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Abstract

This paper introduces a novel simulation-based filtering method for general state
space models. It allows for the computation of time-varying conditional means,
quantiles, and modes, but also for the prediction of latent variables in general. The
method relies on generating artificial samples of data from the joint distribution
implied by the model and on estimating the conditional quantities of interest via
extremum estimation. We call this procedure Extremum Monte Carlo and define
a corresponding class of filters for signal extraction. The method can be applied
to any model from which data can be simulated and is not liable to the curse
of dimensionality. Furthermore, the use of extremum estimation allows for a wide
range of conditioning sets, including data with missing entries and unequal spacing.
The filtering method also places the computational burden predominantly in the
off-line phase, which makes it particularly suitable for real-time applications. We
present illustrations for some challenging problems characterized by nonlinearity,
high-dimensionality, and intractable density functions.

Keywords: Nonlinear non-Gaussian state space models, Least squares Monte Carlo,
Real-time filtering, Intractable densities, Curse of dimensionality.
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1 Introduction

State space models (SSMs) decompose observed time series into two unobserved parts: the
states (or signal) which are the true objects of interest, and the noise which complicates
the extraction of the signal from the data. The state space modeling approach has become
pervasive in both the scientific and industry domains, with applications in fields varying
from financial econometrics and forecasting to robotics. By defining xt ∈ RNx as the
state vector at time t and yt ∈ RNy as the corresponding vector of observed variables (or
measurements), together with the noise vectors εxt and εyt , we can represent the SSM by

yt = mt(xt, ε
y
t ), (εxt , ε

y
t ) ∼ p(εxt , ε

y
t ),

xt+1 = st(xt, ε
x
t ), x1 ∼ p(x1),

(1)

for t = 1, . . . , T , with Nx, Ny, T ∈ N, where T is the length of the time series. All variables
may be either continuous or discrete, and we use p(·) to denote the probability density
or the mass function for the corresponding variables. We emphasize the generality of
SSM (1) by noting that the only restriction we impose on the functions mt, st, p(x1), and
p(εxt , ε

y
t ) is that one is able to simulate from the model. For example, the noise vectors

εxt and εyt are allowed to be mutually and serially dependent, while the state transition
function st may depend on the path y1:t = {yj}tj=1 and the measurement function mt

may depend on y1:t−1. Furthermore, all functions can depend on exogenous variables and
on the vector of static parameters (or hyperparameters) θ. The above dependencies are
suppressed in the notation for conciseness.

Once the static parameters θ have been provided or estimated, the interest is often
shifted towards signal extraction, which may be performed via the conditional expectation
of the states,

E [xt|Yt] , (2)

for t = 1, . . . , T , where Yt denotes the conditioning set. Common choices are Yt = y1:t

for filtering, Yt = y1:t−k for k-period forecasting, and Yt = y1:t+k for smoothing, with
k ∈ N. If the SSM is linear and Gaussian, that is, mt and st are linear functions, and all
densities p are Gaussian, the conditional expectations in (2) can be computed recursively
by the well-known Kalman filter (KF; Kalman, 1960). A simple example is the following
Gaussian local level (LL) model

yt = xt + εyt , εyt ∼ N(0, σ2
y),

xt+1 = xt + εxt , εxt ∼ N(0, σ2
x),

(3)

with x1 ∼ N(µ1, σ
2
1) for some µ1 ∈ R and σ1, σx, σy > 0, and the scalar noise terms εxt

and εyt are assumed to be mutually and serially independent, as well as independent from
x1. The LL model is a special case of the SSM in (1) with mt(xt, ε

y
t ) = xt + εyt and

st(xt, ε
x
t ) = xt + εxt , normal density pN(εxt , ε

y
t ) = pN(εxt )pN(εyt ), and θ = (µ1, σ1, σx, σy)

′.
Figure 1 provides an illustration by applying the LL model to measurements of the

annual flow volume of the Nile taken at Aswan from 1871 to 1970 (Durbin & Koopman,
2012, Ch.2). After setting the static parameters to the maximum likelihood estimates
σx = 38.329 and σy = 122.877, with µ1 = 0 and σ2

1 = 107 for approximate diffuse
initialization, the expectations E[xt|y1:t] for t = 1, . . . , T can be obtained by the KF.
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Figure 1: Analysis of the annual flow volume measurements yt of the Nile (discharge at Aswan
in 108m3) from 1871 to 1970 based on the LL model in (3): signals extracted via E[xt|y1:t] by
the Kalman filter (KF) and linear Extremum Monte Carlo filter (XMC) with N = 104 paths.

In practice, however, the convenient linear Gaussian assumption appears to hold by
exception, rather than the rule, so that the generalities of nonlinearity and non-Gaussian
noise are often needed; see Doucet, De Freitas, and Gordon (2001) and Zeng and Wu
(2013) for multiple examples in engineering and economics. For many nonlinear and non-
Gaussian SSMs, the computation of the conditional expectation in (2) is a challenging
task and is often tackled by particle filtering methods; see Gordon, Salmond, and Smith
(1993) and Pitt and Shephard (1999). However, filtering remains a challenging task for
cases with, for example, high-dimensional state vectors xt, limited tractability of the
SSM, and the requirement to evaluate the expectation sequentially in real time.

In this study, we propose a novel simulation-based filtering method that relies on
generating artificial samples of data from the joint distribution p(x1:T , y1:T ) implied by the
SSM in (1) and estimating the conditional expectations in (2) via extremum estimation
(e.g., Amemiya, 1985; Hayashi, 2000). We call this procedure Extremum Monte Carlo
(XMC) and use it to define a corresponding class of filters for signal extraction. The
XMC method is mainly a filtering technique for SSMs and is therefore related to the
KF and its nonlinear/non-Gaussian extensions. It is also related to the least squares
Monte Carlo method (LSMC; Longstaff & Schwartz, 2001), which was developed for the
valuation of American options in financial trading. A crucial step in the LSMC algorithm
is the approximation of the conditional expectation E[X|Y ] by simulation of the random
variables X and Y from their joint distribution,(

X(i), Y (i)
)
∼ p(X, Y ), i = 1, . . . , N.

The variates are then used as data in a least squares regression to compute

f̂N ∈ arg min
f∈FN

1

N

N∑
i=1

L
(
X(i) − f

(
Y (i)

))
,

where L(u) = u2 is the squared error loss function and f(·) can be any function from
some suitable function space FN . Finally, the function estimate is used to predict X for
any Y value of interest by

f̂N(y) ≈ E[X|Y = y].
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The LSMC method is widely adopted for the valuation of derivatives with early-
exercise features, as well as credit valuation adjustments (Green, 2015), and it has found
many other applications. Examples range from solving backward stochastic differential
equations (Gobet, Lemor, and Warin 2005; Bender and Steiner 2012), to the estimation
of complex unconditional moments for various dynamic volatility models (Engle, 2002).
In addition, the method is increasingly being used in portfolio optimization (e.g., Denault
& Simonato, 2017; R. Zhang et al., 2019), where it is called “simulation-and-regression.”
Naturally, this procedure can be generalized by allowing for loss functions L(u) other than
the squared error loss. Important examples are the tilted absolute error loss, Lτ (u) =
u(τ − 1{u<τ}), with prediction error u = X − f(Y ) to estimate the conditional τ -quantile
for τ ∈ (0, 1), and the all-or-nothing loss, Lδ(u) = 1{|u|≥δ}, with tolerance level δ > 0 to
approximate the conditional mode, which corresponds to the limit δ → 0.

The key idea behind the XMC method is to apply the above procedure repeatedly
for times t = 1, . . . , T by setting X = xt and Y = Ỹt ⊆ Yt, where the covariates Ỹt are
an appropriate subset of the conditioning set. In essence, we first use the SSM in (1)
to simulate paths of the states and observations, and regress the former onto subsets of
the latter. The estimated regression functions are then evaluated at the observed data to
predict the states. Each choice of function estimator and loss function yields a different
filter, hence the method defines a corresponding class of Extremum Monte Carlo filters.
To make matters concrete, we now return to the LL model illustration. Noting that the
KF is linear in the observations (Durbin & Koopman, 2012, Ch.2), we can attempt to
mimic this filter by applying the XMC method with linear regression to minimize the
squared error loss for a sample of N simulated paths. Figure 1 shows the predictions of
the states xt from the resulting linear XMC filter for N = 104, which are seen to coincide
with the KF.

The proposed filtering method has various beneficial characteristics. It is applicable
to any model that can be simulated, including high-dimensional models, complex models
with limited tractability, and models not nested in SSM (1). Furthermore, the use of
extremum estimation allows for any conditioning set of choice, including unequally-spaced
and unbalanced data sets with missing entries. In addition, the method is fast in real
time because the bulk of the computations (simulation and estimation) can be done in
advance, such that the real-time computations only involve evaluations of the estimated
regression functions.

The XMC method also fills a gap in the simulation-based estimation literature as
it enables signal extraction when the static parameters are estimated by the method
of simulated moments (McFadden, 1989) or indirect inference (Gourieroux, Monfort,
& Renault, 1993). If the model of choice contains latent variables, their extraction is
important in many applications. The XMC filter therefore naturally complements the
above estimation methods since they only have minimal requirements in addition to the
ability to simulate from the joint distribution implied by the model.

The remainder of this paper is structured as follows. Section 2 introduces the XMC
method together with several corresponding filters. Section 3 presents four applications to
facilitate the discussion of the key characteristics of the XMC method. Section 4 considers
filter properties for the case when either the number of simulated paths N or the time
series length T becomes large. Section 5 concludes. The proofs and supplementary
material are placed in the Appendix.
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2 The Extremum Monte Carlo method

Algorithm 1 presents the XMC method for a given instance of the SSM in (1). The method
consists of three fundamental steps: simulation, fitting, and prediction. For conciseness
we assume the state to be a scalar, as the vector case is handled simply by performing
the last two steps separately for each element in xt. The simulation step ensures that N
paths are available for both xt and yt. The generated data are then split in two parts.
A training sample, which is directly used in the regressions, and a validation sample,
which is used to regularize the tuning parameters of the chosen regression method. The
validation sample fraction does not require optimizing because the data can be generated
at will.

The regularization is performed by selecting the minimizer of the validation loss from
several candidate tuning parameters generated by a Bayesian optimization procedure
(Bergstra, Yamins, & Cox, 2013). While this could be done for each time separately, in
practice it is sufficient to determine the tuning parameters at some suitable time-point
t = t∗. We consider the window size W ∈ {1, . . . , T} as a tuning parameter and define

the covariate set Ỹt to consist of the W observations from Yt, the conditioning set, that
are nearest to time t. For example, with filtering (Yt = y1:t), we define the covariate set

Algorithm 1 Extremum Monte Carlo filtering method.

1. Simulate: Use the SSM to simulate N paths from the joint distribution,(
x

(i)
1:T , y

(i)
1:T

)
∼ p(x1:T , y1:T ), i = 1, . . . , N.

2. Fit:

(a) Split data: Set cval ∈ (0, 1) and split the data into training and validation samples
with sizes

Ntr = N −Nval and Nval = [cvalN ].

(b) Regularization: For a set of candidate tuning parameters, perform the following
regression at time t = t∗:

f̂Nt ∈ arg min
f∈FN

1

Ntr

Ntr∑
i=1

L
(
x

(i)
t − f

(
Ỹ

(i)
t

))
, (4)

with function space FN and covariates Ỹ
(i)
t ⊆ Y

(i)
t . Select the tuning parameters

that minimize the corresponding loss for the validation sample.

(c) Regression: Use the regularized tuning parameters to perform the regression in (4)
at all times t = 1, . . . , T to obtain the function estimates {f̂Nt }Tt=1.

3. Predict: Evaluate the estimated regression functions at the observed data Ỹt for t =
1, . . . , T to predict the states:

x̂t = f̂Nt (Ỹt).
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by
Ỹt = yt˜:t, with t˜= max {t−W + 1, 1}. (5)

The autoregressive structure in SSM (1) implies that these observations are generally the
most informative on xt. The choice of t∗ should be made such that it prevents underes-
timation of the window size. The validation loss is therefore best measured where most
observations are available, hence t∗ = T is a natural choice for filtering and forecasting.

By choosing a specific loss function and regression method, Algorithm 1 defines a
corresponding XMC filter, which can be chosen according to preference, provided that a
minimizer of the expected loss exists. The objective function in (4) can be generalized
to include weights. Furthermore, we note that the XMC method could also be used to
predict functions of the states and to forecast the observations, simply by changing the
dependent variable in the regressions.

The preferred choice of regression method will vary with the signal extraction problem.
For the LL model example in the introduction, a linear regression is suitable. In other
cases, a general function estimator can be more appropriate. We therefore consider
several nonlinear regression methods: tree-based gradient boosting (GB), the random
forest (RF), and the quantile regression forest (QRF). The latter is particularly suitable
for the estimation of quantiles. A short discussion of these methods can be found in
Appendix A.

To analyze the computational complexity of the method, we focus on the regression
step in Algorithm 1, which is generally the dominant runtime factor. For both the number
of states Nx and the time series length T , the complexity is linear because each regression
is performed separately. Crucially, this separability implies that the total runtime can be
made to approximate that of the longest among the regressions by increasing the number
of physical cores. In addition, the fact that the estimates are not defined recursively
ensures that potential errors in the measurements or predictions do not propagate. On
the other hand, the scaling in the number of paths N and covariates C := WNy depends
on the chosen regression method and corresponding implementation. Table 1 shows
current estimates of the computational complexity for several XMC filters.

3 Illustrations and discussion

This section develops four applications to illustrate and discuss several of the filter’s key
characteristics. We focus on filtering via the conditional means of the states E[xt|y1:t] for
t = 1, . . . , T ; illustrations of forecasting, handling missing data, and quantile estimation

Table 1: Computational complexity of the regression step for several XMC filters. The esti-
mates are based on the QR decomposition for linear regression with least squares, the complexity
of O(CN log (N)) for a single tree with C = WNy covariates, and the common choice of

√
C

split variables for RFs (Hastie et al., 2009).

XMC filter Linear GB RF and QRF

Complexity O (NxTNC
2) O(NxTCN log (N)) O(NxT

√
CN log (N))
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can be found in Appendix B. In all applications the noise terms εxt and εyt are assumed
to be mutually and serially independent, as well as independent of the initial state x1.

3.1 Nonlinear filtering

Consider the following nonlinear model for a univariate time series yt as given by

yt =
x2
t

20
+ εyt , εyt ∼ N(0, σ2

y),

xt+1 =
1

2
xt +

25xt
1 + x2

t

+ 8 cos(1.2(t+ 1)) + εxt , εxt ∼ N(0, σ2
x),

(6)

with x1 ∼ N(0, 1) and the static parameters set to σ2
x = 0.1 and σ2

y = 1 as in Kitagawa
(1996). This model is a special case of the SSM in (1) and is often used for illustrating the
performance of nonlinear filters. We used the above model to simulate a path of length
T = 100 and predicted the states using the corresponding observations with several XMC
filters for N = 105 paths.

For comparison we used the bootstrap filter (BF; Gordon et al., 1993), which is a
standard version of the particle filter. This method requires an importance sampler to
draw N values of the states x

(i)
t , i = 1, . . . , N , which are called the particles. With

the BF, the particles are drawn using x
(i)
1 ∼ p(x1) and x

(i)
t+1 = st

(
x

(i)
t , z

(i)
)

with z(i)

a draw of εxt , and they are weighted to form a discrete approximation to the density

p(xt|y1:t). This yields the approximation E [xt|y1:t] ≈
∑N

i=1 ω
(i)
t x

(i)
t with convex weights

ω
(i)
t ∝ ω

(i)
t−1p(yt|x

(i)
t ) and ω

(i)
0 = 1/N . To prevent the weights from degenerating, the

particles were resampled whenever the effective sample size, as defined by

ESSt =
1∑N

i=1

(
ω

(i)
t

)2 ∈ [1, N ], (7)

dropped below N/2. We set the number of particles to 107 to ensure a highly accurate
approximation to the filtering expectations.

Figure 2 (a) presents the simulated observations, Part (b) shows the true and filtered
states based on the BF and GB-XMC filter, while Part (c) shows the differences with
the BF for several XMC filters. From the difference in scales between Parts (b) and
(c) we find that the GB and RF-XMC filters are generally adequate, while the linear
filter (Lin-XMC) is not. The latter remains unchanged when N is increased, which
indicates that the expectations E [xt|y1:t] are inherently nonlinear in the observations.
This example demonstrates the need for general regression methods like GB and RF in
the XMC method.

3.2 Real-time speed and accuracy

This section discusses the relation between real-time speed and accuracy of the XMC
method. In real-time applications the observations y1:t are not known in advance, which
means that the estimated regression functions must be accurate on most of their domain.
It is therefore expected that a larger number of draws N is needed to achieve the same
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Figure 2: Analysis of a simulated path from the nonlinear model in (6): (a) observations; (b)
true and filtered states by the BF and GB-XMC filter; (c) differences with BF for several XMC
filters. The BF is based on 107 particles; the XMC filters are based on 105 simulated paths.

accuracy as other simulation-based methods that provide direct point estimates (e.g.,
particle filters). However, an important property of the XMC method is that most of the
computations take place in the simulation and regression steps, which can be performed
off-line. The on-line (or real-time) phase then only consists of the prediction step, which
is computationally light. Furthermore, it is expected that the impact of increasing N on
computing the predictions is small, so that the desired level of accuracy can be achieved
without compromising the method’s speed in real time.

To illustrate this last point, we performed a simulation study using the nonlinear
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Table 2: Results from simulation study based on the nonlinear model in (6): overall root
mean squared error (RMSE) and runtimes (computer execution time in seconds) based on 104

test paths for the bootstrap filter (BF) and gradient boosting XMC filter methods with various
number of draws N .

log10(N) 3 4 5
Method BF XMC BF XMC BF XMC
RMSE 1.688 1.858 1.664 1.709 1.662 1.674
runtime off-line - 72.1 - 437.2 - 4240.6
runtime on-line 361.3 3.0 1295.7 2.4 13723.2 3.4

model in (6). The root mean squared error (RMSE) and runtimes of the GB-XMC filter
are compared with those of the BF for various values of N . Table 2 shows the results
from the simulation study, in which the path length was set to T = 100, and 104 test
paths were used to estimate the performance. As expected, the BF was more accurate
than the XMC filter for an equal number of draws. Most noteworthy about the results is
that the time spent in the on-line phase by the XMC filter is several orders of magnitude
smaller. These times are impacted by the number of draws only indirectly—via the
estimated regression functions, with runtimes that are not necessarily increasing in N .
In this case, the runtime is larger for N = 103 than for N = 104 because the GB method
has a tendency to overfit the training data for small samples, which results in function
estimates that are more complex and, therefore, more expensive to evaluate. By contrast,
the BF incurs all its computing costs in real time, and the runtimes are directly impacted
by the number of draws. The results illustrate that particle filters have an inherent trade-
off between real-time speed and accuracy, whereas XMC filters do not have this trade-off.
Given that the computational “bottleneck” in Algorithm 1 can be executed off-line, the
XMC method is particularly suitable for real-time applications.

3.3 Intractable model densities

The stochastic volatility (SV) model is often used for the modeling of time series of daily
financial returns. We consider the SV model with stable measurement noise (e.g., Vankov,
Guindani, & Ensor, 2019) given by

yt = exp(xt/2)εyt , εyt ∼ S(α, β),

xt+1 = µ+ φ(xt − µ) + σxε
x
t , εxt ∼ N(0, 1),

(8)

where xt represents the unobserved log variance, with initialisation x1 ∼ N(µ, σ2
x/(1−φ2))

and static parameters µ ∈ R, |φ| < 1, and σx > 0. Furthermore, S(α, β) denotes the first
parametrization of the standard univariate stable distribution as in Nolan (2009), with
tail index parameter α ∈ (0, 2] and asymmetry parameter β ∈ [−1, 1]. Except for a few
specific choices of the parameters, the density is not available in closed form, hence the
characteristic function is used to describe the distribution:

E[exp(iuεyt )] =

{
exp

(
−|u|

[
1 + iβ 2

π
(sgnu) log |u|

])
if α = 1,

exp
(
−|u|α

[
1− iβ tan(πα

2
)(sgnu)

])
otherwise.
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Figure 3: Results from simulation study based on the SV model in (8): the RMSEs over time
are depicted for the quasi-maximum likelihood (QML) filter and the gradient boosting XMC
filter. The latter is applied with N = 105 simulated paths, and with and without the steady
state (SS) modification of Section 4.2.

The stable distribution has finite moments of any order less than α, and an important
property of the 1-parametrization is E[εyt ] = 0 if α > 1, such that the first moment is not
impacted by the tail and asymmetry parameters.

We perform a simulation study using the SV model in (8) with the parameter choice
from Vankov et al. (2019), that is, µ = −0.2, φ = 0.95, σx = 0.2, α = 1.75, and β = 0.1.
The path length is set to T = 100, the number of test paths for evaluating the performance
of the filters is set to 105, and the number of paths for the XMC method is also set to
N = 105.

To compare the performance of the XMC method, we consider the quasi-maximum
likelihood (QML) filter of Harvey, Ruiz, and Shephard (1994) which remains valid without
a tractable observation density. The method is based on transforming the observations
by ỹt = log y2

t to cast the SV model into a linear state space form, that is,

ỹt = xt + 2ε̃ yt ,

xt+1 = (1− φ)µ+ φxt + σxε
x
t ,

with ε̃ yt = log |εyt |. Although ε̃ yt is not normally distributed, one can assume it is, so that
the KF can be used to act as an approximate filter for xt. This normal approximation
matches the first two moments of ε̃ yt , which are given in Lemma 3.19 of Nolan (2009).

Figure 3 shows the RMSE at different time points for the QML (brown) and GB-XMC
(blue) filtered states; the red graph will be discussed in Section 4.2. It can be seen that
shortly after t = 20, the RMSE stops decreasing for both filters, suggesting a relatively
small contribution from further lags. The overall RMSE is 0.492 for the XMC filter, a
substantial improvement over the RMSE of 0.524 attained by the QML filter.

3.4 High-dimensional filtering

To investigate the performance of the XMC method for varying sizes of the state vector,
we conduct a simulation study using the following vector autoregressive model with noise
(VARN) as given by

yt = xt + εyt , εyt ∼ Cauchy(0, Id),

xt+1 = Axt + εxt , εxt ∼ N(0, Id),
(9)
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with vector variables xt, yt, ε
x
t , ε

y
t ∈ Rd for some d ∈ N, Id is the d × d identity matrix,

and we set A = 0.9 · Id with x1 ∼ N(0, (1− 0.92)−1Id). The measurement noise vector εyt
is multivariate Cauchy with location zero and scale matrix Id, which is proposed by van
Leeuwen (2003) to avoid degeneracy of the particle filter weights in the context of a high-
dimensional SSM. This specification exploits the fact that if the observations become
less informative on the states, their posterior distribution will be more similar to the
prior, thereby decreasing the variance of the weights. The model in (9) is a dynamic
version of the multivariate Cauchy model used by Bengtsson, Bickel, and Li (2008) to
show that, in comparison with the Gaussian case, these fat-tailed observation errors are
able to considerably slow down the degeneracy of the particle weights as d→∞.

We simulate paths of the states and observations of length T = 50 using the VARN
model with dimensions d ∈ {25, 50, 100, 200} and filter the states using the corresponding
observations. The number of test paths is set to 105/d, such that all results are based on
105 state elements. The performance of the XMC filter is compared with the bootstrap
filter of Gordon et al. (1993). For both methods, we set the number of draws to N = 104,
which is a-typically large for particle filters. As discussed in Section 3.2, these quantities
cannot be compared directly since only the number of particles increases the real-time
duration of the corresponding filter. Hence, the results are indicative of the real-time
accuracy that can be attained by the BF, but they merely represent a lower bound on
the accuracy of the XMC filter.

Figure 4 shows the RMSE (based on the average MSE over the state elements) against
time attained by the BF and GB-XMC filter for the selected model dimensions. As d
increases, the BF becomes less accurate and its RMSE grows towards (and eventually
exceeds) the RMSE of the unconditional mean. The performance of the XMC filter
remains markedly steady as the model dimension increases. Table 3 shows the overall
RMSE for both methods, as well as the average value of ESSt/N for the BF based on (7).
Up to d = 100, the latter number decreases with the dimension, which explains why the
performance of the BF deteriorates despite the extra available information: the variance
of the estimates increases because the weight becomes more concentrated on a smaller
share of the particles. Starting at d = 100, there are several occurrences in which all
BF particle weights evaluated to zero; in such cases, we resort to resetting the weights
to 1/N , which is justified by the fact that all weights are numerically equivalent before
the reset. The increased number of resets at d = 200 causes the average ESSt/N value
to increase again but, as expected, there is no corresponding improvement in accuracy.

The deterioration of the BF is bound to occur for all particle filters because the weights
are proportional to p(yt|x(i)), and therefore, to those of the BF. More generally, the

Table 3: Results from simulation study based on the VARN model in (9): overall RMSE of
the bootstrap filter (BF) and the gradient boosting XMC filter for selected model dimensions,
and the average value of ESSt/N for the BF based on (7).

d 25 50 100 200
Method BF XMC BF XMC BF XMC BF XMC
RMSE 1.257 1.199 1.511 1.195 1.828 1.189 2.148 1.196
Average ESSt/N 0.098 - 0.072 - 0.053 - 0.088 -
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Figure 4: Results from simulation study for the VARN model in (9): the RMSE against time
attained by the bootstrap filter (BF) and the gradient boosting XMC filter for selected model
dimensions d. The unconditional standard deviation of the states

√
Var [xt] is the RMSE of the

unconditional mean.

weights degeneracy problem is a manifestation of the well-known curse of dimensionality
for importance sampling. On the other hand, the accuracy of the XMC filter keeps
improving until d = 100 and remains almost unchanged for d = 200. Since each element
of the state vector is treated separately, increasing its size generally does not have a
negative impact on the filter’s accuracy. In addition, the use of tree-based methods makes
it possible to handle large numbers of covariates, even if many of them are uninformative.
By relying on regression instead of importance sampling, the XMC method is able to
overcome the curse of dimensionality.

4 Filter properties

In this section, we consider filter properties for the case when the number of simulated
paths N or the time series length T becomes large. Section 4.1 provides conditions under
which an XMC filter defined by Algorithm 1 converges to an optimal filter as N diverges
to infinity. In this analysis T is assumed to be finite, as is the case in all applications.
The case of large (but finite) T is considered from a practical perspective in Section
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4.2, which introduces an extension to Algorithm 1 that may yield large computational
savings for long time series. The latter are common with data on natural phenomena
(e.g., astronomical and meteorological data) and in fields where measurements with daily
or higher frequencies are often available, such as financial econometrics.

4.1 Convergence

For the purpose of generality, our filter convergence analysis takes place in the context of
a general signal extraction problem characterized by the instance of the SSM in (1), the
conditioning sets Yt ⊆ y1:T for t = 1, . . . , T , and the loss function L; these specifications
will be considered given. A filtering example (Yt = y1:T ) with the Gaussian LL model in
(3) will be used to settle ideas.

In the following, we use Y to denote the collection of all paths y1:T that are realizable
in the sense that p(y1:T ) > 0 (Frühwirth-Schnatter, 1994). In addition, we assume the
existence of an optimal filter.

Assumption 1 (Existence of optimal filter). There exists an optimal filter {f ∗t (Yt)}Tt=1

such that for all y1:T ∈ Y and t = 1, . . . , T ,

f ∗t (Yt) ∈ arg min
c∈R

E
[
L (xt − c)

∣∣Yt] . (10)

An optimal filter is thus defined as a sequence of prediction functions f ∗t that are pointwise
minimizers of the expected loss, where the “points” are the conditioning sets Yt. Here
it should be noted that Yt ⊆ y1:T is fixed whenever y1:T is, a property that we will use
repeatedly. In general, the minimizers f ∗t need not be unique, and the same therefore
holds for the optimal filter. This may happen, for example, with the all-or-nothing loss
if p(xt|Yt) is multimodal; it may then be beneficial for the stability of the filter to use a
selection function for choosing between the minimizers.

Example (Optimal filter). For a filtering problem with the squared error loss, the objec-
tive function in (10) becomes

E
[
L (xt − c)

∣∣Yt] = E[(xt − c)2|y1:t].

If this objective function exists, it is well known that the corresponding minimizer f ∗t is
given by the conditional expectation of xt given y1:t,

f ∗t (Yt) = E[xt|y1:t].

For linear Gaussian SSMs, the optimal filter is given by the KF, which, for the Gaussian
LL model in (3), reduces to the recursion

E[xt|y1:t] = (1−Kt)E[xt|y1:t−1] +Ktyt, Var [xt|y1:t] = Var [xt|y1:t−1] (1−Kt),

E[xt+1|y1:t] = E[xt|y1:t], Var [xt+1|y1:t] = Var [xt|y1:t] + σ2
x,

(11)
for t = 1, . . . , T , with Kt = (1 + σ2

y/Var [xt|y1:t−1])−1 and y1:0 := ∅ (Durbin & Koopman,
2012, Ch.2).
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To enable a formal discussion of the XMC filter and its convergence, we will use the
following definition for the covariate sets.

Definition 1 (Covariate set). A covariate set Ỹt ⊆ Yt is a subset of the conditioning set
at time t. The power set P(Yt) is the collection of all feasible covariate sets at time t.

Like the conditioning set, each feasible covariate set Ỹt ∈ P(Yt) consists of elements from
y1:T , which are therefore fixed whenever y1:T is, and random otherwise.

In general, the optimal size of the covariate set used in the regressions varies with
N , an illustration of which is given in Appendix B.2. The XMC filter accounts for this
dependency by using regularized covariate sets Ỹ N

t ∈ P(Yt), which are defined in terms of
a window size (e.g., via (5) for filtering) that minimizes the loss for a separate validation
sample of size Nval = [cvalN ] with, say, cval = 0.1. The covariate sets can of course be
regularized in other ways, such as by adding a penalty term to the objective function for
the window size. In this section we assume only that the regularized covariate sets are
such that they converge to the corresponding conditioning sets.

Assumption 2 (Convergence of regularized covariate sets). For t = 1, . . . , T we have

lim
N→∞

Ỹt = Yt almost surely.

Having defined the regularized window size, the XMC filter can be represented as the
set of prediction functions {

f̂Nt
(
Ỹ N
t

)}T
t=1
,

and we note that each term defines a different function estimator depending on the
composition of Ỹ N

t , the regularized covariate set. This is illustrated in the next example.

Example (Linear XMC filter). Consider the XMC filter defined by using a linear regres-
sion function with parameters estimated by the least squares (LS) method,

f̂Nt
(
Ỹ N
t

)
= β̂LS0 +

∑
yj∈Ỹ N

t

β̂LSj yj, (12)

for t = 1, . . . , T , with Ỹ N
t such that Assumption 2 holds. Each feasible value of Ỹ N

t ∈
P(Yt) defines a different function estimator. For instance, with filtering at time t = 2 we
have the possible estimators

f̂N2 (∅) = β̂LS0,0 , f̂N2 ({y1}) = β̂LS0,1 + β̂LS1,1y1,

f̂N2 ({y2}) = β̂LS0,2 + β̂LS2,2y2, f̂N2 ({y1, y2}) = β̂LS0,12 + β̂LS1,12y1 + β̂LS2,12y2,

each of which could be used to predict the state x2.

We shall say that the XMC filter converges to an optimal filter {f ∗t }Tt=1 if for all
realizable paths y1:T ∈ Y ,

sup
t=1,...,T

∣∣∣f̂Nt (Ỹ N
t

)
− f ∗t (Yt)

∣∣∣ a.s.→ 0 as N →∞. (13)
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The above convergence is thus pointwise over the realizable paths (i.e., the observed data)
rather than uniform, where the latter is typically not manageable due to Y being non-
compact; in most applications Y coincides with RNy×T . On the other hand, the almost
sure mode of convergence pertains to the randomness that stems from the simulation step
in Algorithm 1, which should become irrelevant as N →∞.

Lastly, consider the limit functions

f∞t (Ỹt) = lim
N→∞

f̂Nt (Ỹt) (14)

for t = 1, . . . , T , where the notation emphasizes that the covariate sets Ỹt ∈ P(Yt) remain

invariant with respect to N . We then require that the limits f∞t (Ỹt) coincide with a

minimizer when Ỹt = Yt.

Assumption 3 (Convergence of function estimators). For all y1:T ∈ Y and t = 1, . . . , T
it holds that

f∞t (Yt) = f ∗t (Yt) almost surely, (15)

for some minimizer f ∗t of (10).

The following lemma is then a straightforward result.

Lemma 1 (Filter convergence). Under Assumptions 1-3 the XMC filter converges almost
surely to an optimal filter {f ∗t }Tt=1, so that the condition in (13) is satisfied for all y1:T ∈ Y.

The next example provides an application of Lemma 1 to illustrate filter convergence in
the context of the Gaussian LL model.

Example (Filter convergence). Noting that the conditional variances in (11) do not
depend on yt, it follows that the conditional expectation computed by the KF is a linear
function of the observations, so that f ∗t (Yt) = f ∗t (y1:t) = β0 +

∑t
j=1 βjyj for appropriate

constants βk ∈ R, k = 0, . . . , t. By Lemma 1, a linear XMC filter defined by (12)
converges to the KF as N → ∞ for any choice of regularized covariate sets that satisfy
Assumption 2.

Lemma 1 establishes filter convergence in a general setting where the method of reg-
ularization is left unspecified. The result therefore also applies to alternative approaches,
such as penalization of the objective function, provided that Assumption 2 holds. With
the loss-based approach from Section 2, we can expect this assumption to hold for most
signal extraction problems of practical interest. A discussion and formal result of conver-
gence for our specific regularization method requires introducing corresponding notational
machinery and is therefore placed in Appendix C.

Part of the generality of Lemma 1 is due to its use of Assumption 3, which enabled a
separation of the convergence analysis for the filter from the specific regression method
used; see Appendix A for references to analyses of the latter type. The related question of
which regression method is optimal with finite N remains a challenging one because the
answer will vary with the signal extraction problem, and most nonlinear non-Gaussian
SSMs admit little knowledge about the form of the corresponding optimal filter(s). In
this light, we note that convergence (or consistency) will typically be a greater concern
than other estimator properties because the simulated data can be generated at will and,
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as discussed in Section 3.2, increasing N does not effectively impact the filter’s speed in
real time. In the absence of further knowledge, a prudent strategy is therefore to use
general regression models (e.g., GB, RF) with the aim of establishing filter convergence,
as was done in the illustrations.

4.2 Steady state

This section describes a steady state (SS) extension to Algorithm 1 that may yield large
computational savings for long time series. The idea is to stop performing regressions
after some time tss and use the function estimate f̂Ntss for prediction at the remaining times
t > tss. A minimal requirement for such approach to be sensible is that the covariate sets
change over time only through shifts of their elements. More specifically, this means that
there exists some tW ∈ N such that

Ỹt+1 =
{
yj+1

∣∣∣yj ∈ Ỹt} ∀ t ≥ tW . (16)

For example, the above condition is satisfied with tW = W for filtering with covariate
sets defined by (5). Each time t ≥ tW is then a potential candidate for tss.

To determine whether the impact of the SS approach is acceptable, we propose an
intuitive estimate of the largest increase in the loss by noting that the regression functions
are expected to differ more from each other the further in time they are apart. We
therefore check for t = tW , . . . , T if

Nval∑
i=1

L
(
x
〈i〉
T − f̂

N
t

(
Ỹ
〈i〉
T

))
≤ (1 + css)

Nval∑
i=1

L
(
x
〈i〉
T − f̂

N
T

(
Ỹ
〈i〉
T

))
(17)

holds, with css ≥ 0 a chosen tolerance level and superscripts 〈i〉 indicating cases from the

validation sample (x
〈i〉
1:T , y

〈i〉
1:T ), i = 1, . . . , Nval. If the condition in (17) is satisfied at time

t, we say that an SS has been reached and set tss = t, after which the estimate f̂Ntss can
be used to circumvent the remaining regressions.

We illustrate the SS approach by applying it in the simulation study for the SV
model from Section 3.3. Figure 3 shows the performance of the SS and regular versions
of the GB-XMC filter and the QML filter. The SS estimate f̂Ntss corresponds to tss = 25
(css = 0;W = 21), such that only a small part of the regressions had to be performed.
The SS approach is seen to have no effective impact on the filter’s accuracy. This result
is as expected because the SV model in (8) is strictly stationary, which implies that the

limit estimators f∞t (Ỹt) for covariate sets satisfying the condition in (16) are equivalent
for all t ≥ tW . The proposed approach should, however, be applicable more generally.
For example, applying the SS approach to the filtering exercise with the non-stationary
LL model in (3) yielded results identical to Figure 1 (which are therefore omitted) with
tss = 21 for css = 0. A more precise specification of the models for which the SS concept
is suitable will be left to future research.

5 Conclusion

This paper introduces a novel simulation-based filtering method for computing time-
varying conditional means, quantiles, and modes, and for predicting latent variables in
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general. The XMC method relies on generating artificial samples of data from the joint
distribution of the model and estimating quantities of interest via extremum estimation.
Convergence to an optimal filter is shown to hold under mild regularity conditions, and the
filtering characteristics are illustrated in the applications. The method is applicable to any
model from which data can be simulated and is not liable to the curse of dimensionality.
Furthermore, the use of extremum estimation allows for any conditioning set, including
data sets with missing entries and unequal spacing. The filtering method also places the
computational burden predominantly in the off-line phase, which makes it particularly
suitable for real-time applications.
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Appendix A Regression methods

A.1 Gradient boosting

Gradient boosting (GB; Friedman, 2001) is currently considered the standard “off-the-
shelf” solution to data mining problems. The idea is as follows. Suppose that for the
random variables X and Y a sample (X(i), Y (i)), i = 1, . . . , N is available, and we wish to
estimate a function f ∗(Y ) that minimizes the expected loss with respect to X. Starting
with some initial function f0 and denoting by τ(Y ;ψ) a regression tree with parameters
ψ ∈ Ψ, the tree-based GB estimate of f ∗ is defined by applying for m = 1, . . . ,M :

ψ̂m ∈ arg min
ψ∈Ψ

N∑
i=1

(
−∂L(X(i) − X̂)

∂X̂

∣∣∣∣
X̂=fm−1(Y (i))

− τ(Y (i);ψ)

)2

,

fm(Y ) := fm−1(Y ) + λτ(Y ; ψ̂m),

(18)

with learning rate parameter λ ∈ (0, 1) that is used to control how rapidly the function
fm is updated. The idea is thus to iteratively fit regression trees to the negative gradient
of the loss function—the direction of steepest descent—and to use an average of the trees
as estimate of the regression function. For the normalized squared error loss L(u) = u2/2,
the first part of the boosting scheme in (18) becomes

ψ̂m ∈ arg min
ψ∈Ψ

N∑
i=1

(
X(i) − fm−1

(
Y (i)

)
− τ(Y (i);ψ)

)2
,

which amounts to iteratively fitting a regression tree to the residuals of the previous step.
The above special case provides an intuition for why GB is found in practice to work
well in many different applications. In addition, the use of regression trees provides an
internal feature selection process to deal with large numbers of covariates, even if only a
small part of them is informative. Some convergence results have been established, for
example by Biau and Cadre (2021), who use an L2-penalization for regularization, and
T. Zhang and Yu (2005), who consider a general boosting procedure with early stopping.

A.2 Random forest and quantile regression forest

The random forest (RF; Breiman, 2001) is defined as an average of a large number of
decorrelated regression trees that are grown using bootstrapped samples of the data. The
idea is that regression trees are characterized by a low bias and high variance, and because
the trees are identically distributed their average retains this low bias while benefiting
from a reduced variance. A distinctive step in the RF procedure is that when growing a
tree, each split decision in a terminal node is made using a subset of randomly selected
covariates to reduce the correlation between the trees. Given a sample (X(i), Y (i)), i =
1, . . . , N of random variables X and Y , the RF predictions of X can be represented
directly in terms of the data by

1

N

N∑
i=1

wi(y)X(i) ≈ E[X|Y = y],
N∑
i=1

wi(y) = 1, wi(y) ≥ 0.
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The weights are defined as an average,

wi(y) =
1

K

K∑
k=1

wki (y), (19)

for K regression trees, each of which predicts the dependent variable X by taking the
average over the corresponding variates in the leaf to which y is assigned. This may be
represented by

wki (y) =
1{i∈Lk(y)}

|Lk(y)|
,

with Lk(y) denoting the set of indices j corresponding to the values Y (j) in the leaf to
which y is assigned and |Lk(y)| its number of elements. Convergence of the RF has been
established by Scornet, Biau, and Vert (2015) in the context of additive models.

The quantile regression forest (QRF; Meinshausen, 2006) exploits the RF to perform
quantile regression. Noting that for random variables X and Y the conditional CDF is
defined by

P (X ≤ x|Y = y) = E[1{X≤x}|Y = y],

the QRF approximates the right-hand side by

N∑
i=1

wi(y) 1{X(i)≤x},

with the weights as defined in (19). The quantile estimates can then be computed by
inverting the above CDF estimate. This approach requires only a single RF to be fit for
estimating any number of quantiles with monotonicity in the cumulative probabilities.
Convergence of the QRF method is discussed in Meinshausen (2006, Sec.4).

Appendix B Additional illustrations

This section contains several additional illustrations regarding covariate set regularization
and filter convergence. The illustrations are based on the Gaussian LL model in (3)
applied to measurements of the annual flow volume of the Nile taken at Aswan from 1871
to 1970. The static parameters were set to the maximum likelihood estimates σx = 38.329
and σy = 122.877, with µ1 = 0 and σ2

1 = 107 to approximate diffuse initialization. More
information on this application can be found in Durbin and Koopman (2012, Ch.2).

B.1 Filter convergence

The use of regression easily accommodates prediction based on other conditioning sets
than the one used for filtering. For example, Figure 5 shows the 1-period forecasts of the
linear XMC filter (N = 104), which coincide with the ones based on the KF. At t = 1,
the prediction is unconditional, resulting in the value µ1 = 0, while for t > 1 the forecasts
equal the lagged predictions from filtering, E[xt−1|y1:t−1].
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Figure 5: Forecasting analysis of the Nile data based on the LL model in (3): 1-period forecasts
of the state from the KF and linear XMC filter with N = 104.

Figure 6: Filtering analysis of the partial Nile data based on the LL model in (3): filtered
states from the KF and linear XMC filter with N = 105.

Figure 7: Filtering analysis of the Nile data based on the LL model in (3): state quantiles for
cumulative probabilities 10%, 50%, and 90%: (a) KF; (b) QRF-XMC filter with N = 106.

20



Another type of conditioning set results from the occurrence of missing data, which
is common in practice. The XMC filter handles this issue by simply omitting the corre-
sponding covariates when performing the regression. We illustrate the handling of missing
data by treating the observations at time points 21, . . . , 40 and 61, . . . , 80 as missing. To
deal with these longer sequences of missing data, the window size was set to 40. Figure 6
shows the filtered states from the linear XMC filter with N = 105 paths. The predictions
are seen to coincide with those of the KF, which is able to treat missing data exactly
(Durbin & Koopman, 2012, Ch.4.10).

Lastly, Figure 7 (a) shows the filtered 10%, 50%, and 90% state quantiles based on
the KF. The corresponding estimates of the QRF-XMC filter with N = 106 are shown in
Figure 7 (b), which are seen to be close to the true quantiles. As expected, the median
estimates appear to be slightly more accurate than the more extreme quantiles.

B.2 Covariate set regularization

To investigate how the filter’s performance is impacted by the window size, we performed
a simulation study using the LL model in (3) with T = 100. We focus on the accuracy
of the filtered state at the last time point, x̂T , as a function of the window size, or
equivalently, of the lower covariate set endpoint T˜ = T −W +1 with Ỹt defined by (5). In
particular, the RMSE of x̂T was computed for the linear XMC filter with N ∈ {103, 104}
based on a test sample of 105 paths and ten repetitions of Algorithm 1 for different seeds.

Figure 8 shows the results of the simulation study. As expected, the RMSE decreases
with N , and it is seen to be non-monotonic in the lower endpoint. Adding recent observa-
tions as covariates initially improves the performance, but after some point the increase
in variance from having to estimate more parameters outweighs the decrease in the bias
with respect to E[xT |y1:T ]. Regarding the bias, we note that there are clear diminishing
returns to adding covariates because the observations are dependent and decreasingly
informative the more remote they are from the state. The optimal covariate window is
seen to vary with N , which indicates that an increase in the complexity of the regression
method is warranted once more data are available. For comparison, the RMSE is also
shown for the KF, which computes E[xT |y1:T ] exactly using the recursion in (11). For
N = 104, the performance of the linear XMC filter with T˜ = 87 (W = 14) is almost in-

Figure 8: RMSE of x̂T in the Gaussian LL model based on the predictions for 105 simulated
test paths. The results are shown for the KF and linear XMC filter with N ∈ {103, 104} for
various values of the lower covariate set endpoint, and the upper endpoint set to T = 100.
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distinguishable from that of the optimal filter. The RMSE increases if the lower endpoint
is altered, which underlines the importance of covariate set regularization.

Appendix C Window-based filter convergence

This section considers filter convergence for the specific regularization approach from
Section 2, in which a window size parameter W ∈ {1, . . . , T} is used to govern all covari-
ate sets. For example, with filtering this is done via (5). More generally, this approach

considers the covariate sets Ỹt = Ỹt(W ) as given functions of W . We impose the follow-
ing restrictions to ensure that these window-based covariate sets are growing in W and
eventually coincide with the conditioning set.

Definition 2 (Window-based covariate sets). For given conditioning sets Yt, t = 1, . . . , T ,

the window-based covariate sets Ỹt(W ) are such that for W = 1, . . . , T − 1 we have

Ỹt(W ) ⊆ Ỹt(W + 1) ⊆ Ỹt(|Yt|) = Yt,

where |Yt| denotes the size of the conditioning set.

Another element specific to the approach from Section 2 is that the regularized window
is determined by minimizing the average loss at some suitable time point t∗ based on a
separate validation sample. It is well known that such use of independent samples ensures
convergence to a minimizer of the expected loss. In this context, it is relevant to note
that there are some SSMs for which not all of the observations are of added value to
prediction. For example, if the state is an m-dependent process, such as the moving
average model of order m,

xt = εxt +
m∑
j=1

θjε
x
t−j,

with mutually and serially independent noise terms εxt and εyt . In this case xt is inde-
pendent of yt−j for j > m. The regularized window size, WN , may then converge to a
value smaller than |Yt∗ | because some of the covariates are redundant. We introduce the
following concept to deal with such cases.

Definition 3 (Infimum window size). Let Assumption 1 hold, and let Wt ∈ {1, . . . , |Yt|}
be the smallest value such that for all W ≥ Wt there exists a minimizer f ∗t of (10) for
which

f∞t
(
Ỹt(W )

) a.s.
= f ∗t (Yt) ∀ y1:T ∈ Y ,

with f∞t as defined in (14). Then Wt is called the infimum window size for time t.

The infimum window size is essentially the smallest value to which a regularized window
size could converge if it is based on minimizing the validation loss at time t; if there are
no redundant observations, it follows that Wt = |Yt|. The regularization approach from
Section 2 can then be characterized by the condition

W∞ := lim
N→∞

WN ∈
{
Wt∗ , . . . , T

}
almost surely. (20)

The following result provides several sufficient conditions under which window-based
XMC filters converge to an optimal filter.
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Lemma 2 (Window-based filter convergence). Let Assumption 1 hold, and let the reg-
ularized covariate sets be defined in terms of a regularized window size WN , so that
Ỹ N
t = Ỹt

(
WN

)
for t = 1, . . . , T . Then convergence to an optimal filter is implied by any

of the following conditions:

(a) Assumption 3 holds and W∞ ∈
{

max
t=1,...,T

|Yt|, . . . , T
}

almost surely.

(b) The condition in (20) is satisfied and Wt∗ = max
t=1,...,T

Wt.

(c) The condition in (20) is satisfied and Wt∗ = |Yt∗| = max
t=1,...,T

|Yt|.

In Lemma 2, Condition (a) requires that the limit of the regularized window size is large
enough to exceed all conditioning window sizes. It then follows by Definition 2 that each
covariate set coincides with its corresponding conditioning set, such that Assumption 2
holds. This condition is easily verified for deterministic window sizes that grow at a
prespecified rate.

Condition (b) and (c) pertain specifically to loss-based window sizes. The proposal
to set t∗ = T for filtering and forecasting implies that Yt ⊆ Yt∗ for t = 1, . . . , T . This
choice is therefore the least restrictive on the size of the infimum window. For example,
with filtering, the only possible value for W1 is 1, while WT could take on the values
1, . . . , T depending on the SSM. Condition (b) requires that the largest infimum window
is located at time t∗, which, based on the above, we can expect to hold for virtually any
filtering and forecasting problem of practical interest.

Condition (c) is less general, but simpler to verify in practice. The requirement of
|Yt∗| = maxt=1,...,T |Yt| means that the largest conditioning set is located at time t∗, which
is satisfied by the choice of t∗ = T for filtering and forecasting. The requirement that
Wt∗ = |Yt∗| is met when all observations from the conditioning set are of added value to
prediction, which we can expect to hold for any SSM with autoregressive dynamics for
the states.

Appendix D Proofs

The following auxiliary results will be used to prove Lemma 1 and 2.

Lemma 3 (Finite-N convergence of regularized covariate sets). Under Assumption 2,
there exists some M ∈ N such that for t = 1, . . . , T ,

Ỹ N
t

a.s.
= Yt ∀ N > M.

Proof. The result follows trivially by noting that if for some finite set Z a sequence
(zN)N∈N, zN ∈ Z, convergences to a point z∞ ∈ Z, then it holds that ∀ ε > 0 ∃ Nε ∈
N : zN ∈ Bε(z∞) ∀ N > Nε, with Bε(z∞) an open ball having center z∞ and radius ε.
Because Z is finite, it is possible (for any metric) to choose ε small enough such that

Bε(z∞) = {z∞}. The result then follows by setting Z = P(Yt) with zN = Ỹ N
t and

z∞ = Yt.
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Similarly, we have the following result for the regularized window size. The proof follows
the same argument.

Corollary 1 (Finite-N convergence of regularized window size). Suppose that W∞ :=
limN→∞W

N ∈ {1, . . . .T} almost surely, then there exists some M ∈ N such that

WN a.s.
= W∞ ∀ N > M.

D.1 Proof of Lemma 1

By Assumptions 1-3, there exists an optimal filter {f ∗t }Tt=1 such that for all realizable
paths y1:T ∈ Y and t = 1, . . . , T we have that as N →∞,∣∣∣f̂Nt (Ỹ N

t

)
− f ∗t

(
Yt
)∣∣∣ =

∣∣∣f̂Nt (Yt)− f ∗t (Yt)∣∣∣→ ∣∣f∞t (Yt)− f ∗t (Yt)∣∣ = 0 almost surely,

where the first equality follows from Lemma 3, the limit function f∞t is as defined in (14),
and the final expression is zero by Assumption 3.

D.2 Proof of Lemma 2

(a) Because WN ∈ {1, . . . , T}, we have by Definition 2 and Corollary 1 that

lim
N→∞

Ỹ N
t = lim

N→∞
Ỹt(W

N) = Ỹt(W
∞) = Yt almost surely,

for t = 1, . . . , T , which implies Assumption 2. Lemma 1 then applies because
Assumptions 1-3 hold.

(b) There exists an optimal filter {f ∗t }Tt=1 such that for all realizable paths y1:T ∈ Y
and t = 1, . . . , T we have that as N →∞,∣∣∣f̂Nt (Ỹ N

t

)
− f ∗t

(
Yt
)∣∣∣ =

∣∣∣f̂Nt (Ỹt (WN
) )
− f ∗t

(
Yt
)∣∣∣ =

∣∣∣f̂Nt (Ỹt (W∞)
)
− f ∗t

(
Yt
)∣∣∣

→
∣∣∣f∞t (Ỹt (W∞)

)
− f ∗t (Yt)

∣∣∣ = 0 almost surely,

where the first equality holds by definition of the regularized covariate sets in terms
of the regularized window size, the second follows from Corollary 1, the limit func-
tion f∞t is as defined in (14), and the final expression is zero by Definition 3 because
W∞ ≥ Wt∗ = max

t=1,...,T
Wt due to (20).

(c) W∞ ≥ Wt∗ = max
t=1,...,T

|Yt| implies Condition (a). Alternatively, Wt∗ = max
t=1,...,T

|Yt| ≥
max

t=1,...,T
Wt because |Yt| ≥ Wt for t = 1, . . . , T , which implies Condition (b).
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