θ(1)
⊤
, . . . ,θ(i)

⊤
)⊤.

First, we provide the expressions for the first-order derivatives:

∇θ(1)q
(1)
t (θ(1)) :=

∂q
(1)
t (θ(1))

∂θ(1)
=
∂q

(1)
t (θ(1))

∂f
f ′t(θ

(1)), (D.8)

∇θ(2)q
(2)
t (θ(2:1)) :=

∂q
(2)
t

(
θ(2:1)

)
∂θ(2)

= −2ft(θ
(1))(yt −Λcft(θ

(1))), (D.9)

∇
θ
(3)
s
q
(3)
t (θ(3:1)) :=

∂q
(3)
t (θ(3:1))

∂θ
(3)
s

=
∂q

(3)
t (θ(3:1))

∂gs
gst
′(θ(3:1)),

∇
θ
(4)
s
q
(4)
t (θ) :=

∂q
(4)
t (θ)

∂θ
(4)
s

= −2(ys
t −Λc

sft(θ
(1))−Λg

sg
s
t (θ

(3:1)))gst (θ
(3:1)), (D.10)

∂q
(1)
t (θ(1))

∂f
= −2

(
1

S

S∑
s=1

1

Ns

Ns∑
i=1

ysi,t − ft(θ
(1))

)
, (D.11)

∂q
(3)
t (θ(3:1))

∂gs
= −2

(
1

Ns

Ns∑
i=1

ysi,t −
1

Ns

Ns∑
i=1

λci,sft(θ
(1))− gst (θ

(3:1))

)
, (D.12)

with f ′t(θ) and g
s
t
′(θ) as defined in equations (D.3) and (D.5), respectively. We further introduce

the notation

∂q
(3)
t (θ(3:1))

∂g
:=

(
∂q

(3)
t (θ(3:1))

∂g1
, . . . ,

∂q
(3)
t (θ(3:1))

∂gS

)⊤
,

∇θ(3)q
(3)
t (θ(3:1)) :=

(∂q(3)t (θ(3:1))

∂g1
g1t
′
(θ(3:1))

)⊤
, . . . ,

(
∂q

(3)
t (θ(3:1))

∂gS
gSt
′
(θ(3:1))

)⊤⊤ ,
∇θ(4)q

(4)
t (θ) :=

((
∇

θ
(4)
1

q
(4)
t (θ)

)⊤
, . . . ,

(
∇

θ
(4)
S

q
(4)
t (θ)

)⊤)⊤
.

We turn to the second-order derivatives. We have

∇θ(1)θ(1)q
(1)
t (θ(1)) :=

∂2q
(1)
t

(
θ(1)

)
∂θ(1)∂θ(1)

⊤ = 2f ′t(θ
(1))f ′t(θ

(1))
⊤ − 2(ϕ(yt)− ft(θ

(1)))f ′′t (θ
(1)), (D.13)

∇θ(2)θ(1)q
(2)
t (θ(1)) :=

∂2q
(2)
t

(
θ(2:1)

)
∂θ(2)∂θ(1)

⊤ =
(
−2yt + 4Λcft(θ

(1))
)
f ′t(θ

(1))
⊤
, (D.14)

∇θ(2)θ(2)q
(2)
t (θ(2:1)) :=

∂2q
(2)
t

(
θ(2:1)

)
∂θ(2)∂θ(2)

⊤ = 2f2t (θ
(1))IN . (D.15)
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We further denote ∇θ(i)θ(k)q
(i)
t (θ(i:1)) := block-diag

(
∇

θ
(i)
1 θ

(k)
1

q
(i)
t (θ(i:1)), . . . ,∇

θ
(i)
S θ

(k)
S

q
(i)
t (θ(i:1))

)
for i = 3, 4 and k ≤ i. Then, for s = 1, . . . , S we have

∇
θ
(3)
s θ(1)q

(3)
t (θ(3:1)) :=

∂2q
(3)
t

(
θ(3:1)

)
∂θ

(3)
s ∂θ(1)

⊤ = 2

(
1

Ns

Ns∑
i=1

λi,s +
∂gst (θ

(3:1))

∂f

)
gst
′(θ(3:1))f ′t(θ

(1))
⊤

− 2(ψ(ys
t , ft(θ

(1)),Λc
s)− gst (θ

(3:1)))
∂2gst (θ

(3:1))

∂θ
(3)
s ∂θ(1)

⊤ , (D.16)

∇
θ
(3)
s θ

(2)
s
q
(3)
t (θ(3:1)) :=

∂2q
(3)
t

(
θ(3:1)

)
∂θ

(3)
s ∂θ

(2)
s

⊤ = 2gst
′(θ(3:1))

(
1

Ns
ft(θ

(1))ιNs +
∂gst (θ

(3:1))

∂θ
(2)
s

)⊤

− 2(ψ(ys
t , ft(θ

(1)),Λc
s)− gst (θ

(3:1)))
∂2gst (θ

(3:1))

∂θ
(3)
s ∂θ

(2)
s

⊤ , (D.17)

∇
θ
(3)
s θ

(3)
s
q
(3)
t (θ(3:1)) :=

∂2q
(3)
t

(
θ(3:1)

)
∂θ

(3)
s ∂θ

(3)
s

⊤

= 2
(
gst
′(θ(3:1))gst

′(θ(3:1))
⊤)− 2(ψ(ys

t , ft(θ
(1)),Λc

s)− gst (θ
(3:1)))gst

′′(θ(3:1)), (D.18)

∇
θ
(4)
s θ(1)q

(4)
t (θ) :=

∂2q
(4)
t (θ)

∂θ
(4)
s ∂θ(1)

⊤

= 2Λc
s(f
′
t(θ

(1)))⊤gst (θ
(3:1))− 2(ys

t −Λc
sft(θ

(1))− 2Λg
sg

s
t (θ

(3:1)))

(
∂gst (θ

(3:1))

∂θ(1)

)⊤
, (D.19)

∇
θ
(4)
s θ

(2)
s
q
(4)
t (θ(3:1)) :=

∂2q
(4)
t

(
θ(3:1)

)
∂θ

(4)
s ∂θ

(2)
s

⊤

= 2gst (θ
(3:1))ft(θ

(1))INs − 2(ys
t −Λc

sft(θ
(1))− 2Λg

sg
s
t (θ

(3:1)))
∂gst

∂θ
(2)
s

⊤
, (D.20)

∇
θ
(4)
s θ

(3)
s
q
(4)
t (θ(3:1)) :=

∂2q
(4)
t

(
θ(3:1)

)
∂θ

(4)
s ∂θ

(3)
s

⊤

= −2(ys
t −Λc

sft(θ
(1))− 2Λg

sg
s
t (θ

(3:1)))gst
′(θ(3:1))⊤, (D.21)

∇
θ
(4)
s θ

(4)
s
q
(4)
t (θ) :=

∂q
(4)
t (θ)

∂θ
(4)
s ∂θ

(4)
s

⊤ = 2(gst (θ
(3:1)))2INs , (D.22)

∂2q
(1)
t (θ(1))

∂f2
= 2,

∂q
(3)
t (θ(3:1))

∂gs2
= 2, (D.23)

where IN denotes an N ×N identity matrix.
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D.2 Proofs and other technical lemmas

Proof of Proposition 1: Given the linearity of the updating equation (D.1), iterating it backwards

for the filter f̂t initialized at some value f̂1 ∈ R we have

f̂t+1(θ) =

t−1∑
i=0

(γ − β)iβϕ(yt−i) + (γ − β)tf̂1. (D.24)

Proposition 1 states that the effect of the initialization f̂1 asymptotically vanishes as t→ ∞ and

the filter f̂t converges to the limit ft which, if exists, is then defined as,

ft+1(θ) =
∞∑
i=0

(γ − β)iβϕ(yt−i). (D.25)

First, we establish the stochastic properties of the limit sequence. By monotone convergence

theorem and triangle inequality, we have

E
∞∑
i=0

∣∣(γ − β)iβϕ(yt−i)
∣∣ ≤ ∞∑

i=0

|γ − β|i|β|E|ϕ(yt−i)| <∞, (D.26)

where the inequality follows by Lemma 2.1 in Straumann & Mikosch (2006) since |γ − β| <
1 and the sequence {|yt|}t∈Z is SE with E∥yt∥2 < ∞, which is implied by Assumptions 2

and 3. Therefore, the series
∑∞

i=0

∣∣(γ − β)iβϕ(yt−i)
∣∣ is finite almost surely which implies that∑∞

i=0(γ − β)iβϕ(yt−i) converges almost surely. From Krengel’s theorem it then follows that the

limit sequence {ft(θ)}t∈Z is strictly stationary and ergodic since it is a measurable function of

{yt}t∈Z which by Assumption 2 is strictly stationary and ergodic sequence. From Pötscher &

Prucha (1997, Theorem 6.10) it also follows that E supθ∈Θ |ft(θ)|2 <∞.

From (D.24) and (D.25) we obtain,

sup
θ∈Θ

|f̂t(θ)− ft(θ)| = sup
θ∈Θ

|(γ − β)t(f̂1 − f1(θ))| ≤ sup
θ∈Θ

|γ − β|t sup
θ∈Θ

|f̂1 − f1(θ)|
e.a.s.−−−→ 0 as t→ ∞,

where the convergence follows by Straumann & Mikosch (2006, Lemma 2.1) since supθ∈Θ |γ −
β| < 1 and E supθ∈Θ log+ |f1(θ)| < ∞. The former is guaranteed by condition |γ − β| < 1

and compactness of Θ, while the latter is ensured by the existence of the second moment since

E supθ∈Θ log+ |f1(θ)| < E supθ∈Θ |f1(θ)|2 <∞.

Conversely, if |γ − β| > 1 then the sum in (D.26) would diverge, while if |γ − β| = 1 it may

diverge, hence the condition |γ − β| < 1 is a necessary and sufficient condition.

Finally, we show the uniqueness of the limit sequence {ft(θ)}t∈Z by contradiction. Assume

the existence of two SE solutions to (D.1), {ft}t∈Z and {f̃t}t∈Z, then for t = t∗ such that ft∗ ̸= f̃t∗

we have,

0 < |ft∗ − f̃t∗ | = |γ − β|i
∣∣∣ft∗−i − f̃t∗−i

∣∣∣ , ∀i ≥ 0.
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We know that |γ − β|i e.a.s.−−−→ 0 as i → ∞ and |ft∗−i − f̃t∗−i| = OP (1) as it is strictly stationary,

hence P
(
ft = f̃t

)
= 1 and uniqueness follows, which completes the proof. ■

The claim about the moment bound of the limit sequence can be generalized to any k ≥ 2 if

the sequence {yt}t∈Z has sufficient number of moments.

Corollary TA.1. If E∥yt∥k < ∞ with k ≥ 2 and conditions of Proposition 1 are satisfied, then

the limit sequence {ft(θ)}t∈Z satisfies E supθ∈Θ |ft(θ)|k <∞.

Proof of Proposition 2: The proof of this proposition is slightly different from the proof of the

Proposition 1 since ĝt depends not on the limit time-varying parameter ft but rather on the

filtered time-varying parameter f̂t. Therefore, we are dealing with the perturbed version of the

updating equation, that is

gst+1(θ) = Ψ(ys
t , f̂t(θ), g

s
t (θ)), s = 1, . . . , S.

We further define the filtered sequence that is the solution to the perturbed equation as {ĝst (θ)}t∈N,
to the unperturbed one as {g̃st (θ)}t∈N and the limit sequence as {gst (θ)}t∈Z which, if exists, is as

follows,

gst+1(θ) =
∞∑
i=0

(γs − βs)
i[βsψ(y

s
t−i, ft−i(θ);Λ

c
s)]. (D.27)

By the triangle inequality we have,

sup
θ∈Θ

|ĝst (θ)− gst (θ)| ≤ sup
θ∈Θ

|ĝst (θ)− g̃st (θ)|+ sup
θ∈Θ

|g̃st (θ)− gst (θ)|. (D.28)

For the first term on the right-hand side by the mean value theorem we have,

sup
θ∈Θ

|ĝst (θ)− g̃st (θ)| ≤ sup
θ∈Θ

∣∣∣∣∂Ψ(ys
t , f

⋆
t , g

s
t (θ))

∂f

∣∣∣∣ sup
θ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣ ,

where f⋆t lies between f̂t and ft. We can then conclude that supθ∈Θ |ĝst (θ) − g̃st (θ)|
e.a.s.−−−→ 0 as

t → ∞ by Lemma 2.1 in Straumann & Mikosch (2006) since supθ∈Θ

∣∣∣∂Ψ(ys
t ,f

⋆
t ,g

s
t (θ))

∂f

∣∣∣ is uniformly

bounded and by Proposition 1 supθ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣ e.a.s.−−−→ 0 as t→ ∞. The uniform boundedness

is established as follows,

sup
θ∈Θ

∣∣∣∣∂Ψ(ys
t , f

⋆
t , g

s
t (θ))

∂f

∣∣∣∣ = sup
θ∈Θ

∣∣∣∣∣−βs 1

Ns

Ns∑
i=1

λci,s + (γs − βs)
∂gst−1(θ)

∂f

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣βs 1

Ns

Ns∑
i=1

λci,s

∣∣∣∣∣
+ sup

θ∈Θ
|γs − βs| sup

θ∈Θ

∣∣∣∣∂gst−1(θ)∂f

∣∣∣∣ <∞,
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where given the expression for
∂gst (θ)
∂f in (D.7) and since supθ∈Θ |γs − βs| < 1, the last inequality

follows.

It remains to show that the second term on the right hand side in (D.28) converges e.a.s. to

zero and the properties of the limit sequence. These can be shown using the similar arguments

as in the proof of Proposition 1. Specifically, using monotone convergence theorem it is easy to

verify that the limit sequence is converging almost surely. Then the stationarity and ergodicity

of the limit sequence {gst (θ)}t∈Z follows by Krengel’s theorem since it is a measurable function of

{yt}t∈Z and {ft}t∈Z which by Assumption 2 and Proposition 1 are strictly stationary and ergodic.

The proof about the moment bounds is similar to the proof in Proposition 1.

Therefore, for the second term on the right hand side in (D.28) we obtain

sup
θ∈Θ

|g̃st (θ)− gst (θ)| ≤ sup
θ∈Θ

|γs − βs|t sup
θ∈Θ

|ĝs1 − gs1(θ)|
e.a.s.−−−→ 0 as t→ ∞,

where the convergence follows again by Lemma 2.1 in Straumann & Mikosch (2006) given that

supθ∈Θ |γs−βs| < 1 and E supθ∈Θ log+ |gs1(θ)| <∞. Conversely, if |γs−βs| > 1 the sum in (D.27)

would diverge; if |γs − βs| = 1, the sum may diverge.

The uniqueness of the limit sequence {gst (θ)}t∈Z follows a proof by contradiction as in the

proof of Proposition 1. ■

Corollary TA.2. If conditions of Propositions 1 and 2 and Corollary TA.1 are fulfilled, then the

limit sequence {gt(θ)}t∈Z satisfies E supθ∈Θ ∥gt(θ)∥k <∞.

Lemma TA.1. Let conditions of Theorem 1 hold. Then

sup
θ∈Θc

∣∣∣Q(1)
T (θ)− E[q(1)(yt, ft(θ),θ)]

∣∣∣ a.s.−−→ 0 as T → ∞.

Proof. We establish the strong uniform convergence by applying ergodic theorem for separable

Banach spaces of Rao (1962) to the sequence {q(1)(yt, ft(·), ·)}. The conditions of the theorem

are satisfied, since

1. {q(1)(yt, ft(·), ·)}t∈Z is an SE sequence, which follows by application of Krengel’s theorem,

as q(1) is continuous on the SE sequence {(yt, ft)}t∈Z.
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2. E supθ∈Θc |q(1)(yt, ft(θ),θ)| <∞, since

E sup
θ∈Θc

|q(1)(yt, ft(θ),θ)| = E sup
θ∈Θc

∣∣∣∣∣∣
(
1

S

S∑
s=1

(
1

Ns

Ns∑
i=1

ysi,t

)
− ft(θ)

)2
∣∣∣∣∣∣

≤ cE

∣∣∣∣∣ 1S
S∑

s=1

(
1

Ns

Ns∑
i=1

ysi,t

)∣∣∣∣∣
2

+ cE sup
θ∈Θc

|ft(θ)|2

≤ cc̃

S∑
s=1

c̃s

Ns∑
i=1

E
∣∣ysi,t∣∣2 + cE sup

θ∈Θc
|ft(θ)|2 <∞,

where in the last line we used several times Loève’s cr inequality. Therefore, given that E∥yt∥ <∞
by Assumption 3 and from Proposition 1 E supθ∈Θc |ft(θ)|2 <∞, the results follows. ■

Lemma TA.2. Let conditions of Theorem 1 hold. Then a plug-in filter f̂t(θ̂
(1)
T , f̂1) converges

almost surely,

|f̂t(θ̂(1)T , f̂1)− ft(θ
(1)
0 )| a.s.−−→ 0 as t, T −→ ∞.

Proof. By the triangle inequality, we have

|f̂t(θ̂(1)T , f̂1)− ft(θ
(1)
0 )| ≤ |f̂t(θ̂(1)T , f̂1)− f̂t(θ

(1)
0 , f̂1)|+ |f̂t(θ(1)0 , f̂1)− ft(θ

(1)
0 )|, (D.29)

where the second term in the expression above goes to zero e.a.s. as t → ∞ since the filter is

uniformly invertible, see Proposition 1.

For the first term in (D.29), by unfolding it recursively, we notice

sup
θ∈Θc

|f̂t(θ, f̂1)− f̂t(θ
(1)
0 , f̂1)|

≤ sup
θ∈Θc

|βϕ(yt−1) + (γ − β)f̂t−1(θ
(1)
0 , f̂1)− β0ϕ(yt−1)− (γ0 − β0)f̂t−1(θ

(1)
0 , f̂1)|

+ sup
θ∈Θc

|(γ − β)(f̂t−1(θ, f̂1)− f̂t−1(θ
(1)
0 , f̂1))|

≤
t−1∑
i=1

sup
θ∈Θc

|γ − β|i−1 sup
θ∈Θc

|βϕ(yt−i) + (γ − β)f̂t−i(θ
(1)
0 , f̂1)− f̂t−i+1(θ

(1)
0 , f̂1)|.

From the strong consistency of θ̂
(1)
T , we can conclude that |f̂t(θ̂(1)T , f̂1)− f̂t(θ

(1)
0 , f̂1)|

a.s.−−→ 0 as

T → ∞ which completes the proof. ■

Lemma TA.3. Let conditions of Theorem 2 hold. Then

sup
θ∈Θλc

∣∣∣Q(2)
T

(
θ, θ̂

(1)
T

)
−Q(2)

∞

(
θ,θ

(1)
0

)∣∣∣ as T → ∞.

Proof. The uniform convergence follows by Theorem 3.7 in White (1996) since θ̂
(1)
T

a.s.−−→ θ
(1)
0 as

21



T → ∞, Θc and Θλc are compact, criterion function is continuous and

sup
θ(1)∈Θc

sup
θ(2)∈Θλc

∣∣∣Q(2)
T (θ(2),θ(1))−Q(2)

∞ (θ(2),θ(1))
∣∣∣ a.s.−−→ 0 as T → ∞.

The latter follows again by application of Theorem 6.5 in Rao (1962), as

1. {q(2)(yt, ft(·), ·}t∈Z is an SE sequence, which follows by application of Krengel’s theorem,

as q(2) is continuous on the SE sequence {(yt, ft)}t∈Z.

2. trivially E supθ(1)∈Θc supθ(2)∈Θλc |q(2)(yt, ft(θ
(1)),θ(2))| <∞.

Therefore, we conclude that

sup
θ(2)∈Θλc

∣∣∣Q̂(2)
T (θ(2), θ̂

(1)
T )− E[q(2)(yt, ft(θ

(1)
0 ),θ(2))]

∣∣∣ a.s.−−→ 0 as T → ∞.

■

Sketch of the proof of Theorem 3: The proof of this theorem consists of three parts. The first

part establishes the consistency of the step III estimator, i.e. θ̂gT
a.s.−−→ θg0 , the second part is

about the convergence of the plug-in filter ∥ĝt(θ̂gT )− gt(θ
g
0)∥

a.s.−−→ 0 and the last part is about the

consistency of the step IV estimator.

The proof of the first and last parts requires the uniform convergence of the corresponding

criterion functions to the limit criterion functions as well as identifiable uniqueness of the es-

timators. The former can be proved using Theorem 3.7 in White (1996) and Theorem 6.5 in

Rao (1962). We again need to take into consideration that the function depends on the filtered

time-varying parameters rather than on the limit counterparts. Identifiable uniqueness is proved

using the same reasoning as in the proofs of Theorems 1 and 2.

Now we turn to the strong consistency of the filter. The reasoning is similar to the proof in

Theorem 1, that is by the triangle inequality we have∥∥∥ĝt(θ̂(3:1)T , ĝ1)− gt(θ(3:1)0 )
∥∥∥ ≤

∥∥∥ĝt(θ̂(3:1)T , ĝ1)− ĝt(θ(3:1)0 , ĝ1)
∥∥∥+ ∥∥∥ĝt(θ(3:1)0 , ĝ1)− gt(θ(3:1)0 )

∥∥∥ ,
where the second term vanishes to zero e.a.s. as t→ ∞ since the filter is uniformly invertible (see

Proposition 2). Now we show that the first term also goes to zero a.s.. Repeatedly unfolding the
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expression, for s = 1, . . . , S, we have

sup
θ(3:1)∈Θ

∣∣∣ĝst (θ(3:1), ĝs1)− ĝst

(
θ
(3:1)
0 , ĝs1

)∣∣∣
≤ sup

θ(3:1)∈Θ
|βsψ(ys

t−1, f̂t−1(θ
(1));θ(2)s ) + (γs − βs) ĝ

s
t−1(θ

(3:1)
0 , ĝs1)

− βs,0ψ(y
s
t−1, f̂t−1(θ

(1)
0 );θ

(2)
s,0)− (γs,0 − βs,0)ĝ

s
t−1(θ

(3:1)
0 , ĝs1)|

+ sup
θ(3:1)∈Θ

|(γs − βs)(ĝ
s
t−1(θ

(3:1), ĝs1)− ĝst−1(θ
(3:1)
0 , ĝs1)|

≤
t−1∑
i=1

sup
θ(3:1)∈Θ

|γs − βs|i−1 sup
θ(3:1)∈Θ

|βsψ(ys
t−i, f̂t−i(θ

(1)),θ(2)s )

+ (γs − βs)ĝ
s
t−i(θ

(3:1)
0 , ĝs1)− ĝst−i+1(θ

(3:1)
0 , ĝs1)|.

From the strong consistency of θ̂
(1)
T , θ̂

(2)
T and θ̂

(3)
T that was established in Theorems 1–3, we

conclude that |ĝst (θ̂
(3:1)
T )− gst (θ

(3:1)
0 )| a.s.−−→ 0 as T → ∞. ■

Lemma TA.4. Let conditions of Proposition 1 hold, then

a. the limit sequences of the first and second derivatives {f ′t(θ)}t∈Z and {f ′′t (θ)}t∈Z exist, are

SE and satisfy E supθ∈Θ ∥f ′t(θ)∥
2 <∞ and E supθ∈Θ ∥f ′′t (θ)∥

2 <∞. Moreover,

sup
θ∈Θ

∥f̂ ′t(θ)− f ′t(θ)∥
e.a.s.−−−→ 0, sup

θ∈Θ
∥f̂ ′′t (θ)− f ′′t (θ)∥

e.a.s.−−−→ 0 as t→ ∞.

If, additionally, conditions of Proposition 2 hold then

b. the limit sequences of the first and second derivatives {g′t(θ)}t∈Z and {g′′t (θ)}t∈Z exist, are

SE and satisfy E supθ∈Θ ∥g′t(θ)∥
2 <∞ and E supθ∈Θ ∥g′′t (θ)∥

2 <∞. Moreover,

sup
θ∈Θ

∥ĝ′t(θ)− g′t(θ)∥
e.a.s.−−−→ 0, sup

θ∈Θ
∥ĝ′′t (θ)− g′′t (θ)∥

e.a.s.−−−→ 0 as t→ ∞.

Proof. The proof follows the same lines as in the proof of Propositions 1 and 2 by backwards

unfolding the system of equations (D.3)–(D.6). ■

Corollary TA.3. Let conditions of Corollary TA.1 hold. Then the limit sequences of the first and

second derivatives satisfy E supθ∈Θ ∥f ′t(θ)∥k < ∞, E supθ∈Θ ∥f ′′t (θ)∥k < ∞, E supθ∈Θ ∥g′t(θ)∥k <
∞ and E supθ∈Θ ∥g′′t (θ)∥k <∞.
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Lemma TA.5. Let conditions of Propositions 1 and 2 hold. Then it holds that

sup
θ∈Θ

∣∣∣∣∣∂q̂(1)t (θ(1))

∂f
− ∂q

(1)
t (θ(1))

∂f

∣∣∣∣∣ e.a.s.−−−→ 0, (D.30)

sup
θ∈Θ

∥∥∥∥∥∂q̂
(2)
t

(
θ(2:1)

)
∂θ(2)

−
∂q

(2)
t

(
θ(2:1)

)
∂θ(2)

∥∥∥∥∥ e.a.s.−−−→ 0, (D.31)

sup
θ∈Θ

∥∥∥∥∥∂q̂(3)t (θ(3:1))

∂g
− ∂q

(3)
t (θ(3:1))

∂g

∥∥∥∥∥ e.a.s.−−−→ 0, (D.32)

sup
θ∈Θ

∥∥∥∥∥∂q̂(4)t (θ)

∂θ(4)
− ∂q

(4)
t (θ)

∂θ(4)

∥∥∥∥∥ e.a.s.−−−→ 0, (D.33)

as t → ∞ and the limit sequences

{
∂q

(1)
t (θ(1))
∂f

}
t∈Z

,

{
∂q

(2)
t (θ(2:1))
∂θ(2)

}
t∈Z

,

{
∂q

(3)
t (θ(3:1))

∂g

}
t∈Z

, and{
∂q

(4)
t (θ)

∂θ(4)

}
t∈Z

are SE.

If, in addition, Assumption 3.a holds then E supθ∈Θ

∣∣∣∣∂q(1)t (θ(1))
∂f

∣∣∣∣2r <∞, E supθ∈Θ

∥∥∥∥∂q
(2)
t (θ(2:1))

∂θ(2)

∥∥∥∥r <
∞, E supθ∈Θ

∥∥∥∥∂q
(3)
t (θ(3:1))

∂g

∥∥∥∥2r <∞, and E supθ∈Θ

∥∥∥∥∂q
(4)
t (θ)

∂θ(4)

∥∥∥∥r <∞.

Proof. Given the expressions for the derivatives (D.11) and (D.12), the convergence in (D.30)

and (D.32) follows directly from Propositions 1 and 2. Establishing the convergence in (D.31)

additionally requires supθ∈Θ |f̂2t (θ) − f2t (θ)|
e.a.s.−−−→ 0 as t → ∞, see (D.9). The latter holds by

Corollary TA.15 in Blasques et al. (2022). The conditions of the corollary are satisfied since by

Proposition 1 supθ∈Θ |f̂t(θ)− ft(θ)|
e.a.s.−−−→ 0 as t→ ∞ and E supθ∈Θ log+ |ft(θ)| <∞.

Finally, (D.33) holds since supθ∈Θ ∥f̂t(θ)ĝt(θ)−ft(θ)gt(θ)∥
e.a.s.−−−→ 0 as well as supθ∈Θ ∥ĝ2t (θ)−

g2t (θ)∥
e.a.s.−−−→ 0 as t → ∞. The former follows from Propositions 1 and 2 together with Lemma

TA.14 in Blasques et al. (2022), while the latter result is a direct implication of Corollary TA.15

in Blasques et al. (2022).

The limit sequences are SE by Krengel’s theorem and bounded moments follow by Assump-

tion 3.a, Corollaries TA.1 and TA.2 given the expressions of the first derivatives (D.9)–(D.12). ■

Lemma TA.6. Let conditions of Propositions 1 and 2 hold. Furthermore, let Assumptions 3.a

and 4 be satisfied. Then the sequence {∇θqt(θ)}t∈Z is SE and NED of size −1 on a strongly

mixing sequence of size −r/(1− r) for some r > 2.

Proof. By Assumptions 2 and 4, sequence {yt}t∈Z is SE and NED of size −1 on a strongly mixing

sequence of size −r/(r− 1) for some r > 2. Propositions 1 and 2 together with Corollaries TA.1,

TA.2 and TA.3 ensure that the limit sequences {ft(θ)}t∈Z, {f ′t(θ)}t∈Z, {gt(θ)}t∈Z and {g′t(θ)}t∈Z
are SE, which are also jointly SE. Therefore, by Krengel’s theorem and continuity of ∇θqt(·) it

follows that {∇θqt(θ)}t∈Z is also SE.
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Now we turn to the second part of the lemma about the NED property. We notice that

|ft+1 − f∗t+1| ≤ |β||ϕ(yt)− ϕ(y∗t )|+ |γ − β||ft − f∗t |

≤|β| 1
S

S∑
s=1

1

Ns

Ns∑
i=1

∣∣ysi,t − ys∗i,t
∣∣+ |γ − β||ft − f∗t |,

|gst+1 − gs ∗t+1| ≤ |βs||ψ(ys
t , ft)− ψ(ys∗

t , f
∗
t )|+ |γs − βs||gst − gst

∗|

≤ |βs|
1

Ns

Ns∑
i=1

|ysi,t − ys∗i,t|+ |βs|

∣∣∣∣∣ 1Ns

Ns∑
i=1

λci,s

∣∣∣∣∣ |ft − f∗t |+ |γs − βs||gst − gst
∗|.

By assumption β ∈ R, βs ∈ R,Λc ∈ RN , and |γ − β| < 1 and |γs − βs| < 1 for s = 1, . . . , S.

Moreover, under Assumption 3.a yt has 2r bounded moments with r > 2 which by Corollaries TA.1

and 2 implies that ft and gst also have 2r bounded moments. Therefore, by Theorem 6.10 in

Pötscher & Prucha (1997) ft and gst are NED of size −1 on a strongly mixing sequence of size

−r/(1 − r) for some r > 2. Lemma 6.9 in Pötscher & Prucha (1997) implies that the stacked

vector gt is itself NED.

We proceed similarly with the first order derivatives

∥f ′t+1 − f ′∗t+1∥ ≤ ∥ζf (yt, ft)− ζf (y
∗
t , f
∗
t ))∥+ |γ − β|∥f ′t − f ′t

∗∥

≤ 1

S

S∑
s=1

1

Ns

Ns∑
i=1

|ysi,t − ys∗i,t|+ 2|ft − f∗t |+ |γ − β|∥f ′t − f ′t
∗∥,

∥gs′t+1 − gs ′∗t+1∥ ≤ ∥ζg(ys
t , ft, g

s
t )− ζg(ys∗

t , f
∗
t , g

s∗
t )∥+ (γs − βs)∥gs′t − gst

′∗∥

≤ 1

S

S∑
s=1

1

Ns

Ns∑
i=1

|ysi,t − ys∗i,t|+

∣∣∣∣∣ 1S
S∑

s=1

1

Ns

Ns∑
i=1

λci,s

∣∣∣∣∣ |ft − f∗t |

+ 2|gst − gs∗t |+ |γs − βs|∥gs′t − gs′t
∗∥,

where in the last step we exploit the norm equivalence.

Using a similar argument as for the time-varying parameters themselves, by Theorem 6.10

and Lemma 6.9 in Pötscher & Prucha (1997) we obtain that f ′t and g
′
t are NED of size −1 on a

strongly mixing sequence of size −r/(1 − r) for some r > 2. This follows since Λc ∈ RN , yt, ft

and gt are NED with 2r bounded moments.

By Theorem 17.12 in Davidson (1994), the sequences {∇θ(1)q
(1)
t (θ)}t∈Z, {∇θ(2)q

(2)
t (θ)}t∈Z,

{∇θ(3)q
(3)
t (θ)}t∈Z, {∇θ(4)q(4)(θ)}t∈Z are NED. This follows as functions ∇θ(1)q(1)(yt, ft, f

′
t ,θ),

∇θ(2)q(2)(yt, ft,θ), ∇θ(3)q(3)(yt, ft, gt, g
′
t,θ), ∇θ(4)q(4)(yt, ft, gt,θ) are Lipschitz continuous and

they are also functions of NED sequences. By Lemma 6.9 in Pötscher & Prucha (1997) we

conclude that the stacked vector {∇θqt(θ)}t∈Z is NED, which finishes the proof. ■

Lemma TA.7. Let conditions of Propositions 1 and 2 hold. Moreover, let Assumptions 3.a and

25



4 be satisfied. Then

√
T∇θQT (θ0)

d−→ N (0,B(θ0)) as T → ∞,

with B(θ0) as defined in Theorem 4.

Proof. By Lemma TA.6 we have {∇θqt(θ0)}t∈Z is NED of size −1 on a strongly mixing process

of size −r/(r − 1) for some r > 2. Therefore, the proof is based on the central limit theorem for

near epoch dependent processes (Pötscher & Prucha, 1997, Theorem 10.2). Below, we verify that

all the conditions of the theorem are satisfied.

First, we notice that E [∇θqt(θ0)] = ∇θQ∞(θ0) = 0 where the interchange of the expectation

and derivative is permitted since the criterion function is continuously differentiable.

We notice that ∥∇θqt(θ)∥ =
(∑4

i=1 ∥∇θqt(θ)∥2
)1/2

≤
∑4

i=1 ∥∇θqt(θ)∥. Hence, by Loève’s cr

inequality, there exists a constant c > 0 such that,

E sup
θ∈Θ

∥∇θqt(θ)∥r ≤ c

4∑
i=1

E sup
θ∈Θ

∥∥∥∇θ(i)q
(i)
t (θ)

∥∥∥r , (D.34)

where index i refers to the step of the estimation procedure.

To show that expression (D.34) is finite, we further consider the gradient of each of the steps.

Step I. From (D.8) and Cauchy-Schwartz inequality,

E sup
θ∈Θ

∥∥∥∇θ(1)q
(1)
t (θ)

∥∥∥r = E sup
θ∈Θ

∥∥∥∥∥∂q(1)t (θ)

∂f
f ′t(θ)

∥∥∥∥∥
r

≤

E sup
θ∈Θ

∣∣∣∣∣∂q(1)t (θ)

∂f

∣∣∣∣∣
2r

E sup
θ∈Θ

∥∥f ′t(θ)∥∥2r
1/2

<∞,

where the bounded moment claim follows by the fact that under Assumption 3.a yt has 2r

bounded moments. Then, Corollary TA.3 implies that f ′t(θ) has 2r bounded moments. The

derivative E supθ∈Θ

∥∥∥∥∂q
(1)
t (θ)
∂f

∥∥∥∥2r is bounded by Lemma TA.5.

Step III. By Loève’s cr inequality and Cauchy-Schwartz inequality,

E sup
θ∈Θ

∥∥∥∇θ(3)q
(3)
t (θ)

∥∥∥r ≤ cs

S∑
s=1

E sup
θ∈Θ

∥∥∥∥∥∂q(3)t (θ)

∂gs
gst
′(θ)

∥∥∥∥∥
r

≤ cs

S∑
s=1

E sup
θ∈Θ

∣∣∣∣∣∂q(3)t (θ)

∂gs

∣∣∣∣∣
2r

E sup
θ∈Θ

∥∥gst ′(θ)∥∥2r
1/2

<∞.

Similarly to step I, the expression is bounded since by Assumption 3.a and Corollary TA.3 gst
′(θ)

has 2r bounded moments. The derivative E supθ∈Θ

∣∣∣∣∂q(3)t (θ)
∂gs

∣∣∣∣2r is also bounded which follows from

Lemma TA.5.
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Step II. From equation (D.9), Loève’s cr inequality and Cauchy-Schwartz inequality, we have

E sup
θ∈Θ

∥∥∥∇θ(2)q
(2)
t (θ)

∥∥∥r = E sup
θ∈Θ

∥2ft(θ) (yt −Λcft(θ))∥r ≤ crE sup
θ∈Θ

∥2ft(θ)yt∥r

+ crE sup
θ∈Θ

∥∥Λc2f2t (θ)
∥∥r ≤ 2cr(E ∥yt∥2r E sup

θ∈Θ
|ft(θ)|2r)1/2

+ 2cr sup
θ∈Θ

∥Λc∥r E sup
θ∈Θ

|ft(θ)|2r <∞,

where the final claim follows from Proposition 1 under Assumption 3.a, E∥yt∥2r < ∞, which by

Corrolary TA.1 implies that ft(θ) has 2r bounded moments.

Step IV. Considering equation (D.10) and applying Loève’s cr inequality together with the

Cauchy-Schwartz inequality, we have

E sup
θ∈Θ

∥∥∥∇θ(4)q
(4)
t (θ)

∥∥∥r ≤ cs

S∑
s=1

E sup
θ∈Θ

∥∥∥∥∥∂q(4)t (θ))

∂θ
(4)
s

∥∥∥∥∥
r

= cs

S∑
s=1

E sup
θ∈Θ

∥2(ys
t −Λc

sft(θ)−Λg
sg

s
t (θ))g

s
t (θ)∥

r

≤ cs(
S∑

s=1

2cr(E∥ys
t∥2rE sup

θ∈Θ
|gst (θ)|2r)1/2 + cr sup

θ∈Θ
∥Λc

s∥
r (E sup

θ∈Θ
|ft(θ)|2rE sup

θ∈Θ
|gst (θ)|

2r)1/2

+ cr sup
θ∈Θ

∥Λg
s∥

r E sup
θ∈Θ

|gst (θ)|
2r) <∞,

where in the last step we used the result of Proposition 2 and Corollary TA.2 under Assump-

tion 3.a.

The gradients of all the steps are uniformly bounded, hence, expression (D.34) is also uniformly

bounded, i.e. E supθ∈Θ ∥∇θqt(θ)∥r < ∞. Therefore, all the assumptions of Theorem 10.2 in

Pötscher & Prucha (1997) are satisfied which finalizes the proof. ■

Lemma TA.8. Let conditions of Propositions 1 and 2 hold, then

√
T sup

θ∈Θ

∥∥∥∇θQ̂T (θ)−∇θQT (θ)
∥∥∥ a.s.−−→ 0 as T → ∞.

Proof. We show a.s. convergence by establishing e.a.s. convergence of the time t function contri-

butions, that is

sup
θ∈Θ

∥∇θ q̂t(θ)−∇θqt(θ)∥
e.a.s.−−−→ 0 as t→ ∞. (D.35)
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By Loève’s cr inequality

sup
θ∈Θ

∥∇θ q̂t(θ)−∇θqt(θ)∥ ≤ c
4∑

i=1

sup
θ∈Θ

∥∥∥∇θ(i) q̂
(i)
t (θ)−∇θ(i)q

(i)
t (θ)

∥∥∥
≤ c sup

θ∈Θ

∥∥∥∥∥∂q̂(1)t (θ)

∂f
f̂ ′t(θ)−

∂q
(1)
t (θ)

∂f
f ′t(θ)

∥∥∥∥∥+ c sup
θ∈Θ

∥∥∥∥∥∂q̂(2)t (θ)

∂θ(2)
− ∂q

(2)
t (θ)

∂θ(2)

∥∥∥∥∥
+ cc̃

S∑
s=1

sup
θ∈Θ

∥∥∥∥∥∂q̂(3)t (θ)

∂gs
ĝs ′t (θ)− ∂q

(3)
t (θ)

∂gs
gst
′(θ)

∥∥∥∥∥
+ c sup

θ∈Θ

∥∥∥∥∥∂q̂(4)t (θ)

∂θ(4)
− ∂q

(4)
t (θ)

∂θ(4)

∥∥∥∥∥ . (D.36)

By Lemma TA.5, Propositions 1 and 2 and Lemma TA.14 in Blasques et al. (2022) we obtain

that each term in (D.36) converges e.a.s. to 0, hence (D.35) follows. ■

Lemma TA.9. Let Assumptions 1–3 hold. Then

sup
θ∈Θ

∥AT (θ)−A(θ)∥ a.s.−−→ 0, as T → ∞,

where

A(θ) =


E[∇θ(1)θ(1)q

(1)
t (θ)] 0 0 0

E[∇θ(2)θ(1)q
(2)
t (θ)] E[∇θ(2)θ(2)q

(2)
t (θ)] 0 0

E[∇θ(3)θ(1)q
(3)
t (θ)] E[∇θ(3)θ(2)q

(3)
t (θ)] E[∇θ(3)θ(3)q

(3)
t (θ)] 0

E[∇θ(4)θ(1)q
(4)
t (θ)] E[∇θ(4)θ(2)q

(4)
t (θ)] E[∇θ(4)θ(3)q

(4)
t (θ)] E[∇θ(4)θ(4)q

(4)
t (θ)]

 ,

and AT (θ) :=
1
TAt(θ), with

At(θ) :=


∇θ(1)θ(1)q

(1)
t (θ(1)) 0 0 0

∇θ(2)θ(1)q
(2)
t (θ(2:1)) ∇θ(2)θ(2)q

(2)
t (θ(2:1)) 0 0

∇θ(3)θ(1)q
(3)
t (θ(3:1)) ∇θ(3)θ(2)q

(3)
t (θ(3:1)) ∇θ(3)θ(3)q

(3)
t (θ(3:1)) 0

∇θ(4)θ(1)q
(4)
t (θ) ∇θ(4)θ(2)q

(4)
t (θ) ∇θ(4)θ(3)q

(4)
t (θ) ∇θ(4)θ(4)q

(4)
t (θ)

 .
(D.37)

with the derivatives expressions presented in equations (D.13)–(D.22).

Proof. The uniform convergence of the Hessian is obtained by the uniform law of large numbers

in Rao (1962). Below, we verify the conditions of the theorem.

1. by Krengel’s theorem {At(θ)}t∈Z is an SE sequence since At(·) is continuous on the SE

sequences. The latter follows by Assumption 2, Propositions 1 and 2, and Corollary

TA.3 which ensure that the sequences {yt}t∈Z, {ft(·)}t∈Z, {f ′t(·)}t∈Z, {f ′′t (·)}t∈Z, {gt(·)}t∈Z,
{g′t(·)}t∈Z and {g′′t (·)}t∈Z are SE, which are also jointly SE.
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2. To establish that E supθ∈Θ ∥At(θ)∥ <∞, by Loève’s cr inequality we have

E sup
θ∈Θ

∥At(θ)∥ = E sup
θ∈Θ

(
4∑

i=1

∇θ(i)θ(i)q
(i)
t (θ(i:1))⊤∇θ(i)θ(i)q

(i)
t (θ(i:1))

)1/2

≤ c

4∑
i=1

E sup
θ∈Θ

∥∥∥∇θ(i)θ(i)q
(i)
t (θ(i:1))

∥∥∥ . (D.38)

Let us consider the Hessians of each step.

Step 1. By norm subadditivity and Cauchy-Schwartz inequality

E sup
θ∈Θ

∥∥∥∇θ(1)θ(1)q
(1)
t (θ)

∥∥∥ = E sup
θ∈Θ

∥∥∥∥∥∂2q(1)t (θ)

∂f2
f ′t(θ)f

′
t(θ)

⊤ +
∂q

(1)
t (θ)

∂f
f ′′t (θ)

∥∥∥∥∥
≤ E sup

θ∈Θ

∥∥∥∥∥∂2q(1)t (θ)

∂f2
f ′t(θ)f

′
t(θ)

⊤

∥∥∥∥∥+ E sup
θ∈Θ

∥∥∥∥∥∂q(1)t (θ)

∂f
f ′′t (θ)

∥∥∥∥∥
≤ 2E sup

θ∈Θ

∥∥∥f ′t(θ)f ′t(θ)⊤∥∥∥+
E sup

θ∈Θ

∣∣∣∣∣∂q(1)t (θ)

∂f

∣∣∣∣∣
2

E sup
θ∈Θ

∥∥f ′′t (θ)∥∥2
1/2

<∞.

Step 3. By norm subadditivity, Cauchy-Schwartz inequality, and Loève’s cr inequality, we

obtain

E sup
θ∈Θ

∥∥∥∇θ(3)θ(3)q
(3)
t (θ)

∥∥∥ ≤ c
S∑

s=1

E sup
θ∈Θ

∥∥∥∇
θ
(3)
s θ

(3)
s
q
(3)
t (θ)

∥∥∥ =

c
S∑

s=1

E sup
θ∈Θ

∥∥∥∥∥∂2q(3)t (θ)

∂gs2
gst
′(θ)gst

′(θ)⊤ +
∂q

(3)
t (θ)

∂gs
gst
′′(θ)

∥∥∥∥∥
≤c

S∑
s=1

2E sup
θ∈Θ

∥∥∥gst ′(θ)gst ′(θ)⊤∥∥∥+
E sup

θ∈Θ

∣∣∣∣∣∂q(3)t (θ)

∂gs

∣∣∣∣∣
2

E sup
θ∈Θ

∥∥gst ′′(θ)∥∥2
1/2

 <∞,

where in the last lines of Steps 1 and 3 we used (D.23). The last claim for each of the steps is

obtained by Lemma TA.5 and Corollary TA.3 since together they ensure that all the terms are

uniformly bounded. Particularly, by Lemma TA.5

∣∣∣∣∂q(1)t (θ)
∂f

∣∣∣∣2 and

∣∣∣∣∂q(3)t (θ)
∂gs

∣∣∣∣2 are bounded, while by

Corollary TA.3 Esupθ∈Θ∥f ′t(θ)∥2 < ∞ and Esupθ∈Θ∥f ′′t (θ)∥2 < ∞, Esupθ∈Θ∥gt′(θ)∥2 < ∞ and

Esupθ∈Θ∥gt′′(θ)∥2 <∞.

Steps 2 and 4. From (D.15) and (D.22)

E sup
θ∈Θ

∥∥∥∇θ(2)θ(2)q
(2)
t (θ)

∥∥∥ = E sup
θ∈Θ

∥∥2(ft(θ))2IN∥∥ <∞,

E sup
θ∈Θ

∥∥∥∇θ(4)θ(4)q
(4)
t (θ)

∥∥∥ ≤ c
S∑

s=1

E sup
θ∈Θ

∥∥2(gst (θ))2INs

∥∥ <∞,
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where in the second line we apply Loève’s cr inequality and exploit the definition of Frobenius

norm. The final claim in both lines follows by Proposition 1 and 2 given Assumption 3.a.

Therefore, all the terms in (D.38) are finite. Hence, we conclude E supθ∈Θ ∥At(θ)∥ <∞. ■

E Additional Monte Carlo results

In this section we provide additional details on the Monte Carlo simulations.

In Table E.10, we provide the dynamic patters for ft and gt used in the simulation

design for the analysis of the forecasting group conditional mean.

Dynamics Common Group-specific

AR(1)+AR(1) κf̃t + ξt+1 ψ⊤g̃t + ηt+1

AR(1)+Break κf̃t + ξt+1 a⋆s1(t < Tbreaks) + b⋆s1(t ≥ Tbreaks)
Sine+AR(1) 1.5 sin (2πt/100) ψ⊤g̃t + ηt+1

Sine+Break 1.5 sin (2πt/100) as1(t < Tbreaks) + bs1(t ≥ Tbreaks)
Fast sine + Steps 1.5 sin (2πt/20) as1(sin (2πt/Ts) ≤ 0) + bs1(sin (2πt/Ts) > 0)
Slow sine + Ramp 1.5 sin (2πt/250) mod (t/Tramps)

Table E.10: Simulation patterns for ft and gt. The moment of break Tbreaks , the period
of steps Ts, the ramp period Tramps , the size of the break and steps are different between groups
and are randomly chosen: Tbreaks ∼ U([0, T ]), Ts ∼ U([100, 250]), Tramps ∼ U([100, 200]), as ∼
U([0, 0.2]), bs ∼ U([1.5, 2]), a⋆s = 1.5as, b

⋆
s = 1.5bs, for s = 1, . . . , S. The parameters for the AR(1)

processes are the same as for the main DGP.

Furthermore, we analyze the filtering of the common and group-specific factors sepa-

rately. We consider different number of groups S and different values of the parameters

for the group specific factors, ψs. To assess the factors’ estimates we regress the simulated

factors on the estimated ones and compute the R2 of this regression. For simplicity, in these

experiments, we set ψ1 = · · · = ψS meaning that the group-specific factors have the same

persistency. The results for the common factor are provided in Figure E.4. We notice that

the R2 for the common factor is high when the number of groups S is large. In this case,

the value of the parameter ψs does not have any effect on the R2. In contrast, when the

number of groups S is small the value of ψs plays a role. Particularly, the R2 increases with

a decrease in ψs. This confirms that when the conditional expectation of the group-specific
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factor is negligible the predicted common factor is closer to the true one which is in line

with our discussion in Section 2.5. The results for the group-specific factor reveal that

the R2 increases with the increase in ψs and number of groups S (Figure E.5). The latter

can be explained by the fact that when S is large the prediction for the common factors is

more accurate which has a consequent effect on the estimation of the group-specific factors.

Overall, if the interest is in predicting accurately common and group-specific factors rather

than the conditional group mean, the number of groups S should be large.
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Figure E.4: Kernel density plot of the R2 of the regression of the simulated
common factor f̃t on the estimated factor f̂t for different number of groups S
and different values of the parameter ψs. The results are based on 1000 Monte Carlo
simulations for time series from DGP (4) with T = 300 and Ns = 10.

Finally, in Figure E.6, we present additional results for the out-of-sample analysis for

the setup outlined in Section 3.3. We find that the range of the MSEs is smaller for our

model for the one-step-ahead forecasts and the difference becomes smaller once the forecast

horizon increases.
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Figure E.5: Kernel density of the R2 of the regression of g̃1t on ĝ1t . The results for
other group-specific factors are the same and are omitted here. For further details, we refer to
Figure E.4.
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Figure E.6: Average MSE of the observation driven, PC1, PC2, and PC3 models
for the different forecast horizons and different sizes of the rolling windows. For
further explanations, we refer to Table 1.

32



References

Al-Osh, M. (1989). A dynamic linear model approach for disaggregating time series data. Journal

of Forecasting , 8 (2), 85–96.

Blasques, F., van Brummelen, J., Koopman, S. J., & Lucas, A. (2022). Maximum likelihood

estimation for score-driven models. Journal of Econometrics, 227 (2), 325–346.

Davidson, J. (1994). Stochastic limit theory: An introduction for econometricians. OUP Oxford.

Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions:

Measuring the connectedness of financial firms. Journal of Econometrics, 182 (1), 119–134.

Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear

multivariate models. Journal of Econometrics, 74 (1), 119–147.

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.

Pötscher, B. M., & Prucha, I. (1997). Dynamic nonlinear econometric models: Asymptotic theory.

Springer Science & Business Media.

Rao, R. R. (1962). Relations between weak and uniform convergence of measures with applica-

tions. The Annals of Mathematical Statistics, 659–680.

Silva, J. S., & Cardoso, F. (2001). The Chow-Lin method using dynamic models. Economic

Modelling , 18 (2), 269–280.

Straumann, D., & Mikosch, T. (2006). Quasi-maximum-likelihood estimation in conditionally het-

eroscedastic time series: a stochastic recurrence equations approach. The Annals of Statistics,

34 (5), 2449–2495.

White, H. (1996). Estimation, inference and specification analysis (No. 22). Cambridge university

press.

33


	Introduction
	The Model
	Dynamic observation-driven multilevel factors
	Estimation procedure
	Forecasts, impulse response functions and network analysis
	Stochastic properties of the observation-driven filters
	Asymptotic properties of the estimators

	Monte Carlo study
	Static parameters
	Filtering
	Out-of-sample forecast performance

	IP and Non-IP sectors in US Economic Activity
	Data description
	Common factor estimates
	Granularity and network analysis

	Conclusion
	Data
	Additional empirical results
	Factors and loadings
	Model specification

	Forecasts, IRFs and connectedness
	Technical Appendix
	Derivatives
	Proofs and other technical lemmas

	Additional Monte Carlo results

