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Zsolt Sándor‡

Matthijs R. Wildenbeest§

March 2023

Abstract

We propose a tractable method for estimation of a simultaneous search model for differen-
tiated products that allows for observed and unobserved heterogeneity in both preferences and
search costs. We show that for type I extreme value distributed search costs, expressions for
search and purchase probabilities can be obtained in closed form. We show that our search model
belongs to the generalized extreme value (GEV) class, which implies that it has a full informa-
tion discrete-choice equivalent, and hence search data are necessary to distinguish between the
search model and the equivalent full information model. We allow for price endogeneity when
estimating the model and show how to obtain parameter estimates using a combination of ag-
gregate market share data and individual level data on search and purchases. To deal with the
dimensionality problem that typically arises in search models due to a large number of consider-
ation sets we propose a novel Monte Carlo estimator for the search and purchase probabilities.
Monte Carlo experiments highlight the importance of allowing for sufficient consumer hetero-
geneity when doing policy counterfactuals and show that our Monte Carlo estimator is accurate
and computationally fast. Finally, a behavioral assumption on how consumers search provides
a micro-foundation for consideration probabilities widely used in the literature.
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1 Introduction

In a lot of markets (e.g. clothes, footwear, hotels, bicycles, motorbikes, cars, houses, insurance,

etc.) consumers are often poorly informed about whether a product is a good match and have

to engage in costly search in order to figure this out. Despite this obvious fact, it is surprising

that the very large literature on demand estimation by and large assumes that consumers have

full information. It is by now well-known that models that assume full information in settings in

which consumers have limited information lead to biased estimates of demand and hence wrong

policy conclusions. For example, Sovinsky Goeree (2008), Koulayev (2014), and Moraga-González,

Sándor, and Wildenbeest (2022) find that demand is estimated to be more elastic than it really is

when incorrectly assuming full information.1

We believe there are two important reasons behind the “stickiness” of the full information

assumption. First, economic theory has shown that market outcomes not only depend on the

magnitude of search costs (see for instance Wolinsky, 1986; Anderson and Renault, 1999) but also

on the dispersion of search costs (see for instance Hortaçsu and Syverson, 2004; Moraga-González,

Sándor, and Wildenbeest, 2017). Therefore, an empirically relevant consumer search model must

allow for rich consumer search cost heterogeneity. However, the typical search model assumes se-

quential search, which quickly becomes intractable once allowing for consumer heterogeneity in

both preferences and search costs. This intractability is primarily due to the many different search

paths a consumer could take before deciding to purchase a product, which all need to be inte-

grated out to derive an expression for a consumer’s purchase probability (see Moraga-González,

Sándor, and Wildenbeest, 2022). This often has to be done numerically, and the additional com-

putational burden associated with this can be problematic when using a BLP-type contraction

mapping (Berry, Levinsohn, and Pakes, 1995) to deal with price endogeneity, or when calculating

the demand derivatives that are necessary to obtain counterfactual prices.

Second, to separately identify search costs from preferences, data on purchases is typically not

enough, and needs to be supplemented with data on search behavior. For instance, without search

data it is difficult to distinguish between consumers who do not buy because of a preference for

the outside option, or because of refraining from searching due to high search costs. This means

that in the absence of search data, the only way the model can explain non-purchases is by a low

utility constant, which could lead to biases in price elasticity estimates if search frictions are in fact

1The bias may be in both directions depending on the correlation between prices, product characteristics, and
search costs. For example, if cheaper items happen to have higher search costs, ignoring the costs of search in
estimation may lead to estimates of demand that are too inelastic.
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important. However, even with search data it is difficult to fully exploit this for identification due

to similar tractability issues as mentioned above, since in sequential search models the probability

of having searched a particular set of products is often a high-dimensional integral that cannot be

reduced to a closed-form expression.

Due to these difficulties, it is not a surprise that existing search models have only been estimated

in relatively simple settings while often making restrictive assumptions regarding consumer and

firm behavior. For example, earlier papers such as Hong and Shum (2006) and Moraga-González

and Wildenbeest (2008) did not allow for product differentiation whatsoever while Hortaçsu and

Syverson (2004) did not allow for horizontal product differentiation. Although later papers did

allow for richer specifications in terms of consumer preferences, search behavior was typically still

modeled in a restricted way. For example, Koulayev (2014) assumes a pre-specified order of search

and only allows for a maximum of six searches. Murry and Zhou (2020) restrict search to be across

clusters of firms instead of individual firms, and, in the absence of search data, cannot estimate a

search cost constant, which means they are unable to estimate the level of search costs. Donna,

Pereira, Pires, and Trindade (2022) are able to estimate the level and variance of search costs

in a setting where consumers search for a maximum of nine retailers but restrict the amount of

preference and search cost heterogeneity. Moraga-González, Sándor, and Wildenbeest (2022) do

estimate a relatively rich specifications of utility and search costs, but normalize the variance of

the unobserved part of search costs. Finally, most search papers in the marketing literature do not

allow for price endogeneity (e.g., Honka, 2014; Ursu, 2018; Yavorsky, Honka and Chen, 2021).

The purpose of this paper is to propose a rich model of consumer search that does not suffer

from the above mentioned difficulties. Specifically, in Section 2 we develop a model of simultaneous

search (as in Stigler, 1961; Burdett and Judd, 1983) for differentiated products in which consumers

search to discover whether a product is a good fit or not. We model the search and purchase

decision as a two-step procedure. In a first step, consumers decide which products to inspect,

making a tradeoff between the gains from searching a subset of products and the cost of searching

those products. In a second step, after having incurred search costs to find out all the relevant

details, consumers choose which of the inspected products to purchase, if any.2

We show that if search costs follow a type I extreme value (TIEV) distribution, we can obtain

a closed-form expression for an individual’s probability of purchasing a specific product. This

probability is the sum of the products of two logit expressions: the multinomial logit probability that

2For theoretical studies of models of simultaneous search for differentiated products see Section 7.6 of Anderson,
de Palma, and Thisse (1992), Chade and Smith (2006), and Moraga-González, Sándor, and Wildenbeest (2021).
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a group of products is searched times the multinomial logit probability that a product is chosen from

the set of searched products. We show that our model belongs to the family of generalized extreme

value (GEV) models, which implies that it is consistent with utility maximization (McFadden,

1978).3 More importantly, this implies that the search model has a full information discrete choice

equivalent in which consumers pick the best product out of the set of all products assuming the

utility shocks are no longer TIEV distributed but distributed according to the corresponding GEV

joint distribution function. This is the analog of the eventual purchase theorem of Armstrong

(2017) and Choi, Dai, and Kim (2018) for our setting, and implies that search data are necessary

to distinguish between the search model and the equivalent full information model. This is because

the GEV distribution function corresponding to our model clearly shows that search costs induce

a specific correlation structure among the utility shocks of the products and that such correlation

structure is only affected by the mean and the variance of search costs, and not by consumer

preferences.

Because in general settings the number of products may be large, the individual search and

purchase probabilities may involve very large sums. We show in Section 3 that such large sums can

be conveniently estimated by Monte Carlo under the natural assumption that the cost of searching

a subset of firms is equal to the sum of the search costs of the firms. The relatively straightforward

computation of the search and choice probabilities allows us to derive the individual likelihood

of a search and purchase decision and to estimate our model following the methods proposed by

Goolsbee and Petrin (2004) and Train and Winston (2007). We first construct the likelihood of

our data on individuals’ search and purchase behavior. Then, following Berry, Levinsohn, and

Pakes (2004), we use the aggregate data and the contraction property of our system of market

share equations to solve for the mean utilities of the products. These mean utilities substitute for

the linear part of utility in the likelihood function, which implies that we maximize the likelihood

function for the “non-linear” parameters only. This procedure is the maximum likelihood analog of

the micro-moments method of Berry, Levinsohn, and Pakes (2004), which yields consistent estimates

of the non-linear parameters of the model despite price endogeneity. These parameters include the

variance parameters of consumers’ preferences and the mean and variance parameters of search

costs. Moreover, the maximum likelihood approach yields efficient estimates of such parameters

(see Grieco, Murry, Pinkse and Sagl, 2022). In a final step we regress the mean utilities on prices

and other exogenous characteristics using an instrument for prices to get estimates of the marginal

3For the case of no search cost shifters our model is equivalent to the two-stage choice set formation model in
Swait (2001) (named the GenL model) in which preference parameters endogenously determine choice sets.
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effects of each of these characteristics, which makes controlling for price endogeneity relatively

straightforward.

We also show that our derivation of the choice-set probabilities can be used to provide a micro-

foundation for the consideration probabilities proposed by Sovinsky Goeree (2008), which have also

been used by Abaluck and Adams-Prassl (2021) and Brand and Demirer (2022). Specifically, we

show that for the special case in which we adopt the behavioral assumption that consumers base

their decision about which firms to visit only on the costs of searching the various alternatives and

ignore the utility consequences of their search altogether, we obtain the consideration probabilities

of Sovinsky Goeree (2008). What is distinctive about this consideration set model (referred to as

the alternative specific consideration (ASC) model by Abaluck and Adams-Prassl, 2021) is that the

probability of a specific consideration set is the product of the consideration probabilities of each

individual product, which creates cross-derivative asymmetries that, when making specific assump-

tions on unobserved consumer heterogeneity, can be employed to separately identify preferences

from consideration without using data on consideration (see Abaluck and Adams-Prassl, 2021).4

The consideration set probabilities in our search model are allowed to be consumer specific and do

not have the product structure of the ASC model and its associated cross-derivative asymmetries,

which means search data are needed for identification in our model.

In Section 4 we provide the results of several Monte Carlo exercises that show the performance

of our estimator and also illustrate the importance of estimating the mean and the variance of

search costs. As explained above, search data are needed to estimate both a utility and a search

cost constant—the results of our first Monte Carlo simulation indicate that failing to estimate a

search cost constant leads to biased elasticity and markup estimates. The reason for this is that

the search cost constant governs the extensive margin of search, so when it is high many consumers

do not even start searching for a product in the first place. Failing to accurately account for the

extensive margin of search inevitably causes the econometrician to wrongly conclude that the utility

consumers derive from the inside products is lower than what it truly is. This leads to biases in the

substitution patterns and makes demand more elastic than it really is, with too low market power

estimates as a result. We show that these biases might lead to wrong policy conclusions when doing

counterfactuals, for instance when studying how prices change following a negative demand shock.

In a second experiment, we study the impact of normalizing the variance of search costs. We

4Abaluck and Adams-Prassl (2021) show that this source of identification is also present in so-called default specific
consideration (DSC) models (Ho, Hogan, and Scott Morton, 2017; Hortaçsu, Madanizadeh, and Puller, 2017), in which
consumers either choose a default option without considering other options or make an informed choice among all
available options.
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show that normalizing the scale parameter of the search cost shock to one while the true value is

three times as large leads to biases in both preference and search cost parameters. This is due

to the normalization lowering the gains from search, which results in search costs and demand

elasticities being underestimated. As in our first experiment, this bias carries over to the predicted

price effects following a drop in aggregate demand.

Finally, we assess the performance of the Monte Carlo estimator by comparing the parameter

estimates obtained using the simulated market shares and individual search and purchase proba-

bilities to those obtained using the actual expressions when the number of firms is not too large.

We find that even though our Monte Carlo estimator is slower when the number of firms is five or

lower, it is about twenty times faster when there are ten firms. Moreover, in all our experiments

the parameter estimates based on the Monte Carlo estimator are almost identical to those based

on the actual probabilities, so the computational gains do not come at the cost of accuracy.

Related literature

Our paper fits into the large theoretical and empirical literature on consumer search behavior.

Our paper relates to a strand in the theoretical consumer search literature that focuses on search

for differentiated products (Wolinsky, 1986; Anderson and Renault, 1999). Our theoretical search

model is most closely related to the logit search model discussed in Anderson, de Palma, and Thisse

(1992), but we allow for asymmetric multi-product firms and for consumer heterogeneity in both

preferences and search costs.5 The search model in our paper is also related to the simultaneous

search model in Moraga-González, Sándor, and Wildenbeest (2021), who, as in our model, allow for

search cost heterogeneity and differentiated products, and provide conditions under which a price

equilibrium in pure strategies exists.

The empirical literature has seen a number of recent contributions that estimate models of search

for differentiated products (Kim, Albuquerque, and Bronnenberg, 2010; De los Santos, Hortaçsu,

and Wildenbeest, 2012; Seiler, 2013; Dinerstein, Einav, Levin, and Sundaresan, 2018; Honka, 2014;

Koulayev, 2014; Pires, 2016). Our paper is most closely related to Moraga-González, Sándor,

and Wildenbeest (2022). An important difference with that paper is in the way search behavior

is modeled: while in this paper we assume consumers search simultaneously, Moraga-González,

Sándor, and Wildenbeest (2022) assume consumers search sequentially. With sequential search,

search decisions are based on realized search outcomes, which makes it less straightforward to

obtain closed-form expressions for the buying probabilities. Using recent insights from Armstrong

5See Section 7.6 (pp. 246–248) of Anderson, de Palma, and Thisse (1992).
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(2017) and Choi, Dai, and Kim (2018), Moraga-González, Sándor, and Wildenbeest (2022) show

how to obtain closed-form expressions for the buying probabilities. In this paper we provide an

alternative approach which relies on simultaneous search combined with the search cost shocks being

choice-set specific. Both approaches lead to closed-form expressions for the buying probabilities

when making specific assumptions about the search cost distribution. An advantage of the model

we lay out in this paper is that it is easier to obtain expressions for the search probabilities, which

makes it especially suitable for use with individual-specific search and choice data, as we illustrate

in Section 4 using Monte Carlo experiments. Another advantage of simultaneous search is that it

can easily handle settings in which firms (or retailers) sell overlapping sets of products, since search

decisions are determined before any realizations of the match values are observed. In contrast,

with sequential search consumers determine after each search whether to continue or not, so search

decisions are conditional on observed match values. This means that if firms sell overlapping sets

of products, searching one firm may give valuable information about searching another firm, which

makes the optimal search rule more challenging than in the standard setting in which firms sell

non-overlapping sets of products (see Weitzman, 1979).

A number of recent papers have built on earlier versions of the search model presented here. For

instance, Lin and Wildenbeest (2020) develop a method to non-parametrically estimate search costs

using a conditional logit version of our model, in which search costs are assumed to be consumer-

specific but identical across firms. Murry and Zhou (2020) use individual-level transaction data for

new products to quantify how geographical concentration among product sellers affects competition

and search behavior. Donna, Pereira, Pires, and Trindade (2022) estimate the welfare effects of

intermediation in the Portuguese outdoor advertising industry using a demand model that extends

our search model to allow for nested logit preferences. Ershov (2018) develops a structural model

of supply and demand to estimate the effects of search frictions in the mobile app market and

uses our search model on the demand side. Pires (2018) studies the effect of search frictions on

prices and profits in the laundry detergent market and follows our approach of using choice-set

specific logit errors to smooth the choice set probabilities. Finally, De los Santos, Hortaçsu, and

Wildenbeest (2012) estimate a related simultaneous search model using individual-specific data

in which consumer search behavior and individual choice sets are observed—our approach uses

aggregate data in addition, which allows the researcher to deal with price endogeneity. Moreover,

we specifically deal with the dimensionality problem that arises when the number of possible choice

sets is large, which is not necessary in their application because of the low number of choice sets.
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2 The Model

2.1 Utility, demand, and search costs

Consider a market that consists of F different firms (indexed by f = 1, 2, . . . , F ), selling J different

products (indexed by j = 1, 2, . . . , J). We assume that product j is sold by a single firm f , but

allow firms to sell multiple products. Specifically, let firm f ∈ F sell a subset of products Gf ⊂ J ,

where J denotes the set of products and F represents the set of firms.

We posit that, conditional on having inspected product j, consumer i’s indirect utility of con-

suming product j is given by

uij = αipj + x′jβi + ξj + σεεij , (1)

where αi is consumer i’s price coefficient, pj is the price of product j, xj captures product j’s

attributes, βi is a consumer-specific parameter that captures the marginal utility of each of these

attributes, ξj captures characteristics not observed by the econometrician, and εij is a consumer-

product specific utility shock, with scale parameter σε and not observed by the econometrician

either. We assume εij is TIEV distributed across consumers and products and captures whether

product j is a good match for consumer i. Consumers have the option of not buying any product

and opt for the outside option, which gives utility

ui0 = σεεi0.

Before inspecting a product j consumers know the characteristics xj and ξj but are not aware of the

exact match value εij and the exact price of the product pj . The purpose of search is thus to figure

out the realized values of the stochastic utility shocks εij and the actual prices at which products

sell. The parameter σε thus captures the relative importance of the unknown part of utility in total

utility.

We assume that consumers use a simultaneous search strategy, i.e., consumers choose which

subset of firms to visit to maximize their expected utility; once they have visited the chosen firms

and have learned all the attributes of the products they are interested in, they decide whether to

buy any of the inspected products or else opt for the outside option.6 We further assume that,

when deciding which firms to visit, consumers hold correct conjectures about the (equilibrium)

6Although the optimal search strategy often has both simultaneous and sequential elements (Morgan and Manning,
1985), an advantage of a simultaneous search rule is that it allows the searcher to collect information quickly. Recent
empirical work by De los Santos, Hortaçsu, and Wildenbeest (2012) and Honka and Chintagunta (2017) demonstrates
that observed consumer search behavior on the internet is consistent with simultaneous search.
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prices firms charge for their products.7 Finally, consumers also learn the value of the outside

option during the search.

Solving for a consumer’s optimal search strategy is a very difficult task because the number of

choice sets to be evaluated is increasing exponentially in the number of firms. Chade and Smith

(2006) provide a procedure, known as the Marginal Improvement Algorithm (MIA), that finds the

solution under some assumptions. One requirement is that sellers can a priori be ranked according to

the first- or second-order stochastic dominance criterion. Another requirement is that search costs

can only be consumer specific. In most demand estimation problems, however, these assumptions

are unlikely to hold. When firms sell different numbers of products, sellers’ utility distributions may

not be ranked according to the first- or second-order stochastic dominance criterion.8 Moreover, in

many applications search costs will have firm-specific components.9 In order to solve this problem,

we propose to model search costs as follows. Let S be the set of all subsets of firms in F , including

the empty set, and let S be an element of S. We specify consumer i’s search cost for visiting all

the firms in the subset S, denoted ciS , as:

ciS =
∑
f∈S

κ
(
t′ifγi

)
+ σλλiS .

Here κ is a known function, tif is a vector of search cost shifters that are consumer and/or firm

specific (such as employment status and distance to the firm), γi a vector of random coefficients

and λiS is a consumer-specific search cost shock for visiting a set of firms S, with scale parameter

σλ and not observed by the econometrician. It is the addition of this consumer choice-set specific

error term to the costs of searching subsets of firms that allows us to solve the search problem.

We interpret this search cost shock as choice-set specific variation in search costs that the observed

search cost shifters are unable to pick up.

The choice-set specific error term allows us to compute the probability that any given search-set

is chosen. This idea is analogous to adding an error term to utility in discrete-choice models. If we

further assume that −λiS follows a TIEV distribution, then we can compute the probability with

which any subset of dealers is chosen in closed-form, no matter how large the number of available

options is.We derive this probability in the next section.

7As we will be discussed later, whether consumers observe deviation prices before search or not matters for the
computation of the price elasticities. However, it does not affect the estimation of the demand parameters.

8The problem is how to compare firm utility distributions with different means and variances. See also the
discussion in Honka (2014).

9Think of a firm location or the default language of an online seller.
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2.2 Optimal simultaneous search and purchase decision

A consumer i first decides which subset of sellers to visit; then, upon visiting the chosen sellers

and inspecting the products that are sold at those sellers, she makes a purchase decision. In this

section we compute the probability that a given subset of alternatives is inspected by a consumer

as well as the probability that a given inspected alternative is purchased.

In order to decide which (subset of) sellers to visit, consumer i must compare the expected gains

from searching all the possible subsets of sellers. To allow for the possibility of a non-purchase after

searching, we assume consumers always include the outside good in their choice set. Of course,

consumers are allowed to pick a choice set that only includes the outside good, i.e., S = ∅, for a

cost ci∅ = σλλi∅.10

The expected gain to consumer i from inspecting all the products sold by the sellers in a subset

S is equal to:

E
[

max
j∈Gf∪{0}, f∈S

{uij}
]
− ciS ,

where E denotes the expectation operator, taken in this case over the search characteristics εij ’s.

We now define

miS ≡ E
[

max
j∈Gf∪{0}, f∈S

{uij}
]
−
∑
f∈S

κ
(
t′ifγi

)
,

where, recall, tif is a consumer- and firm-specific vector of variables that affect the cost of visiting

firm f (e.g., distance of consumer’s home to the firm). Letting Fε denote the CDF of εij , the

random variable

max
j∈Gf∪{0}, f∈S

{uij}

has a CDF given by
∏

j∈Gf∪{0}, f∈S
Fε ((u− δij)/σε), where δij is the utility consumer i derives from

alternative j, i.e.,

δij ≡ αipj + x′jβi + ξj . (2)

Using this, we obtain

miS = ς + σε log

1 +
∑

j∈Gf , f∈S
exp[δij/σε]

−∑
f∈S

κ
(
t′ifγi

)
, (3)

where ς is the Euler constant. Since we normalize the mean utility of the outside option to zero,

i.e., δi0 = 0, the expected maximum utility of not searching is ς. In what follows we drop the Euler

10An interpretation of this assumption is that if a consumer i does not search then she does not know the value of
εi0; if this consumer searches some firms then she gets to know εi0 at no additional cost.
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constant because it does not affect choices.

Consumer i will pick the subset of sellers to visit that maximizes the expected gain miS−σλλiS .

Denoting consumer i’s optimal search-set by S∗i we have:

S∗i = arg max
S∈S

[miS − σλλiS ],

As discussed above, conditional on the λiS ’s, the explicit characterisation of the set S∗i is extremely

difficult. However, because −λiS is i.i.d. TIEV distributed, we can compute the probability S∗i

takes on value S, which we denote PiS :

PiS =
exp[miS/σλ]∑

S′∈S exp[miS′/σλ]
. (4)

where the sum in the denominator is for all the possible choice sets. Note that this sum may be over

a large number of consideration sets; in Section 3.1 we show how to deal with this dimensionality

problem.

The expression in equation (4) is the multinomial logit probability that consumer i inspects the

products of the sellers contained in the set S. Once these products are inspected, the probability

that she buys alternative j (sold by one of the visited sellers) is equal to the probability that product

j provides the highest utility out of the products of the firms in S. Denoting this probability by

Pij|S , we have:

Pij|S =
exp[δij/σε]

1 +
∑

r∈S exp[δir/σε]
, (5)

where product r is a product sold by one of the firms in S.

2.3 Individual purchase probabilities and aggregate market shares

Using the law of total probability, the probability that consumer i purchases product j that is sold

by seller f is

sij =
∑
S∈Sf

PiSPij|S , (6)

where f denotes the firm producing j and Sf ⊂ S is the set of all choice sets containing firm f .
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Using equations (3) and (4), we can write PiS (for S 6= ∅) as follows:

PiS =
exp[miS/σλ]∑

S′∈S exp[miS′/σλ]

=
exp

[
σε
σλ

log
(

1 +
∑

j∈S exp [δij/σε]
)
− ciS

]
1 +

∑
S′∈S\∅ exp

[
σε
σλ

log
(

1 +
∑

j∈S′ exp [δij/σε]
)
− ciS′

]
=

(
1 +

∑
j∈S exp [δij/σε]

) σε
σλ exp [−ciS ]

1 +
∑

S′∈S\∅

(
1 +

∑
j∈S′ exp [δij/σε]

) σε
σλ exp [−ciS′ ]

, (7)

where we use the notation ciS ≡
∑

f∈S κ
(
t′ifγi

)
/σλ. Therefore,

sij = exp[δij/σε]
∑
S∈Sf

(
1 +

∑
j∈S exp [δij/σε]

) σε
σλ
−1

exp [−ciS ]

1 +
∑

S′∈S\∅

(
1 +

∑
j∈S′ exp [δij/σε]

) σε
σλ exp [−ciS′ ]

. (8)

Given these individual purchase probabilities, the aggregate probability that product j is bought

is equal to the integral:

sj =

∫
sij fτ (τi)dτi, (9)

where fτ (τi) is the joint density function of the random coefficients and the demographic charac-

teristics of consumer i that enter the utility and search cost specifications.

Inspection of equation (8) leads to two important conclusions. First, the scale parameters σε

and σλ cannot be separately identified from the utility and search cost coefficients. The reason is

that the utility coefficients that enter δij are all divided by σε and the search cost coefficients γi

are all divided by σλ. As a result, only the ratio σε/σλ can be separately identified from the utility

and search cost coefficients. In what follows, without loss of generality, we therefore normalize σε

to one:

sij = exp[δij ]
∑
S∈Sf

(
1 +

∑
j∈S exp [δij ]

) 1
σλ
−1

exp [−ciS ]

1 +
∑

S′∈S\∅

(
1 +

∑
j∈S′ exp [δij ]

) 1
σλ exp [−ciS′ ]

. (10)

Second, the computation of the individual purchase probabilities using equation (10) as is becomes

extremely tedious in situations where there is a large number of firms. The reason is twofold:

the denominator of equation (10) requires us to sum over all 2F choice sets and the numerator

over all 2F−1 choice sets that contain firm f . Depending on the number of firms, these sums may

have hundreds of thousands of summands. The existing literature that built on an earlier version of
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this paper (Moraga-González, Sándor, and Wildenbeest, 2015) avoided this dimensionality problem

in various ways. We ourselves normalized the unobserved variance of search costs to σλ = 1, in

which case the individual purchase probabilities can be simplified and the dimensionality problem

disappears.11 Pires (2018) followed the same approach. Murry and Zhou (2020) did not adopt this

normalization but assumed that consumers search across clusters of car sellers, rather than across

sellers, and restricted the number of miles a buyer is willing to travel to visit a cluster to 40 miles.12

Finally, Donna, Pereira, Pires, and Trindade (2022) did not adopt this normalization either but in

their empirical application consumers search among only nine retailers. An important contribution

of the current paper is to provide a novel Monte Carlo estimator of equation (10) that is accurate

and fast even if the number of alternatives in the market is large (see Section 3.1). For example,

with ten firms the Monte Carlo estimation takes twenty times less than computing the actual sum

(see Section 4).

2.4 Utility maximization in a GEV model of discrete choice

In this section we show that our simultaneous search model is equivalent to a standard discrete-

choice model in which consumers choose from the J products to maximize their utility. This is the

analog of the eventual purchase theorem of Armstrong (2017) and Choi, Dai, and Kim (2018) for

our setting. We do so by appealing to the so-called generalized extreme value (GEV henceforth)

family of discrete-choice models developed by McFadden (1978). The GEV generating function

that leads to our simultaneous search model is

G (y0, y1, . . . , yJ) =
∑
S∈S

ρS

∑
f∈S

∑
r∈Gf

yr

1/σλ

=
∑
S∈S

ρS

y0 +
∑

f∈S\{0}

∑
r∈Gf

yr

1/σλ

for y0, y1, . . . , yJ ≥ 0, (12)

11In such a special case, we can integrate out the choice-set probabilities and write out the buying probabilities in
equation (10) as (see Appendix B):

sij =
exp

[
δij − ln

(
1 + exp

[
κ
(
t′i{f}γi

)])]
1 +

J∑
k=1

exp
[
δik − ln

(
1 + exp

[
κ
(
t′i{g}γi

)])] , (11)

where κ
(
t′i{f}γi

)
contains the search cost of firm f only.

12Murry and Zhou (2020) put it this way: “This restriction dramatically reduces the computational burden of
computing consumers’ optimal search sets. Otherwise, it is computationally infeasible to compute them by allowing
consumers to optimally choose their search sets among 248 clusters.”
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where ρS = exp (−cS) and cS denotes a generic search cost corresponding to choice set S. Using

the GEV Theorem from Swait (2001), which is slightly more general than that from McFadden

(1978), we can verify that G defined in equation (12) satisfies the required conditions, provided

that σλ ≥ 1. Indeed, it is straightforward to verify that G is homogeneous of degree 1/σλ and that

limyj→∞G (y0, y1, . . . , yJ) =∞ for any j. Further, using that for any j1, . . . , jk ∈ {0, 1, . . . , J} that

can be the outside alternative or belong to firms f1, . . . , f` we have

∂kG (y0, y1, . . . , yJ)

∂yj1 . . . ∂yjk
=

1

σλ

(
1

σλ
− 1

)
. . .

(
1

σλ
− k + 1

) ∑
S∈Sf1∩...∩Sf`

ρS

∑
f∈S

∑
r∈Gf

yr

 1
σλ
−k

,

where recall that Sf denotes the set of all choice sets that contain firm f . One can easily see that

these derivatives are nonnegative if k is odd and nonpositive if k is even, as required. The GEV

generating function implies the following joint CDF of the J + 1 error terms in the utility

FGEV (ε0, ε1, . . . , εJ) = exp [−G (exp [−ε0] , exp [−ε1] , . . . , exp [−εJ ])] , −∞ < εj <∞;

= exp

−∑
S∈S

∑
f∈S

∑
r∈Gf

exp [− (εr + σλcS)]

1/σλ
 ,

where the choice-set specific search costs cS act as shifters of the “mean” of the distribution and

σλ acts as a scale parameter.

Based on McFadden (1978), we can now claim that in our simultaneous search model, consumer

i chooses product j that maximizes the utility uij = δij + εij , where the vector of error terms

(εi0, εi1, . . . , εiJ) has the CDF FGEV with cS replaced by ciS (defined below equation (7)). The

components of the error vector (εi0, εi1, . . . , εiJ), unlike the εij ’s from equation (1), can be regarded

as usual error terms in the sense that they are observed by consumer i and they are not observed by

the econometrician. The probability of choosing j can be derived from FGEV using the following

formula from McFadden (1978):

P (j) =
exp [δij ]

µG (exp [δi0] , exp [δi1] , . . . , exp [δiJ ])

∂G (exp [δi0] , exp [δi1] , . . . , exp [δiJ ])

∂yj
, (13)

where in the definition of G from equation (12) we replace ρS by ρiS = exp (−ciS). It is straight-

forward to verify that this is the same as the choice probability derived above.

As in Armstrong (2017) and Choi, Dai, and Kim (2018), the eventual purchase theorem for

our simultaneous search model implies that it can be reformulated as a discrete-choice problem
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without search frictions. This means that in order to distinguish between a search model and a full

information model, we need search data.

2.5 Sovinsky Goeree’s (2008) choice set probabilities

Our model can be used to provide a micro-foundation for the choice set probabilities proposed by

Sovinsky Goeree (2008), which have been further studied in the consideration set literature (see

e.g. Abaluck and Adams-Prassl, 2021). For this purpose, let us assume that when consumers derive

their optimal search strategy they do so taking into consideration the search costs and disregarding

all information about the utilities associated with each search set. In such a case, the expression

miS from Section 2.2 becomes

miS = −
∑
f∈S

κ
(
t′ifγi

)
and therefore the choice set probability PiS becomes

PiS =
exp

[
−
∑

f∈S κ
(
t′ifγi

)
/σλ

]
∑

S′∈S exp
[
−
∑

f∈S′ κ
(
t′ifγi

)
/σλ

] ≡ exp[−c̄iS ]∑
S′∈S exp[−c̄iS′ ]

.

Denoting c̄i{f} ≡ κ
(
t′ifγi

)
/σλ, since

exp [−c̄iS ] =
∏
f∈S

exp
[
−c̄i{f}

]
(14)

and ∑
S∈S

exp [−c̄iS ] =
∑
S∈S

∏
f∈S

exp
[
−c̄i{f}

]
=
∏
f∈F

(
1 + exp

[
−c̄i{f}

])
,

we obtain that

PiS =

∏
f∈S

exp
[
−c̄i{f}

]
∏
f∈F

(
1 + exp

[
−c̄i{f}

]) .
Note that this can be written as

PiS =
∏
f∈S

φif
∏
f /∈S

(1− φif ) , where φif =
exp

[
−c̄i{f}

]
1 + exp

[
−c̄i{f}

] (15)

which has the same structure as the consideration set probability in equation (3) of Sovinsky Goeree

(2008).

Identification of this model, also called the alternative specific consideration (ASC) model, is
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studied in Abaluck and Adams-Prassl (2021) (see also Brand and Demirer, 2022). They show that

the product structure of the consideration set probabilities allows for the separate identification of

preferences and consideration using only choice data. In our search model the consideration set

probabilities do not have this product structure unless we adopt the behavioral assumption above

that consumers ignore utility when choosing the search set. Even in such a case, the consideration

set probabilities in equation (15) are consumer-specific, whereas Abaluck and Adams-Prassl (2021)

focus on the case in which consideration set probabilities are product-specific.

3 Estimation

We estimate the model using individual-level data on search and purchases, as well as product

characteristics and aggregate sales. We first discuss how to estimate the purchase probabilities in

our model by Monte Carlo methods, which allows us to deal with the dimensionality problem that

arises due to the number of consideration sets increasing exponentially in the number of firms.

Next we discuss more generally how to estimate our model using maximum likelihood. We end this

section with an informal discussion on identification of the main parameters in our model.

3.1 Monte Carlo estimator of the market shares

Market share expressions are needed for the BLP contraction mapping. We start by rewriting the

expression for the individual purchase probabilities given in equation (10) as follows:

sij =
exp [δij ] exp

[
−c̄i{f}

](
1 + exp

[
−c̄i{f}

])
∑

S∈S−f
(
1 + δ̄i{f} + δ̄iS

) 1
σλ
−1 exp[−c̄iS ]∏

g∈F\{f}
(1+exp[−c̄i{g}])∑

S′∈S
(
1 + δ̄iS′

) 1
σλ

exp[−c̄iS′ ]∏
g∈F

(1+exp[−c̄i{g}])

, (16)

where, for notation simplicity, we write

δ̄i{f} ≡
∑
j∈Gf

exp [δij ] , and δ̄iS ≡
∑
f∈S

δ̄i{f}.

We now show how to easily estimate equation (16) by Monte Carlo. Both the numerator and the

denominator of the second fraction in equation (16) contain potentially very large sums. Consider
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the denominator of such a fraction, which contains the largest sum:

Di ≡
∑
S′∈S

(
1 + δ̄iS′

) 1
σλ

exp [−c̄iS′ ]∏
g∈F

(
1 + exp

[
−c̄i{g}

])
Notice now that, because exp [−c̄iS ] =

∏
f∈S

exp
[
−c̄i{f}

]
,

QiS ≡
exp [−c̄iS ]∏

g∈F

(
1 + exp

[
−c̄i{g}

]) =
∏
g∈S

φig
∏
g/∈S

(1− φig), (17)

where

φig =
exp

[
−c̄i{g}

]
1 + exp

[
−c̄i{g}

] ,
which is a factorization that allows sampling for Monte Carlo estimation of the sum (similar to

Sovinsky Goeree, 2008). Further, notice that
∑

S′∈S QiS′ = 1, which implies that we can regard

(QiS′)S′∈S as a probability mass function. As a result, we can interpret the denominator Di as the

expectation of a discrete random variable taking on values
(

(1 + δ̄iS′)
1
σλ

)
S′∈S

with probabilities

(QiS′)S′∈S .

This interpretation gives rise to our Monte Carlo estimator ofDi. Let {ur}Rr=1 = {(ur1, ur2, . . . , urF )}Rr=1

be a sample of size R of uniform [0, 1] vectors of dimension F (the number of firms), where each uri is

a random draw from [0, 1]. For a given vector ur, let (1 (ur1 ≤ φi1) ,1 (ur2 ≤ φi2) , . . . ,1 (urF ≤ φiF ))

be the resulting vector of ones and zeros indicating whether a firm is included in the search set S

(one) or not (zero). Letting

δ̄i (ur) ≡
F∑
g=1

1
(
urg ≤ φig

)
exp [δig] ,

we can then rewrite Di as:

Di =
∑
S′∈S

(
1 + δ̄iS′

) 1
σλ QiS′ =

∫
[0,1]F

(
1 + δ̄i (u)

) 1
σλ du. (18)

Therefore, the Monte Carlo estimator of Di is

D̂i =
1

R

R∑
r=1

(
1 + δ̄i (ur)

) 1
σλ .

It is well-known that the estimator D̂i is not continuous in the search costs parameters γi that
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enter the φig’s because the indicators 1
(
urg ≤ φig

)
may jump from 0 to 1 or from 1 to 0 as γi

changes slightly. This is problematic during the estimation of the model. Hence, instead of using

the indicators 1 (ug ≤ φig), we use a smoothed version of them given by Φ

(
φig − ug

h

)
, where Φ is

the standard normal CDF and h is small (e.g., h = 0.001 or smaller).13 Letting

δ̃i (ur) =
∑
g∈F

Φ

(
φig − urg

h

)
exp [δig] ,

the smooth Monte Carlo estimator of Di that we use in estimation is

D̃i =
1

R

R∑
r=1

(
1 + δ̃i (ur)

) 1
σλ . (19)

The numerator of the second fraction in equation (16) is

Nif ≡
∑

S∈S−f

(
1 + δ̄i{f} + δ̄iS

) 1
σλ
−1 exp [−c̄iS ]∏

g∈F\{f}

(
1 + exp

[
−c̄i{g}

]) .
In Appendix C we show that this can be approximated by the smooth-in-parameters integral

Ñif =

∫
[0,1]F

(
1 + δ̄i{f} + δ̃if (u−f )

) 1
σλ
−1
du. (20)

By collecting the approximations provided in equations (19) and (20) we obtain the following

estimator of equation (16):

s̃ij =
exp [δij ] exp

[
−c̄i{f}

](
1 + exp

[
−c̄i{f}

]) Ñif

D̃i

. (21)

To derive an estimator of the aggregate market share of product j in equation (9) we can now

use s̃ij instead of sij . We need to integrate out the individuals’ unobserved heterogeneity including

the random coefficients and demographic characteristics. Hence we obtain the estimator of sj

ŝj =

∫
s̃ijfτ (τi) dτi =

∫
exp [δij ] exp

[
−c̄i{f}

](
1 + exp

[
−c̄i{f}

]) Ñif

D̃i

fτ (τi) dτi

=

∫ ∫
[0,1]F

exp [δij ] exp
[
−c̄i{f}

](
1 + exp

[
−c̄i{f}

])
(

1 + δ̄i{f} + δ̃if (u−f )
) 1
σλ
−1

D̃i

fτ (τi) dudτi. (22)

13Here Φ plays the role of a kernel function and h the role of a smoothing parameter similar to nonparametric kernel
estimation. In Appendix F we provide Monte Carlo evidence that justifies our choice of the smoothing parameter
value.
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This integral can be estimated by Monte Carlo by drawing simultaneously from τi and u. Denote

the sample by (τi,ui)i, i = 1, . . . , ns; we estimate sj by

s̃j =
1

ns

ns∑
i=1

exp [δij ] exp
[
−c̄i{f}

](
1 + exp

[
−c̄i{f}

])
(

1 + δ̄i{f} + δ̃if (u−fi)
) 1
σλ
−1

D̃i

.

We note that by treating the market share integral as a joint integral in equation (22) we can reduce

computing time considerably because in this way we only need to deal with two Monte Carlo sums

instead of three (i.e. D̃i and s̃j instead of D̃i, Ñif and s̃j).

3.2 Estimation approach

Following Goolsbee and Petrin (2004) and Train and Winston (2007), we first efficiently estimate

the non-linear demand parameters (variance of preferences and mean and variance of search costs)

by maximum likelihood using the individual-level data on search (firms an individual chooses to

visit) and purchase (final choice an individual makes). In this step, we do not estimate the product

fixed effects δj directly; instead, we follow Berry, Levinsohn, and Pakes (2004) and exploit the data

on aggregate market shares to compute them by using the contraction mapping. In Appendix D

we show that our system of market share equations is a contraction. In a second step, we estimate

the effects of price and product characteristics on (mean) utility using instruments for price as in

Berry (1994). This two-step procedure is the maximum likelihood analog to the two-step GMM

procedure of Berry, Levinsohn, and Pakes (2004).

In order to estimate the nonlinear demand parameters, we compute the likelihood of the con-

sumers’ observed search and purchase behavior. This likelihood is based on the joint probability

that consumer i (i = 1, . . . , N) searches the set of sellers S and chooses product j ∈ Gf with f ∈ S:

Pr (i searches S and i chooses j) = PiSPij|S .

The probabilities PiS and Pij|S depend on the demand and search cost parameters as well as

observed individual characteristics and random coefficients. The probability that consumer i, whose

individual characteristics are observed, searches S and buys j is

siSj (θ) =

∫
PiSPij|Sfv (vi) dvi, (23)

where fv is the density function of the random coefficients only. By equations (A27) and (A28) we
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have

siSj (θ) =

∫ (
1 + δ̄iS

) 1
σλ exp [−c̄iS ]∑

S′∈S
(
1 + δ̄iS′

) 1
σλ exp [−c̄iS′ ]

exp[δij ]

1 + δ̄iS
fv (vi) dvi

=

∫
exp[δij ]

(
1 + δ̄iS

) 1
σλ
−1

exp [−c̄iS ]∑
S′∈S

(
1 + δ̄iS′

) 1
σλ exp [−c̄iS′ ]

fv (vi) dvi

=

∫
exp [−c̄iS ]∏

f∈F

(
1 + exp

[
−c̄i{f}

]) exp[δij ]
(
1 + δ̄iS

) 1
σλ
−1

∑
S′∈S(1+δ̄iS′)

1
σλ exp[−c̄iS′ ]∏

f∈F
(1+exp[−c̄i{f}])

fv (vi) dvi,

which, by equation (17), can be written as:

siSj (θ) =

∫
QiS

exp[δij ]
(
1 + δ̄iS

) 1
σλ
−1∑

S′∈S
(
1 + δ̄iS′

) 1
σλ QiS′

fv (vi) dvi.

This search and purchase probability can be estimated by Monte Carlo in the same way we

estimated the individual purchase probabilities and market shares in Section 3.1. The Monte Carlo

estimator is:

s̃iSj (θ) =

ns∑
q=1

QiS
exp[δij (vq)]

(
1 + δ̄iS (vq)

) 1
σλ
−1

D̃i (vq)
,

where D̃i is the smooth estimator of Di given in equation (19) and the argument vq reflects explicit

dependence of the underlying expressions on the draws from the random coefficients.

Let yiSj be 1 if consumer i searches S and buys j and 0 otherwise. Then the log-likelihood is

LN (θ) =
N∑
i=1

∑
j,S

yiSj log s̃iSj (θ) ,

where the summation
∑

j,S is over all possible j, S. Because in practice this sum only contains the

terms corresponding to yiSj = 1, the log-likelihood can also be written as

LN (θ) =
N∑
i=1

log s̃iSj(θ), (24)

with S and j being i’s search set and chosen product, respectively. Obviously, S is allowed to be

the empty set and j is allowed to be the outside alternative.

As mentioned above, we do not estimate the product fixed effects δj that enter the likelihood
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directly. Instead, in every iteration of the maximum likelihood procedure we compute the ξj that

enter δij from the aggregate data as a function of the parameters. Following BLP, the predicted

market share sj(θ) of product j should match observed market shares soj , or

sj(δ(θ), θ)− soj = 0. (25)

In Appendix D we show that when σλ ≥ 1, this system of equations corresponds to a contraction

mapping in δ(θ), so it has exactly one solution. Hence, we can compute the components of the

vector ξ = (ξ1, . . . , ξJ) of unobserved characteristics as

ξj = δj(θ)− αpj − xjβ, (26)

where δj(θ) is component j of the unique fixed point δ(θ) of the contraction mapping. It is important

to note that when we substitute ξj into δij then αpj and x′jβ cancel. Consequently, the log-likelihood

in equation (24) will depend on all the demand parameters except for α and β, and therefore, by

maximizing LN (θ) ≡ LN (θ2) we can estimate all the demand parameters except for α and β by

maximum likelihood. The linear utility parameters can be estimated in a second step using either

OLS or, when dealing with price endogeneity, two-stage least squares.

3.3 Identification

We provide an informal discussion of the identification of the model parameters. In doing so we

assume that, similar to estimation, individual-level search and purchase data are available. It is

important to note that in the recent literature several papers provide frameworks for identifica-

tion of demand without observing choice sets (e.g., Abaluck and Adams-Prassl, 2021; Barseghyan,

Coughlin, Molinari, and Teitelbaum, 2021; Lu, 2022). As we have pointed out in several places,

point-identification of the parameters in our model is not possible in the absence of search data.

There are two main issues that need to be discussed regarding identification. The first is the

potential endogeneity of price and search cost variables (e.g., distance from a consumer’s home to

the seller) while the second is the presence of common covariates in utility and search cost (e.g.,

the constants, which are important for both searching and buying decisions). Both of these issues

can be tackled in the case when search and purchase data are available.

Consider first endogeneity. Recall from BLP that price endogeneity arises due to the fact that

usually there are some unobserved characteristics that affect both utility and marginal cost and,

therefore, affect also price, causing omitted variable bias. Endogeneity of a search cost variable like
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distance can occur in a similar way: products can have some characteristics (unobserved to the

researcher) that affect both the utility that consumers derive from them and the location where they

are sold. A crucial point of identification is to interpret the mean utility δj of product j as a product-

specific fixed effect parameter. These fixed effect parameters incorporate the unobserved product

characteristics responsible for endogeneity, so endogeneity is eliminated (Berry, Levinsohn, and

Pakes, 2004). These fixed effect parameters can be identified together with the variance parameters

from the utility and search cost based on individual-level variation in choices and search. Finally, the

mean utility parameters included in δj = αpj +x′jβ+ξj can be identified as in Berry (1994) or BLP

based on the usual conditional moment restriction that the unobserved product characteristics are

mean independent of the observed characteristics and excluded (from utility) marginal cost shifters.

Consider the issue of common covariates next. The most unfavorable situation for identification

is when a variable that affects both the utility and search cost enters the purchase probabilities

as a sum of identical functional forms. To illustrate, one such example arises when κ
(
t′ifγi

)
=

ln
(

exp
(
t′ifγi

)
− 1
)

and σλ = 1, in which case common covariates appear as a sum of linear terms.

Using equation (A31), this specification leads to the consumer-specific buying probability

sij =
exp

[
δij − t′ifγi

]
1 +

J∑
k=1

exp
[
δik − t′igγi

] ,

which clearly shows that if both δij and t′ifγi contain a constant, these cannot be identified sepa-

rately based on purchase or market share data, and likewise, if there are common covariates in the

utility and the search cost, the coefficients of these cannot be identified separately either.

Now suppose we also observe which firms have been searched. Using the same functional form

for κ as above as well as the normalization σλ = 1, the probability that consumer i searches S and

chooses j simplifies to

PiSPij|S = sij ·

∏
g 6∈S

(
exp[t′igγi]− 1

)
∏

g∈F\f
exp[t′igγi]

.

Since the fraction in the second half of this equation only contains the search cost shifters, it is

straightforward to see that common covariates should now be separately identified.
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4 Monte Carlo Experiments

In this section we use Monte Carlo experiments to illustrate the importance of using an approach

that allows one to separately identify the utility and search cost constants. We also use the Monte

Carlo experiments to show the importance of estimating the variance of search costs. Finally,

we study the performance of the Monte Carlo estimator we use to deal with the dimensionality

problem.

We use the following setup for the Monte Carlo experiments. We simulate data for 25 different

markets, where in the baseline case each market has 4 different firms, each selling one product. We

allow for a utility constant as well as a product attribute that is randomly drawn from a normal

distribution with mean 2 and standard deviation 0.5, with parameter values as given by the first

column in Table 1. The unobserved characteristic ξ is drawn from a normal distribution with

mean zero and standard deviation 0.1. We specify the search cost to be linear (that is, we take

κ to be the identity function). We allow for a consumer-firm specific search cost shifter that is

randomly drawn from a lognormal distribution with variance of the variables’ logarithm set to one

and firm-specific means between 2 and 3.14 The corresponding parameter values are shown in the

first column of Table 1. For each replication we simulate prices, attributes, purchases, searches,

and market shares. Prices are obtained by simulating equilibrium prices using the supply side

model discussed in Appendix E, assuming consumers have to search for both price realizations and

the matching term. As described in Section 3.1, we use a Monte Carlo estimator to estimate the

buying probability according to equation (21), using 529 quasi-random draws and the smoothing

parameter set to 0.001.

In our first experiment we focus on the separate identification of the utility constant and the

search cost constant and show that separate identification of the constants is important for estimates

of elasticities and markups, as well as for counterfactuals. We do this in the simplest possible

setting, in which the scale parameter σλ is set to one. We estimate the model using a combination

of aggregate data and individual data.

The results in column (A) of Table 1 are for when using individual purchase data, whereas

column (B) of the table uses search and purchase data. Since it is not possible to separate the

search cost constant from the utility constant when not using search data, we estimate only a utility

cost constant in column (A), while we estimate both constants when supplementing the individual

purchase data with search data. Not surprisingly, the effect of the search cost constant is absorbed

14Specifically, the firm-specific means of the logarithm depend on the number of firms and are equally spread
between 2 and 3, i.e., with four firms the means are 2, 2.333, 2.666, and 3.
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Table 1: Results Monte Carlo Experiments

(A) (B)
true purchase search

Variable coeff. data data

Preference parameters
Constant -1.000 -2.102 -1.029

(0.115) (0.049)
Attribute 1 2.000 1.998 1.999

(0.018) (0.018)
Price -2.000 -1.999 -1.999

(0.011) (0.010)
Search cost parameters

Constant 1.500 1.473
(0.059)

Shifter 1.000 1.166 0.994
(0.172) (0.069)

Elasticities and markups
Own-price elasticity -5.141 -5.524 -5.153

(0.207) (0.225)
Markup 0.617 0.539 0.613

(0.007) (0.013)
Counterfactual effects of drop in utility

Price (% change) -4.828 -1.602 -4.692
(0.243) (0.544)

Notes: Standard deviations are in parentheses. Specification
(A) uses a combination of aggregate data and individual pur-
chase data, whereas specification (B) uses a combination of
aggregate data and individual search and purchase data. data
are generated for 4 firms and 25 markets. The total number
of individual-specific observations used for estimation is 2,500.
The number of quasi-random draws for the Monte Carlo esti-
mator is 529 and smoothing parameter value 0.001.

by the utility constant when the search cost constant is not estimated, which in both cases is

estimated to be lower than the true value of -1. However, although not being able to estimate the

search cost constant affects the estimate of the utility constant, it does not affect the other utility

parameters. The results in the table also suggest that when using search data, we can pin down

both utility and search cost constants.

Not being able to pin down the search cost constant affects estimates of the own-price elasticity

as well as markups. As shown in the table, average own-price elasticities are estimated to be larger

in magnitude in the absence of a search cost constant, and average markups are lower. The reason

for this is that ignoring the search cost constant is equivalent to assuming that search costs are

lower than they really are. Consumers who do not search (and hence do not buy) are incorrectly

interpreted as consumers who do search but do not buy. To accommodate this, the utility constant

is estimated to be much smaller than it really is. This increases competition between inside products

and demand becomes more elastic (and markups lower). These biases may affect counterfactuals

such as the impact of an overall decrease in demand. For instance, prices are expected to go down
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Table 2: Results Scale Parameter Estimated

(A) (B)
true scale parameter

Variable coeff. normalized estimated

Preference parameters
Constant -1.000 -0.979 -0.998

(0.053) (0.047)
Attribute 1 2.000 1.903 2.000

(0.022) (0.024)
Price -2.000 -1.954 -1.999

(0.014) (0.012)

Search cost parameters
Shifter 1.000 0.339 1.070

(0.009) (0.315)
Scale parameter 0.300 1.000 0.305

(0.084)
Elasticities and markups

Own-price elasticity -5.172 -5.097 -5.168
(0.225) (0.222)

Markup 0.607 0.605 0.607
(0.010) (0.012)

Counterfactual effets of drop in utility
Price (% change) -4.349 -3.817 -4.387

(0.384) (0.489)

Notes: Standard deviations are in parentheses. Both speci-
fications use a combination of aggregate data and individual
search and purchase data. data are generated for 4 firms and
25 markets. The total number of individual-specific obser-
vations used for estimation is 2,500. The number of quasi-
random draws for the Monte Carlo estimator is 529 and
smoothing parameter value 0.001.

by close to 5 percent as a result of a drop in the utility constant of 2 (down from −1 to −3), but

when using the estimates in column (A) simulate the expected price change, the percentage decline

in prices is around 1.6 percent. A decrease in the utility constant makes that people substitute from

inside products to the outside option. This increases competition between inside products which

reduces prices. When we do not estimate a search cost constant, the market is more competitive

that it really is. Reducing the utility constant has then less of an impact on prices.

Table 2 gives results for the case in which the true value of the scale parameter σε
σλ

is 0.3. In

Column (A) of the table, we estimate the model normalizing the scale parameter equal to one,

while in Column (B) we estimate the scale parameter. The results shown in columns (A) and (B)

are for the case in which individual-level purchase and search data are used to estimate the model.

The results in Column (A) show that when the scale parameter is normalized to 1 rather than

estimated, both preference and search cost parameters are biased. This bias carries over to the

predicted price effects of a drop in aggregate demand. Specifically, we observe demand elasticity

estimates that are somewhat lower in magnitude than their true counterparts, and price effects that
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Table 3: Results Monte Carlo Experiments

(A) (B) (C)
true 3 firms 5 firms 10 firms

Variable coeff. MC est actual MC est actual MC est actual

Preference parameters
Constant -1.000 -0.974 -0.974 -1.015 -1.016 -1.010 -1.010

(0.070) (0.070) (0.050) (0.050) (0.046) (0.046)
Attribute 1 2.000 1.995 1.996 2.000 2.002 2.004 2.006

(0.052) (0.051) (0.038) (0.038) (0.031) (0.031)
Price -2.000 -1.997 -1.998 -1.999 -1.999 -2.001 -2.002

(0.027) (0.026) (0.020) (0.020) (0.013) (0.013)
Search cost parameters

Constant 1.500 1.531 1.542 1.486 1.496 1.544 1.555
(0.351) (0.349) (0.239) (0.237) (0.187) (0.186)

Shifter 1.000 1.043 1.052 1.024 1.032 1.029 1.038
(0.272) (0.270) (0.198) (0.197) (0.158) (0.157)

Scale parameter 1.000 1.036 1.026 1.022 1.013 0.985 0.976
(0.228) (0.222) (0.175) (0.171) (0.133) (0.130)

Estimation time (minutes) 3:55 1:15 6:21 5:58 12:19 253:13

Standard deviations are in parentheses. All specifications use a combination of aggregate data and individ-
ual search and purchase data. data are generated for 25 markets. The total number of individual-specific
observations used for estimation is 2,500. The number of quasi-random draws for the Monte Carlo esti-
mator is 529 and smoothing parameter value 0.001. Estimation time is the average time (in minutes) it
takes for one iteration to converge, and is obtained using Matlab 2020a on a Cray XC40 supercomputer.

are underestimated. The intuition for this is as follows. A low variance of search costs is equivalent

to a high variance of the portion of utility that is not observable before search, which increases the

gains from search and makes the market more competitive. Hence, normalizing the scale parameter

to 1 results in lower gains from search. To accommodate the observed intensity of search, search

costs have to be estimated much lower than what they truly are, preferences are downward biased

and demands are less elastic than what they really are. The results in Column (B) indicate that

the scale parameter can be successfully estimated, with more accurate counterfactual results.

Finally, we study the performance of the Monte Carlo estimator for the market shares as well

as the individual search and purchase probabilities. This estimator allows us to deal with the

dimensionality problem that arises because one has to sum over all possible choice sets to get these

probabilities. However, with a small number of firms it is feasible to proceed without using the

estimator and use the actual expressions for the market shares and individual search and purchase

probabilities. In fact, as shown in column (A) of Table 3, when there are only 3 firms in the market

it takes on average 1:15 minutes for a single iteration to converge, which is more than three times

faster than the Monte Carlo estimator. Estimation time is about the same when there are 5 firms,

but when there are 10 firms the Monte Carlo estimator is about 20 times faster than when using

the actual probabilities. This is in line with our expectations since for the Monte Carlo estimator
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the computing time is expected to increase linearly in the number of firms while for the estimator

that uses the actual probabilities the computing time increases exponentially. Moreover, in all three

cases the estimates when using the Monte Carlo estimator are almost identical to when using the

actual probabilities, so the computational gains do not come at the cost of accuracy.

5 Conclusions

This paper has proposed a framework for the estimation of demand for differentiated products

with simultaneous consumer search that allows for observed and unobserved heterogeneity in both

preferences and search costs. In our model consumers are initially unaware of whether a given

product is a good match or not. Consumer decision making consists of a search stage and a

purchase stage. In the search stage, consumers optimally determine which sellers to visit in order

to maximize expected utility. In making this decision, consumers take into account their preferences

for the various alternatives as well as the costs of searching them. In the purchase stage, after the

matching parameters of all products in their choice sets are revealed, consumers either pick the

good with the highest realized utility among the products searched, or else go for the outside option.

We have shown that imposing a behavioral assumption on how consumers search in our framework

provides a micro foundation for consideration probabilities widely used in the literature.

Demand modeling with simultaneous search for differentiated products poses a few challenges

for the modeler. First, finding a consumer’s optimal search set is a very complicated task when

the number of alternatives is large and the existing methods do not generalize to common choice

situations. We have proposed a fix to this problem that consists of adding a TIEV distributed

shock to the costs of searching a choice set. We have shown that our model belongs to the GEV

class of discrete choice models, which implies that it is consistent with utility maximization and

that search data are necessary to distinguish between the search model and the equivalent full

information model. Second, estimation of product demand suffers from a dimensionality problem

because the product of a firm may be part of a very large number of search sets. To deal with this

problem, we have provided a novel Monte Carlo approach and have shown that our estimator of the

purchase probabilities is accurate and computationally fast. Finally, we have proposed a maximum

likelihood approach to estimate demand and search costs using individual-level data on search and

purchases. Monte Carlo experiments have highlighted the importance of allowing for sufficient

consumer heterogeneity (in preferences and search costs) when doing policy counterfactuals.
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A Derivation of Expression (16) for the Individual Purchase Prob-

abilities

Based on the discussion from Section 2 and using the notation from Section 2.3, we have c̄i∅ = 0.

Recall from Section 4 that

δ̄iS ≡
∑
j∈S

exp [δij ] .

and notice that it can be decomposed as follows:

δ̄iS = δ̄i{f} + δ̄iS\{f},

where δ̄i{f} =
∑

j∈Gf exp [δij ] and δ̄iS\{f} =
∑

j∈S\{f} exp [δij ]. Notice that for S = ∅, we have

δ̄i∅ = 0.

Using this notation, we write PiS and Pij|S as:15

PiS =

(
1 + δ̄iS

) 1
σλ exp [−c̄iS ]∑

S′∈S
(
1 + δ̄iS′

) 1
σλ exp [−c̄iS′ ]

, (A27)

Pij|S =
exp[δij ]

1 + δ̄iS
. (A28)

Therefore:

sij =
∑
S∈Sf

PiSPij|S

=
∑
S∈Sf

(
1 + δ̄iS

) 1
σλ exp [−c̄iS ]∑

S′∈S
(
1 + δ̄iS′

) 1
σλ exp [−c̄iS′ ]

exp[δij ]

1 + δ̄iS

= exp [δij ]

∑
S∈Sf

(
1 + δ̄iS

) 1
σλ
−1

exp [−c̄iS ]∑
S′∈S

(
1 + δ̄iS′

) 1
σλ exp [−c̄iS′ ]

(A29)

= exp [δij ] exp
[
−c̄i{f}

] ∑S∈S−f
(
1 + δ̄i{f} + δ̄iS

) 1
σλ
−1

exp [−c̄iS ]∑
S′∈S

(
1 + δ̄iS′

) 1
σλ exp [−c̄iS′ ]

, (A30)

where f is the firm producing j and Sf is the set of all choice sets containing firm f . The last

15The denominator of the fraction in PiS in equation (7) is

1 +
∑

S′∈S\∅

(
1 + δ̄iS′

) 1
σλ exp [−c̄iS′ ] =

∑
S′∈S

(
1 + δ̄iS′

) 1
σλ exp [−c̄iS′ ] .
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equality follows from the fact that the numerator of the fraction in sij in equation (A29) is

∑
S∈Sf

(
1 + δ̄iS

) 1
σλ
−1

exp [−c̄iS ] = exp
[
−c̄i{f}

] ∑
S∈S−f

(
1 + δ̄i{f} + δ̄iS

) 1
σλ
−1

exp [−c̄iS ] ,

where S−f is the set of all choice sets that do not contain firm f .

Now divide both the numerator and denominator of equation (A30) by

∑
S′∈S

exp [−c̄iS′ ]

Noticing that

∑
S∈S

exp [−c̄iS ] =
∏
f∈F

(
1 + exp

[
−c̄i{f}

])
=
(
1 + exp

[
−c̄i{f}

]) ∏
g∈F\{f}

(
1 + exp

[
−c̄i{g}

])
,

and ∑
S∈S−f

exp [−c̄iS ] =
∏

g∈F\{f}

(
1 + exp

[
−c̄i{g}

])
gives expression (16) for the individual purchase probabilities.

B Derivation of Buying Probabilities under Normalization

Using the normalizations σλ = σε = 1 in equation (8) gives

sij = exp [δij ]

∑
S∈Sf exp [−c̄iS ]∑

S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]
.

We get

sij = exp[δij ]

∑
S∈S−f exp

[
−c̄i{f} − c̄iS

]∑
S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]

= exp[δij ]
exp

[
−c̄i{f}

]∑
S∈S−f exp [−c̄iS ]∑

S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]

= exp[δij ]

exp
[
−c̄i{f}

]∑
S∈S−f

∏
f∈S

exp
[
−c̄i{f}

]
∑

S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]
.
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Since ∑
S∈S−f

∏
f∈S

exp
[
−c̄i{f}

]
=

∏
g∈F\{f}

(
1 + exp

[
−c̄i{f}

])
=

∏
g∈F

(
1 + exp

[
−c̄i{g}

])
(
1 + exp

[
−c̄i{f}

]) ,

we have that

sij = exp[δij ]
exp

[
−c̄i{f}

] ∏
g∈F

(1+exp[−c̄i{g}])

(1+exp[−c̄i{f}])∑
S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]

=
exp

[
δij − ln

(
1 + exp

[
c̄i{f}

])]
Πi∑

S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]
,

where Πi =
∏
g∈F

(
1 + exp

[
−c̄i{g}

])
.

Now note that si0 is given by

si0 =
1 +

∑
S∈S�{∅} exp [−c̄iS ]∑

S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]
=

∑
S∈S

∏
f∈S

exp
[
−c̄i{f}

]
∑

S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]

=

∏
f∈F

(
1 + exp

[
−c̄i{f}

])
∑

S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]
=

Πi∑
S′∈S(1 + δ̄iS′) exp[−c̄iS′ ]

.

Since
∑J

j=0 sij = 1, it has to be that

∑
S′∈S

(1 + δ̄iS′) exp[−c̄iS′ ] = Πi +
J∑
k=1

exp
[
δik − ln

(
1 + exp

[
c̄i{g}

])]
Πi

= Πi

(
1 +

J∑
k=1

exp
[
δik − ln

(
1 + exp

[
c̄i{g}

])])
.

Consequently,

sij =
exp

[
δij − ln

(
1 + exp

[
c̄i{f}

])]
1 +

∑J
k=1 exp

[
δik − ln

(
1 + exp

[
c̄i{g}

])]
=

exp
[
δij − ln

(
1 + exp

[
κ
(
t′i{f}γi

)])]
1 +

∑J
k=1 exp

[
δik − ln

(
1 + exp

[
κ
(
t′i{g}γi

)])] . (A31)

and

si0 =
1

1 +
∑J

k=1 exp
[
δik − ln

(
1 + exp

[
κ
(
t′i{g}γi

)])] .
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C Monte Carlo Estimation of the Individual Purchase Probabili-

ties

To complete the explanation on how to estimate the individual purchase probabilities by Monte

Carlo, we now provide details on how to estimate the numerator of the second fraction in equation

(16):

Nif ≡
∑

S∈S−f

(
1 + δ̄i{f} + δ̄iS

) 1
σλ
−1 exp [−c̄iS ]∏

g∈F\{f}

(
1 + exp

[
−c̄i{g}

]) .
Again, because exp [−c̄iS ] =

∏
f∈S

exp
[
−c̄i{f}

]
, for S not containing f we have:

QifS ≡
exp [−c̄iS ]∏

g∈F\{f}

(
1 + exp

[
−c̄i{g}

]) =
∏
g∈S

exp
[
−c̄i{g}

]
1 + exp

[
−c̄i{g}

] ∏
g/∈S,
g 6=f

1

1 + exp
[
−c̄i{g}

] =
∏
g∈S

φig
∏
g/∈S,
g 6=f

(1− φig) ,

where

φig ≡
exp

[
−c̄i{g}

]
1 + exp

[
−c̄i{g}

] .
Hence, we can write Nif as:

Nif =
∑

S∈S−f

(
1 + δ̄i{f} + δ̄iS

) 1
σλ
−1
QifS .

Like it was the case for the denominator,
∑

S∈S−f QifS = 1 so (QifS)S∈S−f can be regarded as a

probability mass function. Therefore, Nif can be interpreted as the expected value of a discrete

random variable taking on values
[(

1 + δ̄i{f} + δ̄iS
) 1
σλ
−1
]
S∈S−f

with probabilities (QifS)S∈S−f .

Hence, similar to equation (18), by letting

δ̄if
(
ur−f

)
=

∑
g∈F\{f}

1 (ug ≤ φig) exp [δig] ,

we can then rewrite Nif as:

Nif =

∫
[0,1]F−1

(
1 + δ̄i{f} + δ̄if (u−f )

) 1
σλ
−1
du−f .

Note that we can also write Nif as

Nif =

∫
[0,1]F

(
1 + δ̄i{f} + δ̄if (u−f )

) 1
σλ
−1
du,
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which holds due to the fact that
∫

[0,1] 1du = 1. This way of writing Nif is useful because it allows

the Monte Carlo estimates of the market shares to depend on the same draws. Like before, to

obtain a smooth-in-parameters estimator of Nif , we use Φ

(
φig − ug

h

)
rather than 1 (ug ≤ φig),

where Φ is standard normal CDF and h is a smoothing parameter (see Section 3.1). Let

δ̃if (u−f ) =
∑

g∈F\{f}

Φ

(
φig − ug

h

)
exp [δig]

and the corresponding smooth-in-parameters version of Nif

Ñif =

∫
[0,1]F

(
1 + δ̄i{f} + δ̃if (u−f )

) 1
σλ
−1
du.

D The Contraction Property

Here we present a version of the Contraction Theorem from BLP also used by Moraga-González,

Sándor, and Wildenbeest (2022). This Contraction Theorem is essentially the same as BLP’s but

here the conditions are specified on the market share function instead of the contraction mapping

itself. We maintain the normalization σε = 1. From equation (6), the first order derivatives of sij

with respect to δj = αpj + x′jβ + ξj and δh when j, h ∈ Gf and when h ∈ Gg, g 6= f , are:

∂sij
∂ηj

=

(
1

σλ
− 1

) ∑
S∈Sf

PiSP
2
ij|S +

(
1− 1

σλ
sij

)
sij , (A32)

∂sij
∂ηh

=

(
1

σλ
− 1

) ∑
S∈Sf

PiSPij|SPih|S −
1

σλ
sihsij for j, h ∈ Gf , (A33)

∂sij
∂ηh

=

(
1

σλ
− 1

) ∑
S∈Sf∩Sg

PiSPij|SPih|S −
1

σλ
sihsij for h ∈ Gg, g 6= f. (A34)

The first order derivatives of the choice probability of the outside option si0 with respect to η′j is

∂si0
∂ηj

=

(
1

σλ
− 1

)∑
S∈S

PiSPi0|SPij|S −
1

σλ
sijsi0, (A35)

where

si0 =
∑
S∈S

PiSPi0|S =
∑
S∈S

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

1

1 +
∑

r∈S exp[δir]
. (A36)
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D.1 Contraction theorem

Contraction Theorem (BLP). Let f : RJ → RJ be defined as

fj (δ) = δj + log soj − log sj (δ) , j = 1, . . . , J,

where so = (so1, . . . , s
o
J) is the vector of observed market shares and suppose that the market share

vector s (δ) as a function of δ = (δ1, . . . , δJ) ∈ RJ satisfies the following conditions.

1. s is continuously differentiable in δ and

∂sj
∂δj

(δ) ≤ sj (δ) ,
∂sj
∂δk

(δ) ≤ 0 for any j, k 6= j and δ ∈ RJ ,

(the former is equivalent to the fact that the function sj : RJ → R, sj (δ) = sj (δ) exp (−δj)

is decreasing in δj) and
J∑
k=1

∂sj
∂δk

(δ) > 0 for any δ ∈ RJ .

2. The function sj defined in Condition 1 satisfies

lim
δ→−∞

sj (δ) > 0.

3. The share of the outside alternative s0 (δ) = 1−
∑J

j=1 sj (δ) is decreasing in all its arguments

and it satisfies that for any j and x ∈ R the limit

lim
δ−j→−∞

s0 (δ1, . . . , δj−1, x, δj+1, . . . , δJ) ≡ s̃j0 (x)

is finite and the function s̃j0 : R→ R obtained as the limit satisfies that

lim
x→−∞

s̃j0 (x) = 1 and lim
x→∞

s̃j0 (x) = 0,

where δ−j → −∞ means that δ1 → −∞, . . . , δj−1 → −∞, δj+1 → −∞, . . . , δJ → −∞.

Then there are values δ, δ ∈ R such that the function f :
[
δ, δ
]J → RJ defined by f j (δ) =

min
[
δ, fj (δ)

]
has the property that f

([
δ, δ
]J) ⊆ [δ, δ]J , is a contraction with modulus less than
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1 with respect to the sup norm ‖(x1, . . . , xJ)‖ = maxj |xj |, and, in addition, f has no fixed point

outside
[
δ, δ
]J

.

D.2 Verifying the contraction theorem conditions

We next verify the conditions for our market share vector function s = (s1, . . . , sJ) for σλ ≥ 1,

where sj =
∫
sijfτ (τi)dτi, j = 0, 1, . . . , J .

Condition 1. The market share vector s is obviouly continuously differentiable in δ.

The inequality
∂sj
∂δj
≤ sj holds if (see equation (A32))

(
1

σλ
− 1

) ∑
S∈Sf

PiSP
2
ij|S +

(
1− 1

σλ
sij

)
sij − sij ≤ 0,

i.e., (
1

σλ
− 1

) ∑
S∈Sf

PiSP
2
ij|S −

1

σλ
s2
ij ≤ 0.

This is clearly true for σλ ≥ 1.

The inequality
∂sj
∂δk

< 0 holds if (see equations (A33) and (A34))

(
1

σλ
− 1

) ∑
S∈Sf

PiSPij|SPih|S −
1

σλ
sihsij < 0 and

(
1

σλ
− 1

) ∑
S∈Sf∩Sg

PiSPij|SPih|S −
1

σλ
sihsij < 0 for h ∈ Gg, g 6= f.

These clearly hold for σλ ≥ 1.

Finally, to prove
∑J

k=1
∂sj
∂δk

> 0, first note that
∂sj
∂δk

= ∂sk
∂δj

(see equations (A33) and (A34)).

Then
J∑
k=1

∂sj
∂δk

=

J∑
k=1

∂sk
∂δj

= −∂s0

∂δj
.

If σλ ≥ 1 then (see equation (A35))

∂si0
∂δj

=

(
1

σλ
− 1

)∑
S∈S

PiSPi0|SPij|S −
1

σλ
sijsi0 < 0 (A37)

and therefore −∂s0
∂δj

> 0. This completes the proof of Condition 1.
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Condition 2. We have

lim
δ→−∞

sj exp [−δj ] =

∫
lim

δ→−∞
sij exp [−δj ] fτ (τi)dτi.

Further,

sij exp [−δj ] =
∑
S∈Sf

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

exp[dij ]

1 +
∑

g∈S exp[δig]
,

where dij = δij − δj does not depend on δj . Since by equation (3)

lim
δ→−∞

exp[miS/σλ] = exp (−ciS) , (A38)

lim
δ→−∞

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]
= 1, (A39)

we get that

lim
δ→−∞

sij exp [−δj ] =
∑
S∈Sf

exp [−ciS ]∑
S′∈S exp [−ciS′ ]

exp[dij ] > 0.

So Condition 2 holds.

Condition 3. The fact that the share of the outside alternative s0 = 1−
∑J

j=1 sj is decreasing

in all its arguments follows from (A37) for σλ ≥ 1.

In order to see that s̃j0 (x) finite, first notice that the limit limδ−j→−∞ s0 is (see equation (A36))

∫
lim

δ−j→−∞

∑
S∈S

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]
fτ (τi)dτi.

If j ∈ Gf ,

lim
δ−j→−∞

exp[miS/σλ] =

 exp [log (1 + exp[δij ]) /σλ − ciS ] if f ∈ S

exp (−ciS) if f /∈ S

and

lim
δ−j→−∞

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]
=


1

1 + exp[δij ]
if f ∈ S

1 if f /∈ S.

So

lim
δ−j→−∞

∑
S∈S

exp[miS/σλ] =
∑
S∈Sf

exp [log (1 + exp[δij ]) /σλ − ciS ] +
∑
S/∈Sf

exp (−ciS) .

Since all these limits exist and are strictly positive, limδ−j→−∞ s0 will be finite.
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The limit limx→−∞ s̃
j
0 (x) is

∫
lim

δ→−∞

∑
S∈S

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]
fτ (τi)dτi.

From equations (A38) and (A39)

lim
δ→−∞

∑
S∈S

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]
= lim

δ→−∞

∑
S∈S

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

= 1.

The limit limx→∞ s̃
j
0 (x) is

∫
lim
δj→∞

(
lim

δ−j→−∞

∑
S∈S

exp[miS ]∑
S′∈S exp[miS′ ]

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]

)
fτ (τi)dτi.

Note that with j ∈ Gf

lim
δj→∞

(
lim

δ−j→−∞
exp[miS/σλ]

)
=

 ∞ if f ∈ S

exp (−ciS) if f /∈ S,

so

lim
δj→∞

(
lim

δ−j→−∞

∑
S∈S

exp[miS/σλ]

)
=∞.

Also

lim
δj→∞

(
lim

δ−j→−∞

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]

)
=

 0 if f ∈ S

1 if f /∈ S,

so

lim
δ−j→−∞

∑
S∈S

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

lim
δj→∞

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]
= lim

δ−j→−∞

∑
S/∈Sf

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

.

Therefore,

lim
δj→∞

(
lim

δ−j→−∞

∑
S∈S

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]

1

1 +
∑

g∈S
∑

h∈Gg exp[δih]

)

= lim
δj→∞

 lim
δ−j→−∞

∑
S/∈Sf

exp[miS/σλ]∑
S′∈S exp[miS′/σλ]


=
∑
S/∈Sf

exp (−ciS)

∞
= 0.
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So Condition 3 is satisfied. �

E Supply Side

We assume manufacturers maximize profits in a pricing game. Assuming a Nash equilibrium exists

for this game, any product sold should have prices that satisfy the first order conditions

sj(p) +
∑
r∈Gf

(pr −mcr)
∂sr(p)

∂pj
= 0.

We assume deviation prices are not not observable. Since this implies ∂PiS/∂pk = 0, we get

∂sj
∂pk

=

∫ ∑
S∈Sj

(
PiS

∂Pij|S

∂pk

)
f(τi)dτi.

This means

∂sj
∂pk

=


∫
−αi

(
sij −

∑
S∈Sj PiSP

2
ij|S

)
f(τi)dτi if k = j;∫

−αi
(
−
∑

S∈Sj PiSPij|SPik|S

)
f(τi)dτi if k 6= j.

(A40)

To estimate the marginal costs, the first order conditions can be rewritten as in BLP

p−∆(p)−1s(p) = mc, (A41)

where the element of ∆(p) in row j column r is denoted by ∆jr and

∆jr =


−∂sr
∂pj

, if r and j are produced by the same firm;

0, otherwise.

F The Smoothing Parameter for the Monte Carlo Estimator

In this section we present Monte Carlo evidence on how the Monte Carlo estimation error depends

on the smoothing parameter. One of the main questions here is whether the performance of the

Monte Carlo estimator is sensitive to the choice of the smoothing parameter. To answer this, we

study the performance of the estimator in (19) for estimating sums of the type (18). Specifically,

we estimate

D =
∑
S∈S

1 +
∑
f∈S

δf

 1
σλ ∏

f∈S
φf
∏
f /∈S

(1− φf ) =

∫
[0,1]F

1 +
F∑
f=1

1 (uf ≤ φf ) exp [δf ]

 1
σλ

du,
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where φf =
exp[−cf ]

1+exp[−cf ]
, by

D̃ =
1

R

R∑
r=1

1 +
∑
f∈F

Φ

(
φf − urf

h

)
exp [δf ]

 1
σλ

, (A42)

where Φ is the standard normal CDF, h is a smoothing parameter, and {(ur1, ur2, . . . , urF )}Rr=1 ⊂

[0, 1]F is a quasi-random sample of size R of type (0, 2, s)-net (e.g., Sándor and András, 2004).16

For different values of F (reported in Table A1) we draw vectors (δ1, . . . , δF ) and (c1, . . . , cF )

randomly such that δf ∼ N (0, 25) and cf ∼ N (0, 1). We compute (A42) 100 times by using

different randomized versions of the quasi-random sample; we also calculate the actual value of D

and we multiply the ratio of the two by 1000. This way we normalize D to 1000, so the Monte Carlo

estimation errors can be compared across the different cases. Based on the estimates computed

100 times we calculate the root-mean-squared-error (hereafter RMSE). Finally, we replicate this

procedure 10 times and report the means and standard deviations (Stds) of the 10 RMSE values

in Table A1.

We do these computations for various values of σλ, h, and R (see Table A1; the h values appear

in the first line called “Bandwidths”). In the table we can see that for cases in which the smoothing

parameter is lower than 10−2 the RMSE’s are rather low. This implies that both the bias and the

standard deviation is small in these cases. The smoothing parameter values that yield the lowest

mean RMSE values are the two middle values, that is, h = 10−3 and 3·10−4. In the vast majority of

the cases taking smoothing parameter values lower than these does not increase the mean RMSE’s

significantly.

We can also notice that in most cases the RMSE’s are lower for higher sample sizes R, which is

something we would expect. Changing the scale parameter σλ does not seem to alter significantly

the magnitudes of the RMSE’s. We can notice a similar phenomenon when we look at changes

in the number of firms F . In conclusion, based on the results from Table A1, when we take a

smoothing parameter lower than or equal to 10−3, the Monte Carlo estimator (A42) is expected to

have both bias and standard deviation lower than 0.4% of the true value of D. This remarkable

precision explains why in Table 3 the parameter estimates obtained when using the Monte Carlo

estimator are almost identical to those when using the actual probabilities.

16Using this type of quasi-random sample turns out to reduce computing time at least by a factor of 40 with
respect to a pseudo-random sample because even the lowest sample (of size 256) yields more precise estimates than
a pseudo-random sample of size 10, 000.
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Table A1: Means and Standard Deviations of RMSE’s

σλ R Bandwidths 3 · 10−2 1 · 10−2 3 · 10−3 1 · 10−3 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5

Number of firms F = 5

5 256 Means 30.59 10.47 3.68 2.11 2.00 2.21 2.16 2.19
Stds 25.42 8.55 2.74 1.24 1.01 1.33 1.23 1.31

529 Means 26.65 9.06 2.91 1.40 1.07 1.04 1.00 0.99
Stds 24.79 8.24 2.43 0.86 0.63 0.65 0.69 0.61

1024 Means 28.71 9.72 2.97 1.16 0.65 0.60 0.61 0.66
Stds 21.00 7.08 2.14 0.80 0.51 0.41 0.42 0.45

2 256 Means 17.15 5.79 2.05 1.53 1.64 1.69 1.75 1.85
Stds 11.26 3.71 1.07 0.68 0.86 1.01 1.03 1.06

529 Means 17.31 5.90 1.99 1.16 1.04 1.09 1.24 1.23
Stds 9.31 3.07 0.86 0.38 0.37 0.34 0.38 0.42

1024 Means 26.58 8.88 2.71 0.96 0.55 0.63 0.68 0.69
Stds 19.17 6.39 1.90 0.59 0.25 0.38 0.44 0.44

1.25 256 Means 9.55 3.35 1.69 2.03 2.16 2.29 2.33 2.37
Stds 9.63 3.31 1.35 1.48 1.68 1.94 1.90 1.82

529 Means 11.19 3.77 1.36 1.05 1.45 1.73 1.79 1.80
Stds 6.52 2.16 0.70 0.46 0.67 0.81 0.86 0.82

1024 Means 8.78 2.95 0.91 0.46 0.50 0.60 0.70 0.69
Stds 5.93 2.00 0.59 0.29 0.25 0.28 0.34 0.33

Number of firms F = 10

5 256 Means 9.29 3.19 1.16 0.81 0.81 0.75 0.72 0.76
Stds 12.02 4.10 1.21 0.64 0.50 0.43 0.40 0.42

529 Means 9.60 3.28 1.10 0.59 0.52 0.55 0.57 0.57
Stds 12.17 4.12 1.25 0.47 0.30 0.35 0.35 0.33

1024 Means 14.81 4.95 1.51 0.55 0.29 0.28 0.29 0.28
Stds 15.03 5.01 1.51 0.51 0.24 0.23 0.24 0.24

2 256 Means 22.91 7.84 2.80 2.25 2.63 2.79 2.90 2.86
Stds 23.13 7.98 2.80 2.17 2.58 2.56 2.69 2.52

529 Means 16.45 5.51 1.68 0.77 0.65 0.62 0.65 0.60
Stds 26.10 8.72 2.56 0.99 0.65 0.60 0.57 0.59

1024 Means 10.86 3.63 1.12 0.44 0.34 0.36 0.35 0.38
Stds 14.78 4.93 1.48 0.53 0.33 0.34 0.32 0.33

1.25 256 Means 5.96 2.10 1.21 1.62 1.93 2.00 2.07 2.14
Stds 9.02 3.07 1.49 1.97 2.33 2.26 2.59 2.65

529 Means 4.17 1.37 0.50 0.47 0.65 0.82 0.90 0.90
Stds 4.60 1.56 0.49 0.35 0.47 0.58 0.65 0.72

1024 Means 4.77 1.60 0.51 0.28 0.31 0.39 0.43 0.45
Stds 6.37 2.12 0.62 0.26 0.26 0.35 0.40 0.40

Number of firms F = 15

5 256 Means 20.05 7.08 3.04 2.36 2.29 2.33 2.33 2.46
Stds 10.44 3.48 1.18 0.65 0.74 0.78 0.80 0.81

529 Means 29.40 10.16 3.50 1.84 1.67 1.63 1.65 1.66
Stds 21.73 7.48 2.32 1.05 1.11 1.00 1.07 1.01

1024 Means 14.99 5.24 1.76 1.00 0.85 0.83 0.89 0.82
Stds 8.84 2.98 0.86 0.36 0.35 0.39 0.43 0.32

2 256 Means 23.28 8.06 3.09 2.22 2.68 2.85 3.11 3.02
Stds 15.55 5.02 1.23 0.70 1.16 1.19 1.24 1.22

529 Means 22.35 7.63 2.59 1.36 1.23 1.33 1.43 1.50
Stds 11.46 3.67 0.91 0.39 0.51 0.54 0.46 0.49

1024 Means 16.32 5.56 1.91 1.00 0.77 0.82 0.84 0.85
Stds 14.32 4.74 1.31 0.36 0.30 0.31 0.34 0.32

1.25 256 Means 5.45 1.92 1.17 1.50 1.81 1.93 2.00 2.11
Stds 3.21 1.07 0.48 0.63 1.01 1.04 1.04 0.96

529 Means 10.69 3.62 1.31 0.95 1.19 1.28 1.34 1.37
Stds 8.73 2.95 1.03 0.59 0.67 0.75 0.95 0.86

1024 Means 5.25 1.78 0.62 0.39 0.45 0.53 0.60 0.60
Stds 3.15 1.05 0.30 0.13 0.13 0.14 0.17 0.16
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Moraga-González, José Luis, Zsolt Sándor, and Matthijs R. Wildenbeest: “Consumer Search and

Prices in the Automobile Market,” CEPR Discussion Paper No. 10487, 2015. (Accessible at

https://cepr.org/publications/dp10487.)
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