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Time-Weighted Difference-in-Differences:
Accounting for Common Factors in Short T Panels

Timo Schenk∗

February 2, 2023

Abstract

This paper proposes a time-weighted difference-in-differences (TWDID)
estimation approach that is robust against interactive fixed effects in
short T panels. Time weighting substantially reduces both bias and
variance compared to conventional DID estimation through balancing
the pre-treatment and post-treatment unobserved common factors. To
conduct valid inference on the average treatment effect, I develop a cor-
rection term that adjusts conventional standard errors for weight esti-
mation uncertainty. Revisiting a study on the effect of a cap-and-trade
program on NOx emissions, TWDID estimation reduces the standard
errors of the estimated treatment effect by 10% compared to a con-
ventional DID approach. In a second application I illustrate how to
implement TWDID in settings with staggered adoption of the treat-
ment.

Keywords: synthetic difference-in-differences, dynamic treatment effects, in-
teractive fixed effects, panel data

1 Introduction

The presence of interactive fixed effects in the untreated potential outcomes
leads to biased difference-in-difference (DID) estimates of average treatment
effects. While the estimators of Arkhangelsky, Athey, Hirshberg, Imbens,
and Wager (2021) and Chan and Kwok (2021) address this issue in large T
panels, the question remains how to account for common factors in short T
panels.

∗Amsterdam School of Economics, University of Amsterdam & Tinbergen Institute
(t.d.schenk@uva.nl). I thank my advisors Frank Kleibergen, Andreas Pick as well as
Pedro Sant‘Anna, Arturas Juodis and conference and seminar participants of the 2022
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Workshop, ESEM, IAAE, IPDC, the NESG Meeting, and internal seminars for helpful
comments and discussions. Financial support by the IAAE travel grant is highly acknowl-
edged.
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In this paper, I suggest a time-weighted DID (TWDID) approach to
estimate the average treatment effect on the treated (ATT) of a binary
treatment. Assume that at least two pre-treatment periods and a group of
untreated units are observed. As this paper shows, weighting pre-treatment
observations according to similarity between pre- and post-treatment out-
comes makes estimation and inference robust against the presence of inter-
active fixed effects even when only a few number of pre-treatment periods
are available.

Interactive fixed effects are time-varying, unobserved common factors
that have a time-invariant but heterogeneous effect on the outcome of inter-
est. DID estimation compares pre- and post-treatment averages of treated
and untreated units. This results in a biased estimate of the ATT if the pre-
treatment factors differ from the post-treatment factors and their effect on
the outcome correlates with the treatment assignment. As a consequence,
DID approaches require the latter correlation to be zero by imposing a par-
allel trend assumption, which can lead to pre-testing issues (Roth, 2022).

The TWDID approach, instead, allows for non-parallel trends. Under
strict balancing conditions on the factors it completely eliminates the bias.
In practice, weights that are estimated from the control unit data succeed
in reducing the bias substantially, even when the strict balancing conditions
are not met.

A second effect of the factor imbalance is that it amplifies the variance
of the DID estimator even when the parallel trend condition holds. By bal-
ancing the factors, time weighting reduces the variance and leads to more
accurate estimates. In fact, when the number of units is large compared
to the number of periods, the estimated weights converge to pseudo-true
weights which minimize the variance of the estimated treatment effect. Sim-
ulations show that the amount by which the variance is reduced outweighs
the additional variance caused by the weight estimation uncertainty.

As a consequence of the bias, inference based on DID estimation is sub-
stantially oversized, which the bias reduction of TWDID alleviates. How-
ever, the presence of estimated weights still leads to empirical size in excess
of the nominal size when using standard covariance estimators. To elimi-
nate the remaining size distortions, I provide analytical two-step standard
errors (Newey and McFadden, 1994) obtained from the asymptotic variance
of the TWDID estimator. First, the cluster-covariance matrix estimator
(Arellano, 1987) is applied to the weighted sample to estimate the vari-
ance of the estimated treatment effect under pseudo-true weights. For the
second step, I develop a correction term that accounts for the presence of
estimated weights. It uses the fact that, in short T panels, the time weights
are asymptotically normal around the pseudo true weights.

TWDID circumvents another issue of DID estimation, which occurs with
staggered adoption and heterogeneous treatment effects. When implement-
ing DID with a simple two-way fixed effects regression, units which have
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already received treatment effectively still act as a control group. In gen-
eral, this will not return an interpretable average treatment effect (Borusyak,
Jaravel, and Spiess, 2022; Goodman-Bacon, 2021; Sun and Abraham, 2021;
de Chaisemartin and D’Haultfœuille, 2020; Imai and Kim, 2021; Athey and
Imbens, 2022). Instead, the TWDID approach requires the researcher to
explicitly define a control group, which prevents potentially misleading com-
parisons. In particular, TWDID can be used to estimate group-time average
treatment average effects, as Callaway and Sant’Anna (2020) suggest. These
can then be aggregated to measures of interest that are interpretable when
treatment effects are heterogeneous.

I revisit two applications to show how to implement the TWDID es-
timator in practice. First, I consider a study by Deschenes, Greenstone,
and Shapiro (2017), who use a triple DID design to estimate the effect of
a cap-and-trade program on NOx emissions. Interactive fixed effects are
present here if common shocks (e.g. business cycle or weather) have het-
erogeneous effects on the NOx emissions in different counties. While the
point estimates differ only mildly, TWDID reduces the standard errors of
the estimated average treatment effect by 10% compared to a conventional
DID approach.

Second, I consider the application of Callaway and Karami (2022), who
estimate the effect of early-career job displacement on earnings using data
from the 1979 National Longitudinal Study of Youth (NLSY). Here the
treatment has staggered adoption, because different workers have their first
job displacement at different points in time. TWDID estimates suggest that
displacement has lead to a smaller, but still statistically significant reduction
in earnings.

The TWDID estimator can be viewed as a restricted version of the syn-
thetic DID (SDID) estimator of Arkhangelsky et al. (2021). The SDID esti-
mator uses time weights alongside unit weights to balance unobserved factor
structures in large N,T panels. Standard errors are obtained using panel-
jackknife or bootstrap methods, which tend to be conservative. Although
SDID requires large T for consistency, in the Monte Carlo experiments of
this paper it performs well in terms of bias and variance even with only a
few pre-treatment periods. In fact, when strict balancing conditions on the
factors are not met, SDID can yield more precise estimates than TWDID.
However, due to the conservative standard errors, the resulting confidence
intervals are still wider than those of TWDID.

This paper also relates to a number of findings in the literature on syn-
thetic control (SC) estimators (Abadie, Diamond, and Hainmueller, 2010;
Xu, 2017; Abadie and L’hour, 2020; Ferman, 2021; Ferman and Pinto, 2021;
Ben-Michael, Feller, and Rothstein, 2021). They use unit weights to balance
time-invariant unobserved characteristics between treated and untreated
units, which are estimated with a time-series regression over the pre-treatment
periods. Consistent estimation requires a large number of pre-treatment pe-
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riods, strict balancing conditions on the loadings and restrictions on the
serial dependence of the errors. Similarly, TWDID requires a large number
of control units and balancing conditions on the factors. Exploiting indepen-
dence over the cross-section, however, TWDID estimation remains reliable
when the data exhibits strong serial dependence.

There are also GMM-type approaches to identify and estimate treatment
effects in short T panels with interactive fixed effects, see for example Brown
and Butts (2022). These approaches make use of instruments to address the
endogeneity of the factor structure and therefore require fewer restrictions
on the factors themselves. Callaway and Karami (2022) propose such an
approach using time-invariant observable covariates with constant effect on
the outcome as instruments. However, these instruments are not always
available in practice.

When both N and T are large, one can use well established results from
linear panel data models with factor structures (Pesaran, 2006; Bai, 2009)
to recover a long run average treatment effect. For example, Gobillon and
Magnac (2016) apply the estimator of Bai (2009) to estimate the average
treatment effect jointly with the factor structure. Using principal component
analysis, Chan and Kwok (2021) construct factor proxies, which can then
be used in a factor-augmented regression. In short T panels, however, these
estimators are generally inconsistent.

The remainder of the paper is structured as follows. Section 2 covers the
Theory. Section 2.1 introduces the interactive fixed effects model and defines
the TWDID estimator. Section 2.2 shows the bias and variance reduction
properties. Section 2.3 covers inference. Sections 2.4 and 2.5 extend the
results to settings with multiple treated periods and staggered adoption,
respectively. Section 3 illustrates the theoretical results with simulations.
Section 4 contains the applications and Section 5 concludes.

2 Theory

2.1 Setting

Using a panel data set for treated and untreated units, we wish to estimate
the effect of a policy intervention starting in period t = T0. That is, we seek
to estimate the average treatment effect on the treated

τt := ATTt = E[yit(1)− yit(0)|Di = 1] (1)

in the post-treatment periods t = T0 + 1, . . . , T , where yit(1), yit(0) are the
potential outcomes of unit i in period t, and Di ∈ {0, 1} indicating whether
unit i is ever treated. The researcher observes yit = Diyit(1)+(1−Di)yit(0)
for a large number of units i = 1, . . . , N and a small number of periods
t = 1, . . . , T , covering at least two pre-treatment periods (T0 ≥ 2).
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The untreated potential outcomes are generated by an interactive fixed
effects model,

yit(0) = βi + λ′ift + εit (2)

where βi are unit fixed effects, ft and λi are r-dimensional vectors of common
factors and loadings, and εit is an idiosyncratic error component. Such
unobserved factor structures, λ′ift, are present in many economic settings.
In microeconomic applications, λi can be thought of a vector of unobserved,
time-invariant characteristics of individual i. In contrast to the fixed effects
βi, they have a time-varying impact on the outcome yit measured by ft. In
macroeconomic applications, the factors ft are unobserved common shocks
(e.g. technology or weather shocks) that have an heterogeneous impact λi
on unit i.

To simplify notation, let Nj = {i : Di = j}, j = 0, 1 denote the sets of
untreated and treated units in the sample, respectively. Let N0 =

∑N
i=1Di

and n0 = N0
N denote the number and share of untreated units, respectively.

The share of pre-treatment periods is t0 = T0
T .

I make the following assumptions.

Assumption 1 (No anticipation). yit(1) = yit(0) for all t ≤ T0 and all
i = 1, . . . , N .

Assumption 2 (Correlated loadings). E[λi|Di = 1] − E[λi|Di = 0] = ξλ

with |ξλ| < ∞ and Var[λi] = Σλ,i with limn→∞
1
Nj

∑
i∈Nj Σλ,i = Σ

(j)
λ for

j = 0, 1, both positive definite r × r matrices.

Assumption 3 (Convex hull condition). The T × r factor matrix F =
(F ′pre,F

′
post)′ satisfies

1. rankFpre = k < T0,

2. For all t ∈ {T0 + 1, . . . T} ∃vt ∈ V : ft = F ′prevt

with V = {v ∈ RT0 : vt ≥ 0,
∑T0
t=1 vt = 1} the set of non-negative weights

that sum to one.

Assumption 4 (Selection on time-invariant unobservables). For every i,
E[εi|βi, Di,λi,F ] = 0. Moreover, E[εiε′i|Di] = Σε,i with limn→∞

1
Nj

∑
i∈Nj Σε,i =

Σ
(j)
ε some positive definite T × T matrices for j = 0, 1.

Assumption 5 (Random sampling). (εi,λi) are independent over the cross
section. n0, t0 ∈ (0, 1) are both constant as N →∞ and T0 ≥ 2.

Assumption 6 (Treatment effect heterogeneity). The vector of individual
treatment effects τi = (τi,T0+1, . . . , τi,T )′, τit = yit(1)−yit(0), satisfies 1

N

∑
iDiτi

p−→
τ and either 1√

N

∑
iDi(τi − τ ) d−→ N [0, Στ

1−n0
] or 1√

N

∑
iDi(τi − τ ) p−→ 0,

with Στ a T1 × T1 positive semi-definite matrix.
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Assumption 1 ensures that we observe the untreated potential outcome
of the treated units prior to the treatment. It would be violated in presence
of anticipation effects, i.e. when the treatment affects the outcome before
it actually starts. If sufficient pre-treatment observations are available, one
can estimate the anticipation effects as it is commonly done in event-study
designs.

Assumption 2 is the central characteristic of the model. It allows the
loadings λi to differ systematically between treated and untreated units.
The loading imbalance ξλ measures how much more (or less) the treated
units are on average affected by the common factors ft. It also nests the
two-way fixed effects model as a special case for ξλ = 0 and Σ

(1)
λ = Σ

(0)
λ = 0,

since then λi = λ for all i. In that case the factor structure λ′ift reduces to
a time fixed effect γt = λ′ft.

The common factors F can be viewed as realizations from some deter-
ministic or stochastic process, where the number of factors r is unknown and
fixed. All results should be interpreted conditional on F . Assumption 3.1
implies that all post-treatment factors can be written as a weighted average
of pre-treatment factors with weights that sum to one but can be negative.
To ensure this works with non-negative weights, Assumption 3.2, requires
each post-treatment factor to be in the convex hull of the pre-treatment
factors. It excludes factors containing monotonic deterministic trends. The
synthetic control literature (Abadie et al., 2010; Ferman, 2021) requires sim-
ilar balancing conditions on the loadings.

Under Assumption 4, the treatment assignment is strictly exogenous
once conditioned on the loadings, fixed effects and the factors. Moreover, I
allow for heteroskedasticity and arbitrary serial dependence of the idiosyn-
cratic errors. Lastly, Assumption 5 imposes independence of the error com-
ponent over the cross section. It requires the number of treated and un-
treated units to grow at the same rate.

Assumption 6 imposes high-level restrictions on the treatment effect het-
erogeneity required for consistency and asymptotic normality. To exclude
cases in which the treatment effect heterogeneity dominates the limiting
distribution, the sample average of the treated units’ individual treatment
effects must converge to the ATT at least at rate 1√

N
.

Remark 1. One can drop the non-negativity constraint on the weights.
Instead of the restrictive convex hull condition, only sufficient rank of Fpre
is required. Weights will have a closed form expression and inference remains
unchanged. However, estimation becomes much more sensitive with respect
to the number of pre-treatment periods, as the weights will lose their sparsity
property.

Remark 2. Using potential outcomes notation, one may equivalently write
Assumption 4 as Di ⊥ (yi(0),yi(1))|(βi,λi). This is weaker than uncon-
foundedness as defined in Imbens and Wooldridge (2009), since here the
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treatment assignment may depend on unobserved characteristics as long as
they are time-invariant.

The time-weighted DID estimator is computed in two steps. For nota-
tional convenience, I consider first the case in which treatment occurs only
in the last period t = T .

1. Obtain a T0-dimensional vector of time weights v̂ = (v̂1, . . . , v̂T0)′ using
the outcomes yi,t of the untreated units. Regress the post-treatment
outcome yi,T on a constant and the pre-treatment outcomes yi,pre =
(yi,1, . . . , yi,T0)′

v̂ = arg min
v∈V,α

∑
i : Di=0

(yi,T − α− y′i,prev)2 (3)

with V = {v ∈ RT0 : vt ≥ 0,
∑T0
t=1 vt = 1} the set of non-negative

weights that sum to one.

2. Obtain the time-weighted DID estimator τ̂(v̂) as solution to the weighted
two-way fixed effect regression

min
τ,µ,γ

N∑
i=1

T∑
t=1

vt(yit − τDit − µi − γt)2 (4)

with vT = 1. The resulting estimator is

τ̂(v) = v′a(ȳ(1) − ȳ(0)) = ∆T −
T0∑
t=1

vt∆t (5)

with augmented time weights va = (−v′, 1)′, ȳ(j) = 1
Nj

∑
i : Di=j yi the

vectors of the treated (j = 1) and untreated (j = 0) units’ average
outcome in each period and ∆t = ȳ

(1)
t − ȳ

(0)
t .

In case of multiple treated periods, estimate the ATT for each post-treatment
period separately with the two-step approach outlined above. Likewise, in
case of staggered adoption one can apply the procedure for each treated
group separately. Sections 2.4 and 2.5 discuss these cases in more detail.

The DID estimator is the special case of the TWDID estimator with
equal weights v̄ = ιT0

T0
. The synthetic DID estimator of Arkhangelsky et al.

(2021), in contrast, uses both unit weights and time weights and solves

min
τ,µ,γ

N∑
i=1

T∑
t=1

ωivt(yit − τDit − µi − γt)2

with ω = (ω1, . . . , ωN0) a vector of control unit weights and ωi = 1 for
i ∈ N1. The weights of the untreated units are non-negative sum to one and
are estimated from the pre-treatment outcomes.
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2.2 Bias and variance reduction through factor balancing

In the following, I will first consider the properties of τ̂(v) under fixed
weights to document the issue of factor imbalance. Subsequently, I will
consider estimated time weights and their reduction of bias and asymp-
totic variance of estimated treatment effects compared to the standard DID
approach. This part covers the case of one treated period and the cases of
multiple treated periods and staggered adoption are discussed in Sections 2.4
and 2.5.

Consider the treatment effect estimate τ̂(v) for a given vector of weights
v. For equal weights, v = v̄, this is equivalent to the DID estimator obtained
from a two-way fixed effects regression.

Theorem 1. Suppose Assumptions 1,2 and 4-6 hold. Then for any v ∈ V,

1. E[τ̂(v)|F ] = τ + b(v) with bias b(v) = ξ′λξf (v) and the weighted factor
imbalance ξf (v) = fT − F ′prev,

2.
√
N(τ̂(v)−τ−b(v)) d−→ N [0,Στ̂ (v)] as N →∞ with limiting variance

Στ̂ (v) = ξf (v)′Σλξf (v) + v′aΣεva + Στ

1− n0

where Σλ = Σ
(0)
λ
n0

+ Σ
(1)
λ

1−n0
and Σε defined accordingly.

The proofs for this and the following theorems are in the Appendix.
The weighted factor imbalance ξf (v) will play an important role. It is the
difference between the post-treatment factor and the weighted average pre-
treatment factors and affects the estimated treatment effect in two ways.
First, the combination of a non-zero loading imbalance ξλ and factor im-
balance ξf (v) leads to a first order bias term b(v). For example, consider
the case with one common factor ft, which affects treated units on average
more than untreated units (ξλ > 0). If ft is in the post-treatment periods
higher than in the pre-treatment periods, τ̂(v) will overestimate the treat-
ment effect. Second, it increases the part of the variance resulting from
variation in the loadings. This holds irrespective of whether the treatment
assignment Di correlates with the loadings λi, as long as they have within
group variation Σλ > 0.

The properties of the DID estimator follow as the special case of equal
weights v = v̄. Researchers typically refer to the common trend assumption
as condition a for unbiasedness. In the current setting, a trend means a non-
zero factor imbalance ξf (v̄). The trends are common if the factors affect
treated and untreated units equally. Hence the DID estimator is unbiased
(b(v̄) = 0) if either the trends are common (ξλ = 0) or there are no trends
(ξf (v̄) = 0).
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Now consider the case where the weights are estimated from the control
unit data as per (3). As the number of control units N0 grows, they converge
in probability to the pseudo-true time weights v∗ which solve the population
equivalent of (3)

v∗ = arg min
v∈V

{
ξf (v)′Σ(0)

λ ξf (v) + v′aΣ(0)
ε va

}
(6)

The pseudo-true weights minimize an expression close to the variance of τ̂(v)
derived in Theorem 1, which is influenced by the factor imbalance ξf (v) and
the error variance Σε. As a consequence, the pseudo-true weights do not in
general balance the factors completely. The following Theorem establishes
asymptotic normality around v∗.

Theorem 2. Suppose Assumptions 1-2 and 4-7 hold. Let 0 ≤ k ≤ T0 − 1
be the number of pseudo-true weights equal to zero and denote vk the vector
corresponding to the zero weights. As N →∞,

1. v̂ p−→ v∗

2. Pr(v̂k = 0) −−−−→
N→∞

1

3.
√
N(v̂ − v∗) d−→ N [0,Σv̂] with rkΣv̂ = T0 − 1 − k, (Σv̂)s,t = 0 if

min{v∗s , v∗t } = 0.

Importantly, we identify the irrelevant pre-treatment periods (those with
zero pseudo-true weights) with probability approaching one. For the asymp-
totic distribution of the weights, we can therefore consider the unrestricted
weight estimation after omitting the irrelevant periods. Since this is a least-
squares regression problem, asymptotic normality follows from standard ar-
guments.

The estimated weights v̂ and the treatment effect estimate τ̂(v) con-
verge at the same rate 1√

N
. Under estimated weights, the treatment effect

estimator becomes

τ̂(v̂) = τ̂(v∗)− (Fpreξλ)′(v̂ − v∗) +Op(N−1)

The weight estimation uncertainty v̂ − v∗ therefore affects the limiting dis-
tribution unless ξλ = 0, which is in line with the properties of two-step
estimators (Newey and McFadden, 1994). This leads to the following result.

Theorem 3. Suppose Assumptions 1,2 and 4-7 hold. Then, as N →∞,

1. τ̂(v̂) p−→ τ + b(v∗)

2.
√
N(τ̂(v̂)− τ − b(v∗)) d−→ N [0,Σ]

9



with b(v∗) = ξ′λξf (v∗) and

Σ = Στ̂ (v∗) + (Fpreξλ)′Σv̂Fpreξλ − 2Σ′τ̂ ,v̂Fpreξλ

and Στ̂ ,v̂ the (T0 × 1) covariance between τ̂ and v̂.

The limit variance consists of three parts. First, Στ̂ (v∗) is the variance
of the treatment effect estimator under pseudo-true weights v∗. The sec-
ond part comes from the variance of the weight estimation noise and the
third part from the covariance of the weight estimation and treatment effect
estimation.

The magnitude of the bias b(v∗) depends on the remaining factor imbal-
ance under pseudo-true weights. In the simple case of r = T0 − 1, it can be
decomposed in two parts

ξf (v∗) = ξf (v0) + F ′preR(I +Asnr)−1R−(v0 − vε) (7)

with Asnr a matrix of signal-to-noise ratios in the pre-treatment periods
(exact expression in the appendix), vε := arg minv∈V v′aΣ

(0)
ε va the vari-

ance minimizing weights and v0 := arg minv∈V ξf (v)′Σ(0)
λ ξf (v) the oracle

weights, which are unique in this case. The first part, ξf (v0), is the smallest
factor imbalance that can be achieved with non-negative weights that sum
to one. By construction, the convex hull condition (Assumption 3) implies
that ξf (v0) = 0. If the convex hull condition does not hold, the bias will be
proportional to how far the post-treatment factor is from the convex hull
of the pre-treatment factors. The second part comes from the fact that the
pseudo true weights minimize the sum of the factor imbalance and error vari-
ance. However, the stronger the signal in the data, the more the weights will
focus on eliminating the factor imbalance. Consequently, the pseudo-true
weights will be closer to the oracle weights and ξf (v∗) ≈ ξf (v0). Indeed, the
Monte Carlo experiments in Section 3 show that the first term is of greater
concern.

Comparing the DID estimator τ̂(v̄) to the time-weighted version τ̂(v̂)
leads to the following conclusions. The bias of the latter is smaller if
the pseudo-true weights decrease the factor imbalance compared to equal
weights. This is arguably the case in most relevant scenarios, although,
technically, counterexamples can be constructed. Next, weighting has a
two-fold effect on the relative variance.

Σ
Στ̂ (v̄) = Στ̂ (v∗)

Στ̂ (v̄) +
Fpreξ

′
λΣv̂Fpreξλ − 2Σ′τ̂ ,v̂Fpreξλ

Στ̂ (v̄)

First, v∗ minimizes the first term by construction. This comes at the cost of
weight estimation noise, which is reflected in the second term. The Monte
Carlo simulations in Section 3 show that TWDID substantially reduces bias
and variance in a setting with one factor.
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2.3 Inference with two-step standard errors

A consistent estimator of the limit variance derived in Theorem 3 is

Σ̂ = Σ̂τ̂ (v̂) + ∆̇′preΣ̂v̂∆̇pre − 2Σ̂′τ̂ ,v̂∆̇pre (8)

The first part Σ̂τ̂ (v̂) is the cluster-covariance robust variance estimator
of Arellano (1987), often referred to as clustering the standard errors on
the unit level (Bertrand, Duflo, and Mullainathan, 2004), applied to the
weighted data. It consistently estimates the variance under pseudo-true
weights Στ̂ (v∗). The second part accounts for the additional variance caused
by the weight estimation noise. It consist of the demeaned average pre-
treatment differences ∆̇pre = (∆1 − ∆̄pre, . . . ,∆T0 − ∆̄pre)′ with ∆̄pre =
1
T0

∑
t≤T0 ∆t and a consistent estimator Σ̂v of the weight variance. The

third part accounts for correlations of τ̂(v∗) and v̂, which tends to be neg-
ligible in practice. In the remainder of this section, I will explain how to
construct the different components of Σ̂ and associated confidence intervals.

The first part of the estimated variance is

Σ̂τ̂ (v) = v′aΣ̂∆va; Σ̂∆ = Σ̂
(0)
y

n0
+ Σ̂

(1)
y

1− n0
(9)

with within-group sample variances Σ̂
(j)
y = 1

Nj

∑
i:Di=j(yi− ȳ

(j))(yi− ȳ(j))′
for j = 0, 1. It can be obtained in the following way. First estimate the time
weights v̂. Next, weight only the pre-treatment outcomes and call them
ỹit = T0v̂tyit for t ≤ T0 and ỹit = yit for t > T0. Run a two-way fixed effects
regression of the weighted outcomes ỹit on the treatment indicatorDit, which
yields τ̂(v̂). Applying the Arellano (1987) cluster-covariance estimator on
the weighted data then provides Σ̂τ̂ (v̂).

Next, consider ∆̇′preΣ̂v̂∆̇pre provides as an estimator of (Fpreξλ)′Σv̂Fpreξλ.
First, the demeaned average pre-treatment differences become

∆̇pre = Fpreξλ +Op(N−1)

implying that they consistently estimate Fpreξλ as N → ∞. For the es-
timator of the weight variance Σ̂v, let v̂ be the T0-dimensional vector of
estimated weights as per (3). As Theorem 3 establishes, only the non-zero
weights matter for the limiting weight variance Σv̂. The non-zero weights
can be seen as an unrestricted least-squares estimate and the least-squares
type of standard errors can be used to estimate its variance.

Let v̂[+] be the T+-dimensional vector which contains the strictly positive
weights. Because the weights sum to one, I can write

v̂[+] = e1 +Rv̂−1
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with e1 the T+-dimensional unit vector, R =
(
−ι′T+−1
IT+−1

)
a T+ × (T+ − 1)

matrix and v̂−1 excludes the first element of v̂[+]. The latter can be written
as the unrestricted least-squares estimate

v̂−1 = (Ỹ ′preỸpre)−1Ỹ ′preỹT

with Ỹpre = Ẏ
(0)

[+] R, ỹT = ẏ
(0)
T − ẏ(0)

1 and Ẏ
(0)

[+] the N0 × T+ matrix of
demeaned outcomes of the control units in the remaining pre-treatment
periods. A consistent estimator of the weight variance

Σ̂v̂−1 = S̄−1
y S̄qq′S̄

−1; S̄y,q = 1
N

∑
i

q̇(v̂,yi)q̇(v̂,yi)′ =
1
N
R′Y ′pΩ̂qYpR

with Ω̂q = diag(q1(v̂), . . . , qN0(v̂)) and q̇ = ∂q
∂v′−1

Finally, the estimator of
the weight covariance matrix is

Σ̂v,[+] = RS̄−1
y S̄qq′S̄

−1R′ (10)

which follows from Var[v̂[+]] = RVar[v̂−1]R′.
The following Theorem summarizes the results.

Theorem 4. Suppose Assumptions 1,2 and 4-6 hold. Then, as N → ∞,
Σ̂τ̂ (v̂) p−→ Στ̂ (v∗) with v̂ the estimated weights as per (3) and v∗ the
pseudo-true weights as defined in (6), ∆̇′preΣ̂v̂∆̇pre

p−→ (Fpreξλ)′Σv̂Fpreξλ

and therefore Σ̂ p−→ Σ

Inference can be based on the t-statistic

Tτ0 = τ̂(v̂)− τ0 − b(v∗)√
Σ̂/N

as Pr[|Tτ0 | > q1−α/2] p−→ α, with τ0 the treatment effect under the null,
α the intended size and q1−α/2 the 1 − α/2 quantile of the standard nor-
mal distribution. Without any further restrictions, the resulting confidence
interval [

τ̂(v̂)± q1−α/2

√
Σ̂/N

]
will be centered around τ0+b(v∗). The Monte Carlo experiments in Section 3
it is more reliable and shorter compared to an unweighted DID approach.

2.4 Multiple treated periods

In the case of multiple treated periods t = T0 + 1, . . . , T , the object of
interest becomes τ = (τT0+1, . . . , τT )′, the vector of ATTs in all T1 = T −T0
post-treatment periods. To estimate the dynamic effects τ , we can apply

12



TWDID for each treated period separately. First, estimate a vector of time
weights

v̂(j) = arg min
v∈V,α

∑
i : Di=0

(yi,j − α− y′i,prev)2 (11)

for each post-treatment period j = T0+1, . . . , T . Let V = [v(T0+1), . . . ,v(T )]
be the corresponding T0 × T1 matrix of time weights. Then estimate the
treatment effects

τ̂ (V ) = V ′a(ȳ(1) − ȳ(0)) =


∆T0+1 −

∑
t≤T0 v

(T0+1)
t ∆t

...
∆T −

∑
t≤T0 v

(T )
t ∆t

 (12)

with Va =
(
−V
IT1

)
the T × T1 matrix of augmented time weights. A consis-

tent estimator of the T1 × T1 covariance matrix of τ̂ (V ) is

Σ̂τ̂ (V ) = V ′aΣ̂∆Va (13)

with Σ̂∆ = Σ̂
(0)
y

n0
+ Σ̂

(1)
y

1−n0
and Σ̂

(0)
y = 1

Nj

∑
i:Di=j(yi − ȳ

(j))(yi − ȳ(j))′ the
T × T sample covariance within the treated and untreated units.

The following theorem formally extends Theorem 3 to the dynamic case.

Theorem 5. Suppose Assumptions 1-2 and 4-6 hold. Then, as N →∞,

1. τ̂ (V̂ ) p−→ τ + b(V ∗)

2.
√
N(τ̂ (V̂ )− τ − b(V ∗)) d−→ N [0,Σ.]

3. Σ̂τ̂ (V̂ ) p−→ Στ̂ (V ∗)

The appendix contains the full expression of the limiting variance Σ.. In
practice one may estimate the variance as

[Σ̂]i,j = [Σ̂τ̂ (V̂ )]i,j + 1[i = j]∆̇′preΣ̂v(T0+j)∆̇pre

for i, j = 1, . . . , T1, where only the diagonal elements affected by the weight
estimation noise. This is because v̂(j) does not affect τ̂k for j 6= k We can
then test for an effect in any period H0 : τ = 0 using the corresponding
Wald statistic

(τ̂ )′[Σ̂]−1τ̂
d−→ χ2(T1)

as well as testing whether the effects vary over time (H0 : τj = τ for all
j > T0).

In some cases, the object of interest may not be the full vector of ATTs τ ,
but only the average over the post treatment periods τavg := 1

T1

∑T1
t=1 τt. One
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way to estimate τavg would be to average the estimated ATTs of all post-
treatment periods. Alternatively, a pooled estimator would first collapse
all post-treatment periods to one average post-treatment period and then
estimate one vector of time weights using only the average post-treatment
outcomes. The pooled estimator is also discussed by Arkhangelsky et al.
(2021).

2.5 Staggered Adoption

The estimator can also be applied in settings with staggered adoption of the
treatment, in which different groups of units start the treatment at different
points in time. Suppose there is a finite number of groups indicated by
Gi ∈ {0, 1, . . . , G}, where units in group g > 0 start treatment in t = T0 + g
and units in group Gi = 0 are never treated. An objects of interest could
be the group-time average treatment effects

τg,t = E[yit(g)− yit(0)|Gi = g]

with yit(g) the potential outcome when starting treatment in t = T0 + g, see
also Callaway and Sant’Anna (2020) and Callaway and Karami (2022). Let
τg = (τg,T0+g, . . . , τg,T )′ the corresponding vector of estimated group-time
ATTs for group g. It can be estimated with the TWDID approach for each
treated group separately. For each group g, first estimate T0 + g − 1 time
weights v̂(j)

(g) for each period j = T0 + g, . . . , T using the outcomes of the
never-treated group. Then obtain τ̂g = τ̂ (Vg) and standard errors for the
corresponding group as previously described. The results from the case with
sharp treatment timing hold in the case of staggered adoption, provided that
the number of observations per group Ng =

∑
i 1[Gi = g] is large compared

to the number of groups G.

Corollary 1. Suppose Ng
N → ng ∈ (0, 1) as N →∞. Then

1. τ̂g
p−→ τg

2.
√
N(τ̂g − τ ) d−→ N [0, Σ

(g)
τ̂ (V ∗g )
n0+ng ]

3. Σ̂
(g)
τ̂ (V̂g)

p−→ Σ
(g)
τ̂ (V ∗g )

for all g = 1, . . . , G.

One can then aggregate the group-time ATTs to other statistics of in-
terest, for example the overall ATT or the event-study ATT. These issues
are further discussed by Callaway and Sant’Anna (2020) and Callaway and
Karami (2022).
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3 Monte Carlo Experiments

3.1 Design

In each Monte Carlo replication r = 1, . . . , R I generate data from

y
(r)
it = τDit + σfλ

(r)
i f

(r)
t + ε

(r)
it

with and ε
(r)
it ∼ N [0, 1] for i = 1, . . . , N and t = 1, . . . , T , mutually in-

dependent. The loadings are λ(r)
i = ξλ√

N
Di + ν

(r)
i with ν

(r)
i ∼ N [0, 1] and

loading imbalance ξλ = 2. The true treatment effect is τ = 0. The number
of units is N = 100 of which half are treated (n0 = N0

N = 0.5) The treat-
ment occurs in the last of T = 7 periods. I consider two factor processes.
For the first one I draw f

(r)
t ∼ N [0, 1] for t = 1, . . . , T , which implies that

the convex hull condition is violated in approximately 30% of the draws.
For the second case I first draw the pre-treatment factors f (r)

t ∼ N [0, 1]
for t = 1, . . . , T0. Then I draw post-treatment factor from a truncated
normal f (r)

T ∼ T N [0, 1; f(1), f(T0)], enforcing the convex hull condition. I
repeat the simulation exercise along a grid of factor standard deviations
σf ∈ {0, 0.1, . . . , 2}. For each combination of parameters and sample size I
conduct R = 10, 000 replications.

In each replication, I compute the pseudo-true time weights v∗ as of
(6), the estimated time weights v̂ as of (3) and the SDID unit weights
ω̂. Let ω̄ be the vector of equal weights. I compare the DID estimator
τ̂did = τ̂(ω̄, v̄), the TWDID estimator τ̂twdid = τ̂(ω̄, v̂), the SDID estimator
τ̂sdid = τ̂(ω̂, v̂) and the demeaned synthetic control (DSC) estimator of
Ferman and Pinto (2021) τ̂dsc = τ̂(ω̂, v̄). I also study the performance of
the variance estimators described in Section 2.3. To do so, I compare the
following Monte Carlo statistics.

1. The conditional bias is b(ω,v) = ξλ(ω)ξf (v) with ξλ(ω) = λ̄(1) −∑
i∈N0 ωiλi the loading imbalance after applying the control unit weights.

For DID and DSC I use v = v̄ , and v = v∗ for TWDID and SDID.
Likewise, ω = ω̄ for DID and TWDID. For DSC and SDID I use
b(v) = EMC [ξλ(ω̂)]ξf (v), with EMC [ξλ(ω̂)] the average weighted load-
ing imbalance over all monte-carlo replications. Because I redraw the
factors, I measure the magnitude of the conditional bias term by its
(unconditional) standard deviation sd[b(ω,v)] with respect to the dis-
tribution of the factors.

2. Next, I look at the simulated conditional standard deviation sd[τ̂(ω,v)|F ]
of the point estimates. I compute it as the Monte Carlo standard de-
viation of the bias corrected estimator τ̂(ω,v)− b(ω,v).
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3. Finally, I consider the expected standard error E
[√

Σ̂
]

and the cover-

age of the 95% confidence intervals
[
τ̂ ± q0.975

√
Σ̂/N

]
obtained from

the four estimation approaches. For all approaches I use the CCM es-
timator applied to the weighted data Σ̂τ̂ (ω̂, v̂); for TWDID and SDID
I also account for the time weight estimation uncertainty as defined in
(8).

3.2 Results

The top panel of Figure 1 plots the magnitude of the bias against the
strength of the factors. The bias of DID increases as the factors become
stronger. The bias of TWDID is about 50% lower compared to DID when
the convex hull condition is frequently violated (left). When the convex
hull condition is satisfied (right), the remaining bias of TWDID is bounded
and vanishes as the factors become stronger. The bottom panel shows the
conditional standard deviation. For sufficiently strong factors, the TWDID
estimator has a substantially lower standard deviation than TWDID. For
weak factors, however, there is not much to be gained and the weight esti-
mation noise leads to a slightly larger standard deviation.

The DSC and the SDID estimator, both using unit weights, are even
more successful and almost eliminate the bias. Their standard deviation is
slightly than TWDID, except when the convex hull condition is violated and
factors are strong.

Consider now the properties of inference. The top panel of Figure 2
shows the true coverage of the 95% confidence interval. The remaining bias
of the TWDID estimator is negligible, as the coverage remains around the
desired 95%. This holds even when the convex hull condition is frequently
violated (left). The larger bias of the DID estimator leads its coverage to
deteriorate.

Inference based on the SDID and DSC estimators is conservative with
coverages above 95%, because the standard errors are too large compared to
the true standard deviation. As the bottom panel of Figure 2 shows, SDID
and DSC standard errors are larger than those of TWDID, leading to wider
confidence intervals.

4 TWDID in practice: revisiting two applications

4.1 The effect of the NOx Budget Trading Program

I revisit Deschenes et al. (2017) studying the effect of the NOx Budget
Trading Program (NBP) 2003-2008 on NOx emissions. It entailed a cap
and trade program to reduce NOx emissions from power plants. It was only
active in the summer months May - September in the years 2003-2008 in 19
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Figure 1: Magnitude of the conditional bias term b(ω,v) (top) and simulated conditional
standard deviation sd[τ̂(ω,v)] (bottom) of four estimators: difference-in-differences (DID),
time-weighted DID (TWDID), synthetic DID (SDID) estimator and demeaned synthetic
control (DSC). The horizontal axis depicts different levels of the factor standard deviation
σf . The factors are drawn such that the convex hull condition is violated in the left panels
and holds in the right panels.
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depending on the factor strength σf . The setup is the same as in Figure 1.

For all approaches I use the CCM estimator applied to the weighted data Σ̂τ̂ (ω̂, v̂); for
TWDID and SDID I also account for the time weight estimation uncertainty as defined
in (8)
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states in the US. In 2003 the program was active only in a subset of the 19
treated states. States not adjacent to the NBP states remain as non-treated
states (22 in total).

Data on NOx emissions is available on county level for N = 2539 counties
from 1997-2007. We observe N1 = 1, 354 counties in the treated states
and N0 = 1, 185 in the untreated states. Per county and year we observe
data for the seasons summer and winter, where summer is defined as May -
September.

4.1.1 Econometric Specification

Consider the interactive fixed effect model

yist =
2008∑
j=2004

τatt
j Dist(j) + µit + νis + λ′ifst + ε̃ist

with Dist(j) = I(i ∈ N1, t = j, s = 1) an post-treatment dummy of year j
indicating whether NBP is operating in county i in season s = 0, 1 (winter,
summer). µit, νis are county-year and county-season fixed effects, respec-
tively. fst are season-year specific common shocks that affect the emissions
of county i with intensity λi. ε̃ist is an idiosyncratic error term. The special
case λi = λ resembles the additive fixed effect model that Deschenes et al.
(2017) use. In that case the factor structure reduces to a season-year fixed
effect.

To identify τ , eliminate µit by taking the difference between summer and
winter observations

y̌it := yi1t − yi0t =
2008∑
j=2004

τatt
j Dit(j) + βi + λ′if̌t + εit

with βi = νi1 − νi0, f̌t = f1t − f0t and εit = ε̃i1t − ε̃i0t. A key assumption
hidden in this specification is that the program does not affect emissions in
the winter months in the treated years. The identifying assumption is that
for all post-treatment periods j = 2004, . . . , 2008 there exists a vector of
weights v(j)

0 such that
f̌j =

∑
t≤T0

v
(j)
0,t f̌t

That is, each post-treatment factor can be written as a weighted average of
pre-treatment factors.

4.1.2 Evidence for common factors

I first obtain evidence against λi = λ by considering how the difference in
average NOx emissions ∆t = ¯̌y(1)

t − ¯̌y(0)
t has evolved prior to the intervention.

We can write
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Figure 3: Difference in average NOx emissions ¯̌y(1)
t − ¯̌y(0)

t over time, with 95% confidence
band (dashed).

∆t = β̄(1) − β̄(0) + ξ′λft +
2008∑
j=2004

τatt
j I(t = j) +Op(

1√
N

)

where ξλ = 0 under the equal loading assumption. Then, for large N , ∆t

should be constant prior to the treatment. However, Figure 3 does show
variation of ∆t in periods t ≤ T0.

4.1.3 Estimation Results

I estimate the dynamic effects τ att with a dynamic TWDID approach pre-
sented in Section 2.4. First, I obtain four sets of time weights v̂(j), one for
each post-treatment period j = 2004, . . . , 2008, as defined in (11). Then I
compute the treatment effect estimate τ̂ att and the corresponding covari-
ance matrix Σ̂τ̂ . For comparison I also computed the DID estimator, which
uses equal time weights. I omit the year 2003 from the estimation because
not all treated states had fully implemented the program by then.

The left panel of Figure 4 shows the estimated time weights for each post
treatment periods. The last two pre-treatment years (2001 and 2002) receive
most of the weight, while the exact distribution of the weights changes over
the post treatment periods. The right panel of Figure 4 shows the result-
ing dynamic treatment effect estimates and their 95% confidence intervals.
All estimators suggest a significant negative effect of the NBP program on
NOx emissions in all post-treatment years. Time weighting leads, in abso-
lute terms, to slightly lower point estimates. The standard errors of both
TWDID estimates are about 10% lower compared to DID, hence the re-
sulting confidence intervals are narrower. This results is in line with the
variance reduction property of TWDID estimation. Overall, these findings
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Figure 4: Left: Estimated time weights for each post-treatment period as of (11). Right:
Resulting estimates of τ att and confidence intervals for both DID and TWDID estimation.

strengthen the results of Deschenes et al. (2017) that the NBP led to a
significant reduction of NOx emissions.

4.2 The effect of job displacement on earnings

Consider the application of Callaway and Karami (2022), which estimates
effect of early-career job displacement on earnings using data from the 1979
National Longitudinal Study of Youth (NLSY). The dataset contains bi-
annual observations on yearly earnings for 2,850 US residents between 14
and 22 in years 1983, . . . , 1993. A worker is defined as displaced if they
are not longer in the same job as in the previous survey and is considered
treated in all years following the first displacement. There are four groups
G = 0, . . . , 3: those who are never displaced (N0 = 2, 434) and those who
are first displaced in years 1989 (N1 = 129), 1991 (N2 = 154) and 1993
(N3 = 133). Figure 5 plots the average earnings per group over time.

Interactive fixed effects are likely to be present here, since earnings might
depend on unobserved characteristics (e.g. ability) with time-varying effects.
To account for this, Callaway and Karami (2022) use Armed Forces Quali-
fication Test (AFQT) test scores as an observed time-invariant covariate to
implement their estimator. This serves as an important benchmark for the
TWDID estimator, which does not require any additional covariates.

Let T0,g denote the last pre-treatment period for each group. I compare
DID and TWDID estimates of the group-time average treatment effects

ÂTT (g, j) = ȳ
(g)
j − ȳ

(0)
j −

∑
t≤T0,g

v
(j)
t,g (ȳ(g)

t − ȳ
(0)
t )

for groups g = 1, 2, 3, in the treated periods j = 1989, 1991, 1993. Both

21



10

15

20

25

1984 1986 1988 1990 1992
Year

10
00

 U
S

D

group

0

1989

1991

1993

Average earnings per group

Figure 5: Average earnings by group using NLSY data Callaway and Karami (2022). The
group labels correspond to the year in which the worker was first displaced or 0 for those
who were never displaced.

approaches use the never-displaced group g = 0 as control group and all
available pre-treatment observations to estimate the counterfactual. DID
estimation uses equal weights v(j)

t,g = 1
T0,g

. In TWDID estimation, for each
group g I estimate a separate T0,g-dimensional vector of time weights for
each period in which this group is treated. Table 1 shows the estimated time
weights. In all cases, the last two periods before the start of the treatment
receive almost all the weight and the last period before the treatment always
receives the largest weight.

Table 2 shows the estimates of the group-time ATTs and the correspond-
ing standard errors for both approaches. Compared to DID, in absolute
terms, TWDID suggests smaller but still significant effects across all groups
and post-treatment periods. However, the extent to which the estimates
differ depends on the group. For the last group, this difference is around
10% of the standard error, for the first group around one standard error and
for the second group almost two standard errors. This can to some extent
be explained by looking at how the average earnings of each group evolve
over time. Judging from Figure 5, the difference in average earnings between
the never-treated and group 1993 is fairly constant over the pre-treatment
periods. Therefore, the estimated ATT is not very sensitive with respect to
the pre-treatment weights. The mean differences of groups 1989 and 1991
vis-a-vis the never-treated group are increasing over the pre-treatment peri-
ods. Hence, the weighted average of pre-treatment differences, with higher
weight on the last two pre-treatment periods, is larger than the simple av-
erage. Consequently, TWDID attributes a larger part of the post-treatment
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Table 1: Estimated time weights per group and post-treatment period

1989 1991 1993
Group 1989

1983 0.01 0.00 0.00
1985 0.15 0.14 0.08
1987 0.84 0.85 0.92

Group 1991
1983 0.01 0.00
1985 0.01 0.00
1987 0.17 0.20
1989 0.81 0.80

Group 1993
1983 0.00
1985 0.00
1987 0.08
1989 0.31
1991 0.61
Notes: Estimated weights that were used in
the TWDID estimation of ATT (g, t), with t ∈
{1989, 1991, 1993} varying across columns.

Table 2: Estimated Group-Time Average Treatment Effects ÂTT j(g, t)

1989 1991 1993
Group 1989

DID -3.50 -5.43 -5.04
(0.82) (1.12) (1.23)

TWDID -2.59 -4.49 -4.03
(0.80) (1.09) (1.22)

Group 1991
DID -7.06 -6.57

(0.82) (0.97)
TWDID -5.23 -4.75

(0.83) (0.99)
Group 1993

DID -4.52
(1.46)

TWDID -4.28
(1.46)

Notes: The outcome is yearly earnings in
1,000USD. Each column corresponds to the year
for which the ATT is estimated. The group cor-
responds to the year in which the worker was
first displaced. The time weights are estimated
separately for each of the 6 (g, t) combinations.
Analytical standard errors in parentheses.
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difference in earnings to differences that would have persisted without any
displacement and therefore suggest a smaller effect of the displacement.

The estimates of Callaway and Karami (2022) suggest an even smaller
effect for groups 1989 and 1991. Assuming their results are unbiased, this
would indicate that TWDID reduces the bias compared to DID, yet a non-
negligible bias remains. Another indication are the increasing pre-treatment
differences, which could be caused by unobserved common factors with a
strong trend. In that case, the post-treatment factors are outside the convex
hull of the pre-treatment factors, which would explain the remaining bias of
TWDID.

5 Conclusion

This paper proposes a time-weighted difference-in-differences (TWDID) es-
timation approach that is robust against interactive fixed effects in short T
panels. Time weighting substantially reduces both bias and variance com-
pared to conventional DID estimation through balancing the pre-treatment
and post-treatment unobserved common factors. To conduct valid inference
on the average treatment effect, I develop a correction term that adjusts
conventional standard errors for weight estimation uncertainty. Revisiting a
study on the effect of a cap-and-trade program on NOx emissions, TWDID
estimation reduces the standard errors of the estimated treatment effect by
10% compared to a conventional DID approach. In a second application I
illustrate how to implement TWDID with staggered adoption.
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A Proofs of Theorems

Assumption 7 (Regularity Conditions). There are constants K < ∞ and
δ > 0 such that E[|εit|4+δ] < K, E[|λi|4+δ] < K, E[|τit − τt|2+δ] < K for all
i, t.

A.1 Proof of Theorem 1

The proof is provided for the case of multiple treated periods. The versions
in the main text follow as a special case of one treated period. Using (2),
write

τ̂ (V )− τ = V ′aF (ξλ + ν̄λ) + ν̄(1)
τ + zε(V )

with ν̄λ = λ̄(1)− λ̄(0)− ξλ, ν̄(1)
τ = 1

N1

∑
Di=1(τi− τ ) and zε(V ) = V ′a(ε̄(1)−

ε̄(0)).
We have E ν̄λ = 0 (Assumption 2), E ν̄(1)

τ = 0 (Assumption 6) and
E zε(V ) = 0 (Assumption 4). Together with standard central limit theorems
this implies the following asymptotic results.

Lemma 1. Suppose Assumptions 1,2 and 4-7 hold. Then, for any fixed v ∈ V

1.
√
Nzε(V ) d−→ N [0,V ′aΣεVa]

2.
√
N ν̄λ

d−→ N [0,Σλ]

3.
√
Nν̄

(1)
τ

d−→ N [0, Στ
1−n0

]

with Σε = Σ
(0)
ε
n0

+ Σ
(1)
ε

1−n0
and Σλ = Σ

(0)
λ
n0

+ Σ
(1)
λ

1−n0
.

Proof. Liapounov Central Limit Theorem implies
√
N ε̄(1) d−→ N [0, Σ

(1)
ε

1−n0
]

and
√
N ε̄(0) d−→ N [0, Σ

(0)
ε
n0

].

The last assertion of Theorem 1 follows with independence of loadings
and errors

Στ̂ (V ) = ξf (V )′Σλξf (V ) + (1− n0)Στ + V ′aΣεVa

and ξf (V ) = F ′Va the r × T1 matrix of factor imbalances.

A.2 Proof of Theorem 2

A subscript indicating the untreated units has been skipped for notational
convenience. The estimated time weights v̂ as defined in (3) can be rewritten
as

v̂ = arg min
v∈V

QN (v), QN (v) = (yT − Yprev)′M0(yT − Yprev)
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with yt the vector of the untreated units’ outcomes in the period t, Ypre
the N0 × T0 matrix of the untreated units’ pre-treatment outcomes and
M0 = IN0 − ιι′

N0
. We notice that v̂ always exists, and is unique if the matrix

of demeaned pre-treatment outcomes M0Ypre has full column rank.
Consistency follows from the standard conditions for the extremum es-

timators. First, applying a uniform law of large numbers, the objective
function QN uniformly convergence to its population equivalent Q∞(v) =
v′a(FΣ

(0)
λ F

′ + Σ
(0)
ε )va, so

sup
v∈V
|QN (v)−Q∞(v)| p−→ 0

Second, v∗ as defined in (6) is the uniquely identifiable minimizer of Q∞(v),
since the population objective

Q∞(v) = v′Av + 2v′Ab+ c

is a strictly convex second order polynomial with A positive definite as long
as Σ

(0)
ε is positive definite.

To obtain asymptotic normality, suppose first that v∗ lies in the interior
of V, i.e. the non-negativity constraints are not binding in the limit. With-
out the non-negativity constraint we can rewrite the estimation as an uncon-
strained minimization and obtain an explicit solution. To do so, we trans-
form the condition

∑
t vt = 1 into v1 = 1−ι′T0−1v−1 with v−1 = (v2, . . . , vT0),

so v = e1 + Rv−1 with R =
(
−ι′T0−1
IT0−1

)
. The minimization problem then

becomes
min

v−1∈RT0−1
(ỹT − Ỹprev−1)′(ỹT − Ỹprev−1)

with ỹT = ȳT − y1 and Ỹpre = YpreR. The solution is

v̂−1 = S̄−1
y Ỹ ′preỹT

with S̄y = R′Y ′preYpreR. The corresponding T0 vector of time weights will
be v̂ = (1 −

∑T0
t=2 v̂t, v̂

′
−1)′. That is a least-squares regression where the

outcomes and regressors are in terms of their difference to the first regressor.
The next lemma provides the ingredients for asymptotic normality of v̂−1.

Lemma 2. Let v̂−1 = arg minv 1
N

∑
i qi(v) with qi(v) = q(v,yi) = 1

2(1 −
Di)(ỹi,T − ỹi,pv)2 and derivatives q̇ = ∂q

∂v′ , q̈ = ∂q
∂2v′ . Then, as N →∞,

1. 1√
N

∑
i q̇(v∗,yi)

d−→ N [0,Sqq′ ] with Sqq′ = lim 1
N

∑
i E[q̇i(v∗)q̇i(v∗)′]

2. 1
N

∑
i q̈i(v∗) = S̄y

p−→ Sy
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Standard m-estimation theory then implies
√
N(v̂−1 − v∗−1) d−→ N [0,Σv̂−1 ]

with Σv̂−1 = S−1
y Sqq′S

−1
y . Because of the sum-to-1 condition it will imme-

diately follow for the full vector
√
N(v̂ − v∗) =

√
NR(v̂−1 − v∗−1) d−→ N [0,Σv̂]

with Σv̂ = RΣv̂−1R
′ and v∗ = e1 + Rv∗−1. Note that both Σv̂−1 and Σv̂

have rank T0 − 1.
Suppose now that v∗ lies on the boundary of V. That is, at least one

element is exactly zero and v∗ is sparse. In general, asymptotic normality of
extremum estimators can break down near the boundary of the parameter
space (Ketz, 2018). I provide conditions such that the part of v̂ belonging to
the non-zero elements of v∗ will be asymptotically normal and the remaining
part is negligible. Suppose without loss of generality that the first k elements
(0 < k < T0 − 1) of v∗ are zero and write v = (v′k,v′−k)′.

Assumption 8. Let ∇Q∞(v) = ∂Q∞
∂v′ the gradient of the population objec-

tive. It holds that ∇Q∞(v∗)i 6= 0 for all i = 1, . . . , k.

The assumption above excludes cases in which the unconstrained opti-
mal weight in some period (after dropping the corresponding non-negativity
constraint) is “coincidentally” exactly zero. I will show that in this case
Pr(v̂k = 0)→ 1. Then the asymptotic distribution of v̂ is the same as if we
had just set v̂k = 0 in the first place. But this means that the first k peri-
ods are irrelevant and we have reduced the exercise to T0− k pre-treatment
periods, for which the pseudo-true weights v∗−k are not sparse. Then we can
apply the results from the previous paragraph to get asymptotic normality
for the non-zero elements. Let C2(V) be the space of twice-differentiable,
strictly convex functions and define vQ = arg minv∈VQ(v) for Q ∈ C2(V).

Lemma 3. If there exists a neighborhood B0(Q∞) ⊂ C2(V) around Q∞ such
that vQk = 0 for all Q ∈ B0(Q∞), Then Pr[v̂k = 0]→ 1 as N →∞ and thus√
N v̂k

p−→ 0.

Proof. First, Pr[v̂k = 0] = Pr(QN ∈ B0(Q∞)) → 1 since QN
p−→ Q∞

uniformly. The last assertion follows from Pr(||
√
N v̂k|| > δ) ≤ 1− Pr(v̂k =

0) for any δ > 0.

Lemma 4. If ∇Q∞(v∗)i 6= 0 for all i = 1, . . . , k, then there exists a neighbor-
hood B0(Q∞) ⊂ C2(V) around Q∞ such that vQk = 0 for all Q ∈ B0(Q∞).

Proof. Applying the Karush-Kuhn-Tucker Theorem, either vQi = 0 or ∇Q(vQ)i =
0. Hence ∇Q(vQ)i 6= 0 ⇒ vQi = 0. By continuity and differentiability, for
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any δ > 0 we can find Bδ(Q∞) such that maxi |∇Q(vQ)i −∇Q∞(v∗)i| <
δ for all Q ∈ Bδ(Q∞). Choosing 0 < δ < mini |∇Q∞(v∗)i|, we have
mini |∇Q∞(v∗)i| ≥ mini |∇Q∞(v∗)i|| − maxi |∇Q(vQ)i − ∇Q∞(v∗)i| >
0.

A.3 Proof of Theorems 3 and 5

Let zi = (Di,y
′
i). Write τ̂ as the solutions to 1

N

∑
i g(zi, τ, v̂) = 0 with

g(z, τ,v) = [Dn0 − (1−D)(1− n0)]v′aẏ − τ [Dn2
0 − (1−D)(1− n0)2]

and v̂ as the solution to 1
N

∑
im(zi,v) = 0 with

m(z,v) = (1−D)v′aẏR′ẏp,+

with ẏp,+ the T+ vector containing only observations from pre-treatment
periods with non-zero time weights and R = (IT+−1,−ιT+−1)′. Then, ac-
cording to Theorem 6.1 of Newey and McFadden (1994)

√
N(τ̂(v̂)− τ) d−→ N [0,Σ.]

with Σ. = 1
g2
τ

E[{g(z) + g′vψ(z)}{g(z) + g′vψ(z)}′] where

g(z) = g(z, τ0,v
∗) = v′a[Dn0(yi(1)− ȳ(1))− (1−D)(1− n0)(yi(0)− ȳ(0))] + op(1)

gτ = E[∇τg(z, τ0,v
∗)] = −n0(1− n0)

gv = E[∇vg(z, τ0,v
∗)] = −gτR′Fpreξλ

E[∇vm(z,v∗)] = −Sy
ψ(z) = S−1

y m(z,v∗)

It also holds that 1
g2
τ

E[g(z)2] = Στ̂ (v∗) and E[ψ(z)ψ(z)′] = Σv̂ = S−1
y Sqq′S

−1
y

with Sqq′ = E[m(z,v∗)m(z,v∗)′]. This implies the statements of Theorem 3
with Στ̂ ,v̂ := 1

gτ
E[ψ(z)g(z)].

This can be extended to the case of multiple treated periods by formu-
lating everything in terms of the T1 vector τ and the T0T1 stacked weight
vector v = vecV = (v(T0 + 1), . . . ,v(T )). The joint moment conditions are
obtained by stacking the moments for each post-treatment period

g(z, τ ,v) =


g1(z, τT0+1,v

(T0+1))
...

gT1(z, τT0+1,v
(T ))

 ; m(z, τ ,v) =


m1(z,v(T0+1))

...
mT1(z,v(T ))


We therefore have

√
N(τ̂ (V̂ )− τ ) d−→ N [0,Σ.] with

Σ. = Στ̂ (V ∗) +Gv E[ψ(z)ψ(z)′]G′v − 2Gv E[ψ(z)g(z)′]
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where E[g(z)g(z)′] = Στ̂ (V ∗). Since ∂gj
∂τk

= ∂gj
∂v(k) = ∂mj

∂v(k) = 0 for k 6= j,
we have Gv = diagj=1,...,T1((R′jFpreξλ)′) and E[ψψ′] = diagj=1,...,T1(ΣvT0+j )
Therefore Gv E[ψψ′]G′v is a block-diagonal matrix. However, since all mo-
ments use the same pre-treatment observations, in general E[mj(z)gk(z)′] 6=
0 for all j, k.

A.4 Proof of Theorem 4

Lemma 5 (Consistency of sample variances). Suppose Assumptions 2 and
4-7 hold. Then, as N →∞

1. 1
Nj

∑
Di=j(λi − λ̄

(j))(λi − λ̄(j))′ p−→ Σ
(j)
λ for j = 0, 1.

2. 1
Nj

∑
Di=j(εi − ε̄

(j))(εi − ε̄(j))′ p−→ Σ
(j)
ε for j = 0, 1.

3. 1
N1

∑
Di=1(τi − τ̄ (1))(τi − τ̄ (1))′ p−→ Στ

and thus
Σ̂(j)
y

p−→ FΣ
(j)
λ F

′ + Σ(j)
ε + 1[j = 1]BΣτB

′

Proof. Write yi = Fλi +DiBτi + εi with the T × T1 matrix B = (0, IT1)′.
Since sufficiently many moments are bounded, the sample variances converge
to the population equivalents.

Recall that Σ̂τ̂ (V ) = V ′aΣ̂∆Va with Σ̂∆ = Σ̂
(0)
y

n0
+ Σ̂

(1)
y

1−n0
and Va =

(
−V
IT1

)
Lemma 5 thus implies Σ̂τ̂ (V ) p−→ Στ̂ (V ) for any given V . It also follows
that Σ̂τ̂ (V̂ ) p−→ Στ̂ (V ∗) if V̂ p−→ V ∗. Also note that Σ̂τ̂ (V̂ ) = 1

N

∑
i ĝiĝ

′
i

with ĝi = g(zi, τ̂ , v̂).
Likewise, a consistent estimator of the weight variance Σv̂−1 is

Σ̂v̂−1 = S̄−1
y S̄qq′S̄

−1; S̄y,q = 1
N

∑
i

q̇(v̂,yi)q̇(v̂,yi)′ =
1
N
R′Y ′preΩ̂qYpreR

with Ω̂q = diag(q1(v̂), . . . , qN0(v̂)). Ignoring the covariance term, the vari-
ance estimators proposed in (8) and (13) Taking into account the covariance,
one can use

Σ̃. = Σ̂. −Gv
2
N

∑
i

ψ̂iĝ
′
i

The estimators correspond to (6.12) and (6.11) of Newey and McFadden
(1994), respectively.
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B Additional Derivations

B.1 Proof of selected statements

Lemma 6. In case of one treated period, the time-weighted DID estimator
τ̂(v̂) = v′a(ȳ(1) − ȳ(0)) solves the weighted two-way fixed effect regression
problem

min
τ,µ,γ

N∑
i=1

T∑
t=1

vt(yit − τDit − µi − γt)2

where vT = 1.

Proof. Follows from Arkhangelsky et al. (2021) using equal unit weights.

Lemma 7. For the case of one treated period, Σ̂τ̂ (v) (now a scalar) corre-
sponds to the cluster covariance matrix (CCM) estimator (Arellano, 1987)
applied to a two-way fixed effects regression of the time-weighted outcomes
on the treatment indicator.

Proof. The CCM estimator is Σ̂ccm = N−1
∑
Ḋ′iMιûiû

′
iMιḊi

(N−1
∑

i
Ḋ′iMιD′i)2 with residuals

ûi = Υẏi − Ḋiτ̂(v) with τ̂(v) = Pb∆y and Pb = 1
t0
b′MιΥ = v′a. With the

binary treatment structure we get

Ḋi = Ḋib

Ḋi = Di −
1
N

∑
i

Di = n0Di − (1− n0)(1−Di)

N−1∑
i

Ḋ2
i = n0(1− n0)2 + (1− n0)n2

0 = n0(1− n0)

b′Mιb = N−1∑
i

Ḋ′iMιḊ
′
i = N−1∑

i

Ḋ2
i bMιb = t0n0(1− n0)

Next, using ẏi = yi− ȳ(1) +n0∆y = yi− ȳ(0) + (1−n0)∆y and Υb = b,

ûi = Υ(yi − ȳ(1) + n0∆y)− n0bPb∆y

= Υ(yi − ȳ(1) + n0Mb∆y)

for i ∈ N1 with Mb = 1− bPb and

ûi = Υ(yi − ȳ(0) − (1− n0)Mb∆y), i ∈ N0

Using that b′MΥMb = 0, the numerator becomes

∑
i

Ḋ′iMûiû
′
iMḊi = b′M

(1− n0)2 ∑
i∈N0

ûiû
′
i + n2

0
∑
i∈N1

ûiû
′
i

Mb

= Nn2
0(1− n0)2t20v

′
a

[
Σ̂

(0)
y

n0
+ Σ̂

(1)
y

1− n0

]
va

Consequently, Σ̂ccm = v′aΣ̂∆va = Σ̂τ̂ (v)
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B.2 Bias decomposition

Let V0 = arg minv∈V ξf (v)′Σ(0)
λ ξf (v) be the set of weights that minimizes

the factor imbalance. Let R = (−ι, IT0−1)′ and Ra = (R′,0)′.

Lemma 8. Suppose r = T0 − 1 and v∗,v0,vε all have strictly positive ele-
ments. Then V0 contains of one element v0 and

ξf (v∗) = ξf (v0) + F ′0R(I +Asnr)−1R−(v0 − vε)

with Asnr = AfA
−1
ε , Af = R′aFΣ

(0)
λ F

′Ra and Aε = R′aΣ
(0)
ε Ra.

Proof. Uniqueness of v0 follows from full rank of R′F0Σ
(0)
λ F

′
0R for r =

T0− 1. Write ξf (v∗) = ξf (v0) +F ′0RR−(v∗−v0). We have R−v∗ = (Af +
Aε)−1R′a(FΣ

(0)
λ F

′ + Σ
(0)
ε )e1,T , R−v0 = A−1

f R
′
aFΣ

(0)
λ F

′e1,T and R−vε =
A−1
ε R

′
aΣ

(0)
ε e1,T . Therefore R−(v∗ − v0) = (I +Asnr)−1R−(v0 − vε)

Under the convex hull condition we additionally have ξf (v0) = 0.

Example. Consider the following example with r = 1, T0 = 2, one treated
period and Σ

(0)
ε = σ2

ε · diag(1 − ω, ω, 1) for some ω ∈ [0, 1] (no time de-
pendence in εit). Let f = σf · (0, 1, α0)′ for some α0 ∈ [0, 1] and σf > 0.
Hence the oracle weights are v0 = (1 − α0, α0)′. The pseudo true weights
v∗ = (1− α∗, α∗)′ solve

min
α∈[0,1]

σ2
f (α− α0)2 + (1− ω)(1− α)2 + ωα2

where I set Σ
(0)
λ = 1 and σ2

ε = 1 without loss of generality. Hence σ2
f should

be interpreted as the signal-to-noise ratio. The solution is α∗ = (1−ω) 1
1+σ2

f
+

α0
σ2
f

1+σ2
f
, which is a convex combination of the oracle weights α0 and weights

that minimize the error variance αε := arg minα∈[0,1](1−ω)(1−α)2 +ωα2 =
1 − ω. Intuitively, α∗ → αε as σf → 0 and α∗ → α0 as σf → ∞. The
remaining (squared) factor imbalance is

ξf (α∗, σf )2 = σ2
f (α∗ − α0)2 =

σ2
f

(1 + σ2
f )2 (α0 − αε)2 (14)

We see that ξf (α∗, σf )2 → 0 as σf → ∞ – the remaining bias disappears
as factors get stronger. Figure 6 plots the remaining bias ξf (α, σf ) for the
TWDID and DID estimator as a function of the factor strength σf . For
DID the weights are equal (α = 0.5). They correspond to the variance-
minimizing weights αε = 0.5, but differ from the oracle weights, which I set
to α0 = 1. Hence the bias is proportional to σf . For TWDID the weights

are α∗ =
1
2 +σ2

f

1+σ2
f

and converge to α0 as σf increases.
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Figure 6: Analytical bias of DID (equal weights α = 0.5) vs. Bias of TWDID (α∗(σf ))
depending on the factor strength σf .

B.3 Controlling for weights representation

Remark 3. The TWDID estimator τ̂(v) = ∆̄[1]−∆̄v
[0] with ∆̄v

[0] =
∑
t≤T0 vt∆t

can be written as
τ̂(v) = b′Mv∆

b′Mvb

with Mv = IT − ṽṽ′

ṽ′ṽ and ṽ = ( v′v′v , ι
′
T1

)′ the T vector of normalized weights.
Hence, instead of the time-weighted 2wfe regression representation (4) we
may present τ̂(v) as a 2wfe regression controlling for the normalized time
weights ṽ. This opens up a new interpretation of time weights. Instead of
projecting out the entire factor structure (MF ), the time weights make the
factors orthogonal to the treatment. MvF 6= 0, but b′MvF ≈ 0.

Proof. Start with ṽ′b
ṽ′ṽ = T1

1
v′v +T1

= 1−t0
1

Tv′v +1−t0
=: c and thus (1−c)T (1−t0) =

c
v′v . Next, Mvb = (− c

v′vv
′, (1 − c)ι′T1

)′ and thus (Mvb)′x = T (1 − c)(1 −
t0)(x̄[1] − xv[0]). Apply it to x = ∆ for the numerator and x = b for the
denominator.

The multivariate case follows accordingly. Estimate the dynamic treat-
ment effects as

τ̂ att(V ) = (B′MvB)−1B′Mv∆ =


∆T0+1 −

∑
t≤T0 v

(T0+1)
t ∆t

...
∆T −

∑
t≤T0 v

(T )
t ∆t

 (15)

with B = [b(T0+1), . . . , b(T )] the T × T1 matrix with dummies for each post-
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treatment period, Mv = IT − Ṽ (Ṽ ′Ṽ )−Ṽ ′ and Ṽ =
(
V (V ′V )−

IT1

)
the

T × T1 matrix of standardized time weights. This is similar to a two-way
fixed effects regression of yit on the treatment interacted with dummies for
each post treatment period. However, instead of controlling for unit fixed
effects ιT one controls for the standardized time weights Ṽ . The CCM
variance estimator now becomes the T1 × T1 matrix

Σ̂τ̂ (V ) = (B′MvB)−1B′MvΣ̂yMvB(B′MvB)−1

with Σ̂y = Σ̂
(0)
y

n0
+ Σ̂

(1)
y

1−n0
and Σ̂

(0)
y = 1

Nj

∑
i:Di=j(yi− ȳ

(j))(yi− ȳ(j))′ the T ×T
sample covariance within the treated and untreated units.
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