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Abstract

This paper addresses the poor performance of the Expectation-Maximization

(EM) algorithm in the estimation of low-noise dynamic factor models, commonly

used in macroeconomic forecasting and nowcasting. We show analytically and in

Monte Carlo simulations how the EM algorithm stagnates in a low-noise environ-

ment, leading to inaccurate estimates of factor loadings and latent factors. An

adaptive version of EM considerably speeds up convergence, producing substantial

improvements in estimation accuracy. Modestly increasing the noise level also ac-

celerates convergence. A nowcasting exercise of euro area GDP growth shows gains

up to 34% by using adaptive EM relative to the usual EM.
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1 Introduction

Dynamic factor models have become a powerful tool for a wide range of macroeconomic

and financial applications in data-rich environments, ranging from forecasting (Stock

and Watson, 1999, 2002a,b; Ludvigson and Ng, 2009; Neely et al., 2014) and nowcasting

(Giannone et al., 2008; Bańbura et al., 2011) to the construction of economic and financial

activity indices (Stock and Watson, 1989, 1991; Aruoba et al., 2009; Brave and Butters,

2011) and uncertainty indices (Jurado et al., 2015; Scotti, 2016). In particular, dynamic

factor models facilitate a straightforward approach to summarize the (co)variation of a

large number of observed time series variables into a few latent common factors (see,

for example, Poncela et al., 2021, for a recent survey on factor extraction in dynamic

factor models). However, the number of parameters in the model becomes excessively

large when the number of time series included increases.1 This implies that conventional

estimation based on direct numerical optimization of the likelihood in combination with

the Kalman filter (see, among others, Engle and Watson, 1981; Stock and Watson, 1989)

becomes unfeasible for large-scale dynamic factor models.

To overcome this issue, the Expectation-Maximization (EM) algorithm of Dempster

et al. (1977) has become a popular alternative estimation approach in high-dimensional

settings (see, among others, Quah and Sargent, 1993; Doz et al., 2012; Barigozzi and

Luciani, 2022).2 The EM algorithm has initially been adapted for dynamic factor models

in state-space form by Shumway and Stoffer (1982) and Watson and Engle (1983). More

recently, Bańbura and Modugno (2014) show that the EM algorithm is also easily modified

to include serially correlated idiosyncratic components. Their approach even remains

applicable under arbitrary patterns of missing data, which is particularly relevant for

forecasting and nowcasting applications in which the included time series typically have

different publication delays (the so-called ‘ragged edge’), different sampling frequencies

and different initial availability.

More specifically, Bańbura and Modugno (2014) treat the serially correlated idiosyn-

1The number of parameters increases linearly with the number of time series for an exact factor model
(with cross-sectionally uncorrelated idiosyncratic components) and quadratically for an approximate
factor model (with cross-sectionally correlated idiosyncratic components).

2Naturally, several alternative solutions have been proposed to deal with high-dimensional data in
dynamic factor models (see, among others, Doz et al., 2011; Jungbacker and Koopman, 2015; Bräuning
and Koopman, 2014). For a recent survey on high-dimensional dynamic factor models, see Lippi et al.
(2022).
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cratic components as additional latent states and introduce an artificial error term with

small variance in the measurement equation. The latter is necessary in order to apply

the EM algorithm in its usual form. Yet, it has been shown that the EM algorithm

becomes inefficient in such a low-noise environment (Bermond and Cardoso, 1999; Pe-

tersen et al., 2005), causing extremely slow convergence, especially for the factor loading

estimates. Unfortunately, this issue seems to have been overlooked by Bańbura and Mod-

ugno (2014) and subsequent applications of their approach (see, among others, Coroneo

et al., 2016; Scotti, 2016; Alvarez et al., 2016; Bok et al., 2018; Barigozzi and Luciani,

2019; Cascaldi-Garcia et al., 2021; Caruso and Coroneo, 2023). Moreover, these low-noise

issues could also arise more naturally whenever the series exhibit a strong factor struc-

ture with a high signal-to-noise ratio. An example of this situation concerns the term

structure of interest rates, for which three factors explain almost all variation (Litterman

and Scheinkman, 1991).

In this paper, we address this slow EM convergence issue in low-noise dynamic factor

models in three different ways. First, we show both analytically and in Monte Carlo

simulations how the EM algorithm fails in the estimation of the factor loadings. We

demonstrate that the key issue concerns the learning rate in the M-step for the factor

loadings, which is proportional to the variance of the error term in the measurement equa-

tion. Hence, low noise leads to slow convergence of the EM algorithm in the estimation of

these loadings. Subsequently, our simulation study shows that the smoothed factors and

other parameter estimates are also negatively affected by this slow convergence. We find

that this failure of EM under low noise persists for different sample sizes and different

model (mis)specifications.

Second, we demonstrate that the Adaptive Overrelaxed EM (AEM) algorithm of

Salakhutdinov and Roweis (2003) is able to deal with these low-noise issues, as suggested

by Petersen et al. (2005). The key feature of the AEM algorithm is that it boosts the

parameter updates and thereby counters the low variance of the error term. Moreover,

the AEM algorithm is a simple and straightforward extension of the conventional EM

algorithm, making it just as easy to implement. Our Monte Carlo simulations show that

the speed of convergence of the AEM algorithm is much faster than of the EM algorithm,

with an average improvement in root mean squared error (RMSE) per iteration that is

up to 883 times higher. Consequently, the AEM algorithm produces substantially more
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accurate factor loading estimates than the EM algorithm with up to 57% improvement

in average RMSE. Furthermore, the smoothed factors based on the AEM algorithm are

a better approximation of the true factors compared to standard EM, with an accuracy

gain in average trace statistic of up to 23%. The other parameters are also more accu-

rately estimated with AEM compared to EM, albeit to a lesser extent. In the Bańbura

and Modugno (2014) approach, the variance of the artificial error term is treated as a

hyperparameter, which ex ante is fixed typically at a very small value (such as 10−4).

We demonstrate that carefully choosing a somewhat larger but still modest level of ar-

tificial noise (for example, setting the variance equal to 10−2) considerably speeds up

convergence, improving the accuracy of both EM and AEM. Nonetheless, the adaptive

augmentation of the EM algorithm remains complementary to the optimal level of noise

as it leads to faster convergence for all noise levels than the standard EM algorithm.

Third, we conduct an empirical nowcasting exercise of euro area GDP growth based

on a mixed-frequency dynamic factor model akin to Mariano and Murasawa (2003),

which we estimate with both the EM and AEM algorithms. We find that the AEM

algorithm is able to reach much higher log-likelihood values in much less iterations than

EM, reconfirming the slower convergence of the standard algorithm. In addition, AEM

produces more accurate nowcasts with improvements in root mean squared forecast error

(RMSFE) up to 34% relative to the baseline EM.

Besides the Bańbura and Modugno (2014) approach, there exists at least one other

way to estimate dynamic factor models with serially correlated idiosyncratic components.

Specifically, Watson and Engle (1983) and Reis and Watson (2010) propose to include

lags of the observed variables and latent factors in the measurement equation, which can

then be estimated with the Expectation Conditional Maximization algorithm of Meng

and Rubin (1993). The upside of this implementation is that its state dimension does

not increase with N . By contrast, this dimension does increase in the framework of

Bańbura and Modugno (2014), slowing down the filtering/smoothing recursions for large

N . However, the downside of this alternative approach is that it is not directly compatible

with arbitrary patterns of missing data (Jungbacker et al., 2011; Bańbura and Modugno,

2014). Although Jungbacker et al. (2011) propose an alternative state-space form to deal

with missing data to overcome this deficiency, this comes at the cost of more complex

time-varying state-space dimensions and system matrices, which are rather cumbersome
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to deal with in the EM algorithm.3

Our work also relates to the literature that extends the basic EM to speed up (global)

convergence (see, among others, Liu et al., 1998; Huang et al., 2005; Varadhan and

Roland, 2008; He and Liu, 2012). Notably, Osoba et al. (2013) derive the Noisy EM

algorithm and show that careful additive and arbitrary noise injection could speed up

the EM convergence, which corroborates our findings that modest noise levels speed up

the (A)EM convergence. Nevertheless, our paper focuses on a specific case of slow EM

convergence, namely the one under a low-noise environment. Therefore, we restrict the

paper to the AEM algorithm of Salakhutdinov and Roweis (2003) only, as this adaptation

is able to naturally counter the slow EM convergence under this specific noise setting.

The outline of the paper is as follows. Section 2 describes the low-noise dynamic factor

model and its estimation based on the EM and AEM algorithms. Section 3 displays

the Monte Carlo simulation results to assess the effect of low noise on the estimation

performance. Section 4 shows the results related to the empirical nowcasting exercise.

Section 5 summarizes our main conclusions.

2 Estimation of low-noise dynamic factor models

2.1 Low-noise dynamic factor model

Let yt = (y1,t, . . . , yN,t)
′ denote an N -dimensional vector with observed time series that is

demeaned to have mean zero. We assume that yt follows the factor model representation

yt = Λft + εt, (1)

for t = 1, . . . , T , where ft = (f1,t, . . . , fK,t)
′ is a K×1 vector with latent common factors,

Λ is an N × K factor loading matrix and εt = (ε1,t, . . . , εN,t)
′ is an N × 1 vector with

idiosyncratic components that are uncorrelated with ft at all leads and lags. For now, we

assume that εt ∼ i.i.d. N (0,Ω) with Ω being a diagonal matrix, meaning that the εt’s

are cross-sectionally and serially uncorrelated and thus that yt follows an exact factor

model structure. Moreover, we assume that ft follows a stationary vector autoregression

3See Grassi et al. (2015) for an empirical implementation and Holmes (2018) for more general deriva-
tions of the EM algorithm under deterministic time-varying parameter system matrices.
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(VAR) of a finite order p, that is,

ft = Φ1ft−1 + . . .+Φpft−p + υt,

where Φ1, . . . ,Φp are K ×K matrices with VAR coefficients. We assume that the state

disturbance vector υt ∼ i.i.d. N (0, IK) with IK being a K ×K identity matrix, where

this covariance matrix restriction is only a normalization condition (see, for example,

Doz et al., 2012). For simplicity, we set p = 1, but the case of p > 1 can easily be

accommodated.

The exact dynamic factor model as specified above assumes that all cross-sectional

dependence and time-series dependence in yt is captured by the common factors ft. How-

ever, this assumption might be too restrictive and could be relaxed in two possible ways.

First, allowing for cross-sectional dependence in εt results in a so-called approximate fac-

tor model (see, for example, Chamberlain and Rothschild, 1983; Fan et al., 2013; Bai and

Liao, 2016) and could lead to a more efficient estimator of the latent factors (Barigozzi

and Luciani, 2022).4 Yet, estimating the full idiosyncratic covariance matrix becomes

problematic for large N (Poncela et al., 2021). In fact, no version of the EM algorithm

currently exists that is able to do so in a high-dimensional setting (Barigozzi and Lu-

ciani, 2022), making this extension not readily available to implement. Also, Luciani

(2014) empirically shows that accounting for cross-sectional correlation does not lead to

improvements in forecasting accuracy. Second, allowing for serial correlation in εt could

lead to more efficient estimators of the factor loadings (Bai and Li, 2016; Barigozzi and

Luciani, 2022). Moreover, modelling the dynamics in the idiosyncratic components could

be beneficial in certain applications such as in the construction of coincident economic

indicators (Stock and Watson, 1989, 1991; Mariano and Murasawa, 2003) and in fore-

casting and nowcasting (Stock and Watson, 2002b; Poncela et al., 2020), especially for

ragged-edge data (Pinheiro et al., 2013; Bańbura and Modugno, 2014).

To explicitly model the autocorrelation of the idiosyncratic components, Bańbura and

Modugno (2014) propose to treat the vector εt as additional latent state and to introduce

an artificial noise term et with small variance.5 Consequently, measurement equation (1)

4Doz et al. (2012) show that, under weak cross-sectional and time-series correlation, the factors can
still be consistently estimated with EM in an exact dynamic factor model for N,T → ∞.

5This approach is also used by Barigozzi and Luciani (2019) to deal with nonstationary idiosyncratic
components in a nonstationary dynamic factor model.
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can be rewritten as

yt =
(
Λ IN

)ft

εt

+ et, (2)

where et ∼ i.i.d. N (0, κIN) with κ a very small pre-fixed number (say, 10−4). We

continue to assume that ft follows a stationary VAR(1) process and additionally that each

element of εt follows a stationary univariate AR(1) process. The dynamics of f̃t = (ft, εt)
′

thus are given by ft

εt

 =

Φ 0

0 Ψ

ft−1

εt−1

+

υt

νt

 , (3)

where Ψ = diag(ψ1, . . . , ψN) and we assume that the error terms υt ∼ i.i.d. N (0, IK)

and νt ∼ i.i.d. N (0,Σ) are uncorrelated, with Σ = diag(σ2
1, . . . , σ

2
N).

The reason that Bańbura and Modugno (2014) introduce the artificial error term et is

to be able to properly define the complete data log-likelihood, because otherwise it is not

possible to apply the EM algorithm in its usual form. However, in the next subsection, we

show that this low-noise specification has severe implications for the convergence speed

of the EM algorithm in the estimation of the factor loading matrix Λ.

2.2 Failure of EM in a low-noise environment

Given measurement equation (2) and state equation (3), we want to estimate the unknown

parameters, collected in Θ = {Λ,Φ,Ψ ,Σ}, and the latent states f̃t. Due to the fact

that f̃t is unobserved, it is generally not possible to find closed-form estimators for the

parameters in Θ. At the same time, direct numerical optimization of the likelihood

is computationally cumbersome, particularly for large N due to the excessive number

of parameters. To handle this issue, the Expectation-Maximization (EM) algorithm of

Dempster et al. (1977) has become a popular alternative estimation method, which has

been adapted by Shumway and Stoffer (1982) and Watson and Engle (1983) for dynamic

factor models in state-space form. The EM algorithm focuses on the joint log-likelihood

of the complete data f̃t and yt and then iterates between estimating the latent states

conditional on Θ (E-step) and estimating the parameters conditional on the states (M-
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step).

More formally, the complete data log-likelihood is denoted as ℓ(F̃ ,Y ;Θ), where F̃ =

(f̃1, . . . , f̃T )
′ and Y = (y1, . . . ,yT )

′. The E-step is conducted by taking the expectation

of the complete data log-likelihood conditional on the observed data and based on the

j-th iteration of the parameter estimates, denoted as Θj, that is,

L(Θ;Θj) = EΘj

(
ℓ(F̃ ,Y ;Θ)

∣∣Y ), (4)

which can be computed based on a pass of the Kalman smoother (see, for example,

Shumway and Stoffer, 1982). Next, to update the parameter estimates, the M-step is

conducted by maximizing the expected complete data log-likelihood with respect to Θ,

that is,

Θj+1 = argmax
Θ

L
(
Θ;Θj

)
. (5)

Analytic solutions to the maximization problem in equation (5) are given in Shumway

and Stoffer (1982) and Watson and Engle (1983) for the system matrices in measurement

equation (2) and a state equation corresponding to a VAR(1) process. Hence, by iterating

between the E- and M-steps, we are able to estimate Θ and F̃ , where Dempster et al.

(1977) show that, under some regularity conditions, the EM algorithm converges towards

a local maximum of the likelihood.

Based on the maximization in equation (5), we can derive the M-step of Λ as

Λj+1 =

(
T∑
t=1

EΘj

(
(yt − εt)f

′
t

∣∣Y ))( T∑
t=1

EΘj

(
ftf

′
t

∣∣Y ))−1

, (6)

where EΘj
(ft|Y ), EΘj

(εtf
′
t |Y ) and EΘj

(ftf
′
t |Y ) can be obtained with the Kalman

smoother. Similar expressions can be obtained for the other system matrices in the

state-space representation of the dynamic factor model (see, for example, Bańbura and

Modugno, 2014). Plugging in measurement equation (2) for the j-th EM parameter

iteration, we obtain

Λj+1 = Λj +

(
T∑
t=1

EΘj

(
etf

′
t

∣∣Y ))( T∑
t=1

EΘj

(
ftf

′
t

∣∣Y ))−1

.
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Consequently, by decreasing the variance of et ∼ N (0, κIN), that is, by letting κ → 0,

we get that Λj+1 → Λj. More formally, Bermond and Cardoso (1999) and Petersen et al.

(2005) show that

Λj+1 = Λj + κΛ̃j +O(κ4), (7)

where Λ̃j is the first-order correction term, see the Technical Appendix of Petersen et al.

(2005) for more details. In other words, the learning rate of the M-step for the factor

loadings Λ is proportional to the noise level κ of the artificial error term. Hence, the con-

vergence of the EM algorithm slows down for small values of κ and requires an excessive

number of iterations in order to converge.6

2.3 Adaptive EM in a low-noise environment

To speed up the EM convergence in the low-noise setting, we advocate to employ the

Adaptive Overrelaxed EM (AEM) algorithm of Salakhutdinov and Roweis (2003), fol-

lowing the suggestion of Petersen et al. (2005). The idea behind this AEM algorithm is

to boost the parameter updates in iteration j + 1 by an adaptive factor ηj. Specifically,

the AEM algorithm employs the usual E- and M-steps as given in equations (4) and (5).

However, after obtaining the factor loading estimates Λj+1 with (6), these are further

updated using the adaptive scheme

ΛAEM
j+1 = ΛAEM

j + ηj

(
Λj+1 −ΛAEM

j

)
. (8)

Combining this with equation (7), which implies that Λj+1 − ΛAEM
j can be written as

κΛ̃AEM
j +O(κ4), we get that

ΛAEM
j+1 = ΛAEM

j + ηjκΛ̃
AEM
j +O(κ4).

6Indeed, Coroneo et al. (2016) find that using initial or final estimates gives similar results, which
they attribute to the fact that the two-step approach of Doz et al. (2011), used for initialization, and the
maximum likelihood approach have similar properties under a strong factor structure (see, for example,
Doz et al., 2011, 2012). We alternatively argue that this could be due to the low-noise specification in
which a large number of iterations only changes the estimates by a very small margin. In fact, if the used
tolerance level ϵ is too large, then the EM algorithm stops after only a few iterations as the changes are
too small, rather than that the EM algorithm reaches a local optimum (see, for example, Alvarez et al.,
2016, who indicate convergence after only 3-4 iterations).
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This expression shows that an adaptive factor ηj > 1 is able to directly counter the low-

noise level κ, increasing the learning rate relative to the conventional EM and thereby

potentially speeding up convergence. As the other parameters are all part of the state

equation, their updates are not directly affected by the low-noise setting in the measure-

ment equation. Therefore, we do not apply this boosted M-step to those parameters.

The choice of ηj in equation (8) determines how much the learning rate of the M-

step is boosted, where ηj = 1 for all j returns the standard EM algorithm. Although

there exists an optimal boosting factor η∗j with regard to the global rate of convergence

of the algorithm, it is computationally difficult to obtain (Salakhutdinov and Roweis,

2003). Instead, Salakhutdinov and Roweis (2003) propose to set ηj+1 = αηj to gradually

increase the boosting factor, where they set α = 1.1 and initialize the boosting factor with

η1 = 1.7 The only downside of using an adaptive learning rate with this specification is

that an increase in the likelihood of Y is not guaranteed anymore. In case the likelihood

does not improve in iteration j + 1, Salakhutdinov and Roweis (2003) propose to omit

the adaptive update in (8) and set ΛAEM
j+1 = Λj+1 as obtained from the conventional

M-step in equation (6). Due to the low-noise environment Λj+1 is close to ΛAEM
j (see

again equation (7)) and satisfies monotonic increments of the likelihood. In addition, the

boosting factor is re-set to ηj+1 = 1, after which the algorithm continues.8

3 Monte Carlo simulations

3.1 Simulation set-up

To assess the effect of the low-noise specification on factor and parameter estimation based

on the (A)EM algorithm, we conduct a Monte Carlo simulation in a similar fashion as

Doz et al. (2012) and Bańbura and Modugno (2014). We simulate data from the following

dynamic factor set-up:

yt = Λft + εt,

ft = Φft−1 + υt, υt ∼ i.i.d. N (0, IK),

7Salakhutdinov and Roweis (2003) did not find their results to be very sensitive to the setting of α,
as long as it is is close to but greater than unity.

8Alternatively, Yu (2012) show how to restrict ηj such that monotonic convergence of the likelihood
is ensured. However, their restriction is too conservative in our setting as we often need ηj ≫ 1. Hence,
in the low-noise setting it is more beneficial to monitor the likelihood value over the iterations.
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εt = Ψεt−1 + νt, νt ∼ i.i.d. N (0,Σ),

for t = 1, . . . , T , with

Λi,j ∼ i.i.d. N (0, 1), i = 1, . . . N, j = 1, . . . , K,

Φi,j =

ϕ if i = j

0 if i ̸= j,

i, j = 1, . . . , K,

Ψi,j =

ψ if i = j

0 if i ̸= j,

i, j = 1, . . . , N,

Σi,j = τ |i−j|(1− ψ2)
√
γiγj, i, j = 1, . . . , N,

γi =
βi

1− βi

1

1− ϕ2

R∑
j=1

Λ2
i,j, βi ∼ i.i.d. U([u, 1− u]),

where the subscript i, j denotes the (i, j)-th element of the corresponding matrix. The

specifications of Φi,j and Ψi,j imply that both the common factors as well as the id-

iosyncratic components follow univariate AR(1) processes, with persistence ϕ and ψ,

respectively. The parameter τ governs the degree of cross-sectional dependence of the

idiosyncratic components, where τ = 0 corresponds to an exact factor model and τ > 0

to an approximate factor model. Moreover, βi governs the inverse signal-to-noise ratio

of variable i, that is, it is equal to the variance of εi,t divided by the variance of yi,t.

For our baseline simulation experiment, we set K = 1, ϕ = 0.7, ψ = 0.5, τ = 0 and

u = 0.1. Furthermore, we consider cross-sectional dimensions N = 10, 20, 50 and sample

sizes T = 50, 100.9

Given the generated data, we estimate the exact low-noise dynamic factor model given

in equations (2) and (3) with the noise parameter fixed at κ = 10−4, following the value

that is used in Bok et al. (2018).10 To determine the convergence of the EM algorithm,

the stopping rule of Doz et al. (2012) enjoys substantial popularity, where, for a maximum

9We restrict the simulation set-up to max T = 100 and N = 50 for computational considerations.
Because the state dimension increases with N , the filtering/smoothing recursions slow down and the
simulations become computationally cumbersome for larger cross-sectional dimensions (see, for instance,
Jungbacker et al., 2011).

10The value is not explicitly mentioned in the paper, but is given in their code (see https://github.
com/FRBNY-TimeSeriesAnalysis/Nowcasting).
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number of iterations J , the algorithm is stopped at the first iteration j < J for which

|ℓ(Y ;Θj)− ℓ(Y ;Θj−1)|
1
2
|ℓ(Y ;Θj) + ℓ(Y ;Θj−1)|

< ϵ, (9)

where ℓ(Y ;Θj) is the prediction error log-likelihood of Y computed at the j-th parameter

iteration and ϵ is a pre-specified small tolerance level, which Doz et al. (2012) set equal

to 10−4. However, in our simulation setting, we simply conduct J = 1, 000 iterations for

both the EM and AEM algorithms to make our results insensitive to a specific tolerance

level ϵ in the stopping rule.11 We initialize the (A)EM algorithm with the two-step (2S)

approach of Doz et al. (2012). Specifically, this 2S approach first estimates the loadings

and common factors by means of principal component analysis, after which the idiosyn-

cratic components are obtained as the residuals. The parameters in the state equation

are estimated with OLS by using the factor and idiosyncratic component estimates (as-

suming they are the truth). Then, given the parameter estimates, a single pass of the

Kalman smoother is used to get the final estimates of the latent factors and idiosyncratic

components. For completeness, we also include this 2S approach in the simulation results.

To measure the precision of the parameter estimates in each Monte Carlo run, we

follow Despois and Doz (2023) and compute the root mean squared errors (RMSE) for

the different estimation methods x ∈ {2S,EM,AEM}, that is,

RMSEx
Λ =

√√√√ 1

NK

N∑
i=1

K∑
j=1

(Λi,j − Λ̂xi,j)
2,

RMSEx
ϕ =

√√√√ 1

K

K∑
i=1

(ϕ− ϕ̂xi )
2,

RMSEx
ψ =

√√√√ 1

N

N∑
i=1

(ψ − ψ̂xi )
2,

RMSEx
Σ =

√√√√ 1

N

N∑
i=1

(Σi,i − Σ̂x
i,i)

2,

11Indeed, the stopping rule and tolerance level of Doz et al. (2012) employed by Bańbura and Modugno
(2014) indicate convergence after only a few iterations, while it is clear from equation (7) that we need
a substantial number of iterations for small κ.
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where a lower RMSE indicates a more accurate estimation method.12 To measure the

precision of the common factor estimates in each Monte Carlo run, we follow Doz et al.

(2012) and Bańbura and Modugno (2014) by using the trace R2 of a (multivariate)

regression of F̂x on F as proposed by Stock and Watson (2002a), that is,

R2
F,x =

Tr(F ′F̂x(F̂
′
xF̂x)

−1F̂ ′
xF )

Tr(F ′F )
,

where F̂x is obtained by the Kalman smoother for x ∈ {2S,EM,AEM} and a value of

R2
F,x closer to one indicates a better approximation of the true factors. In a similar fashion,

we compute the trace statistics for the idiosyncratic component estimates, resulting in

R2
E,x for x ∈ {2S,EM,AEM}.

3.2 Simulation results

Table 1 shows the average RMSEs for the AEM parameter estimates and the average trace

statistics for the AEM factor and idiosyncratic component estimates based on 500 Monte

Carlo replications. Moreover, we show the relative RMSEs and relative trace statistics

of the AEM algorithm compared to the ones of the 2S approach and the standard EM

algorithm. A value smaller than one for the relative RMSEs indicates more accurate

parameter estimates for the AEM algorithm compared to these benchmarks. Likewise, a

value larger than one for the relative R2’s indicates more accurate factor and idiosyncratic

component estimates for the AEM algorithm.

We find that the AEM algorithm produces more accurate estimates of the factor

loadings than the standard EM algorithm for all sample sizes, with reductions in RMSEs

ranging from a fairly modest 11% for N = 50 and T = 100 to an impressive 57% for N =

10 and T = 100. Overall, we see that larger cross-sections worsen the absolute RMSEs of

the loading estimates from the AEM algorithm and make the outperformance compared

to the EM algorithm less pronounced. This is due to the fact that the improvements in

AEM accuracy over the iterations become slower for larger cross-sections, requiring more

iterations to obtain convergence (see, for example, the convergence plots of the average

RMSEs of the loadings over the J = 1, 000 iterations in Figure 1). Nonetheless, the

12Since F and Λ are identified up to column permutations and sign changes, we follow the same
identification scheme as Despois and Doz (2023) to switch the order and/or signs of the estimated
factors and loadings accordingly.
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Table 1: Monte Carlo results: RMSEs for model parameters and trace statistics for
factor estimates and idiosyncratic component estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.35 0.50 0.76 0.29 0.49 0.77
AEM/2S 0.50 0.64 0.87 0.42 0.61 0.88
AEM/EM 0.50 0.64 0.88 0.43 0.62 0.89

ϕ AEM 0.11 0.10 0.11 0.07 0.08 0.08
AEM/2S 0.99 1.04 1.34 0.70 0.98 1.30
AEM/EM 0.43 0.46 0.54 0.26 0.32 0.48

ψ AEM 0.17 0.14 0.14 0.11 0.10 0.10
AEM/2S 1.32 1.12 1.05 1.19 1.15 1.10
AEM/EM 1.07 0.98 0.96 0.93 0.93 0.93

Σ AEM 0.91 1.01 1.22 0.68 0.83 0.97
AEM/2S 0.27 0.34 0.57 0.21 0.28 0.52
AEM/EM 0.82 0.86 0.96 0.71 0.78 0.95

Panel B: Average and relative trace statistics

R2
F AEM 0.90 0.95 0.97 0.92 0.95 0.98

AEM/2S 1.36 1.18 1.06 1.35 1.14 1.03
AEM/EM 1.23 1.15 1.10 1.23 1.17 1.08

R2
E AEM 0.96 0.98 1.00 0.96 0.98 0.99

AEM/2S 1.00 0.99 1.00 1.00 0.99 1.00
AEM/EM 1.01 1.00 1.00 1.01 1.00 1.00

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor and idiosyncratic component
estimates in the exact dynamic factor model as given in equations (2) and (3) based on the
overrelaxed adaptive EM (AEM) algorithm of Salakhutdinov and Roweis (2003). The model
is estimated with κ = 10−4. We also include the relative RMSEs and relative trace statistics
of the AEM algorithm compared to the two-step (2S) approach of Doz et al. (2011) and the
EM algorithm employed in Bańbura and Modugno (2014). We conduct J = 1, 000 (A)EM
iterations. The AEM algorithm is more (less) accurate compared to its benchmark for a value
lower (higher) than one for the relative RMSEs and a value higher (lower) than one for the
relative trace statistics. The averages and relative statistics are based on 500 Monte Carlo
simulation runs. The values T and N denote the sample size and cross-sectional dimension,
respectively. The data is generated with an exact factor model with K = 1, ϕ = 0.7, ψ = 0.5,
τ = 0 and u = 0.1.

AEM algorithm still produces an average improvement in RMSE per iteration that is up

to 883 times higher than the EM algorithm. The same observation applies to the time

series dimension, albeit in the opposite direction (with improvements generally becoming

larger for larger T , except for N = 50) and with considerably smaller effects compared

to changes in N .
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Figure 1: Convergence plots of average RMSEs of factor loading estimates (Λ) based
on the AEM algorithm, EM algorithm and 2S approach for various sample sizes and
cross-sectional dimensions

It is also noteworthy that the estimation accuracy of the 2S approach for the loadings

is comparable to the one of the baseline EM algorithm, highlighting that, even after 1,000

EM iterations, the factor loading estimates are still about the same as the values used

for initialization. Indeed, this also becomes clear from the convergence plots in Figure 1.

To quantify the movement of the (A)EM estimates away from the starting values, we

compute root mean squared differences (RMSDs) between the (A)EM estimates and the

2S estimates. These RMSDs are about 0.13-0.48 for the AEM algorithm, whereas they

are only about 0.01-0.02 for the EM algorithm, indicating that the 1,000 EM iterations

result in only very minor changes in the factor loading estimates. This slow movement

away from the initialization of the EM estimates clearly illustrates the low-noise issue

that arises in the standard EM algorithm.

Moving to the other parameter estimates, we again find that the AEM algorithm is

substantially more accurate than the EM algorithm, particularly for estimating the per-

sistence of the latent factor. This results from the fact that inaccurate factor loading
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estimates lead to inaccurate factor estimates and, consequently, inaccurate factor persis-

tence estimates. Indeed, the AEM algorithm produces a better approximation of the true

factors than the EM algorithm for all sample sizes, where the increase in R2 is about 23%

for small N and 8-10% for large N . For large N , we even find that the trace statistics of

the EM algorithm deteriorate compared to the 2S approach, implying that sticking with

the 2S approach for large enough N results in more accurate factor estimates than by

using the EM algorithm.

To illustrate this further, Figure 2 displays the convergence of the average trace statis-

tics of the factor estimates (R2
F ) based on the different estimation methods over the

J = 1, 000 iterations. Here we clearly see that the trace statistics of the EM algorithm

are well below the ones of the 2S approach for all cases (except T = 50 and N = 20),

whereas the ones of the AEM algorithm all reach values above the 2S approach. In addi-

tion, the AEM algorithm reaches these higher values at a much faster pace than the EM

algorithm, again illustrating the slow convergence of the EM algorithm in the low-noise

Figure 2: Convergence plots of average trace statistics of factor estimates (R2
F ) based

on the AEM algorithm, EM algorithm and 2S approach for various sample sizes and
cross-sectional dimensions
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environment.

Finally, according to Table 1, the accuracy of the idiosyncratic component estimates

is not affected by the low-noise setting or sample size, and only marginally by the cross-

sectional dimension. Yet, the parameter estimates related to these components (ψ and

Σ) are generally more poorly estimated with the EM algorithm compared to the AEM

algorithm, albeit to a lesser extent than for the factor estimates.

As a robustness check, we also explore other model (mis)specifications in Appendix A.

In particular, we consider set-ups with cross-sectional dependence (τ = 0.5), stronger fac-

tor persistence (ϕ = 0.9), more factors (K = 3), no serial correlation in the idiosyncratic

components (ψ = 0) and missing data issues. Overall, we find results that are qualita-

tively similar as the baseline results in Table 1, indicating that the superiority of the AEM

algorithm over the EM algorithm persists across alternative model (mis)specifications.

3.3 Noise-level analysis

So far, we considered the setting where the noise variance is set equal to κ = 10−4.

To examine how the performance of the (A)EM algorithm varies across different levels

of noise, we also conduct the Monte Carlo simulations for different values of κ = 10z

with z ∈ {−6, . . . ,−1, 0, 1}. We use the same parameter settings as for Table 1, but we

restrict ourselves to N = 10 and T = 50 due to computational costs.13 Note that we

do not include the results of the 2S approach anymore as its parameter estimates do not

depend on the level of κ.

Table 2 shows the RMSEs and trace statistics for the AEM algorithm, also relative

to the EM algorithm, based again on 500 Monte Carlo replications. We find that the

accuracy of the factor loading estimates obtained with the AEM algorithm declines for low

and high values of κ, where the minimum RMSE is attained around κ = 10−1 or κ = 10−2.

The same holds for the factor persistence, albeit to a lesser extent. For the parameters

related to the idiosyncratic components, the absolute RMSEs for the AEM algorithm

are rather stable for small values of κ, whereas they start to increase for larger values.

Similarly for both the factor estimates and idiosyncratic component estimates, we find

13We also experimented with different signal-to-noise ratios (that is, different specifications for βi).
The findings across different noise levels are generally robust to different signal-to-noise ratios, although
weaker (stronger) signals make the results less (more) pronounced. Detailed results are available upon
request.
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Table 2: Monte Carlo results for different values of κ: RMSEs for model parameters
and trace statistics for factor estimates and idiosyncratic component estimates

κ

10−6 10−5 10−4 10−3 10−2 10−1 100 101

Panel A: Average and relative RMSEs

Λ AEM 0.40 0.38 0.35 0.32 0.25 0.25 0.27 0.47
AEM/EM 0.55 0.53 0.50 0.48 0.62 1.02 1.00 1.00

ϕ AEM 0.11 0.11 0.11 0.10 0.09 0.09 0.09 0.14
AEM/EM 0.31 0.31 0.43 0.53 0.91 1.00 0.99 1.00

ψ AEM 0.16 0.16 0.17 0.17 0.18 0.23 0.31 0.37
AEM/EM 1.17 1.11 1.07 1.03 1.02 1.00 1.00 1.00

Σ AEM 0.97 0.93 0.91 0.98 0.98 0.93 1.48 3.90
AEM/EM 0.79 0.77 0.82 0.84 1.02 1.01 1.00 1.00

Panel B: Average and relative trace statistics

R2
F AEM 0.90 0.90 0.90 0.91 0.92 0.90 0.85 0.60

AEM/EM 1.38 1.40 1.23 1.12 1.00 1.00 1.00 0.99

R2
E AEM 0.95 0.96 0.96 0.95 0.95 0.95 0.90 0.79

AEM/EM 1.02 1.02 1.01 1.00 1.00 1.00 1.00 1.00

Notes: This table displays average root mean squared errors (RMSE) of the estima-
tion of Λ, ϕ, ψ and Σ and the average trace statistics of the factor and idiosyncratic
component estimates in the exact dynamic factor model as given in equations (2)
and (3) based on the overrelaxed adaptive EM (AEM) algorithm of Salakhutdinov
and Roweis (2003). The model is estimated with a variety of different values for κ.
We also include the relative RMSEs and relative trace statistics of the AEM algo-
rithm compared to the EM algorithm employed in Bańbura and Modugno (2014).
We conduct J = 1, 000 (A)EM iterations. The AEM algorithm is more (less) accu-
rate compared to its benchmark for a value lower (higher) than one for the relative
RMSEs and a value higher (lower) than one for the relative trace statistics. The
averages and relative statistics are based on 500 Monte Carlo simulation runs. The
sample size and cross-sectional dimension are T = 50 and N = 10, respectively. The
data is generated with an exact factor model with K = 1, ϕ = 0.9, ψ = 0.5, τ = 0
and u = 0.1.

stable absolute trace statistics for the AEM algorithm that hover around 0.90-0.92 and

0.95-0.96, respectively, for values of κ smaller than 10−1. Yet, for κ = 100 and κ = 101,

the trace statistics start to decrease, indicating poorer performance. Indeed, Barigozzi

and Luciani (2019) argue that the larger the value of κ, the larger the misspecification of

the model and thus the more it affects the factor estimates. Overall, we find that for small

and moderate values of κ, the performance of the AEM algorithm is rather stable and

not substantially influenced by the level of noise (except perhaps for the factor loadings),

whereas for larger values of κ the performance deteriorates for all parameter and factor
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estimates.

Moving to the (relative) performance of the standard EM algorithm, Table 2 shows

that increasing the level of κ makes the performance of the EM algorithm come closer

to the one of the AEM algorithm for all parameter and factor estimates. Hence, using

a slightly higher value of κ (say, 10−2) results in more accurate EM estimates. On the

other hand, a too high value of κ (say, 101) produces poor absolute RMSEs and trace

statistics. Therefore, in practice, one should carefully set the arbitrary noise level of κ to

be able to improve the accuracy of the (A)EM algorithm.

To illustrate the convergence speed of the different algorithms for different noise levels,

Figure 3 shows the average RMSEs of the factor loading estimates over 1,000 iterations

Figure 3: Convergence plots of average RMSEs of factor loading estimates (Λ) based
on the AEM algorithm, EM algorithm and 2S approach for various noise levels

Figure 4: Convergence plots of average trace statistics of factor estimates (R2
F ) based

on the AEM algorithm, EM algorithm and 2S approach for various noise levels
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for κ = 10−4 and κ = 10−2. Clearly, the average RMSEs of the EM and AEM algorithms

lie closer to each other after 1,000 iterations for κ = 10−2 than for κ = 10−4, although

the accuracy and convergence speed is still much better for the AEM algorithm. Similar

results are also found for the convergence plots of the average trace statistics of the

factor estimates, which are given in Figure 4. The setting of κ = 10−2 even seems to

generate comparable factor estimates for EM and AEM after 1,000 iterations. The finding

that higher levels of arbitrary noise speed up the convergence of the (A)EM algorithm

corroborates with Osoba et al. (2013), who more generally show that careful additive

noise injection can accelerate EM convergence. Overall, we conclude that using the AEM

algorithm in combination with the right amount of arbitrary noise results in the fastest

convergence, implying that these two manipulations of the traditional EM framework of

Bańbura and Modugno (2014) are complementary in improving the estimation of low-

noise dynamic factor models.

4 Empirical application

We conduct a nowcasting exercise of euro area GDP growth to examine the effect of the

slow EM convergence in an empirical setting. We construct a similar euro area macroe-

conomic dataset as used by Bańbura and Rünstler (2011) and Bańbura and Modugno

(2014), consisting of real economic, survey-based and financial variables. The resulting

dataset contains 78 monthly series and one quarterly series, namely euro area GDP, and

runs from January 1991 to December 2022. All variables are transformed into stationary

time series by taking the natural logarithm and/or first differences. Similarly as Bańbura

and Modugno (2014), the series are used to construct small (N = 10), medium (N = 36)

and large (N = 79) datasets, making it possible to compare the estimation and now-

casting performance for different cross-sectional dimensions N . A complete description

of all the series, transformations, publication delays and sources is given in Appendix B,

together with the exact compositions of the small, medium and large datasets.

For each dataset, we estimate the exact factor model given in equations (2) and (3)

with serial correlation in the idiosyncratic components and with the noise parameter fixed

at either κ = 10−4 or κ = 10−2. Moreover, to handle the mixed-frequency nature of the

data, we impose the temporal aggregation framework of Mariano and Murasawa (2003)
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to link the monthly factor and idiosyncratic component to the quarterly variable, just as

in Bańbura and Modugno (2014). Both the EM and AEM algorithm are initialized with

the 2S approach of Doz et al. (2011). All series are normalized to have zero mean and

unit variance.

Before we move to the nowcasting exercise, we first show the log-likelihood values

over the EM and AEM iterations when using the complete sample period to estimate

the mixed-frequency dynamic factor model with the small, medium and large datasets in

Figure 5. Clearly, for both values of κ and all N , the AEM algorithm leads to much larger

increments and much faster convergence of the log-likelihood than the EM algorithm. For

κ = 10−4, the AEM algorithm generally converges somewhere in the range of 100-200

iterations, while the EM algorithm still has not converged after 1,000 iterations. In fact,

Figure 5: Log-likelihood values over 1,000 iterations of the EM and AEM algorithm
in estimating a mixed-frequency dynamic factor model for various cross-sectional dimen-
sions N
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Figure C.1 shows that the EM algorithm has not even converged after 10,000 iterations,

where the slope of the increments declines over the iterations. On the other hand, Figure

5 also illustrates that we could considerably speed up the convergence of both algorithms

by increasing the artificial noise level to κ = 10−2, although AEM still converges faster

than the usual EM in that case. It is also useful to note that the initial increase in the

likelihood over the first EM and AEM iterations that is observed under κ = 10−4 is due to

the M-steps of all but the factor loading parameter estimates. Indeed, Figure C.2 shows

that keeping the estimates of Λ fixed in the M-step of the EM algorithm generates a

similar initial increase in likelihood, where its subsequent likelihood values remain rather

close to the ones of the EM algorithm in which Λ is updated. This again confirms the

slow EM convergence of the loading estimates, where not updating them leads to similar

results.

Next, we conduct an expanding-window nowcasting exercise for quarterly GDP growth,

where at each point in time we take into account the publication delays of the series

(which are given in Appendix B) and impose this ragged edge structure onto the data.14

For each target quarter, we construct a similar sequence of nowcasts and forecasts as in

Bańbura and Modugno (2014), starting in the first month of the previous quarter (that

is, Q(-1)M1) up to the first month of the subsequent quarter (that is, Q(+1)M1), which

leads to seven predictions for each quarter. We use the evaluation sample from 2006Q1

to 2022Q3, such that the first estimation sample runs from January 1991 to October

2005 to produce Q(-1)M1 for 2006Q1. Just as in the simulation study, we run a fixed

number of iterations to make the comparison of the EM and AEM algorithm insensitive

to the stopping rule.15 Specifically, we employ 1, 000 iterations for the small dataset,

500 iterations for the medium dataset and 100 iterations for the large dataset, which is

motivated by the fact that the filtering/smoothing recursions become slower for large N .

Besides the nowcasts from EM and AEM, we also include nowcasts based on the 2S

approach, a first-order autoregression for GDP growth, and the historical mean of past

14This exercise is pseudo real-time, though, as real-time vintages are not available for all series over
the full period. The current vintage that is used is January 2023.

15In Appendix D.1 we show the nowcasting results for different values of ϵ in the stopping rule in
equation (9), highlighting that these results are indeed sensitive to the chosen value of ϵ. For ϵ = 10−4,
both the EM and AEM algorithm generally indicate convergence after only 20 iterations, leading to
poor nowcasting performance. For ϵ = 10−5 and ϵ = 10−6, the number of iterations needed increases,
especially during the financial crisis and covid pandemic, leading to pronounced nowcasting gains for
AEM and only marginal gains for EM.
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GDP growth.16

Table 3 shows the relative root mean squared forecast errors (RMSFEs) of the se-

quence of nowcasts for the various methods compared to the historical mean, as well as

the absolute RMSFEs for the historical mean in the rightmost column. Panel A shows

the nowcasting results for the complete out-of-sample period until 2022Q3, while Panel B

excludes the covid pandemic and reports results until 2019Q4. For almost all models

and estimation methods, we observe gains in accuracy when more information becomes

available. Moreover, the mixed-frequency dynamic factor models generally outperform

the AR(1) and historical mean benchmarks, irrespective of the estimation method, espe-

cially when more information becomes available. Zooming in on Panel A, we find that the

Table 3: Relative nowcasting performance of euro area GDP growth based on mixed-
frequency dynamic factor models with κ = 10−4

Small Medium Large Benchmarks

2S EM AEM 2S EM AEM 2S EM AEM AR Mean

Panel A: Evaluation period including covid pandemic (2006Q3 - 2022Q3)

Q(-1)M1 1.02 1.17 1.39 1.29 1.93 1.87 1.15 1.64 5.08 1.07 223.3
Q(-1)M2 1.02 1.11 1.01 0.98 0.98 0.94 1.01 1.05 0.96 1.39 223.4
Q(-1)M3 0.91 0.89 0.84 0.86 0.81 0.78 0.90 0.88 0.80 1.39 223.4
Q(0)M1 0.76 0.64 0.46 0.63 0.57 0.50 0.70 0.63 1.24 1.39 223.4
Q(0)M2 0.57 0.57 0.41 0.64 0.66 0.44 0.68 0.61 0.41 1.19 223.9
Q(0)M3 0.58 0.61 0.49 0.62 0.65 0.48 0.64 0.58 0.45 1.19 223.9
Q(+1)M1 0.62 0.66 0.53 0.66 0.68 0.52 0.69 0.64 0.54 1.19 223.9

Average 0.78 0.81 0.73 0.81 0.90 0.79 0.82 0.86 1.35 1.26 223.6

Panel B: Evaluation period excluding covid pandemic (2006Q3 - 2019Q4)

Q(-1)M1 0.98 0.94 0.82 0.96 0.84 0.88 0.97 0.86 0.87 1.13 71.0
Q(-1)M2 0.95 0.89 0.79 0.90 0.76 0.81 0.92 0.79 0.82 1.05 70.5
Q(-1)M3 0.84 0.73 0.66 0.83 0.72 0.77 0.84 0.73 0.76 1.05 70.5
Q(0)M1 0.76 0.68 0.61 0.80 0.74 0.82 0.80 0.73 0.81 1.05 70.5
Q(0)M2 0.63 0.60 0.54 0.68 0.68 0.73 0.68 0.67 0.73 0.98 69.7
Q(0)M3 0.52 0.49 0.43 0.61 0.61 0.66 0.59 0.58 0.57 0.98 69.7
Q(+1)M1 0.50 0.49 0.45 0.58 0.59 0.63 0.56 0.55 0.51 0.98 69.7

Average 0.74 0.69 0.62 0.77 0.71 0.76 0.77 0.70 0.73 1.03 70.2

Notes: This table displays the relative root mean squared forecast errors (RMFSEs) of nowcasting euro area GDP growth
from 2006Q1 to 2022Q4 compared to a historical mean nowcast for which the absolute RMSFEs are shown in basis points.
Panel A shows the results including the covid pandemic, while Panel B excludes this period. The small, medium and
large mixed-frequency dynamic factor models are estimated with κ = 10−4 based on either the two-step (2S) approach of
Doz et al. (2011), the EM algorithm employed in Bańbura and Modugno (2014) or the AEM algorithm of Salakhutdinov
and Roweis (2003). We conduct J = 1, 000, J = 500 and J = 100 (A)EM iterations for the small, medium and large
models, respectively. We also include a first-order autoregression for GDP growth as benchmark. For each target quarter,
the nowcasts/forecasts construction dates range from the first month of the previous quarter (that is, Q(-1)M1) up to
the first month of the subsequent quarter (that is, Q(+1)M1).

16We have chosen the number of lags in the autoregressive model with the Akaike and Schwarz
information criteria, where one lag is always optimal for both criteria.
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EM algorithm often performs worse than the 2S approach for small- and medium-scale

models. By contrast, the AEM algorithm performs substantially better than both 2S

and EM for almost all projections with improvements in accuracy up to 34%. Yet, the

AEM nowcasts from the large-scale model made in Q(-1)M1 and Q(0)M1 (and Q(-1)M1

from the small-scale model) appear to be less accurate than those based on the usual EM

algorithm. Closer inspection of the relevant sequences of nowcasts reveals that this is due

entirely to the nowcasts made in the first month of the quarter in the covid pandemic, that

is, April 2020 (see Figure D.2). For the large dataset, leaving the nowcasts constructed

in April 2020 out of consideration results in a relative RMSFEs for Q(-1)M1 of 0.99 and

0.99 for EM and AEM, respectively, while they are 0.79 and 0.69 for Q(0)M1. These

relative RMSFEs obviously are much more in line with the patterns observed in other

months, confirming that AEM produces more accurate nowcasts than EM, especially for

nowcasts made in the target quarter.17

Moving to Panel B that excludes the pandemic period altogether, we observe that the

absolute RMSFEs of the historical mean decreases by a factor of three, just as for the

other methods. Furthermore, the EM and AEM algorithms both perform better than the

2S approach, emphasizing the added value of increasing the number of iterations. For the

small-scale model, we find that the AEM algorithm still performs better than EM for all

projections, albeit less strong than for the complete out-of-sample period in Panel A, with

gains in accuracy up to 13%. On the other hand, for the medium- and large-scale models,

the EM algorithm seems to perform slightly better than AEM, although the differences

are never larger than 10%. This result is largely driven by the financial crisis period

(see Figure D.2), in which the slower EM convergence seems to be beneficial compared

to the faster AEM convergence. In other words, for medium and large datasets, the

initial factor loading estimates of the 2S approach, which are close to the ones of EM due

to slow convergence, lead to more accurate nowcasts than the factor loading estimates

based on maximum likelihood with the AEM algorithm. Table D.2 indeed shows that

the nowcasting performance is similar for the EM algorithm when the factor loadings are

kept fixed instead of estimated. Nonetheless, adopting the (A)EM algorithm for larger

N does not necessarily lead to better nowcasting performance compared to a small-scale

model, which concurs with the notion that more data is not always better (Boivin and

17For a more thorough analysis of macroeconomic behaviour during the covid pandemic, see, among
others, Ng (2021), Maroz et al. (2021), Schorfheide and Song (2022) and Foroni et al. (2022)
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Ng, 2006).

Finally, we also construct nowcasts based on a model with κ = 10−2. Table 4 shows

the corresponding relative RMSFEs compared to the historical mean. For both evalua-

tion periods, the accuracy of the EM algorithm is much closer to the AEM algorithm,

especially for the small and medium datasets. Meanwhile, the performance of the AEM

algorithm is comparable to the performance of the models with κ = 10−4 in Table 3. This

highlights that AEM is less sensitive to κ, while using a slightly higher value of κ for EM

leads to more accurate nowcasts, at least for the small-scale model.

Table 4: Relative nowcasting performance of euro area GDP growth based on mixed-
frequency dynamic factor models with κ = 10−2

Small Medium Large

EM AEM EM AEM EM AEM

Panel A: Evaluation period including covid pandemic (2006Q1 - 2022Q3)

Q(-1)M1 1.39 1.39 1.89 1.86 1.89 10.90
Q(-1)M2 1.01 1.01 0.94 0.94 1.02 0.96
Q(-1)M3 0.84 0.84 0.78 0.78 0.84 0.78
Q(0)M1 0.46 0.46 0.51 0.50 0.52 2.13
Q(0)M2 0.41 0.41 0.47 0.44 0.44 0.47
Q(0)M3 0.49 0.49 0.50 0.49 0.47 0.42
Q(+1)M1 0.53 0.53 0.54 0.52 0.58 0.51

Average 0.73 0.73 0.80 0.79 0.82 2.31

Panel B: Evaluation period excluding covid pandemic (2006Q1 - 2019Q4)

Q(-1)M1 0.83 0.82 0.87 0.88 0.82 0.87
Q(-1)M2 0.79 0.80 0.81 0.82 0.79 0.81
Q(-1)M3 0.66 0.66 0.77 0.77 0.73 0.75
Q(0)M1 0.61 0.61 0.81 0.82 0.77 0.84
Q(0)M2 0.55 0.54 0.73 0.73 0.69 0.78
Q(0)M3 0.43 0.43 0.66 0.66 0.59 0.51
Q(+1)M1 0.46 0.46 0.63 0.63 0.56 0.44

Average 0.62 0.62 0.75 0.76 0.71 0.71

Notes: This table displays the relative root mean squared forecast errors (RMFSEs) of nowcasting
euro area GDP growth from 2006Q1 to 2022Q4 compared to a historical mean nowcast. Panel A
shows the results including the covid pandemic, while Panel B excludes this period. The small,
medium and large mixed-frequency dynamic factor models are estimated with κ = 10−2 based
on either the EM algorithm employed in Bańbura and Modugno (2014) or the AEM algorithm
of Salakhutdinov and Roweis (2003). We conduct J = 1, 000, J = 500 and J = 100 (A)EM
iterations for the small, medium and large models, respectively. For each target quarter, the
nowcasts/forecasts construction dates range from the first month of the previous quarter (that is,
Q(-1)M1) up to the first month of the subsequent quarter (that is, Q(+1)M1).
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5 Conclusion

In this paper we address the slow Expectation-Maximization (EM) convergence that

emerges in the estimation of low-noise dynamic factor models. Specifically, we show ana-

lytically and with Monte Carlo simulations that the popular framework of Bańbura and

Modugno (2014), developed to explicitly model the dynamics of idiosyncratic compo-

nents by means of an artificial low-noise specification, slows down the convergence speed

of the EM factor loading estimates. This follows from the fact that the learning rate

of the loading estimates is proportional to the variance of the noise in the measurement

equation, implying that low noise leads to slow convergence. As a result, the estimation

accuracy of the factor loading estimates deteriorates, which in turn affects the estimates

of the latent factors and other model parameters.

To remedy these slow EM convergence issues, we advocate to employ the Adaptive

Overrelaxed EM (AEM) algorithm of Salakhutdinov and Roweis (2003), as also suggested

by Petersen et al. (2005). This straightforward adaptation of the standard EM algorithm

boosts the learning rate of the factor loading estimates, thus countering the adverse effects

of the low-noise level. Our simulation study shows that the AEM algorithm substantially

increases the convergence speed and leads to accuracy gains up to 57% for the loadings

(in terms of average root mean squared error) and 23% for the factors (in terms of average

trace statistic). At the same time, carefully choosing the appropriate level of artificial

noise could lead to even faster convergence for both EM and AEM. In practice, the right

choice of artificial noise could properly be determined based on Monte Carlo simulations,

where this noise level seems to be unrelated to the scale of the data and the signal-to-

noise ratio. Still, for all levels of noise, the AEM algorithm remains faster in convergence

than the EM algorithm, making the adaptive extension complementary to using the right

amount of artificial noise. Finally, we show in an empirical application that a mixed-

frequency dynamic factor model estimated with the AEM algorithm is able to produce

more accurate euro area GDP nowcasts than when it is estimated with the standard EM

algorithm with decreases in root mean squared forecast error up to 34%.
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Bańbura, M. and G. Rünstler (2011): “A look into the factor model black box:

Publication lags and the role of hard and soft data in forecasting GDP,” International

Journal of Forecasting, 27, 333–346.

26



Bermond, O. and J. F. Cardoso (1999): “Approximate likelihood for noisy mix-

tures,” in Proceedings of the First International Workshop on Independent Component

Analysis and Blind Source Separation, Aussois, France, 325–330.

Boivin, J. and S. Ng (2006): “Are more data always better for factor analysis?”

Journal of Econometrics, 132, 169–194.

Bok, B., D. Caratelli, D. Giannone, A. M. Sbordone, and A. Tambalotti

(2018): “Macroeconomic Nowcasting and Forecasting with Big Data,” Annual Review

of Economics, 10, 615–643.

Brave, S. and R. Butters (2011): “Monitoring financial stability: a financial condi-

tions index approach,” Economic Perspectives, 35, 22–43.
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A Alternative Monte Carlo simulation set-ups

A.1 Cross-sectional dependence

Table A.1: Monte Carlo results under cross-sectional dependence: RMSEs for model
parameters and trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.40 0.52 0.76 0.34 0.50 0.76
AEM/2S 0.55 0.65 0.88 0.48 0.63 0.88
AEM/EM 0.55 0.66 0.88 0.48 0.63 0.88

ϕ AEM 0.11 0.10 0.11 0.08 0.07 0.08
AEM/2S 0.88 1.07 1.34 0.81 0.95 1.35
AEM/EM 0.37 0.41 0.56 0.32 0.36 0.44

ψ AEM 0.18 0.15 0.14 0.12 0.10 0.10
AEM/2S 1.41 1.16 1.06 1.37 1.15 1.10
AEM/EM 1.11 0.98 0.96 0.99 0.94 0.91

Σ AEM 1.04 1.06 1.24 0.82 0.84 0.95
AEM/2S 0.29 0.32 0.56 0.22 0.27 0.43
AEM/EM 0.90 0.88 0.96 0.83 0.81 0.94

Panel B: Average and relative trace statistics

R2
F AEM 0.85 0.94 0.97 0.87 0.95 0.97

AEM/2S 1.38 1.23 1.06 1.35 1.17 1.04
AEM/EM 1.23 1.18 1.09 1.24 1.16 1.09

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor estimates in the exact dynamic
factor model as given in equations (2) and (3) based on the overrelaxed adaptive EM (AEM)
algorithm of Salakhutdinov and Roweis (2003). The model is estimated with κ = 10−4. We
also include the relative RMSEs and relative trace statistics of the AEM algorithm compared
to the two-step (2S) approach of Doz et al. (2011) and the EM algorithm employed in Bańbura
and Modugno (2014). We conduct J = 1, 000 (A)EM iterations. The AEM algorithm is more
(less) accurate compared to its benchmarks for a value lower (higher) than one for the relative
RMSEs and a value higher (lower) than one for the relative trace statistics. The averages and
relative statistics are based on 500 Monte Carlo simulation runs. The values T and N denote
the sample size and cross-sectional dimension, respectively. The data is generated with an
approximate factor model with K = 1, ϕ = 0.7, ψ = 0.5, τ = 0.5 and u = 0.1.
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A.2 Stronger factor persistence

Table A.2: Monte Carlo results under stronger factor persistence: RMSEs for model
parameters and trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.43 0.57 0.79 0.36 0.53 0.78
AEM/2S 0.58 0.70 0.90 0.50 0.67 0.90
AEM/EM 0.58 0.70 0.90 0.50 0.67 0.90

ϕ AEM 0.09 0.08 0.08 0.07 0.06 0.06
AEM/2S 0.47 0.49 0.69 0.38 0.42 0.68
AEM/EM 0.43 0.53 0.67 0.34 0.39 0.51

ψ AEM 0.16 0.15 0.14 0.11 0.10 0.10
AEM/2S 1.17 1.12 1.05 1.06 1.06 1.07
AEM/EM 1.05 1.05 1.06 0.92 0.97 1.03

Σ AEM 2.27 2.99 3.17 1.82 1.82 2.37
AEM/2S 0.24 0.32 0.47 0.17 0.25 0.37
AEM/EM 0.89 0.92 0.95 0.84 0.87 0.94

Panel B: Average and relative trace statistics

R2
F AEM 0.88 0.91 0.93 0.90 0.94 0.94

AEM/2S 1.46 1.26 1.11 1.43 1.18 1.08
AEM/EM 1.35 1.25 1.17 1.32 1.22 1.15

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor estimates in the exact dynamic
factor model as given in equations (2) and (3) based on the overrelaxed adaptive EM (AEM)
algorithm of Salakhutdinov and Roweis (2003). The model is estimated with κ = 10−4. We
also include the relative RMSEs and relative trace statistics of the AEM algorithm compared
to the two-step (2S) approach of Doz et al. (2011) and the EM algorithm employed in Bańbura
and Modugno (2014). We conduct J = 1, 000 (A)EM iterations. The AEM algorithm is more
(less) accurate compared to its benchmarks for a value lower (higher) than one for the relative
RMSEs and a value higher (lower) than one for the relative trace statistics. The averages and
relative statistics are based on 500 Monte Carlo simulation runs. The values T and N denote
the sample size and cross-sectional dimension, respectively. The data is generated with an
exact factor model with K = 1, ϕ = 0.9, ψ = 0.5, τ = 0 and u = 0.1.
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A.3 More factors

Table A.3: Monte Carlo results under more factors: RMSEs for model parameters and
trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.78 0.73 0.69 0.68 0.65 0.61
AEM/2S 0.89 0.80 0.74 0.80 0.73 0.67
AEM/EM 0.89 0.80 0.74 0.80 0.73 0.67

ϕ AEM 0.23 0.15 0.13 0.15 0.10 0.09
AEM/2S 1.47 1.14 1.34 1.10 0.85 1.07
AEM/EM 0.54 0.41 0.39 0.36 0.27 0.28

ψ AEM 0.33 0.23 0.17 0.22 0.13 0.11
AEM/2S 2.60 1.80 1.30 2.17 1.32 1.05
AEM/EM 2.47 1.83 1.33 2.26 1.44 1.20

Σ AEM 3.34 3.05 2.98 2.05 1.89 2.06
AEM/2S 0.38 0.39 0.57 0.24 0.26 0.43
AEM/EM 0.93 0.80 0.78 0.67 0.57 0.63

Panel B: Average and relative trace statistics

R2
F AEM 0.69 0.86 0.95 0.73 0.88 0.96

AEM/2S 1.17 1.23 1.18 1.27 1.28 1.14
AEM/EM 1.34 1.51 1.55 1.55 1.73 1.64

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor estimates in the exact dynamic
factor model as given in equations (2) and (3) with AR(1) dynamics for both the factors
and idiosyncratic components based on the overrelaxed adaptive EM (AEM) algorithm of
Salakhutdinov and Roweis (2003). The model is estimated with κ = 10−4. We also include
the relative RMSEs and relative trace statistics of the AEM algorithm compared to the two-
step (2S) approach of Doz et al. (2011) and the EM algorithm employed in Bańbura and
Modugno (2014). We conduct J = 1, 000 (A)EM iterations. The AEM algorithm is more
(less) accurate compared to its benchmarks for a value lower (higher) than one for the relative
RMSEs and a value higher (lower) than one for the relative trace statistics. The averages and
relative statistics are based on 500 Monte Carlo simulation runs. The values T and N denote
the sample size and cross-sectional dimension, respectively. The data is generated with an
exact factor model with K = 3, ϕ = 0.7, ψ = 0.5, τ = 0 and u = 0.1.
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A.4 No serial correlation in idiosyncratic components

Table A.4: Monte Carlo results under no serial correlation in idiosyncratic components:
RMSEs for model parameters and trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.37 0.54 0.80 0.32 0.52 0.79
AEM/2S 0.52 0.69 0.92 0.46 0.67 0.92
AEM/EM 0.53 0.69 0.92 0.46 0.67 0.92

ϕ AEM 0.13 0.13 0.16 0.09 0.10 0.15
AEM/2S 0.40 0.50 0.97 0.32 0.45 1.17
AEM/EM 0.43 0.46 0.68 0.31 0.38 0.65

ψ AEM 0.17 0.16 0.16 0.12 0.12 0.11
AEM/2S 0.98 0.97 1.08 0.78 0.91 1.07
AEM/EM 0.88 0.92 1.04 0.73 0.86 1.04

Σ AEM 1.20 1.35 1.63 0.93 1.08 1.27
AEM/2S 0.27 0.34 0.54 0.20 0.26 0.47
AEM/EM 0.87 0.87 0.92 0.74 0.82 0.96

Panel B: Average and relative trace statistics

R2
F AEM 0.90 0.94 0.93 0.92 0.94 0.93

AEM/2S 1.35 1.18 1.04 1.33 1.15 1.04
AEM/EM 1.23 1.19 1.10 1.24 1.19 1.10

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor estimates in the exact dynamic
factor model as given in equations (2) and (3) based on the overrelaxed adaptive EM (AEM)
algorithm of Salakhutdinov and Roweis (2003). The model is estimated with κ = 10−4. We
also include the relative RMSEs and relative trace statistics of the AEM algorithm compared
to the two-step (2S) approach of Doz et al. (2011) and the EM algorithm employed in Bańbura
and Modugno (2014). We conduct J = 1, 000 (A)EM iterations. The AEM algorithm is more
(less) accurate compared to its benchmarks for a value lower (higher) than one for the relative
RMSEs and a value higher (lower) than one for the relative trace statistics. The averages and
relative statistics are based on 500 Monte Carlo simulation runs. The values T and N denote
the sample size and cross-sectional dimension, respectively. The data is generated with an
exact factor model with K = 1, ϕ = 0.7, ψ = 0, τ = 0 and u = 0.1.
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A.5 Missing data

Table A.5: Monte Carlo results under missing data: RMSEs for model parameters and
trace statistics for factor estimates

T = 50 T = 100

N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

Panel A: Average and relative RMSEs

Λ AEM 0.36 0.52 0.77 0.32 0.52 0.75
AEM/2S 0.50 0.65 0.88 0.46 0.65 0.87
AEM/EM 0.51 0.66 0.89 0.46 0.66 0.88

ϕ AEM 0.10 0.11 0.12 0.08 0.09 0.10
AEM/2S 1.08 1.26 1.41 0.92 1.27 1.34
AEM/EM 0.43 0.51 0.58 0.36 0.40 0.48

ψ AEM 0.21 0.19 0.18 0.14 0.12 0.12
AEM/2S 1.12 1.00 0.91 1.04 0.88 0.81
AEM/EM 1.12 1.02 0.97 1.01 0.93 0.90

Σ AEM 1.05 1.22 1.46 0.84 0.97 1.10
AEM/2S 0.29 0.41 0.59 0.22 0.29 0.55
AEM/EM 0.81 0.88 0.96 0.74 0.79 0.91

Panel B: Average and relative trace statistics

R2
F AEM 0.88 0.93 0.95 0.90 0.94 0.96

AEM/2S 1.48 1.29 1.15 1.52 1.28 1.12
AEM/EM 1.30 1.21 1.13 1.29 1.23 1.14

Notes: This table displays average root mean squared errors (RMSE) of the estimation of
Λ, ϕ, ψ and Σ and the average trace statistics of the factor estimates in the exact dynamic
factor model as given in equations (2) and (3) based on the overrelaxed adaptive EM (AEM)
algorithm of Salakhutdinov and Roweis (2003). The model is estimated with κ = 10−4. We
also include the relative RMSEs and relative trace statistics of the AEM algorithm compared
to the two-step (2S) approach of Doz et al. (2011) and the EM algorithm employed in Bańbura
and Modugno (2014). We conduct J = 1, 000 (A)EM iterations. The AEM algorithm is more
(less) accurate compared to its benchmarks for a value lower (higher) than one for the relative
RMSEs and a value higher (lower) than one for the relative trace statistics. The averages and
relative statistics are based on 500 Monte Carlo simulation runs. The values T and N denote
the sample size and cross-sectional dimension, respectively. The data is generated with an
exact factor model with K = 1, ϕ = 0.7, ψ = 0.5, τ = 0 and u = 0.1, where 25% of the data
is set as missing (these points are chosen at random).
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B Description of data

Table B.1: Description of euro area macroeconomic dataset

Group Series Composition Transform Publ. lag Source

S M L Log Diff.

1 Real GDP ✓ ✓ ✓ ✓ ✓ 2 SDW
2 Real IP Total ✓ ✓ ✓ 2 SDW
3 Real IP Total (excluding construction) ✓ ✓ ✓ ✓ ✓ 2 SDW
4 Real IP Total (excluding construction and energy) ✓ ✓ ✓ 2 SDW
5 Real IP Construction ✓ ✓ ✓ ✓ 2 SDW
6 Real IP Intermediate goods industry ✓ ✓ ✓ ✓ 2 SDW
7 Real IP Capital goods industry ✓ ✓ ✓ ✓ 2 SDW
8 Real IP Durable consumer goods industry ✓ ✓ ✓ ✓ 2 SDW
9 Real IP Non-durable consumer goods ✓ ✓ ✓ ✓ 2 SDW
10 Real IP Energy ✓ ✓ ✓ ✓ 2 SDW
11 Real IP Manufacturing ✓ ✓ ✓ 2 SDW
12 Real IP Manufacture of basic metals ✓ ✓ ✓ 2 SDW
13 Real IP Manufacture of chemicals and chemical products ✓ ✓ ✓ 2 SDW
14 Real IP Manufacture of electrical equipment ✓ ✓ ✓ 2 SDW
15 Real IP Manufacture of machinery and equipment ✓ ✓ ✓ 2 SDW
16 Real IP Manufacture of paper and paper products ✓ ✓ ✓ 2 SDW
17 Real IP Manufacture of rubber and plastic products ✓ ✓ ✓ 2 SDW
18 Real New passenger car registration ✓ ✓ ✓ ✓ ✓ 1 SDW
19 Real Industrial new orders (total) ✓ ✓ ✓ ✓ ✓ 1 SDW
20 Real Retail trade turnover (deflated, incl. fuel, except of motor vehicles and motorcycles) ✓ ✓ ✓ ✓ ✓ 1 SDW
21 Real Unemployment rate ✓ ✓ ✓ ✓ 1 SDW
22 Real Extra euro area trade (export value) ✓ ✓ ✓ ✓ ✓ 2 SDW
23 Real Extra euro area trade (import value) ✓ ✓ ✓ ✓ 2 SDW
24 Real Intra euro area trade (export value) ✓ ✓ ✓ 2 SDW
25 Real Intra euro area trade (import value) ✓ ✓ ✓ 2 SDW
26 Real US IP Total ✓ ✓ ✓ ✓ 1 FRED
27 Real US Manufacturing and trade industry sales ✓ ✓ ✓ 1 FRED
28 Real US Unemployment rate ✓ ✓ 1 FRED
29 Real US Employment level ✓ ✓ ✓ 1 FRED
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Table B.1: Continued

Group Series Composition Transform Publ. lag Source

S M L Log Diff.

30 Survey Economic sentiment indicator ✓ ✓ ✓ ✓ 0 EC
31 Survey Employment expectations indicator ✓ ✓ ✓ 0 EC
32 Survey Industrial confidence indicator ✓ ✓ ✓ 0 EC
33 Survey Industry survey: Production trend observed in recent months ✓ ✓ 0 EC
34 Survey Industry survey: Assessment of order-book levels ✓ ✓ 0 EC
35 Survey Industry survey: Assessment of export order-book levels ✓ ✓ 0 EC
36 Survey Industry survey: Assessment of stocks of finished products ✓ ✓ 0 EC
37 Survey Industry survey: Production expectations for the months ahead ✓ ✓ ✓ 0 EC
38 Survey Industry survey: Employment expectations for the months ahead ✓ ✓ ✓ 0 EC
39 Survey Services confidence indicator ✓ ✓ ✓ 0 EC
40 Survey Service survey: Business situation development over the past 3 months ✓ ✓ 0 EC
41 Survey Service survey: Evolution of the demand over the past 3 months ✓ ✓ 0 EC
42 Survey Service survey: Expectation of the demand over the next 3 months ✓ ✓ ✓ 0 EC
43 Survey Service survey: Evolution of the employment over the past 3 months ✓ ✓ 0 EC
44 Survey Service survey: Expectations of the employment over the next 3 months ✓ ✓ ✓ 0 EC
45 Survey Consumer confidence indicator ✓ ✓ ✓ 0 EC
46 Survey Consumer survey: General economic situation over last 12 months ✓ ✓ 0 EC
47 Survey Consumer survey: General economic situation over next 12 months ✓ ✓ 0 EC
48 Survey Consumer survey: Unemployment expectations over next 12 months ✓ ✓ 0 EC
49 Survey Consumer survey: Major purchases at present ✓ ✓ 0 EC
50 Survey Consumer survey: Major purchases over next 12 months ✓ ✓ 0 EC
51 Survey Retail trade confidence indicator ✓ ✓ ✓ 0 EC
52 Survey Retail survey: Business activity (sales) development over the past 3 months ✓ ✓ 0 EC
53 Survey Retail survey: Orders expectations over the next 3 months ✓ ✓ 0 EC
54 Survey Retail survey: Business activity expectations over the next 3 months ✓ ✓ 0 EC
55 Survey Retail survey: Employment expectations over the next 3 months ✓ ✓ 0 EC
56 Survey Construction confidence indicator ✓ ✓ ✓ 0 EC
57 Survey Construction survey: Building activity development over the past 3 months ✓ ✓ 0 EC
58 Survey Construction survey: Evolution of your current overall order books ✓ ✓ 0 EC
59 Survey Construction survey: Employment expectations over the next 3 months ✓ ✓ 0 EC
60 Survey US Consumer sentiment index ✓ ✓ ✓ 1 FRED
61 Financial Money aggregate M3 (index of notional stocks) ✓ ✓ ✓ ✓ 1 SDW
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Table B.1: Continued

Group Series Composition Transform Publ. lag Source

S M L Log Diff.

62 Financial 3-month interest rate (Euribor) ✓ ✓ ✓ 0 SDW
63 Financial 1-year government bond yield ✓ ✓ 0 SDW
64 Financial 2-year government bond yield ✓ ✓ 0 SDW
65 Financial 5-year government bond yield ✓ ✓ 0 SDW
66 Financial 10-year government bond yield ✓ ✓ ✓ 0 SDW
67 Financial Nominal effective exchange rate (Euro against Narrow EER) ✓ ✓ ✓ 0 SDW
68 Financial Real effective exchange rate CPI deflated (Euro against Narrow EER) ✓ ✓ 0 SDW
69 Financial Real effective exchange rate producer prices deflated (Euro against Narrow EER) ✓ ✓ 0 SDW
70 Financial Exchange rate USD/EUR ✓ ✓ ✓ 0 SDW
71 Financial Exchange rate GBP/EUR ✓ ✓ 0 SDW
72 Financial Exchange rate YEN/EUR ✓ ✓ 0 SDW
73 Financial Eurostoxx 50 index ✓ ✓ ✓ ✓ ✓ 0 INV
74 Financial Gold price ✓ ✓ ✓ 0 INV
75 Financial Brent crude oil price ✓ ✓ ✓ ✓ 0 INV
76 Financial Global price index of all commodities ✓ ✓ ✓ ✓ ✓ 1 FRED
77 Financial US S&P500 composite index ✓ ✓ ✓ ✓ 0 FRED
78 Financial US 3-month Treasury bill ✓ ✓ 0 FRED
79 Financial US 10-year Treasury rate ✓ ✓ 0 FRED

Notes: This table describes the details of each series in the constructed euro area macroeconomic dataset. Specifically, it indicates the group it belongs to (that is,
real, survey or financial), the dataset composition it corresponds to (that is, small (S), medium (M) or large (L)), the data transformation that is conducted on the
original series (that is, taking the natural logarithm (log) and/or the first differences (diff.)), the publication lag in months, and the data source. The sources are the
European Central Bank Statistical Data Warehouse (SDW), the Federal Reserve Economic Data (FRED), the European Comission (EC) and Investing.com (INV).
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C Additional log-likelihood convergence plots

C.1 Log-likelihood convergence over 10,000 iterations

Figure C.1: Log-likelihood values over 10,000 iterations of the EM and AEM algorithm
in estimating a mixed-frequency dynamic factor model with κ = 10−4 for various cross-
sectional dimension sizes N
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C.2 Log-likelihood convergence under fixed factor loadings

Figure C.2: Log-likelihood values over 100 iterations of the EM and AEM algorithm
(including the EM under fixed factor loadings Λ) in estimating a mixed-frequency dy-
namic factor model with κ = 10−4 for various cross-sectional dimension sizes N
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D Additional nowcasting results

D.1 Nowcasting results for different convergence thresholds

Table D.1: Relative nowcasting performance of euro area GDP growth based on a small
mixed-frequency dynamic factor model for various values of ϵ in the stopping rule

ϵ = 10−4 ϵ = 10−5 ϵ = 10−6

EM AEM EM AEM EM AEM

Panel A: Evaluation period including covid pandemic (2006Q1 - 2022Q3)

Q(-1)M1 1.14 1.14 1.17 1.39 1.17 1.39
Q(-1)M2 1.11 1.11 1.11 1.01 1.11 1.01
Q(-1)M3 0.91 0.86 0.90 0.85 0.89 0.84
Q(0)M1 0.67 0.60 0.64 0.46 0.64 0.46
Q(0)M2 0.50 0.44 0.58 0.40 0.57 0.40
Q(0)M3 0.56 0.47 0.62 0.46 0.61 0.49
Q(+1)M1 0.59 0.50 0.66 0.50 0.66 0.53

Average 0.78 0.73 0.81 0.72 0.81 0.73

Panel B: Evaluation period excluding covid pandemic (2006Q1 - 2019Q4)

Q(-1)M1 0.95 0.95 0.95 0.82 0.94 0.82
Q(-1)M2 0.90 0.90 0.90 0.79 0.89 0.79
Q(-1)M3 0.75 0.75 0.75 0.66 0.73 0.66
Q(0)M1 0.69 0.70 0.69 0.61 0.68 0.61
Q(0)M2 0.62 0.63 0.62 0.55 0.60 0.55
Q(0)M3 0.51 0.53 0.51 0.43 0.49 0.43
Q(+1)M1 0.51 0.52 0.51 0.46 0.49 0.46

Average 0.71 0.71 0.71 0.62 0.69 0.62

Notes: This table displays the relative root mean squared forecast errors (RMFSEs) of nowcasting
euro area GDP growth from 2006Q1 to 2022Q4 compared to a historical mean nowcast for different
values of ϵ in the stopping rule in equation (9) with a maximum number of J = 1, 000 (A)EM
iterations. Panel A shows the results including the covid pandemic, while Panel B excludes this
period. The small mixed-frequency dynamic factor models is estimated with κ = 10−4 based on
either the EM algorithm employed in Bańbura and Modugno (2014) or the AEM algorithm of
Salakhutdinov and Roweis (2003). For each target quarter, the nowcasts/forecasts construction
dates range from the first month of the previous quarter (that is, Q(-1)M1) up to the first month
of the subsequent quarter (that is, Q(+1)M1).
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Figure D.1: Number of iterations until convergence for different values of ϵ in the
stopping rule in the expanding-window estimation of the small mixed-frequency dynamic
factor model estimated with κ = 10−4
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D.2 Cumulative sum of squared error difference plots

Figure D.2: Cumulative sum of squared forecast error (SSE) difference plots between
the AEM and EM algorithm. A positive (negative) value indicates that EM produces
more (less) accurate nowcasts than the AEM.
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D.3 Nowcast results under fixed factor loadings

Table D.2: Relative nowcasting performance of euro area GDP growth based on the
EM algorithm with either fixed or estimated factor loadings

Small Medium Large

EM EM EM EM EM EM
(Λ est.) (Λ fixed) (Λ est.) (Λ fixed) (Λ est.) (Λ fixed)

Panel A: Evaluation period including covid pandemic (2006Q1 - 2022Q3)

Q(-1)M1 1.17 1.14 1.93 1.93 1.64 1.64
Q(-1)M2 1.11 1.11 0.98 0.98 1.05 1.05
Q(-1)M3 0.89 0.90 0.81 0.81 0.88 0.88
Q(0)M1 0.64 0.67 0.57 0.57 0.62 0.63
Q(0)M2 0.57 0.60 0.66 0.67 0.69 0.70
Q(0)M3 0.61 0.63 0.65 0.66 0.66 0.67
Q(+1)M1 0.66 0.67 0.68 0.69 0.72 0.72

Average 0.81 0.82 0.90 0.90 0.89 0.90

Panel B: Evaluation period excluding covid pandemic (2006Q1 - 2019Q4)

Q(-1)M1 0.94 0.95 0.84 0.85 0.85 0.86
Q(-1)M2 0.89 0.90 0.76 0.77 0.78 0.79
Q(-1)M3 0.73 0.75 0.72 0.72 0.72 0.73
Q(0)M1 0.68 0.69 0.74 0.74 0.73 0.73
Q(0)M2 0.60 0.62 0.68 0.68 0.67 0.67
Q(0)M3 0.49 0.51 0.61 0.61 0.58 0.58
Q(+1)M1 0.49 0.51 0.59 0.59 0.55 0.56

Average 0.69 0.70 0.71 0.71 0.70 0.70

Notes: This table displays the relative root mean squared forecast errors (RMFSEs) of nowcasting euro area GDP
growth from 2006Q1 to 2022Q4 compared to a historical mean nowcast based on the EM algorithm with either fixed
or estimates factor loadings Λ. Panel A shows the results including the covid pandemic, while Panel B excludes this
period. The small, medium and large mixed-frequency dynamic factor models are estimated with κ = 10−4 based
on the EM algorithm employed in Bańbura and Modugno (2014). We conduct J = 1, 000, J = 500 and J = 100
(A)EM iterations for the small, medium and large models, respectively. For each target quarter, the nowcasts/forecasts
construction dates range from the first month of the previous quarter (that is, Q(-1)M1) up to the first month of the
subsequent quarter (that is, Q(+1)M1).
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