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Abstract

We develop a novel filtering and estimation procedure for parametric option pricing

models driven by general affine jump-diffusions. Our procedure is based on the comparison

between an option-implied, model-free representation of the conditional log-characteristic

function and the model-implied conditional log-characteristic function, which is functionally

affine in the model’s state vector. We formally derive an associated linear state space

representation and establish the asymptotic properties of the corresponding measurement

errors. The state space representation allows us to use a suitably modified Kalman filtering

technique to learn about the latent state vector and a quasi-maximum likelihood estimator

of the model parameters, which brings important computational advantages. We analyze

the finite-sample behavior of our procedure in Monte Carlo simulations. The applicability of

our procedure is illustrated in two case studies that analyze S&P 500 option prices and the

impact of exogenous state variables capturing Covid-19 reproduction and economic policy

uncertainty.
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1 Introduction

Over the past decades, explosive growth in the trading of option contracts has attracted the

attention of academics and practitioners to the development and estimation of increasingly

sophisticated option pricing models. The building blocks of many continuous-time option pricing

models are semimartingale stochastic processes that govern the dynamics of the underlying asset.

These processes are often latent with stochastic diffusive volatility as the prototypical example,

as in the classical Heston (1993) model. The literature also suggests the need to allow for a

discontinuous jump component, both in the asset price dynamics and in its volatility process,

potentially with a time-varying stochastic jump intensity.

An important econometric challenge lies in estimating the parameters of these continuous-

time models and in filtering their unobserved and time-varying components, since option prices

are highly nonlinear functions of the state vector. This stands in contrast to, for instance,

term structure models, where bond yields can be represented as a linear function of the states,

at least within the affine framework (see, e.g., Piazzesi, 2010, for a review of the affine term

structure literature). To evaluate option prices as a function of the state vector, one typically

needs to apply either Fourier-based methods or simulation-based approaches, in both cases at a

substantial computational cost. This is one of the reasons why in much of the empirical research

on option pricing, only a subset of the available option price data is used, such as at-the-money

contracts or weekly (typically Wednesday) options data.

In this paper, we develop a new latent state filtering and parameter estimation procedure

for option pricing models governed by general affine jump-diffusion processes. Our procedure

leverages the linear relationship between the logarithm of an option-implied, model-free span-

ning formula for the conditional characteristic function of the underlying asset return on the

one hand, and the state vector induced by parametric model specification on the other hand.

From this relationship, we formally derive a linear state space representation, and establish the

asymptotic properties of the corresponding measurement errors. Linearity of the measurement

and state updating equations that make up the state space representation, with coefficient and

variance matrices that are (semi-)closed-form functions of the parameters, allows us to exploit

Kalman filtering techniques. The proposed estimation procedure is fast and easy to implement,

circumventing the typical computational burden in conducting inference on option pricing mod-

els.

Exploiting the option-spanning formula of Carr and Madan (2001) for European-style payoff

functions, we replicate the risk-neutral conditional characteristic function (CCF) of the under-

lying log-asset price at the expiration date in a completely model-independent way. In other

words, we imply information about the CCF from the option prices without imposing any

parametric assumptions on the underlying asset price dynamics. A similar option-spanning ap-

proach for the CCF is used by Todorov (2019) to develop an option-based nonparametric spot

volatility estimator. On the other hand, a large stream of literature is devoted to parametric

option pricing models belonging to the general affine jump-diffusion (AJD) family; canonical
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examples are Heston (1993), Duffie, Pan, and Singleton (2000), Pan (2002), and Bates (2006).1

The defining property of the AJD class is the exponential-affine joint CCF, which is available in

semi-closed form. By comparing the two option pricing representations—model-free and model-

implied—we can obtain a linear relation between the logarithm of the option-implied CCF and

the model-dependent CCF within the affine framework.

The state vector in AJD option pricing models typically contains both observable processes

and latent factors. We address the filtering of such latent factors by developing a linear state

space representation for this model class. The development includes an asymptotic analysis

of the measurement error components, consisting of observation, truncation and discretization

errors, under a double asymptotic scheme in the moneyness dimension. The state space repre-

sentation allows us to employ suitably modified Kalman filtering techniques to learn about the

unobserved intrinsic components of the model and estimate the model parameters using quasi-

maximum likelihood (QML). QML approaches based on Kalman filtering are often used in the

affine term structure literature, where the yields themselves are linear functions of the state

vector (see, e.g., Duffee, 1999, de Jong, 2000, Driessen, 2005). Besides the possibility to exploit

Kalman filtering and QML estimation techniques, another advantage of our approach is that,

once the model-free CCF has been obtained from the data, no further numerical option pricing

methods, such as the FFT approach of Carr and Madan (1999) or simulation-based methods,

are needed. Therefore, our method reduces computational costs considerably relative to many

existing approaches in the option pricing literature. We note that, whereas the parametric CCF

is used to price options in Fourier-based methods, here we use the CCF to directly learn about

the latent factors and model parameters.

We analyze the developed estimation procedure in Monte Carlo simulations based on several

AJD specifications. We consider a one-factor AJD option pricing model, with the stochastic

volatility and jump intensity both being affine functions of a single latent process, and a two-

factor AJD model specification with an observable exogenous factor. We find good finite-sample

performance in both cases, notwithstanding the challenging nature of the econometric problem.

Finally, we illustrate our new filtering and estimation approach in an empirical application

to S&P 500 index options. In particular, we filter and estimate the latent volatility and jump

intensity from a stochastic volatility model with co-jumps in returns and volatility. We also

investigate the impact of the Covid-19 propagation rate on the stock market within this model,

by embedding the associated reproduction number as an exogenous factor into the volatility

and jump intensity dynamics. Our results show that while the reproduction number has only

a mild effect on total diffusive volatility, it contributes substantially to the likelihood of jumps.

By contrast, when we consider an Economic Policy Uncertainty index as exogenous factor, the

jump intensity process is not affected, but the exogenous factor contributes significantly to

diffusive volatility.

Various estimation and filtering strategies for option pricing models have been developed in

the literature. These include the (penalized) nonlinear least squares methods in, for instance,

1See also, e.g., Broadie, Chernov, and Johannes (2007), Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015), Andersen,

Fusari, and Todorov (2017) and the references therein.
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Bakshi, Cao, and Chen (1997), Broadie et al. (2007), Andersen, Fusari, and Todorov (2015a); the

efficient method of moments of Gallant and Tauchen (1996) as applied in Chernov and Ghysels

(2000) and Andersen, Benzoni, and Lund (2002); the implied-state methods initiated by Pan

(2002) and further analyzed by Santa-Clara and Yan (2010); the Markov Chain Monte Carlo

method in Eraker (2004) and Eraker, Johannes, and Polson (2003); and the particle filtering

method, see Johannes, Polson, and Stroud (2009) and Bardgett, Gourier, and Leippold (2019).

Most of these estimation methods use as inputs option prices or a monotonic transformation

thereof, such as implied volatilities. By contrast, we propose an estimation procedure based on

the prices of spanning option portfolios that by the bijection between CCFs and conditional

distributions, in principle, contain all probabilistic information about the stochastic process

governing the dynamics of the underlying asset.

In general, estimation strategies based on the transform space of conditional characteristic

functions are, of course, not new to the literature. For instance, Carrasco and Florens (2000)

develop a generalized method of moments (GMM) estimator with a continuum of moment

conditions based on the CCF; see also Singleton (2001), Carrasco, Chernov, Florens, and Ghysels

(2007). In applications to option prices, Boswijk, Laeven, and Lalu (2015) and Boswijk, Laeven,

Lalu, and Vladimirov (2021) propose to imply the latent state vector from a panel of options

and then estimate the model via GMM with a continuum of moments. Bates (2006) develops

maximum likelihood estimation and filtering using CCFs. In particular, he proposes a recursive

likelihood evaluation by updating the CCF of a latent variable conditional upon observed data.

However, unlike our approach, these methods require numerical integration over the dimension

of the state vector, thus suffering from a ‘curse of dimensionality’.

Our work is also related to Feunou and Okou (2018), who exploit the linear relation between

the first four risk-neutral cumulants of the log-asset price and latent factors. They obtain these

cumulants via a portfolio of options and employ the Kalman filter to estimate the latent factors.

The main difference with our approach is that we exploit the CCF, and the corresponding

state space representation we develop, instead of the first four moments. The CCF contains

much richer information, leading to more efficient inference. Another difference is in dimension

reduction: Feunou and Okou (2018) use a two-step principal components analysis (PCA) to

reduce the dimension of the risk-neutral cumulants observed at different maturities. Instead,

we use a modified version of a so-called collapsed Kalman filtering approach, originally developed

by Jungbacker and Koopman (2015), which does not suffer from information losses relative to

the full-dimensional setting.

The paper is organized as follows. Section 2 provides the theoretical framework for aligning

the option-implied and model-implied CCFs. In Section 3, we develop the state space represen-

tation, and establish the main result about the orders of measurement errors, under a double

asymptotic scheme. This allows us to next develop the filtering approach and corresponding

estimation procedure. Section 4 presents the Monte Carlo simulation results. We describe the

data in Section 5 and the empirical applications in Section 6. Conclusions are in Section 7. In

supplementary material, four appendices provide details on (i) the proof of Proposition 1, (ii)

the computation of conditional moments, (iii) the inter- and extrapolation scheme for option
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prices and the measurement errors in the CCF replication, and (iv) additional simulation and

empirical results.

2 Theoretical Framework

In this section, we provide the theoretical framework for our approach. We start with extracting

information about the CCF from option prices allowing for general underlying dynamics. Next,

we consider the CCF within the AJD class, which is exponentially affine in the model’s state

variables. Finally, we discuss how to align the two CCFs—option-implied model-free and AJD

model-implied—in order to conduct inference about the model parameters and the latent state

variables.

2.1 Option-implied CCF

Throughout the paper, we fix a filtered probability space (Ω,F , {Ft}t≥0,P). On this proba-

bility space, we consider the dynamics of an arbitrage-free financial market. The no-arbitrage

assumption guarantees the existence of a risk-neutral probability measure Q, locally equivalent

to P. Since we are interested in exploiting information from options, we formulate the model

dynamics under Q.

Let us denote by Ft the futures price at time t for a stock or an index futures contract

with some fixed maturity. The absence of arbitrage implies that the futures price process is a

semimartingale. In this subsection, we assume the following general dynamics for Ft under Q:

dFt

Ft
= vtdWt +

∫
R
xµ̃(dt,dx), F0 > 0, (1)

where vt is an adapted, locally bounded, but otherwise unspecified stochastic volatility process;

Wt is a standard Brownian motion; µ is a counting random measure with compensator νt(dx)dt

such that µ̃(dt,dx) := µ(dt,dx) − νt(dx)dt is the associated martingale measure and
∫
(x2 ∧

1)νt(dx) <∞.

We further denote out-of-the-money (OTM) European-style option prices at time t with

time-to-maturity τ > 0 and strike price K > 0 by Ot(τ,K). Under the no-arbitrage assumption,

the option prices equal the risk-neutral conditional expectations of the corresponding discounted

payoff functions:

Ot(τ,K) =

EQ[e−rτ (Ft+τ −K)+|Ft], if K > Ft,

EQ[e−rτ (K − Ft+τ )
+|Ft], if K ≤ Ft.

The OTM price Ot(τ,K) is a call option price if K > Ft and a put option price if K ≤ Ft. For

simplicity, we assume a constant interest rate r.

Following Carr and Madan (2001), any twice continuously differentiable European-style

payoff function g(Ft+τ ), with first and second derivatives gF and gFF , can be spanned via

a position in risk-free bonds, futures (or stocks) and options with a continuum of strikes, as
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follows:

g(Ft+τ ) = g(x) + gF (x)(Ft+τ − x)

+

∫ x

0
gFF (K)(K − Ft+τ )

+dK +

∫ ∞

x
gFF (K)(Ft+τ −K)+dK.

Here, x ∈ R+, the first and second terms on the right-hand side correspond to risk-free bonds

and futures positions, and the third and fourth terms correspond to OTM options. Taking

conditional expectations under the risk-neutral measure for x = Ft, we find that the price

at time t of a contingent claim with payoff function g(Ft+τ ) can be expressed as a weighted

portfolio of a risk-free bond and OTM options:

EQ[e−rτg(Ft+τ )|Ft] = e−rτg(Ft) +

∫ ∞

0
gFF (K)Ot(τ,K)dK. (2)

This general spanning result lies behind the construction of one of most popular ‘fear’

indices—the VIX index, when g(Ft+τ ) = log(Ft+τ/Ft). Some other applications of the span-

ning formula (2) include the calculation of the option-implied skewness and kurtosis (Bakshi,

Kapadia, & Madan, 2003) and of the corridor implied volatility (Andersen & Bondarenko, 2007).

Applying this result to the complex-valued payoff function g(x) = eiu log(x/Ft) yields that the

discounted CCF of log returns can be spanned as

ϕt(u, τ) := e−rτEQ[eiu log(Ft+τ/Ft)|Ft]

= e−rτ − (u2 + iu)

∫ ∞

0

1

K2
eiu(logK−logFt) ·Ot(τ,K)dK

= e−rτ − (u2 + iu)
1

Ft

∫
R
e(iu−1)m ·Ot(τ,m)dm, (3)

where m = log(K/Ft) is the log-moneyness of an option with strike price K.2

It is important to emphasize that the spanning of the CCF in equation (3) is exact and

is furthermore completely model independent akin to the VIX construction. Therefore, the

CCF of log returns over a particular horizon τ can be replicated in a model-free way given a

single cross-sectional slice of liquid option prices with all strikes (and the same maturity τ). A

similar approach of CCF spanning is taken by Todorov (2019) to nonparametrically estimate

spot volatilities from option prices (considering the limit as τ ↓ 0).

The expression for ϕt(u, τ) in (3) cannot be computed in reality as we do not observe option

prices for a continuum of strikes. Nevertheless, as we detail in Section 3.1, the expression in (3)

is easy to approximate using a limited number of observable option prices. When developing

our estimation procedure, we take both the resulting approximation errors as well as the obser-

vation errors in option prices, and hence in the CCF approximation, into account. Henceforth,

we denote by ϕ̂t(u, τ) the computationally feasible counterpart of the option-implied CCF; it is

explicitly defined in (14) below. In our simulation experiments and empirical applications, we

further employ an interpolation-extrapolation scheme to improve the reliability of the approxi-

mation.
2With slight abuse of notation, we use the same symbol Ot for the option value as a function of (τ,K) and as

a function of (τ,m).
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2.2 Affine jump-diffusion CCF

Whereas the CCF in (3) is model independent, the CCF of log returns of the underlying asset is

often considered under some parametric assumptions on the return dynamics. A model-implied

CCF depends on the model parameters, which we generally do not know, and potentially on

the dynamics of other latent processes, which affect the distribution of returns. Therefore, by

suitably aligning the model-free and parameter-dependent CCFs, we may learn about the model

parameters and the unobservable state dynamics.

We restrict our attention to the broad class of AJD models defined in Duffie et al. (2000). The

main attraction of the AJD class is that the Laplace transform has a semi-closed-form expression

and is of the exponential-affine form. Suppose that Xt is a Markov process representing an dX -

dimensional state vector in D ⊂ RdX with the first component being the log price of an asset.

We assume that under the physical and risk-neutral probability measures, the state vector Xt

solves the following stochastic differential equation:

dXt = µ(Xt; θ)dt+ σ(Xt; θ)dWt +

dJ∑
i=1

Ji,tdNi,t, (4)

where Wt is a standard Brownian motion in RdW ; µ: D → RdX and σ: D → RdX×dW are

the drift and diffusion functions; Ni,t is a pure jump process with intensity {λi(Xt; θ): t ≥ 0},
λi: D → R+; {Ji,t}t≥0 constitutes a sequence of jump sizes with generic conditional distribution

νi on RdX for i = 1, . . . , dJ ; and θ is a vector of unknown parameters that governs the model for

Xt. We note that we allow for multiple jump types each arriving with their own intensity process

as in the generalized AJD class in Appendix B of Duffie et al. (2000). The specification (4) can

be extended further, e.g., to include a time-dependent structure and infinite activity jumps; see

Duffie et al. (2000), in particular Appendix B, and Duffie, Filipović, and Schachermayer (2003)

for more details on the AJD class formulation.

Following Duffie et al. (2000), the drift µ(x), diffusive variance σ(x)σ(x)′ and jump intensities

λi(x) are assumed to be affine on D:

µ(x) = K0 +K1x, K0 ∈ RdX , K1 ∈ RdX×dX ,

σ(x)σ(x)′ = H0 +
∑dX

j=1xjH
(j)
1 , H0 ∈ RdX×dX , H

(j)
1 ∈ RdX×dX , j = 1, . . . , dX ,

λi(x) = li,0 + li,1 · x, li,0 ∈ R, li,1 ∈ RdX , i = 1, . . . , dJ ,

where xj is the j-th element of a vector x and H
(j)
1 for j=1, . . . , dX form a dX×dX×dX tensor

H1 by stacking matrices along a new dimension. The joint regularity conditions on (D,µ, σ, λ, ν)

that guarantee a unique solution to the SDE (4) are discussed in Duffie and Kan (1996) and Dai

and Singleton (2000). These joint conditions put constraints on the parameter vector θ. There-

fore, we consider a model from the AJD class indexed by θ in a parameter space Θ containing

such admissible parameter values, on which there is a unique solution to (4) that remains in D.

For instance, in the case of the stochastic volatility component, the admissible parameter values

in Θ ensure that the volatility process remains nonnegative, by satisfying Feller’s condition; see

also the discussion of the admissibility problem in Singleton (2006, Chapter 5).
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Duffie et al. (2000) show that the affine dependence of the functions µ(x), σ(x)σ(x)′ and

λ(x) implies an exponential-affine form of the CCF of the state vector Xt. Specifically, the

discounted joint CCF of Xt+τ conditional on Ft with τ > 0 is given by

ψX(u, τ) := e−rτEQ[eiu·Xt+τ |Ft] = eα(u,τ ;θ)+β(u,τ ;θ)·Xt , (5)

where u ∈ RdX is an argument vector and α(u, τ ; θ) and β(u, τ ; θ) are solutions to the following

complex-valued system of ordinary differential equations (ODEs) in time:β̇(u, s) = K ′
1β(u, s) +

1
2β(u, s)

′H1β(u, s) +
∑dJ

i=1 l
i
1(χ

i(β(u, s))− 1),

α̇(u, s) = K ′
0β(u, s) +

1
2β(u, s)

′H0β(u, s) +
∑dJ

i=1 l
i
0(χ

i(β(u, s))− 1)− r,
(6)

with initial conditions β(u, 0) = iu and α(u, 0) = 0. Here, χi(c) =
∫
Rn exp(c ·z)dνi(z), c ∈ CdX ,

are jump transforms, which determine the conditional jump-size distributions. The ODE for β

is known as a generalized Riccati equation, whereas the solution for the second ODE can be

obtained by simply integrating the right-hand side expression over time.

The affine dependence of the characteristic exponent α(u, τ ; θ)+β(u, τ ; θ)·Xt on the current

state Xt is even the defining property of the AJD class under some regularity conditions (see

Duffie et al., 2003). In other words, the AJD class can be defined as a class in which characteristic

exponents of Xt+τ given Xt are affine functions of Xt. In fact, this is a key property in our

estimation procedure. While it is also possible to obtain the CCF for some non-affine models,

the exponential-affine form allows us to use linear Kalman filtering techniques in the estimation

procedure. This is the main motivation why we restrict our attention to the parametric models

of the AJD class.3

Unlike the option-implied CCF (3), the CCF in (5) is fully parametric, that is, it requires

parametric AJD model dynamics of the state vector Xt. Although the AJD class is more

restrictive than the general dynamics of Ft in (1), it includes a myriad of popular option pricing

models such as those in Heston (1993), Duffie et al. (2000), Pan (2002), Bates (2006), Broadie

et al. (2007), Boswijk et al. (2015), and Andersen et al. (2017) among many others.

The state process Xt often includes both observed and unobserved state variables that

affect the dynamics of the log futures price logFt. In our empirical application, we consider

the presence of both. Therefore, it is convenient to partition the state vector as X ′
t = (w′

t, x
′
t),

where wt represents the observable component and xt includes d < dX latent state variables.

Then, the dynamics of Xt given by equation (4), can be rewritten as

dwt = µw(wt, xt)dt+ σw(wt, xt)dWt +

dJ∑
i=1

Jw
i,tdNi,t, (7)

dxt = µx(wt, xt)dt+ σx(wt, xt)dWt +

dJ∑
i=1

Jx
i,tdNi,t, (8)

where µw: D → RdX−d, µx: D → Rd, σw: D → R(dX−d)×dJ , σx: D → Rd×dJ and Jw
i,t and J

x
i,t

are marginal jump sizes of Ji,t associated with wt and xt, respectively. In the simplest case, the

3The considered AJD class could, in principle, be broadened further to the linear-quadratic jump-diffusion

class by augmenting the state vector (see Cheng & Scaillet, 2007, for more details).
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observable component includes only the log futures prices, that is, wt = logFt. In more general

settings, the stochastic volatility is often a main latent driver of the log returns dynamics, as

e.g., in Heston (1993).

2.3 Marrying the two CCFs

Given the two CCFs (3) and (5), we can now align them to conduct inference about the model

parameters and the unobservable state variables. For that purpose, first note that the CCF

in (5) is joint for the state vector Xt. We assume, without loss of generality, that the first

component of the state vector Xt is the log futures price. Therefore, we can easily obtain its

marginal CCF by plugging in an argument vector of the form u1 := (u, 0, . . . , 0)′ ∈ RdX with

u ∈ R. To obtain the marginal CCF of log returns, we further subtract the term iu logFt in the

exponent. That is, the marginal CCF of log returns under the AJD specification is aligned to

that in (3) as follows:

ϕt(u, τ) = ψX(u1, τ)e
−iu logFt = eα(u1,τ ;θ)+β̃(u1,τ ;θ)·Xt , (9)

where β̃(u1, τ ; θ) := β(u1, τ ; θ)− iu1; i.e., the first component of β̃(u1, τ ; θ) differs from that of

β(u1, τ ; θ), since we are interested in the CCF of log returns rather than that of log prices.

Note that the log of the (joint) CCF (also known as cumulant generating function) is linear

in the state vector Xt. Therefore, under a correctly specified AJD model we obtain a simple

linear relation between the log of the option-spanned CCF4 of log returns and the model’s state

vector:

log ϕt(u, τ) = α(u1, τ ; θ) + β̃(u1, τ ; θ) ·Xt. (10)

Replacing the cumulant generating function on the left-hand side with its computationally fea-

sible counterpart ϕ̂t(u, τ), which we will explicitly define in Section 3.1, we obtain the following

equation, which will play a central role in our estimation procedure:

log ϕ̂t(u, τ) = α(u1, τ ; θ) + β̃(u1, τ ; θ) ·Xt + ξt(u, τ), u ∈ R. (11)

Here, ξt(u, τ) is the measurement error, which is related to the observation, truncation and

discretization errors in the CCF-spanning option portfolios. We elaborate in detail on the

relation between the computable counterpart of the CCF and the source of the measurement

errors in the next section.

Equation (11) is the key relation in our analysis and a few remarks shall be made here

regarding it. First, (11) is essentially a functional linear model since this equation holds for any

argument variable of the CCF, u ∈ R. Furthermore, the functions α(u1, τ ; θ) and β̃(u1, τ ; θ) are

parameter-dependent and solutions to the system of Riccati ODEs (6). Therefore, if the state

vector Xt is observable, then the model parameters can be estimated by solving a continuum

version of a non-linear least-squares problem.

4Although the logarithm of a complex number is a multivalued function, here, the ambiguity is resolved given

the fact that ϕ(0) = 1 and the CCF is a continuous function. In fact, in practice we ensure that the logarithm of

the CCF does not have ‘jumps’ by taking the logarithm sequentially with respect to u, starting from the origin.
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Second, in the case in which the state vector is (partially) unobservable, (11) represents a

linear latent factor model with a continuum of linear relations. The factors are given by the

state components of the AJD model. Therefore, one could apply, e.g., a (functional) principal

component analysis to learn about the unobserved factors. In this paper, we utilize a (suitably

modified) Kalman filtering technique to conduct inference about the model parameters and the

latent factors.

In other words, (11) reveals that, using the present approach, AJD models become amenable

to filtering and estimation using approaches from the rich literature on linear factor and state

space models. This is reminiscent of the term structure literature, where in affine term structure

models (see Piazzesi, 2010, for a review of this class of models) bond yields themselves are

assumed to be linear functions of the state vector. For instance, Duffee (1999), de Jong (2000),

Driessen (2005) use the Kalman filter in their estimation of affine term structure models.

Furthermore, another advantage of this approach is that it does not require evaluating option

prices given a certain parametric model. Therefore, our estimation procedure is computationally

more appealing than many alternative approaches, which often involve the Carr-Madan FFT

pricer (Carr & Madan, 1999) or the COS method (Fang & Oosterlee, 2008) to price options.

This also implies that the usage of the characteristic function is different: with the FFT or COS

methods one needs a model-dependent CCF only to evaluate option prices, while here we use

the CCF to directly learn about the latent factors and the model parameters.

Finally, given the partition of the state vector into observable and unobservable components,

the linear relation between the option-implied and model-implied CCFs in (11) can be rewritten

as

log ϕ̂t(u, τ) = α(u1, τ ; θ) + βw(u1, τ ; θ) · wt + βx(u1, τ ; θ) · xt + ξt(u, τ), u ∈ R, (12)

where βw(u1, τ ; θ) ∈ CdX−d and βx(u1, τ ; θ) ∈ Cd are such that β̃′ = (βw′, βx′) is the solu-

tion to the ODE system (6). Representation (12) serves as the basis for an observation (or

measurement) equation in our estimation procedure.

3 Estimation Procedure

In this section, we develop our filtering approach and corresponding estimation procedure for

the general class of AJD models under consideration. First, we provide the formal state space

representation for the defined class of models. Then, we describe our estimation strategy, which

uses the collapsed Kalman filter.

3.1 State space representation

As discussed in the previous section, we restrict our attention to the parametric models of the

AJD class due to their exponential-affine form of the characteristic function. This form will

allow us to exploit a linear Kalman filter in the estimation procedure. In the following, we

summarize the assumptions we impose on the parametric model:
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Assumption 1 (i) The stochastic process Xt is Markov and affine, with finite second mo-

ments under both the physical and risk-neutral probability measures P and Q. In partic-

ular, Xt is the unique solution to the SDE (4) and its characteristic function is of the

exponential-affine form (5);

(ii) The true parameter vector θ0 lies in the interior of a compact parameter space Θ containing

admissible parameter values.

Assumption 1 guarantees the existence of a unique solution to the SDE (4) within the AJD

class. As discussed in Section 2.2, admissible values θ ∈ Θ reflect the regularity conditions

imposed on the model such that there is a unique solution to (4), with, e.g., non-negative

volatilities and jump intensities. Such admissibility conditions will need to be checked in a

case-by-case model analysis. Assumption 1(i) also presumes the technical conditions required

to represent the AJD process, defined via the affine dependence of its drift, diffusive variance

and jump intensities on the state vector, through the exponential-affine characteristic function.

For a detailed analysis of the AJD theory, we refer to Duffie et al. (2000) and Duffie et al. (2003).

Note that Assumption 1 does not require the state process to be stationary. Stationarity of the

latent state variables xt is reasonable but not essential for the results to follow; the observed

state variables wt (often including the log-forward price) are typically non-stationary.

In our estimation procedure, we discretize the continuous-time model along two dimensions:

with respect to time and with respect to the argument of the CCF. The former naturally follows

from the discrete sampling times of financial data, which we denote by the integer indices

t = 1, . . . , T . The latter allows us to rely on the existing literature about filtering techniques.

For that, let us denote the collection of discretely sampled arguments by a set U ⊆ R with

cardinality q ∈ N. We further consider options with k ∈ N different maturities τ and n ∈ N
different log-moneyness values m on each day.

Since the input of our estimation procedure is a portfolio of option prices, we need to take

into account the measurement errors in these option portfolios. For that purpose, we assume an

observation error scheme on the option prices that constitute the portfolios. The measurement

errors will be defined on the common probability space (Ω,F ,P), but in what follows, the

filtration {Ft}t≥0 is generated by the state process {Xt}t≥0 only. Note that the theoretical

option prices Ot(τ,m) are Ft-measurable, and hence the same applies to functionals of the

option prices such as the (theoretical) Black-Scholes implied volatility (BSIV) and vega.

Assumption 2 Option prices are observed with an additive error term:

Ôt(τi,mj) := Ot(τi,mj) + ζt(τi,mj), t = 1, . . . , T, i = 1, . . . , k, j = 1, . . . , n, (13)

where the observation errors ζt(τ,m) are such that:

(i) ζt(τ,m) are Ft-conditionally independent along tenors τ , moneyness m and time t;

(ii) E[ζt(τ,m)|Ft] = 0;

(iii) E[ζt(τ,m)2|Ft] = σ2t (τ,m) < ∞ with σt(τ,m) := σκκt(τ,m)νt(τ,m), where σκ ∈ R+,

κt(τ,m) is the Black-Scholes implied volatility, and νt(τ,m) is the Black-Scholes vega.

11



The additive error assumption is commonly imposed in the option pricing literature. For

instance, Andersen et al. (2015a) and Todorov (2019) use additive error assumptions for option

prices quoted in terms of BSIV and dollar amount, respectively. Additive observation errors

are also often implicitly assumed when calibrating an option pricing model to market-observed

prices, since the calibration is often performed using non-linear least squares as in, e.g., Broadie

et al. (2007).

Assumption 2(i) excludes in particular dependence of the observation errors across strikes

and is also often imposed in the literature (see, for instance, Christoffersen, Jacobs, & Mimouni,

2010, Andersen et al., 2015a and Todorov, 2019). This assumption can be relaxed by introducing

a spatial dependence as in Andersen, Fusari, Todorov, and Varneskov (2021). This would,

however, result in more complex expressions for the covariance terms in the measurement errors

that we derive below. Furthermore, Andersen et al. (2021) find evidence of limited dependence

in the observation errors for S&P 500 index options. They also show that this dependence

declined sharply for short-dated options in recent years, due to improved liquidity. Since in

our empirical application we consider S&P 500 index options with short tenors focusing on the

past three years, the independence assumption will play a secondary role for the estimation

procedure.

The conditional mean zero Assumption 2(ii) is crucial for our main result. Assumption 2(iii)

asserts the standard deviation of the observation errors to be proportional to the product of

the option’s BSIV and vega. The motivation for this structure is as follows. Let κ̂(mj) and

κ(mj) denote the error-distorted and true BSIV of an option, and assume that the relative

volatility errors κj = (κ̂(mj) − κ(mj))/κ(mj) are homoskedastic across the strikes, such that

E[κ2
j |Ft] = σ2κ. A Taylor-series expansion of the Black-Scholes pricing function OBS(κ̂(mj),mj)

around κ(mj) then gives Ô(mj) = OBS(κ̂(mj),mj) ≈ O(mj) + ν(mj)κ(mj)κj , with ν(mj) =

∂OBS(κ(mj),mj)/∂κ(mj) the theoretical Black-Scholes vega. Homoskedastic errors in relative

implied volatilities are also assumed by Christoffersen, Jacobs, and Ornthanalai (2012) and Du

and Luo (2019) in their MLE based on the particle filter and the unscented Kalman filter,

respectively.

Finally, to assess the error sizes of the CCF approximation specified below, we impose the

following assumption on the existence of moments for the underlying asset and on the log-

moneyness grid that allows nonequidistant sampling in the moneyness dimension:

Assumption 3 (i) The underlying process and its reciprocal process have finite second mo-

ments under the risk-neutral measure: EQ[F 2
t+τ |Ft] < ∞ and EQ[F−2

t+τ |Ft] < ∞ with

τ > 0;

(ii) For the log-moneyness grid m := m1 < . . . < mn =: m, there exists a deterministic

sequence ∆m depending on n such that ∆m→ 0 as n→ ∞ and

η∆m ≤ inf
j=2,...,n

∆mj ≤ sup
j=2,...,n

∆mj ≤ ∆m,

where ∆mj := mj −mj−1 and η ∈ (0, 1] is some constant.
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Using n > 1 observable option prices with time-to-maturity τ > 0 and log-moneyness values

{mj}nj=1, we may approximate the CCF ϕt(u, τ) given in (3) by replacing the theoretical option

prices by their observed counterparts, and the integral by a Riemann sum:

ϕ̂t(u, τ) = e−rτ − ut

n∑
j=2

e(iu−1)mj · Ôt(τ,mj)∆mj , (14)

where we use the notation ut := (u2 + iu)/Ft, and where Ôt(τ,mj) satisfies Assumption 2.

The deviation of the option-spanned CCF from its theoretical counterpart, ζϕt (u, τ) :=

ϕ̂t(u, τ) − ϕt(u, τ), stems from observation, truncation and discretization errors, where trun-

cation refers to the fact that the integration interval [m,m] does not cover the entire real line.

The truncation and discretization errors also arise in VIX calculations and depend on the avail-

ability of option prices. They will be shown to be of smaller order than the observation errors,

and can further be efficiently reduced by using an interpolation-extrapolation scheme (see, e.g.,

Jiang & Tian, 2005, 2007, Chang, Christoffersen, Jacobs, & Vainberg, 2012, and Appendix C.1).

Appendix C.2 illustrates the impact of the three different types of measurement errors on the

CCF approximation, and the effectiveness of the interpolation-extrapolation scheme.5

From the preceding analysis, the functional measurement equation (12) is then obtained

using the following log-linearization:

ξt(u, τ) := log ϕ̂t(u, τ)− log ϕt(u, τ) = log

(
1 +

ζϕt (u, τ)

ϕt(u, τ)

)
= ξ

(1)
t (u, τ) + rt(u, τ), (15)

where the log-linearized observation errors ξ
(1)
t (u, τ) are defined by ζ

(1)
t (u, τ)/ϕt(u, τ), with

ζ
(1)
t (u, τ) := −ut

n∑
j=2

e(iu−1)mj · ζt(τ,mj)∆mj ,

and where rt(u, τ) is a remainder term that collects the log-linearized truncation and discretiza-

tion errors as well as the higher-order terms from the required Taylor-series expansion. (The

superscript (1) refers to the first, and prime, source of the measurement errors, the observation

errors; see also the detailed decomposition in equation (A.1).)

To formulate the main result, we turn the complex-valued functional measurement equation

(12) into a real vector measurement equation, as usual in state space model formulations. First,

we stack the log CCF and the corresponding measurement errors along q values u1, . . . , uq for

the CCF argument u ∈ U , for a fixed expiration period τi:

log ϕ̂t,i :=


log ϕ̂t(u1, τi)

log ϕ̂t(u2, τi)
...

log ϕ̂t(uq, τi)

 , rt,i :=


rt(u1, τi)

rt(u2, τi)
...

rt(uq, τi)

 , ξ
(1)
t,i :=


ξ
(1)
t (u1, τi)

ξ
(1)
t (u2, τi)

...

ξ
(1)
t (uq, τi)

 .

5The interpolation-extrapolation scheme may induce some cross-sectional dependence in the observation errors

ζt(τ,m). This is in deviation from Assumption 2, which is only realistic when referring to the errors before

application of the interpolation-extrapolation scheme. We will not consider this effect explicitly in Proposition 1

that follows; it would lead to a more complicated expression for the covariance matrix of the measurement errors,

but, importantly, would not affect the main result otherwise.
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In a similar way, we denote by at,i, b
w
t,i and b

x
t,i the stacked outputs6 of the functions α(u, τi),

βw(u, τi) and βx(u, τi), respectively. Next, to tackle the complex-valued measurement equa-

tion (12), we stack the real and imaginary parts, as well as k maturities:

ℜ(log ϕ̂t,1)
ℑ(log ϕ̂t,1)

...

ℜ(log ϕ̂t,k)
ℑ(log ϕ̂t,k)


︸ ︷︷ ︸

=: yt ∈ Rp

=



ℜ(at,1)
ℑ(at,1)

...

ℜ(at,k)
ℑ(at,k)


︸ ︷︷ ︸

=: d̃t

+



ℜ(bwt,1)
ℑ(bwt,1)

...

ℜ(bwt,k)
ℑ(bwt,k)


︸ ︷︷ ︸

=:Wt

wt +



ℜ(bxt,1)
ℑ(bxt,1)

...

ℜ(bxt,k)
ℑ(bxt,k)


︸ ︷︷ ︸

=: Zt

xt +



ℜ(rt,1)
ℑ(rt,1)

...

ℜ(rt,k)
ℑ(rt,k)


︸ ︷︷ ︸

=: rt,n

+



ℜ(ξ(1)t,1 )

ℑ(ξ(1)t,1 )
...

ℜ(ξ(1)t,k )

ℑ(ξ(1)t,k )


︸ ︷︷ ︸

=: εt

, (16)

where p = 2qk. Stacking the real and imaginary parts of the measurements is a natural approach

when the state vector is real-valued;7 a complex-valued state vector would have required a

complex Kalman filter based on the so-called widely linear complex estimator, as in Dini and

Mandic (2012). The stacked observation equation (16) links all available information from

option prices with several tenors at time t to the state vectors wt and xt in a linear way.

To complete the state space model, we need to augment the measurement equation (16)

by a transition equation for the unobservable state vector xt. This is a linear, discrete-time

dynamic system, to be derived from the continuous-time stochastic differential equation. An

Euler discretization of the state process (8) would converge to the true transition dynamics as

the discretization step ∆t → 0. However, the maximum likelihood (ML) estimator based on

the Euler discretization is, in general, inconsistent for fixed non-zero ∆t (Lo, 1988), because

the discretization has conditional moments different from those of the true process (Piazzesi,

2010). Fortunately, the AJD assumption under P implies that the first and second conditional

moments of xt+1 given Ft are linear and available in semi-closed form (possibly requiring the

solution of a system of ODEs):

E[xt+1|Ft] = ct + Ttxt, (17)

Var(xt+1|Ft) = Qt(xt), (18)

where Qt: Rd → Rd×d is an affine function in xt. The finiteness of the conditional moments is

ensured by Assumption 1(i). Both conditional moments will in general be linear in both the

observed state wt and the latent state xt; but because the former does not need filtering, we

absorb its effect in the time-varying intercept ct, and similarly in the intercept of the affine

function Qt.
8

In Appendix B, we show how these transition coefficients can be computed for the AJD

model. Using this approach, which will in principle be model-dependent and hence has to be

6Here, we attribute these elements (and system matrices d̃t,Wt and Zt in equation (16)) with an additional

time index although the coefficient functions are assumed to be time-invariant in the exposition. This is because

in practice we can have different expiration periods for different days.
7See Singleton (2001) and Chacko and Viceira (2003), who use this approach in a GMM estimation setting

based on the empirical characteristic function.
8The transition matrix Tt will not be time-varying in stationary AJD processes with equidistant observations,

but we do not impose this time-constancy in the notation, also to avoid confusion with the sample size T .
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applied case by case, we obtain a discrete-time transition equation with the same conditional

mean and variance as the true continuous-time process (but possibly different higher-order

moments). Quasi-maximum likelihood (QML) estimation based on conditionally normally dis-

tributed measurement and transition errors in the state space representation yields consistent

estimation results (Fisher & Gilles, 1996). A similar approach has been adopted in the term

structure literature (see, e.g., de Jong, 2000, Duffee, 2002).

We summarize the development of the state space representation, and analyze properties

of the errors, in the following proposition. The main result contains a remainder term in the

measurement equation that collects the truncation and discretization errors in the construction

of log ϕ̂(u, τ) and higher-order terms in the log-linearization. This term vanishes under an

asymptotic scheme, where m = max1≤j≤nmj → ∞, m = min1≤j≤nmj → −∞ and ∆m → 0.

We also denote the corresponding smallest and largest strike prices by K and K, and express

the asymptotic orders with respect to the number of option prices n with fixed maturity.

Proposition 1 Suppose Assumptions 1, 2 and 3 hold, and in addition K ≍ n−α and K ≍ nα

with α > 0 and α > 0. Then {(yt, xt), t = 1, . . . , T} satisfy the linear state space representation

yt = dt + Ztxt + rt,n + εt, E[εt|Ft] = 0, E[εtε′t|Ft] = Ht, (19)

xt+1 = ct + Ttxt + ηt+1, E[ηt+1|Ft] = 0, E[ηt+1η
′
t+1|Ft] = Qt(xt), (20)

where rt,n = Op

(
n−2(α∧α) ∨ n−1 log n

)
and εt = Op

(√
n−1 log n

)
; dt = d̃t +Wtwt and Zt are

defined in (16) and ct, Tt and Qt are as given in (17)–(18); and Ht = blkdiag{Ht,1, . . . ,Ht,k},
with Ht,i = σ2κ · H̃t,i, where

H̃t,i =

(
1
2ℜ(Γ̃t,i + C̃t,i)

1
2ℑ(−Γ̃t,i + C̃t,i)

1
2ℑ(Γ̃t,i + C̃t,i)

1
2ℜ(Γ̃t,i − C̃t,i)

)
, i = 1, . . . , k, (21)

and Γ̃t,i and C̃t,i are covariance and pseudo-covariance matrices of ξi,t/σκ, with elements

(Γ̃t,i)kl =
uk,tul,t

∑n
j=2 e

(i(uk−ul)−2)mjκ2t (τi,mj)ν
2
t (τi,mj)(∆mj)

2

ϕt(uk, τi)ϕt(−ul, τi)
, k, l = 1, . . . , q,

(C̃t,i)kl =
uk,tul,t

∑n
j=2 e

(i(uk+ul)−2)mjκ2t (τi,mj)ν
2
t (τi,mj)(∆mj)

2

ϕt(uk, τi)ϕt(ul, τi)
, k, l = 1, . . . , q.

Furthermore,

(i) E[εtε′s] = 0 and E[ηtη′s] = 0 for s ̸= t = 1, . . . , T ;

(ii) E[εtη′s] = 0 for all s, t = 1, . . . , T ;

(iii) E[εtx′1] = 0 and E[ηt+1x
′
1] = 0 for t = 1, . . . , T .

The proof is given in Appendix A. The orders indicate that the remainder term goes to zero

faster than the observation term given some minimum non-zero requirements for α and α. In

the sequel, we assume that (α ∧ α) > 1
4 and neglect the remainder term in the estimation and

filtering procedures. The system matrices Zt, Tt, Qt(xt) and system vectors dt and ct are known
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up to a parameter vector θ, assumed to lie in the interior of a compact parameter space Θ by

Assumption 1(ii). Similarly, the system matrix Ht depends on the data and θ (via ut, ϕt, κt

and νt), and an additional unknown parameter σ2κ. Note that (dt, Zt, Ht) are derived from the

Q-dynamics of (4), whereas (ct, Tt, Qt(·)) correspond to the P-dynamics. Therefore, possible

deviations between P and Q, reflecting the presence of factor risk premia, will require an exten-

sion of the parameter vector; we discuss this possibility further in Section 4 and Appendix D.

Estimation of θ and filtering of the latent state vector via (versions of) the Kalman filter is

considered in the next sub-section.

3.2 Modified and collapsed Kalman filter

Consider the state space representation (19)–(20), where from now on we will ignore the re-

mainder term rt,n, and hence assume that the set of strike prices {mj}nj=1 on each day is rich

enough to make this term negligible. Define the dataset Yt = {y1, . . . , yt}, and linear pro-

jections (denoted by Ê) of the latent state vector conditional on the data: x̂t|t = Ê[xt|Yt] and
x̂t|t−1 = Ê[xt|Yt−1], with corresponding mean square error matrices Pt|t = E[(xt−x̂t|t)(xt−x̂t|t)′]
and Pt|t−1 = E[(xt − x̂t|t−1)(xt − x̂t|t−1)

′]. Then a modified version of the Kalman filter reads

as follows:

ωt = yt − (dt + Ztx̂t|t−1), Gt = ZtPt|t−1Z
′
t +Ht,

x̂t|t = x̂t|t−1 + Pt|t−1Z
′
tG

−1
t ωt, Pt|t = Pt|t−1 − Pt|t−1Z

′
tG

−1
t ZtPt|t−1,

x̂t+1|t = ct + Ttx̂t|t, Pt+1|t = TtPt|tT
′
t +Qt(x̂t|t),

for t = 1, . . . , T . If the latent state process xt is stationary, the initial conditions x̂1|0 and P1|0

for the filter can be set to the unconditional mean and variance, respectively.

In traditional homoskedastic Gaussian state space models, where the distribution of the

vector (ε′t, η
′
t+1)

′, conditional on xt, is Gaussian with a constant variance matrix, the filtered

state x̂t|t is the conditional expectation of the true process xt given the observations up to time

t. When the errors are non-Gaussian homoskedastic, the filtered state represents the linear pro-

jection (or minimum mean square error linear predictor) instead of the conditional expectation.

This property can be used to prove that quasi-maximum likelihood (QML) estimation based on

the Gaussian likelihood still yields consistent and asymptotically normal parameter estimates

(Hamilton, 1994, Chapter 13). In general AJD models, on the other hand, the distribution of

the errors will be non-Gaussian with a conditional variance Qt(xt) that is an affine function

of the true latent state vector xt. Therefore, the Kalman filter recursions have been modified

by using Qt(x̂t|t) instead of the unobserved Qt(xt). A similar modification is used in, e.g., de

Jong (2000), Monfort, Pegoraro, Renne, and Roussellet (2017) and Feunou and Okou (2018).

Although consistency of QML based on this modification has not been proved, Monte Carlo

simulation results in these articles suggest that the method works well in practice.

Given the large dimension of the observation vector p = 2qk, the Kalman filter and its QML

estimation will be computationally challenging if not infeasible. In fact, an important caveat

with this approach is that one needs a non-singular innovation variance matrix Gt. Since our

CCF approximation is based on common option price data for q different arguments u and fixed
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time-to-maturity τ , this matrix is likely to be (near-)singular for large q. Furthermore, with

large cross-sectional dimension, the computation of the inverse matrix for each time t adds a

significant computational burden to the estimation procedure. To overcome these issues, we

consider the collapsed Kalman filter, originally developed by Jungbacker and Koopman (2015),

which we describe below. We modify their method to allow for a (near-)singular variance matrix

Ht, using generalized inverses.

The idea of the collapsed Kalman filter is to transform the observation vector yt into an

uncorrelated pair of vectors y∗t and y+t such that y∗t depends on the state vector xt and has

dimension d × 1, whereas y+t does not depend on xt and has dimension (p − d) × 1. Such a

transformation can be done using, for instance, the projection matrices A∗
t = (Z ′

tH
−
t Zt)

−1Z ′
tH

−
t

and A+
t = LtH

−
t (Ip −ZtA

∗
t ), where Lt is chosen such that A+

t has full row rank and where H−

is the generalized inverse of H and Ip is the identity matrix of size p. Since A∗
tZt = Ip and

A+
t Zt = 0, the observation equation is then transformed into(

y∗t

y+t

)
:=

[
A∗

t

A+
t

]
yt =

(
d∗t

d+t

)
+

(
xt

0

)
+

(
ε∗t

ε+t

)
, (22)

with d∗t = A∗
tdt, d

+
t = A+

t dt, ε
∗
t = A∗

t εt and ε
+
t = A+

t εt. Using H
−HH− = H−, we have

Var(ε∗t ) = A∗
tHtA

∗′
t = (Z ′

tH
−
t Zt)

−1 =: H∗
t ,

Var(ε+t ) = A+
t HtA

+′
t =: H+

t ,

Cov(ε∗t , ε
+
t ) = A∗

tHtA
+′
t = A∗

tHt(Ip −A∗′
t Zt)H

−
t L

′

= A∗
tHtH

−
t L

′ − (Z ′
tH

−
t Zt)

−1Z ′
tH

−
t L

′ = A∗
tL

′ −A∗
tL

′ = 0.

In the preceding display, it has been assumed that rank(Z ′
tH

−
t Zt) = d; this is not very

restrictive, given that the dimension d of the state vector will typically be much smaller than

the dimension p of the observation vector. We also require that the matrix At = [A∗′
t , A

+′
t ]′ is

non-singular, such that the transformation Atyt does not lead to a loss of information.

The representation (22) shows that information about the state vector xt is contained in the

observation equation for y∗t ; thus we may ignore the second equation with y+t and focus on the

collapsed state space model:

y∗t = d∗t + xt + ε∗t , E[ε∗t |Ft] = 0, Var(ε∗t |Ft) = H∗
t , (23)

xt+1 = ct + Ttxt + ηt+1, E[ηt+1|Ft] = 0, Var(ηt+1|Ft) = Qt(xt). (24)

Let us emphasize that the collapsing transformation into a lower-dimensional state space

form is also valid for the Moore-Penrose inverse covariance matrix H−
t . Therefore, we can

collapse a high-dimensional data vector into a lower-dimensional vector even when the covariance

system matrix of disturbances is (near-)singular.

The logarithm of the Gaussian likelihood function of the data vector YT = (y′1, . . . , y
′
T )

′ is

given by

l(YT ; θ) =

T∑
t=1

log pθ(yt|Yt−1),
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where pθ(yt|Yt−1) is the (misspecified) Gaussian distribution of yt conditional on Yt−1 (and

w1, . . . , wt−1), which can be evaluated via the prediction error decomposition based on the

original state space representation (19)–(20). Given the assumption of a full rank transforma-

tion matrix |At|, the collapsed transformation allows to decompose the log-likelihood function

l(YT ; θ) into three parts to ease computation:

l(YT ; θ) = l(Y ∗
T ; θ) + l(Y +

T ; θ) +
T∑
t=1

log |At|, (25)

where Y ∗
T and Y +

T are stacked vectors of y∗t and y+t over t = 1, . . . , T , respectively.

The first term in (25) is the quasi-loglikelihood evaluated by the Kalman filter applied to

the collapsed state space system (23)–(24):

l(Y ∗
T ; θ) = −dT

2
log 2π − 1

2

T∑
t=1

log |G∗
t | −

1

2

T∑
t=1

ω∗′
t G

∗−1
t ω∗

t ,

where ω∗
t are the prediction errors and G∗

t are their mean square error matrices from the Kalman

filter.

Since y+t does not depend on the state vector αt and |H+
t | = 1 may be imposed without loss

of generality, the second term in (25) is given by

l(Y +
T ; θ) = −(p− d)T

2
log 2π − 1

2

T∑
t=1

(y+t − d+t )
′(H+

t )−1(y+t − d+t ).

Fortunately, the last term in the expression above can be calculated without construction of the

matrix A+
t :

(y+t − d+t )
′(H+

t )−1(y+t − d+t ) = (yt − dt)
′A+′

t (A+
t HtA

+
t )

−1A+
t (yt − dt)

= (yt − dt)
′J+

t H
−
t (yt − dt)

= (yt − dt)
′J+

t H
−
t J

+′
t (yt − dt)

= (yt − dt)
′M ′

ZH
−
t MZ(yt − dt)

= e′tH
−
t et,

where MZ = I − Zt(Z
′
tH

−
t Zt)

−1Z ′
tH

−
t = I − ZtA

∗
t , J

+
t = A+′

t (A+
t HtA

+
t )

−1A+
t Ht and et =

MZ(yt−dt), that is, these are the generalized least squares (GLS) residuals from the observation

vector yt with the covariate matrix Zt and variance matrix Ht. For derivation details,9 see

Jungbacker and Koopman (2015).

Finally, the third term in (25), |At|, can be found from the relation

|At|2 · |Ht| = |AtHtA
′
t| = |H∗

t | · |H+
t | = |H∗

t |, (26)

which follows from the fact that the covariance matrix AtHtA
′
t is block diagonal given the

uncorrelated error terms ε∗t and ε+t and using again |H+
t | = 1.

9The derivation in Jungbacker and Koopman (2015) is based on the invertible covariance matrix Ht, but the

same result and the same derivation are valid when using the pseudo-inverse matrix H−
t .
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Given the measurement error structure as implied by Proposition 1, the single scale param-

eter σ2κ of the covariance matrix can be factored out as Ht = σ2κ · H̃t. The matrix H̃t has a

block-diagonal structure; although its blocks depend on the state vector and parameters via

the theoretical BSIV κt(τ,m) and vega νt(τ,m), we estimate these quantities directly from the

data, hence they are not updated as we optimize over θ. Thus, we have from (26) that

log |At| =
1

2
(log |H∗

t | − log |Ht|)

=
1

2

(
log |H∗

t | − log σ2pκ − log |H̃t|
)

∝ 1

2
log |H∗

t | − p log σκ.

Therefore, the log-likelihood (25) is proportional to

l(YT ; θ) ∝
1

2

T∑
t=1

(
− log |G∗

t | − ω∗′
t G

∗−1
t ω∗

t − e′tH
−
t et + log |H∗

t |
)
− pT log σκ. (27)

Note that the inversions and determinants of the matrices G∗
t and H∗

t can be computed effi-

ciently since they have small dimensions d × d. This eases maximization of the log-likelihood

function (27) substantially.

The quasi maximum-likelihood parameter estimates θ̂ are obtained by maximizing (27) over

the model parameter space Θ, where we implicitly assume that the parameter vector θ has been

extended to include the additional parameter σ2κ. Its asymptotic properties are analogous to

QML estimation based on the (modified) Kalman filter, as discussed at the beginning of this

sub-section. In cases in which the conditional covariance matrix Qt does not depend on the

latent state vector xt, and the latent state process xt is stationary, QML based on the Kalman

filter will yield consistent and asymptotically normal estimators. When Qt is affine in xt, then

QML based on the modified Kalman filter appears to have comparable properties in Monte

Carlo simulations, but no formal consistency proof is available.

4 Monte Carlo Study

In this section, we study the finite-sample performance of our estimation procedure. In par-

ticular, we consider two AJD specifications: a one-factor model and two versions of an option

pricing model with two factors.

4.1 SVCDEJ

As a starting point, we illustrate the developed estimation procedure based on a modification of

the widely used ‘double-jump’ stochastic volatility model of Duffie et al. (2000). The modifica-

tion is due to using double-exponential (rather than Gaussian) jump sizes in returns as in Kou

(2002) and Andersen et al. (2015a), and a stochastic (rather than constant) jump intensity

that is a multiple of the stochastic variance as in Pan (2002). We label this specification as

‘SVCDEJ’ for stochastic volatility model with co-jumps in volatility and double-exponential

jumps in returns.
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In particular, we assume the following data-generating process for the log forward price

under both the P and Q probability measures:

d logFt = (−1
2vt − µλt)dt+

√
vtdW1,t + JtdNt, (28)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW2,t + Jv

t 1{Jt<0}dNt, (29)

where the two standard Brownian motions W1 and W2 are assumed to be correlated with

coefficient ρ ∈ [−1, 1], and Nt is a Poisson jump process with jump intensity proportional to

the stochastic variance, λt = δvt, δ > 0. We further assume that Jt is a double-exponentially

distributed jump size with generic probability density function

fJ(x) = p+
1

η+
e−x/η+1{x≥0} + p−

1

η−
ex/η

−
1{x<0},

where p+ and p− are probabilities of positive and negative jumps, respectively, and η+ and

η− are the corresponding conditional means of the jump sizes. We assume that all of these

parameters are positive, p+ + p− = 1 and η+ < 1. Given the jump size distribution, the

expected relative jump size in returns is

µ := E[eJ−1] =
p+

1− η+
+

p−

1 + η−
− 1.

We allow the volatility to co-jump only with negative jumps in returns, with exponentially

distributed jump sizes Jv
t with mean µv > 0. Finally, we assume κ, v̄ and σ to be positive and

impose Feller’s condition 2κv̄ > σ2 and the covariance stationarity condition κ > p−δµv.

The model in (28)–(29) belongs to the AJD class and exhibits all important ingredients of

option pricing models: stochastic volatility, jump components in returns and volatility, time-

varying jump intensity and a self-excitation feature (because a negative jump in returns is

associated with a positive jump in volatility, which increases the volatility and hence the jump

intensity). Furthermore, this specification assumes a double-exponential jump size distribution

in returns, which has recently been advocated in the literature (see, e.g., Kou, 2002, Aı̈t-Sahalia

et al., 2015, Andersen et al., 2015a and Bardgett et al., 2019).

Our developed estimation and filtering approach uses information from option prices, and

is agnostic about equity risk premia. Indeed, the measurements are constructed as portfolios

of options rather than the underlying asset. On the other hand, since the transition equation

in the state space representation reflects the dynamics of the latent components (under P), it
is, in principle, possible to learn about the risk premia associated with the latent processes

(for instance, the variance risk premium). However, additional simulation results, reported

in Appendix D, suggest that the Q-information in the option prices largely dominates the P-
information, making the identification of risk premium parameters weak. A similar difficulty

of identifying the physical dynamics arises in the term structure literature (see, e.g., Kim &

Orphanides, 2012). Therefore, we assume no variance (or state related) risk premia, that is,

the latent components have the same dynamics under both probability measures. Importantly,

the results in Appendix D suggest that estimation of the Q-parameters is hardly affected by

imposing this (possibly invalid) restriction.
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The discounted marginal CCF of the log forward prices in the SVCDEJ model can be derived

using the results in Duffie et al. (2000) and is given by

ψX(u1, τ) = e−rτEQ[eiu logFt+τ |Ft] = eα(u,τ)+β1(u,τ) logFt+β2(u,τ)vt , (30)

where α(u, τ) and β(u, τ) are solutions to the complex-valued ODE system in time:

β̇1(u, s) = 0,

β̇2(u, s) = −
(
1
2 + µδ

)
β1(u, s)− κβ2(u, s) +

1
2β1(u, s) + ρσβ1(u, s)β2(u, s)

+1
2σ

2β22(u, s) + δ(χ(β1(u, s), β2(u, s))− 1),

α̇(u, s) = κv̄β2(u, s)− r,

with initial conditions β1(u, 0) = iu, β2(u, 0) = 0 and α(u, 0) = 0. Here the ‘jump transform’

takes the form

χ(β1, β2) =
p+

1− β1η+
+

p−

(1 + β1η−)(1− β2µv)
.

The CCF of the log price in (30) is used to price options. For the state space representation,

we turn it into the CCF of log returns as described in Section 2.3. Using the fact that the

solution to the ODE system satisfies β1(u, τ) = iu, the linear relation between the log of the

option-implied CCF and the state vector is given by

log ϕ̂t(u, τ) = α(u, τ) + β2(u, τ)vt + ξt(u, τ), u ∈ R,

where ϕ̂t(u, τ) is the option-implied CCF, τ > 0 is the time-to-maturity of available options

and ξt(u, τ) is the measurement error term due to observation and approximation errors in

the option-implied CCF. We use this linear relation to construct the measurement equation as

discussed in Section 3.1.

Following Appendix B, the conditional mean and variance of the latent stochastic volatility

process are given by

E[vt+1|Ft] = eg1∆tvt +
g0
g1

(
eg1∆t − 1

)
, (31)

Var(vt+1|Ft) = −σ
2 + 2p−δµ2v

2g21

[
2g1
(
eg1∆t − e2g1∆t

)
vt − g0

(
1− eg1∆t

)2]
, (32)

with g0 = κv̄ and g1 = −κ + p−δµv. Equations (31)–(32) are then used to define the state

updating equation:

vt+1 = ct + Ttvt + ηt+1, (33)

where ct =
g0
g1

(
eg1∆t − 1

)
, Tt = eg1∆t and Var(ηt+1|Ft) = Var(vt+1|Ft) =: Qt(vt).

The model specification has nine parameters of interest and one additional parameter that

characterizes the observation errors. We note that the parameter δ often enters as a multiple

of p−, which can possibly cause identification issues in the estimation procedure. Therefore, to

avoid these identification issues, we fix the probability of negative jumps to be p− = 0.7. This is
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consistent with findings in Aı̈t-Sahalia et al. (2015) and our empirical results for the unrestricted

model provided in Appendix D.2, where we also assess the robustness of our empirical results

to fixing p− = 0.7.

In the simulation study, we use T = 500 time points with ∆t = 1/250. The time-series

of the log prices and true spot volatilities are simulated using an Euler scheme applied to the

specification (28)–(29). The initial values are set to F0 = 100 and v0 = 0.015. The options data

are generated using the COS method of Fang and Oosterlee (2008) based on the CCF, specified

in (30). The true model parameters are displayed in Table 1.

In the simulations, we consider three tenors for options equal to 10, 30 and 60 days. For each

tenor, we simulate a finite number of options with log-moneyness between m = −10 ·σATM,τ
√
τ

and m = 4 · σATM,τ
√
τ , where σATM,τ is the BSIV of the ATM option with time-to-maturity τ .

Furthermore, the strikes are generated equidistantly with ∆K = 0.01 · Ft. Finally, we distort

the options data by adding the observation errors to the option prices for each tenor τ and each

log-moneyness level m as specified in Assumption 2, i.e.,

Ôt(τ,m) = Ot(τ,m) + σκ · κt(τ,m)νt(τ,m) · ϵ,

where ϵ is an i.i.d. standard normal random variable and σκ = 0.02. The distorted option prices,

in terms of total implied variance, are then interpolated using a cubic spline and extrapolated

linearly in log-moneyness, as described in Appendix C.1.

The covariance matrix of the errors in the measurement equation is calculated according to

equation (21). To calculate the pseudo-inverse of the 2q× 2q covariance matrix H̃t,i for each of

the maturities i = 1, . . . , k, we set the following level of the threshold for the singular values:

tol := s̄ · 2q ·max
j
sj ,

with s̄ = 10−7 and where the maximum is taken over all singular values sj of H̃t,i. We also

analyze the robustness of our results to the choice of s̄.

With these specifications, we take the number of replications N to be N = 300, thus running

the estimation procedure of Section 3 300 times. Table 1 provides the Monte Carlo results for

the SVCDEJ model, for six different ranges of the argument set U . The results in general show

a good finite-sample performance. We notice that for smaller ranges of the CCF argument,

the estimates exhibit biases for some model parameters. This is expected since the smaller

ranges provide coarser information on which we build the filtering and parameter estimation

procedures. On the other hand, we also notice that the variance of some parameter estimates

increases when using a very large range of arguments (in particular, u = 1, . . . , 30). This is

likely due to an increased variance in the CCF approximation for large arguments u.

To explore the robustness to the choice of the truncation level in the pseudo-inversion

of the covariance matrix, we also consider other values of s̄. In particular, we run N =

300 simulations for each level of s̄ using the same parameter values as in Table 1, and con-

struct the root mean square percentage error (RMSPE) metrics, defined as the square root of

N−1
∑N

i=1

∑dθ
j=1

(
(θ̂i,j − θ0,j)/θ0,j

)2
, with dθ the dimension of θ. Figure 1 plots the resulting

RMSPEs for different levels of s̄ and three different ranges of the argument u. As we can see,
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Table 1: Monte Carlo results for the SVCDEJ model

parameter σ κ v̄ ρ δ η+ η− µv σκ

u = 1, . . . , 5

true value 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.498 8.213 0.0151 -0.8983 105.906 0.021 0.048 0.048 0.032

std dev 0.007 0.257 0.0005 0.0088 7.567 0.001 0.001 0.001 0.005

q10 0.494 7.965 0.0146 -0.9097 96.930 0.021 0.047 0.046 0.026

q50 0.498 8.198 0.0151 -0.8956 105.936 0.021 0.048 0.048 0.032

q90 0.504 8.503 0.0158 -0.8904 114.125 0.022 0.049 0.049 0.038

u = 1, . . . , 10

true value 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.440 8.779 0.0136 -0.9968 136.200 0.023 0.045 0.043 0.035

std dev 0.017 0.310 0.0007 0.0119 13.316 0.001 0.002 0.002 0.006

q10 0.427 8.409 0.0130 -1.0000 118.640 0.022 0.043 0.041 0.027

q50 0.437 8.836 0.0134 -1.0000 139.079 0.023 0.045 0.043 0.036

q90 0.451 9.102 0.0142 -1.0000 150.730 0.024 0.047 0.046 0.042

u = 1, . . . , 15

true value 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.440 8.723 0.0139 -0.9942 128.617 0.022 0.046 0.045 0.027

std dev 0.013 0.316 0.0005 0.0151 10.260 0.001 0.001 0.002 0.005

q10 0.428 8.330 0.0134 -1.0000 113.412 0.021 0.044 0.043 0.022

q50 0.438 8.741 0.0138 -1.0000 130.575 0.022 0.045 0.044 0.028

q90 0.455 9.102 0.0144 -0.9785 139.999 0.023 0.048 0.047 0.033

u = 1, . . . , 20

true value 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.455 8.143 0.0147 -0.9558 110.734 0.022 0.048 0.046 0.023

std dev 0.007 0.205 0.0003 0.0126 4.847 0.001 0.001 0.001 0.006

q10 0.449 7.919 0.0144 -0.9707 105.192 0.021 0.047 0.045 0.018

q50 0.454 8.142 0.0147 -0.9563 110.689 0.021 0.048 0.046 0.022

q90 0.461 8.389 0.0150 -0.9430 116.719 0.022 0.049 0.047 0.027

u = 1, . . . , 25

true value 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.460 7.918 0.0150 -0.9404 105.489 0.021 0.049 0.047 0.023

std dev 0.008 0.188 0.0003 0.0126 3.881 0.000 0.001 0.001 0.008

q10 0.453 7.697 0.0148 -0.9492 103.098 0.021 0.048 0.046 0.017

q50 0.459 7.958 0.0150 -0.9449 105.744 0.021 0.049 0.047 0.020

q90 0.468 8.082 0.0152 -0.9229 108.351 0.022 0.050 0.048 0.032

u = 1, . . . , 30

true value 0.450 8.000 0.0150 -0.9500 100.000 0.020 0.050 0.050 0.020

mean 0.457 7.815 0.0149 -0.9432 111.115 0.022 0.049 0.044 0.026

std dev 0.011 0.209 0.0003 0.0190 5.794 0.001 0.001 0.002 0.010

q10 0.448 7.523 0.0147 -0.9596 104.771 0.021 0.048 0.042 0.019

q50 0.453 7.857 0.0148 -0.9514 111.854 0.022 0.048 0.044 0.023

q90 0.472 8.016 0.0151 -0.9105 116.199 0.023 0.049 0.046 0.038

Note: This table provides Monte Carlo simulation results for the SVCDEJ model, based on 300 repli-

cations. Six settings with different ranges of the argument u are considered. Each panel lists, for each

parameter, the true value, the Monte Carlo mean and standard deviation, and the 10th, 50th and 90th

Monte Carlo percentiles, respectively. We use T = 500 time points with ∆t = 1/250. The initial values

are set to F0 = 100 and v0 = 0.015. The threshold for singular values is set to s̄ = 10−7. The probability

of negative jumps is fixed to p− = 0.7.
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Figure 1: RMSPE for different levels of s̄

Note: This figure plots the RMSPE for different levels of s̄, considering three different

ranges of the argument u. In particular, we estimate N = 300 replications for each

s̄ = {10−9, 5·10−9, 10−8, 5·10−8, 10−7, 5·10−7, 10−6, 5·10−6, 10−5, 5·10−5} and plot the re-

sulting RMSPEs against s̄ in log-scale.

the levels s̄ in between 10−7 and 10−6 yield the smallest RMSPE. In the following simulations

and empirical applications, we therefore set s̄ = 10−7.

We end this subsection by noting that we have also conducted simulation studies for some

related alternative one-factor specifications. In particular, in Appendix D, we provide additional

simulation results for the ‘SVCJ’ model with a Gaussian jump size distribution, and the ‘SVCEJ’

model with two separate counting processes for positive and negative jumps. The former shows

a very good finite-sample performance, while the latter, a richer model specification, shows

reasonable results, gradually reaching the limits of what can be identified using the present

input data and design.

4.2 SVCDEJ with external factors

Now we extend the one-factor specification by adding an external factor. This modification can

be seen as a two-factor specification, but we will assume that the second factor is observable.

The motivation comes from the fact that in some situations we might have an understanding

of possible drivers of the risks in the market. Therefore, we would like to embed exogenous

variables into the model’s risk factors and quantify their impact.

In particular, next to the stochastic volatility component we introduce the exogenous factor

ht, which affects the intensity of jumps and the diffusive component. The model reads as follows:

d logFt = (−1
2Vt − µλt)dt+

√
vtdW1,t + q

√
htdW3,t + JtdNt, (34)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW2,t + Jv

t 1{Jt<0}dNt, (35)

dht = κh(h̄− ht)dt+ σh
√
htdW4,t, (36)

where Vt = vt+ q
2ht is the total diffusive variance of the process and the jump intensity process

λt is also affected by ht with λt = δvt + γht, q, δ, γ > 0. We assume that W3,t and W4,t are
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independent standard Brownian motions, jointly independent of (W1,t,W2,t). The process ht is

exogenous to the SVCDEJ dynamics, meaning that the dynamics of logFt and vt do not affect

the dynamics of ht. In turn, the exogenous factor ht affects the intensity of jumps and the

diffusive component of the log return dynamics. This specification is similar to the two-factor

model in Andersen et al. (2015a), which includes short- and long-term stochastic volatility

components. The difference is that here the exogenous process ht is observable, although its

parameters are unknown.

In the Monte Carlo simulations, we consider two possible estimation approaches. In the first

approach, we assume a correct specification of the dynamics of ht with known true parameters

κh, h̄ and σh. In practice, these parameters can be pre-estimated given the observed path of the

exogenous process. In the second approach, we estimate the misspecified model in which the

contribution of ht is constant throughout the maturity of an option. In other words, under this

approach we ignore the dynamics of ht when pricing options, but let ht still affect the level of

the jump intensity and of the total variance. The motivation is that when the exogenous process

is persistent and smooth relative to vt, its dynamics can be neglected when pricing options with

short expiration periods. In a similar way, interest rates are often assumed to enter option prices

in a deterministic way. Moreover, the true parametric specification for an exogenous variable is

likely unknown in practice, but if its dynamics are persistent and smooth, we can find its effect

on option prices via this approach. Therefore, in the Monte Carlo experiment, we simulate ht

with a mean-reversion rate that is smaller than that in vt, mimicking the specification we will

explore in the empirical application.

For the rest, the Monte Carlo setting for the SVCDEJ model with an external factor is

the same as for the SVCDEJ specification in the previous subsection. The parameters of the

external factor are set to κh = 1, h̄ = 1 and σh = 0.1. The simulation results are provided

in Table 2. The parameters of the SVCDEJ model exhibit similar good performance under

both estimation approaches. Importantly, the parameters related to the external factors, γ and

q, also show similar good performance in the correctly specified model as in the misspecified

setting. We emphasize that this is achieved due to simulating a relatively smooth and persistent

exogenous process ht and using short-dated options in the estimation procedure.

5 Data

This section describes the data and the data selection process, which we use in our empirical

application. Since our estimation procedure utilizes option-implied CCFs, we also pay attention

to the construction of these objects in this section. Further details are in Appendix C.

5.1 Data description

In this paper, we use options data on the S&P 500 stock market index obtained from the

Chicago Board Options Exchange (CBOE). We focus on the period from May 1, 2017, to April

1, 2021, covering in particular the turbulent period in the stock market due to the outbreak of

the Covid-19 pandemic. The CBOE provides end-of-day option quotes and a snapshot at 3:45
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Table 2: Monte Carlo results for the SVCDEJ model with external factor

parameter σ κ v̄ ρ δ η+ η− µv γ q σκ

(a) Estimation with known true parameters for ht

true value 0.450 8.00 0.0150 -0.950 100.00 0.0200 0.050 0.050 1.500 0.050 0.020

mean 0.452 8.15 0.0150 -0.939 116.21 0.0211 0.049 0.046 1.480 0.046 0.024

std dev 0.034 0.36 0.0019 0.047 11.37 0.0008 0.001 0.002 0.167 0.005 0.011

q10 0.423 7.65 0.0140 -0.977 102.67 0.0206 0.048 0.044 1.348 0.042 0.016

q50 0.442 8.22 0.0145 -0.954 117.07 0.0209 0.048 0.045 1.531 0.048 0.019

q90 0.502 8.52 0.0167 -0.857 128.02 0.0218 0.050 0.047 1.565 0.049 0.043

(b) Estimation of misspecified model

true value 0.450 8.00 0.0150 -0.950 100.00 0.0200 0.050 0.050 1.500 0.050 0.020

mean 0.450 8.16 0.0150 -0.939 116.93 0.0210 0.049 0.046 1.473 0.046 0.024

std dev 0.034 0.37 0.0022 0.044 11.47 0.0016 0.001 0.002 0.165 0.006 0.012

q10 0.425 7.70 0.0140 -0.973 106.71 0.0206 0.048 0.044 1.380 0.043 0.016

q50 0.441 8.23 0.0146 -0.954 117.78 0.0209 0.048 0.045 1.516 0.047 0.019

q90 0.492 8.55 0.0159 -0.861 128.68 0.0214 0.049 0.047 1.546 0.048 0.043

Note: This table provides Monte Carlo simulation results for the SVCDEJ model with an exogenous factor,

based on 300 replications. Each panel lists, for each parameter, the true value, the Monte Carlo mean and

standard deviation, and the 10th, 50th and 90th Monte Carlo percentiles, respectively. We use T = 500 time

points with ∆t = 1/250. The range for the arguments is set to u = 1, . . . , 20 and the threshold to s̄ = 10−7.

The initial values are set to F0 = 100 and v0 = 0.015. The probability of negative jumps is fixed to p− = 0.7.

The parameters of the external factor are set to κh = 1, h̄ = 1 and σh = 0.1.

pm ET, 15 minutes prior to the market closure. We use the latter to calculate mid-quotes since

it is considered to be a more accurate representation than the former in view of market liquidity.

The data contain both the ‘standard’ AM-settled SPX options and Weeklys and End-of-Months

PM-settled SPXW products. The settlement value for the SPX options is based on the opening

level of the S&P 500 index on the settlement day, whereas for the SPXW options it is based on

the closing prices of the index.

Given that we need a reliable and wide coverage of option prices for each tenor, we use

a fairly generous set of filters. In particular, we retain option observations that satisfy the

following criteria: (i) bid price is strictly positive and ask-to-bid ratio is less than a factor 10;

(ii) the maturity is larger than or equal to 2 calendar days, but less than or equal to 365 calendar

days; (iii) it is not an early-closure day. The first criterion filters out illiquid observations and

the second one limits our consideration in terms of options’ maturity. The third criterion rules

out shortened trading sessions, which in total constitute 10 days in our sample.

For each tenor, we determine the moneyness based on the forward index level, Ft(τ). For

that, we use the put-call parity to calculate the forward price for close to at-the-money (ATM)

options. Specifically, we use up to 5 option pairs with the smallest absolute difference between

the call and put prices. The median of their forward-implied prices is taken as the forward index

level for the corresponding tenor. The risk-free rates are obtained by interpolating the LIBOR

rates to any particular tenor. Finally, given the calculated forward prices and moneyness levels,

we retain only out-of-the-money (OTM) options for further exploitation. Descriptive statistics

of the S&P 500 index options data sample are provided in Table 3. We observe that the largest

portion of the trading volume is due to trades of OTM contracts and options with time-to-
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Table 3: Descriptive statistics for S&P 500 index options

k ≤ 0.8 0.8 < k ≤ 0.95 0.95 < k ≤ 1.03 1.03 < k ≤ 1.1 1.1 < k Total

Panel A: Total volume of option contracts (in millions)

τ ∈ (2, 9] 4.52 52.61 167.09 13.27 1.25 238.73

τ ∈ (9, 30] 25.47 74.58 168.06 29.93 3.96 302.00

τ ∈ (30, 60] 25.85 61.97 109.53 28.80 4.22 230.38

τ ∈ (60, 90] 11.68 21.70 40.82 11.05 3.05 88.30

τ ∈ (90, 180] 19.93 22.83 27.23 10.59 4.57 85.15

τ ∈ (180, 365] 10.74 10.91 10.82 4.54 5.12 42.12

Total 98.19 244.60 523.55 98.18 22.16 986.68

Panel B: Volume of OTM option contracts (in millions)

τ ∈ (2, 9] 4.12 52.03 139.33 11.94 0.96 208.37

τ ∈ (9, 30] 24.04 73.54 133.21 27.87 3.36 262.03

τ ∈ (30, 60] 23.82 61.11 83.72 27.28 3.85 199.79

τ ∈ (60, 90] 10.62 21.21 26.72 10.44 2.78 71.77

τ ∈ (90, 180] 18.77 22.15 18.23 9.92 4.30 73.35

τ ∈ (180, 365] 10.34 10.29 6.96 4.06 4.88 36.53

Total 91.71 240.32 408.17 91.51 20.14 851.85

Panel C: Average OTM option price ($)

τ ∈ (2, 9] 0.43 1.38 8.69 2.69 1.73 4.32

τ ∈ (9, 30] 0.92 5.53 23.53 5.47 2.68 10.07

τ ∈ (30, 60] 2.42 13.28 40.10 11.84 4.68 16.73

τ ∈ (60, 90] 5.05 24.89 63.56 22.00 6.17 24.93

τ ∈ (90, 180] 10.97 50.74 104.11 47.11 11.76 43.14

τ ∈ (180, 365] 18.80 90.42 155.53 85.29 19.67 53.05

Total 7.97 22.29 47.73 22.35 9.64 24.02

Note: Descriptive statistics for filtered option data on the S&P 500 stock market index. The sample contains daily option

data from 1 May 2017 to 1 April 2021. Observations are bucketed into six categories based on the time-to-maturity, τ , and

into five categories with respect to the moneyness level, defined as strike-to-forward ratio k = K/F .

maturity less than 60 calendar days. Figure 2 plots the frequency of tenors up to 70 calendar

days.

5.2 CCF-spanning option portfolios

The construction of the CCF-spanning option portfolios requires reliable option slices with wide

coverage of strikes. Given that most of the trading volume is concentrated in option contracts

with time-to-maturity of less than 60 days, our empirical application relies on the use of short-

dated option slices with expiration period of no more than 2 months. In particular, on each

trading day, we keep the six tenors closest to 8, 15, 22, 29, 36 and 61 days10 from below with

the largest trading volume and number of quoted OTM option contracts. Specifically, starting

with the option slices closest to the indicated tenors, we compare them with every next shorter

maturity option slice, and prefer the next one if it has a larger trading volume and a larger

10The first five of these tenors are the most representative in the sample, see Figure 2.
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Figure 2: Stacked bar chart of time-to-maturity frequency

Note: This figure plots a stacked bar chart for the frequency of tenors in S&P 500 index

options. The sample contains daily option data from 1 May 2017 to 1 April 2021 (constituting

978 trading days). The indicators ‘spx’ and ‘spxw’ correspond to AM-settled ‘standard’ and

PM-settled ‘weeklys’ and end-of-month contracts, respectively.

number of quoted contracts for OTM options. Table 4 provides the descriptive statistics for each

of the six selected tenors over the considered time span. We notice the wide coverage of strikes,

since the average minimum put and call prices are close to the tick size of $0.05, especially for

very short-dated options. We also mention that in the selected option sample, each option slice

at each trading day contains at least 55 different quoted contracts. Therefore, no additional

filters on the minimum number of contracts are imposed. In total, we have 978 trading days,

with six different tenors at each one of them, resulting in a total number of 1,158,059 contracts

in the sample.

The inputs of our estimation procedure are option portfolios representing CCFs rather than

BSIVs that are commonly used in the literature. Therefore, we pay careful attention to the con-

struction of the option-implied CCF. As discussed in Section 3.1, we use a Riemann sum approx-

imation to obtain a computationally feasible counterpart of the CCF spanning (3). However,

in order to reduce the truncation and discretization errors, we further employ an interpolation-

extrapolation technique. In particular, we interpolate option prices using cubic splines with

carefully selected knot sequences and extrapolate beyond the observable range of strike prices

using a parametrization that satisfies the asymptotic results of Lee (2004). The details of the

interpolation-extrapolation scheme are provided in Appendix C.1.

The calculation of the option-implied CCF then uses the Riemann sum approximation (14)

applied to the result of the interpolation-extrapolation scheme. The construction is conducted

for each day and for each maturity separately. In particular, for equation (14), we set ∆m =

0.0001 with a sufficiently wide range of log-moneyness between m = −6 and m = 2.

To conclude this section we emphasize again that, contrary to what is common in many
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Table 4: Descriptive statistics for the selected sample

Number 1 2 3 4 5 6 Total

avg. tenor 6.97 12.10 18.95 26.08 33.95 53.67 25.29

avg. min put 0.08 0.09 0.10 0.11 0.11 0.14 0.10

avg. min call 0.09 0.09 0.10 0.11 0.12 0.14 0.11

avg. max price 22.48 31.65 40.24 47.56 54.83 71.05 44.64

avg. # options 133.75 183.64 204.47 206.90 216.50 238.84 197.35

avg. min K/F 0.79 0.69 0.60 0.54 0.49 0.42 0.59

avg. max K/F 1.06 1.09 1.12 1.14 1.16 1.21 1.13

avg. ATM BSIV 0.147 0.151 0.151 0.152 0.154 0.158 0.152

Note: Descriptive statistics for the selected data sample of options on the S&P 500 stock market

index. The sample contains daily option data from 1 May 2017 to 1 April 2021. For each trading

day, we select the six option tenors closest to 8, 15, 22, 29, 36 and 61 days from below with

the largest trading volume and number of quoted OTM option contracts. The table provides the

descriptive statistics for each of the six tenors over the sample.

Table 5: SVCDEJ estimation results

σ κ v̄ ρ δ η+ η− µv σκ

θ̂ 0.5051 8.325 0.0153 -0.997 157.51 0.0204 0.0424 0.0519 0.253

s.e. 0.0075 0.207 0.0005 0.012 7.28 0.0005 0.0007 0.0009 0.004

Note: This table provides the parameter estimates and standard errors for the SVCDEJ model.

Descriptive statistics of the options data are in Table 4. The model is estimated based on u =

1, . . . , 20 and s̄ = 10−7, and with p− = 0.7.

existing approaches, the option prices—or a monotonic transformation thereof—are not used

as inputs in our developed estimation procedure. Instead, we use the option portfolios that

replicate the CCF of log returns. Furthermore, unlike in many other papers, our option dataset

is daily and utilizes the information from short-dated options with maturities between two days

and two months.

6 Empirical Applications

Having thus constructed the dataset of option-implied CCFs for S&P 500 index options, we now

illustrate our estimation procedure in two empirical applications, without and with an external

factor.

6.1 SVCDEJ

We start with estimating the SVCDEJ model specified in Section 4.1, (28)–(29), using the

CCF-spanning option portfolios with six short-term tenors described in Section 5.2. Table 5

provides the parameter estimates. Informed by the Monte Carlo results, the estimates are

based on the range of CCF arguments u = 1, . . . , 20, a singular value threshold s̄ = 10−7, and

a fixed parameter p− = −0.7. Standard errors are calculated using the familiar sandwich form

covariance matrix.
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Figure 3: SVCDEJ filtered volatility

Note: This figure plots the filtered volatility (i.e., the square root of the filtered state x̂t+1|t) given

the parameter estimates of the SVCDEJ model using Kalman filter recursions.

The parameter estimates in Table 5 are meaningful, intuitive and broadly consistent with

the literature. For instance, Andersen et al. (2015a) find the mean jump sizes to be 1.71%

and 5.33% for positive and negative jumps in their three-factor model specification. (They use,

however, only the Wednesday options with a different sample period, from 1996 to 2010.)

We note that the leverage parameter ρ is estimated close to its boundary value of −1, im-

plying almost perfectly correlated diffusive components in returns and volatility. The empirical

literature suggests that ρ is negative and large in absolute value. The estimate of ρ being nearly

equal to its boundary value might be due to the use of short-dated options that typically ex-

hibit steep implied volatility slopes. Indeed, Andersen et al. (2017) also find this correlation to

be close to −1 in their dataset dominated by option contracts with maturities of less than 2

months.

We also note that the estimated measurement standard error σκ corresponds to a standard

deviation of about 25% of the implied volatility. This is somewhat larger than what one might

expect of measurement errors in option prices only, and might be interpreted to indicate e.g.,

missing state variables. In agreement with this, some of the extensions of the SVCDEJ model

considered below and in Appendix D.2 show a slightly lower estimate of σκ.

Figure 3 plots the filtered volatility (i.e., the square root of the filtered state x̂t+1|t) given the

parameter estimates of the SVCDEJ model. As is clearly visible, the filtered volatility exhibits

a relatively stable volatility regime prior to 2020 and jumps up in March 2020 at the outbreak

of the Covid-19 pandemic.

6.2 SVCDEJ with external factors

Now we turn to model specifications with embedded external factors. In some situations, we

might have specific information on possible drivers of the risks in the market, and would like to

quantify their effect.
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Figure 4: Covid-19 daily cases and reproduction numbers

(a) Daily cases (b) Reproduction numbers

Note: This figure plots the daily Covid-19 cases (worldwide) and two reproduction numbers: the first is taken from the

website ‘Our World in Data’ (using methodology of Arroyo-Marioli, Bullano, Kucinskas, and Rondón-Moreno (2021)); the

second is calculated as the ratio It/It−7, where It is number of infected people in day t and 7 is the reported serial interval

for Covid-19. The sample period runs from 14 February 2020 to 1 April 2021.

An example is the recent Covid-19 crisis. The Covid-19 pandemic has dramatically affected

our lives. It has also had a tremendous impact on the world’s economy and financial markets.

The beginning of the pandemic, in particular, was associated with a spike in uncertainty. This

uncertainty surrounded many aspects: the contagiousness and lethality of the virus, the time

required to develop vaccines, the effectiveness of measures, the work-from-home policies, travel

bans, and so on. In this application, we explore the impact of the Covid-19 pandemic on the

stock market through the lens of option prices. In particular, we consider how the spread of the

virus affected the likelihood of jump events and the volatility in the U.S. stock market.

Figure 4, Panel (a), plots the daily cases of Covid-19 infections around the world obtained

from the World Health Organization (WHO). The reported number of daily cases, however, does

not represent well the contagiousness of the virus. Therefore, Panel (b) of Figure 4 displays

the so-called reproduction number Rt, according to two measures: the first one is taken from

the website ‘Our World in Data’ and the second one is calculated as the ratio Rt = It/It−7,

where It is the number of infected people in day t and 7 is the reported serial interval for Covid-

19. The former is based on the parametric methodology of Arroyo-Marioli et al. (2021) and is

smoothed over time.11 The latter is non-smoothed and based on the assumption that the serial

interval is 7 days, which is consistent with the recent epidemiology literature (see, e.g., Maier

& Brockmann, 2020, Prem et al., 2020, Flaxman et al., 2020, Arroyo-Marioli et al., 2021). We

will use the latter non-parametric and non-smoothed measure as the reproduction number in

our application.

To quantify the effect of Covid-19 propagation on the financial market, we embed the repro-

duction number as an external factor into the (time-varying) levels of the stochastic volatility

and jump intensity processes, as described in Section 4.2, equations (34)–(36), with ht replaced

by Rt. Given that the reproduction number constitutes a relatively persistent process, we will

11In fact, Arroyo-Marioli et al. (2021) use a Kalman smoother.
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treat it as a deterministic process when pricing options; in other words, we follow the second

estimation approach described in Section 4.2. In a similar way, the risk-free rate and dividend

yields are often assumed to be deterministic in the option pricing literature. This allows us to

be agnostic about the parametric dynamics of the reproduction number. Furthermore, given

the short-dated options under consideration, the errors due to this deterministic treatment are

likely to be negligible.12

Table 6: SVCDEJ estimation results with Covid-19 reproduction numbers as external factor

σ κ v̄ ρ δ η+ η− µv γ q σκ

θ̂ 0.5678 11.549 0.0140 -1.000 130.12 0.0181 0.0413 0.0667 2.64 0.0003 0.245

s.e. 0.0176 0.646 0.0007 0.023 11.93 0.0007 0.0012 0.0029 0.25 0.0001 0.004

Note: This table provides the parameter estimates and standard errors for the SVCDEJ model with Covid-19

reproduction numbers as external factor. The reproduction numbers are set to zero before 14 February 2020, and

are taken to be the ratios Rt = It/It−7 starting from 14 February 2020. Descriptive statistics of the options data

are in Table 4. The model is estimated based on u = 1, . . . , 20 and s̄ = 10−7, and with p− = 0.7.

Figure 5: SVCDEJ jump intensity with Covid-19 reproduction numbers as external factor

Note: This figure plots the filtered and total jump intensity given the parameter estimates of the

SVCDEJ model with Covid-19 reproduction number dynamics.

Table 6 provides the parameter estimates for the SVCDEJ model with Covid-19 reproduction

numbers as an exogenous factor. With q estimated at 0.0003, the results indicate that the

reproduction number dynamics have no substantial effect on the total diffusive volatility. A

one unit increase in reproduction numbers, however, leads to an increase in the intensity of

jumps by γ which is estimated at 2.64. In other words, the reproduction number contributes

substantially to the likelihood of jumps. Figure 5 illustrates the dynamics of the jump intensity

without and with the added effect of reproduction numbers.

It is also possible to investigate the contribution of other external factors to the diffusive

volatility and jump intensity. As an example, we provide in Table 7 estimation results for the

12Similarly, Andersen et al. (2017) and Boswijk et al. (2021) consider an approximation of the return process

with ‘freezed’ spot volatility when estimating their option pricing models with short-dated options.
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SVCDEJ model with the Economic Policy Uncertainty (EPU) index embedded as an external

factor. The EPU index, developed by Baker, Bloom, and Davis (2016), reflects policy-related

economic uncertainty based on newspaper coverage frequency. The estimation results indicate

that, unlike the reproduction number, the EPU index has no effect on the jump intensity pro-

cess, but contributes significantly to the total diffusive volatility of the model, with q estimated

at 0.0369; see also Figure 6. Thus, whereas Covid-19 reproduction numbers contribute substan-

tially to the jump intensity dynamics, the policy uncertainty index EPU contributes significantly

to the total diffusive volatility.

Table 7: SVCDEJ estimation results with the EPU index as external factor

σ κ v̄ ρ δ η+ η− µv γ q σκ

θ̂ 0.4887 10.254 0.0116 -1.000 223.94 0.0144 0.0410 0.0462 0.00 0.0369 0.249

s.e. 0.0186 0.783 0.0006 0.037 7.96 0.0011 0.0008 0.0024 0.13 0.0027 0.003

Note: This table provides the parameter estimates and standard errors for the SVCDEJ model with the EPU index

as external factor. Descriptive statistics of the options data are in Table 4. The model is estimated based on

u = 1, . . . , 20 and s̄ = 10−7, and with p− = 0.7.

Figure 6: SVCDEJ diffusive volatility with the EPU index as external factor

Note: This figure plots the filtered and total diffusive volatility given the parameter estimates of

the SVCDEJ model with EPU index dynamics. The total diffusive volatility equals
√

vt + q2ht,

where ht is the external factor given by the EPU index. (The secondary vertical axis shows the

values of q
√
EPUt.)

7 Conclusion

We have proposed a novel state filtering and parameter estimation procedure for option pricing

models that belong to the affine jump-diffusion class. Our procedure utilizes the log of the

option-implied and model-free conditional characteristic function and the model-implied condi-

tional log-characteristic function, which is functionally affine in the model’s state vector. We

have developed a linear state space representation for the considered class of option pricing

33



models, which allows us to exploit suitably modified collapsed Kalman filtering techniques. Our

estimation procedure is fast and easy to implement, circumventing the typical computational

burden when working with option pricing models. We have demonstrated the applicability of

our procedure in two empirical illustrations that analyze S&P 500 index options and the impact

of exogenous variables capturing Covid-19 reproduction and economic policy uncertainty data.

Although we have focused on Gaussian QML estimation based on Kalman filtering tech-

niques, which delivers good results in our Monte Carlo simulations, the same state space formu-

lation can also be analyzed by more refined methods such as those based on particle filters; see,

e.g., Johannes et al. (2009), Christoffersen, Dorion, Jacobs, and Karoui (2014) and Bardgett et

al. (2019). Such methods could exploit the non-Gaussianity and heteroskedasticity in the data

to obtain more efficient estimates, at the cost of some increased computational complexity. We

note that such extensions would still not require option price evaluation by the FFT or COS

methods, and thus retain an important advantage of our approach.

Our proposed estimation procedure in principle allows for identification and estimation of

factor risk premium parameters, by combining the risk-neutral parameters entering the mea-

surement equation with the objective parameters entering the transition equation. Monte Carlo

simulation results suggest, however, that option price data are not very informative about such

risk premia, which is why we have concentrated on the case where the objective and risk-neutral

measures coincide. Fortunately, the simulation results also suggest that inference on the risk-

neutral parameters is quite robust with respect to deviations from this assumption. For more

focused inference on (volatility) risk premium parameters, it may be possible to combine the

information in daily option prices as considered in this paper with realized measures based on

high-frequency returns on the underlying. We intend to explore this in future research.
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Appendix A Proofs

In this appendix, we provide the proof of Proposition 1. First, we state and prove some prelim-

inary results.

A.1 Preliminary results

We start by formally defining the measurement errors in the CCF approximation. Under the

observation error structure specified in Assumption 2 and the CCF approximation given by

equation (14), the total measurement error in the option-spanned CCF may be written as

ζϕt (u, τ) := ϕ̂t(u, τ)− ϕt(u, τ)

=− ut

n∑
j=2

e(iu−1)mj · Ôt(τ,mj)∆mj + ut

∫ ∞

−∞
e(iu−1)m ·Ot(τ,m)dm

=− ut

 n∑
j=2

e(iu−1)mj ·Ot(τ,mj)∆mj +

n∑
j=2

e(iu−1)mj · ζt(τ,mj)∆mj


+ ut

∫ ∞

−∞
e(iu−1)m ·Ot(τ,m)dm,

which after reordering of terms can be decomposed into the following three components:

ζϕt (u, τ) =−ut
n∑

j=2

e(iu−1)mj · ζt(τ,mj)∆mj︸ ︷︷ ︸
=:ζ

(1)
t (u,τ)

+ ut

∫ m1

−∞
e(iu−1)m ·Ot(τ,m)dm+ ut

∫ ∞

mn

e(iu−1)m ·Ot(τ,m)dm︸ ︷︷ ︸
=:ζ

(2)
t (u,τ)

+ ut

n∑
j=2

∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm︸ ︷︷ ︸

=:ζ
(3)
t (u,τ)

= ζ
(1)
t (u, τ) + ζ

(2)
t (u, τ) + ζ

(3)
t (u, τ). (A.1)

The error terms ζ
(1)
t (u, τ), ζ

(2)
t (u, τ) and ζ

(3)
t (u, τ) represent observation, truncation and

discretization errors, respectively. In order to characterize the asymptotic orders of these errors,

we make use of the following auxiliary result:

Lemma 1 Let ft+τ = Ft+τ

Ft
be the futures price normalized to its value at time t for τ > 0. For

all m > 0, we have the call price bounds

Ot(τ,m)

Ft
≤
(

p

p+ 1

)p e−rτEQ[fp+1
t+τ |Ft]

p+ 1
e−pm, (A.2)

for each p > 0. Similarly, for all m < 0, we have the put price bounds

Ot(τ,m)

Ft
≤
(

q

q + 1

)q e−rτEQ[f−q
t+τ |Ft]

q + 1
e(1+q)m, (A.3)

for each q > 0.
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Proof: The result is a straightforward adaptation of Theorem 2.1 in Lee (2004). □

Lemma 1 relates moments of the underlying process and of its reciprocal to bounds on option

prices. Similar to Qin and Todorov (2019) and Todorov (2019), we assume the existence of at

least the second order moment of the underlying process and of its reciprocal, formally stated

in Assumption 3(i). If higher moments exist, then we can obtain even tighter bounds for the

remainder term in Proposition 1 due to (A.2) and (A.3).

The following lemma establishes the order of magnitude of the truncation and discretization

errors under the joint asymptotic scheme, expressed with respect to the number of option prices

n with fixed maturity. As in the main text, we denote the smallest and largest log-moneyness

by m = min1≤j≤nmj and m = max1≤j≤nmj , and the corresponding strike prices by K and K.

In the proofs, we denote by Ct an Ft-adapted random variable that does not depend on m and

that may change from line to line.

Lemma 2 Suppose EQ[F p+1
t+τ |Ft] < ∞ and EQ[F−q

t+τ |Ft] < ∞ for some p > 0 and q > 0,

Assumption 3(ii) holds, and in addition K ≍ n−α and K ≍ nα with α > 0 and α > 0. Then,

as n→ ∞, we have

ζ
(2)
t (u, τ) = Op

(
n−(qα∧(1+p)α)

)
, (A.4)

and

ζ
(3)
t (u, τ) = Op

(
log n

n1+qα∧(p+1)α

)
, (A.5)

for a fixed u ∈ U and τ > 0.

Proof: We start with the truncation errors. For m = m1 < . . . < mn = m, with m < 0 and

m > 0, and using Lemma 1, we can bound the upper and lower truncation parts as follows:∣∣∣ 1
Ft

∫ ∞

m
e(iu−1)m ·Ot(τ,m)dm

∣∣∣ ≤ ∫ ∞

m

∣∣∣e(iu−1)m
∣∣∣ · ∣∣∣Ot(τ,m)

Ft

∣∣∣dm ≤ Cte
−(1+p)m,∣∣∣ 1

Ft

∫ m

−∞
e(iu−1)m ·Ot(τ,m)dm

∣∣∣ ≤ ∫ m

−∞

∣∣∣e(iu−1)m
∣∣∣ · ∣∣∣Ot(τ,m)

Ft

∣∣∣dm ≤ Cte
qm,

where, as mentioned before, Ct is independent of m and may vary from line to line. Therefore,

as m→ −∞ and m→ ∞, we have

ζ
(2)
t (u, τ) = ut

∫ m

−∞
e(iu−1)m ·Ot(τ,m)dm+ ut

∫ ∞

m
e(iu−1)m ·Ot(τ,m)dm

= Op

(
e−q|m|

)
+Op

(
e−(1+p)|m|

)
= Op

(
e−(q|m|∧(1+p)|m|)

)
= Op

(
n−(qα∧(1+p)α)

)
.

For the discretization errors, we use the following decomposition:∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm

=

∫ mj

mj−1

[(
e(iu−1)m − e(iu−1)mj

)
·Ot(τ,mj) + e(iu−1)m (Ot(τ,m)−Ot(τ,mj))

]
dm.
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By applying the mean value theorem twice, we have∣∣∣e(iu−1)m − e(iu−1)mj

∣∣∣ ≤ |iu− 1|
∣∣∣e(iu−1)m̃

∣∣∣∆mj ≤ e−mj−1(|u| ∨ 1)∆mj ,

and ∣∣∣e(iu−1)m (Ot(τ,m)−Ot(τ,mj))
∣∣∣ ≤ e−mj−1

∣∣∣∣∣∂Ot(τ,m)

∂m

∣∣∣
m=m̃

∣∣∣∣∣∆mj

≤ e−mj−1

∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣
K=K̃

∣∣∣∣∣em̃Ft∆mj

≤

∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣
K=K̃

∣∣∣∣∣e∆mjFt∆mj ,

where m̃ = log K̃
Ft

lies between m and mj .

For the first term in the decomposition above, we use that Lemma 1 implies that, for all m,

Ot(τ,m)

Ft
≤ Cte

−(pm∨−(1+q)m).

Furthermore, for the second term in the decomposition, we exploit the fact that the derivative

with respect to the strike price is the risk neutral distribution or survival function, which can

be bounded using the Markov inequality. In particular, for m > 0,∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣∣∣ = e−rτQ(Ft+τ > K) = e−rτQ (ft+τ > em)

≤ e−rτEQ[fp+1
t+τ |Ft]e

−(p+1)m,

and, for m < 0, ∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣∣∣ = e−rτQ(Ft+τ < K) = e−rτQ
(
f−1
t+τ > e−m

)
≤ e−rτEQ[f−q

t+τ |Ft]e
qm.

Therefore, ∣∣∣∣∣∂Ot(τ,m)

∂K

∣∣∣∣∣ ≤ Cte
−((p+1)m∨−qm).

Combining all these inequalities together, we obtain∣∣∣ 1
Ft

∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm
∣∣∣

=
∣∣∣ 1
Ft

∫ mj

mj−1

[(
e(iu−1)m − e(iu−1)mj

)
·Ot(τ,mj) + e(iu−1)m (Ot(τ,m)−Ot(τ,mj))

]
dm
∣∣∣

≤
(
Ct(|u| ∨ 1)∆mje

−mj−1e−[pmj−1∨−(1+q)mj−1] + Cte
∆me−[(p+1)mj−1∨−qmj−1]∆mj

)
∆mj

≤ Cte
−[(p+1)mj−1∨−qmj−1](∆mj)

2.
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Then, for fixed m and m, and ∆m→ 0, we have

ζ
(3)
t (u, τ) = ut

n∑
j=2

∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm = Op(∆m). (A.6)

The result (A.6), however, needs to be adapted for the joint asymptotic scheme, where m,

m and ∆m all depend on n, with n→ ∞. To this end, we first note that∣∣∣ n∑
j=2

1

Ft

∫ mj

mj−1

[
e(iu−1)m ·Ot(τ,m)− e(iu−1)mj ·Ot(τ,mj)

]
dm
∣∣∣

≤ Ct

n∑
j=2

e−[(p+1)mj−1∨−qmj−1](∆mj)
2

≤ Ct∆m
n∑

j=2

e−[(p+1)mj−1∨−qmj−1]∆mj .

The sum on the far right-hand side of the inequality is a Riemann approximation that converges

to the following integral, as n→ ∞:

n∑
j=2

e−[(p+1)mj−1∨−qmj−1]∆mj −→
∫ m

m
e−[(p+1)m∨−qm]dm =

∫ 0

m
eqmdm+

∫ m

0
e−(p+1)mdm

= Op

(
n−qα

)
+Op

(
n−(p+1)α

)
= Op

(
n−(qα∧(p+1)α)

)
.

Next, given Assumption 3(ii) on the log-moneyness grid, we can bound ∆m as

m−m

ηn
≥ ∆m ≥ m−m

n
.

Hence, ∆m = Op

(
n−1 log n

)
. Thus, the order of magnitude of the discretization errors under

the joint asymptotic scheme is given by

ζ
(3)
t (u, τ) = Op

(
n−(qα∧(p+1)α)

)
Op

(
log n

n

)
= Op

(
log n

n1+qα∧(p+1)α

)
.

□

A.2 Proof of Proposition 1

Using Lemma 2, Assumption 3 on the moments of the underlying process and observation error

Assumption 2, we can decompose the measurement errors in the CCF approximation as

ϕ̂t(u, τ)− ϕt(u, τ) = ζ
(1)
t (u, τ) +Op

(
log n

n1+2(α∧α) ∨ n
−2(α∧α)

)
= ζ

(1)
t (u, τ) +Op

(
n−2(α∧α)

)
, (A.7)

with

ζ
(1)
t (u, τ) = −ut

n∑
j=2

e(iu−1)mj · ζt(τ,mj)∆mj .
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We now show that ζ
(1)
t (u, τ) = Op

(√
n−1 log n

)
. In fact, the standard deviation of the

observation errors is proportional to the Black-Scholes vega, which decreases with |m| → ∞.

More specifically, the vega is given by

νt(τ,m) = Ft

√
τφ(d+),

d+ = −mϖ−1/2(m) +
1

2
ϖ1/2(m),

where φ(x) is the standard normal pdf and ϖ(m) := κ2(τ,m)τ is the total implied variance.13

Hence,

ν2t (τ,m) = F 2
t τ

1

2π
e−d2+ = F 2

t τ
1

2π
e−(ϖ−1(m)m2−m+ 1

4
ϖ(m)).

Therefore, given Assumption 2, we obtain

E
[∣∣∣ζ(1)t (u, τ)

∣∣∣2∣∣∣Ft

]
≤ |ut|2

n∑
j=2

e−2mj · E
[
ζt(τ,mj)

2|Ft

]
(∆mj)

2

≤ |ut|2
n∑

j=2

e−2mj · σ2κκ2(τ,mj)F
2
t τ

1

2π
e−(ϖ−1

j m2
j−mj+

1
4
ϖj)(∆mj)

2

≤ Ct∆m
n∑

j=2

ϖje
−ϖ−1

j m2
j−mj− 1

4
ϖj∆mj

≤ Ct∆m
n∑

j=2

ϖje
−d2−(mj)∆mj ,

where d−(m) := −mϖ−1/2(m)− 1
2ϖ

1/2(m) and ϖj := ϖ(mj). Then, as n→ ∞, the right-hand

side summation converges to∫ ∞

−∞
ϖ(m) exp

(
−d2−(m)

)
dm =:

∫ ∞

−∞
h(m)dm,

provided that the function h(m) is integrable.

To show the latter, we focus on the tail behavior, since h is continuous and hence bounded

on the bounded interval [m,m]. For that, we will make use of the following asymptotic results

of Lee (2004):

lim sup
m→−∞

ϖ(m)

|m|
= β∗ with β∗ ∈ [0, 2], and

1

2β∗
+
β∗

8
− 1

2
= sup{q : E[F−q

t+τ |Ft] <∞},

lim sup
m→∞

ϖ(m)

|m|
= β

∗
with β

∗ ∈ [0, 2], and
1

2β
∗ +

β
∗

8
− 1

2
= sup{p : E[F 1+p

t+τ |Ft] <∞}.

That is, for m < 0, the total implied variance ϖ(m) grows at most as fast as −β∗m for some

β∗ ∈ [0, 2]. Given Assumption 3 on the moments of the reciprocal process, we further have

β∗ < 1, which implies that h is integrable over the negative domain, as for sufficiently small m,

0 ≤ h(m) = ϖ(m) exp

(
−ϖ−1(m)m2 −m− 1

4
ϖ(m)

)
≤ −β∗m exp

(
m

β∗
−m

)
.

13The total implied variance ϖ(m) is a function of both the moneyness level m and the time-to-maturity τ .

For ease of notation, we write it as a function of moneyness only since the time-to-maturity τ is fixed in our

exposition.
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Integrability over the positive domain is achieved even without exploiting moment conditions.

Therefore, since the right-hand side summation converges under the joint asymptotic scheme

to the integral above, we have that ζ
(1)
t (u, τ) = Op

(√
∆m

)
= Op

(√
n−1 log n

)
.

Furthermore, from Assumption 2, it also follows that E[ζ(1)t (u, τ)|Ft] = 0, while the dis-

cretization and truncation errors ζ
(2)
t (u, τ) and ζ

(3)
t (u, τ) are Ft-measurable. Hence, the covari-

ance and pseudo-covariance terms of the CCF approximation are given by the second moments

of the observation errors ζ
(1)
t (u, τ), that is,

Cov(ζϕt (ui, τ), ζ
ϕ
t (uj , τ)) : = E

[(
ζϕt (ui, τ)− E[ζϕt (ui, τ)]

)(
ζϕt (uj , τ)− E[ζϕt (uj , τ)]

)∣∣∣∣∣Ft

]
= E

[
ζ
(1)
t (ui, τ)ζ

(1)
t (−uj , τ)

∣∣∣Ft

]
= ui,tuj,t

n∑
j=2

e(i(ui−uj)−2)mj · σ2t (τ,mj)(∆mj)
2

= σ2κ · ui,tuj,t
n∑

j=2

e(i(ui−uj)−2)mj · κ2t (τ,mj)ν
2
t (τ,mj)(∆mj)

2

︸ ︷︷ ︸
=:γt(ui,uj ,τ)

= σ2κ · γt(ui, uj , τ),

and

PCov(ζϕt (ui, τ), ζ
ϕ
t (uj , τ)) : = E

[(
ζϕt (ui, τ)− E[ζϕt (ui, τ)]

)(
ζϕt (uj , τ)− E[ζϕt (uj , τ)]

) ∣∣∣∣∣Ft

]
= E

[
ζ
(1)
t (ui, τ)ζ

(1)
t (uj , τ)

∣∣∣Ft

]
= σ2κ · ui,tuj,t

n∑
j=2

e(i(ui+uj)−2)mj · κ2t (τ,mj)ν
2
t (τ,mj)(∆mj)

2

︸ ︷︷ ︸
=:ct(ui,uj ,τ)

= σ2κ · ct(ui, uj , τ),

for any ui, uj ∈ U , where z denotes the complex conjugate of a complex number z ∈ C. In

other words, the covariances of the total measurement errors in the CCF approximation are

determined by the properties of the observation errors in option prices only. Note that the

terms γt(ui, uj , τ) and ct(ui, uj , τ) depend only on option’s characteristics such as BSIV, BS

vega and moneyness levels. That is, the covariance terms are parametrized using only a single

parameter σκ that reflects the variance of the observation errors in option prices.

The measurement equation for the filtering problem is given in terms of the log CCF.

Therefore, by applying a Taylor-series expansion to the difference of the logs and using the

error decomposition of the CCF approximation (in particular, (A.7)), we have

ξt(u, τ) := log ϕ̂t(u, τ)− log ϕt(u, τ) = log

(
1 +

ζ
(1)
t (u, τ) + ζ

(2)
t (u, τ) + ζ

(3)
t (u, τ)

ϕt(u, τ)

)
= ξ

(1)
t (u, τ) + rt(u, τ),
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where

ξ
(1)
t (u, τ) :=

ζ
(1)
t (u, τ)

ϕt(u, τ)
= Op

(√
log n

n

)
, and rt(u, τ) = Op

(
n−2(α∧α) ∨ log n

n

)
.

We note that the remainder term collects the log-linearization of the truncation and discretiza-

tion errors and higher-order terms from a Taylor-series expansion.

After stacking each component of the measurement equation (12) as well as the observation

errors ξ
(1)
t (u, τ) and remainder term rt(u, τ) along arguments, real and imaginary parts, and

maturity, we obtain the state space measurement equation (19) in Proposition 1.

To derive the covariance matrix of the measurement errors, we first consider the covariance

and pseudo-covariance matrices of the stacked vector ξ
(1)
t,τ =

(
ξ
(1)
t (u1, τ), . . . , ξ

(1)
t (uq, τ)

)′
for a

fixed time t and time-to-maturity τ . They are given by

Γt,τ : = E
[
ξ
(1)
t,τ ξ

(1)
t,τ

′]
=
[
E[ξ(1)t (ui, τ)ξ

(1)
t (−uj , τ)]

]
1≤i,j≤q

= σ2κ ·
[

γt(ui, uj , τ)

ϕt(ui, τ)ϕt(−uj , τ)

]
1≤i,j≤q

=: σ2κ · Γ̃t,τ ,

Ct,τ : = E
[
ξ
(1)
t,τ ξ

(1)
t,τ

′]
=
[
E[ξ(1)t (ui, τ)ξ

(1)
t (uj , τ)]

]
1≤i,j≤q

= σ2κ ·
[

ct(ui, uj , τ)

ϕt(ui, τ)ϕt(uj , τ)

]
1≤i,j≤q

=: σ2κ · C̃t,τ .

Next, since ξ
(1)
t,τ is a complex-valued random vector, the covariance matrix of the stacked real

and imaginary parts of ξ
(1)
t,τ is of the following form:

Ht,τ := Var

[(
ℜ(ξ(1)t,τ )

ℑ(ξ(1)t,τ )

)]
=

(
1
2ℜ(Γt,τ + Ct,τ )

1
2ℑ(−Γt,τ + Ct,τ )

1
2ℑ(Γt,τ + Ct,τ )

1
2ℜ(Γt,τ − Ct,τ )

)

= σ2κ ·

(
1
2ℜ(Γ̃t,τ + C̃t,τ )

1
2ℑ(−Γ̃t,τ + C̃t,τ )

1
2ℑ(Γ̃t,τ + C̃t,τ )

1
2ℜ(Γ̃t,τ − C̃t,τ )

)
=: σ2κ · H̃t,τ .

This establishes (21).

Given Assumption 2, the error terms ζ
(1)
t,τ and ξ

(1)
t,τ are conditionally independent along

maturity and time. This implies that the measurement errors εt stacked along maturities are

also conditionally independent, thus E[εtε′s] = 0 for s ̸= t, and their covariance matrix has a

block-diagonal form: Ht = blkdiag{Ht,1, . . . ,Ht,k}.
The disturbance term in the state updating equation is given by ηt+1 = xt+1 − E[xt+1|Ft].

Therefore, ηt constitutes a martingale difference sequence, thus E[ηtη′s] = 0 for s ̸= t = 1, . . . , T .

Since the measurement errors εt have zero mean conditional on the filtration Ft, we also

have that E[εtxt] = 0. Given that the state process is stationary and the initial condition is

the unconditional mean, E[εtx′1] = 0 and E[ηt+1x
′
1] = 0. This implies that E[εtη′s] = 0 for all

s, t = 1, . . . , T . Thus, the proof is established. □
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Appendix B Conditional Moments

In this appendix, we describe how the conditional mean and variance can be computed for the

AJD class of models. In particular, we derive closed-form expressions for the conditional mean

and variance in the univariate case, and briefly discuss how these moments can be obtained

numerically in the multivariate setting at low computational costs. While semi-closed-form

expressions are also available in the multivariate setting, they are more cumbersome to work

with in practice since they typically require matrix exponentials and integrations.

We start with considering the univariate version of the AJD process in (8), using shorthand

notation as follows:

dxt = µ(xt)dt+ σ(xt)dWt + JtdNt, (B.1)

with µ(x) = k0 + k1x, σ
2(x) = h0 + h1x, λ(x) = l0 + l1x, where all coefficients are real-valued

numbers and the standard Brownian motionWt and the counting process Nt are univariate pro-

cesses. The jump size distribution ν on R is independent of time and of any form of randomness

in the model. We further assume that the SDE (B.1) has a unique strong solution and the first

two moments are well defined. For more details, see Section 2.2 and Duffie et al. (2000). For

notational simplicity, let

µJ := E[J ], µJ2 := E[J2], g0 := k0 + l0µJ , g1 := k1 + l1µJ .

The associated infinitesimal generator D, defined at a bounded C2 function f : D → R, with
bounded first and second derivatives fx and fxx, is given by

Df(x) = fx(x)µ(x) +
1

2
fxx(x)σ(x)

2 + λ(x)

∫
R
[f(x+ z)− f(x)]dν(z).

Dynkin’s formula yields that

E[f(xT )|Ft] = f(xt) + E
[∫ T

t
Df(xs)ds

∣∣Ft

]
.

Therefore, we can find the conditional moments by applying Dynkin’s formula for f(x) = x:

E[xT |Ft] = xt + E
[∫ T

t

(
µ(xs) + λ(xs)

∫
R
zdν(z)

)
ds
∣∣Ft

]
= xt + E

[∫ T

t
(k0 + k1xs + (l0 + l1xs)µJ) ds

∣∣Ft

]
= xt +

∫ T

t

(
k0 + l0µJ + (k1 + l1µJ)E[xs

∣∣Ft]
)
ds

= xt +

∫ T

t

(
g0 + g1E[xs

∣∣Ft]
)
ds,

where Fubini’s theorem is used in the third line. Hence, we can obtain the first conditional

moment by solving the following ODE:

dE[xs|Ft] =
(
g0 + g1E[xs

∣∣Ft]
)
ds,
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with initial condition E[xt|Ft] = xt. Thus, the conditional expectation is given by

mt(T ) := E[xT |Ft] = eg1(T−t)xt +
g0
g1

(
eg1(T−t) − 1

)
. (B.2)

Next, we are interested in deriving the conditional variance:

Var(xT |Ft) = E[(xT − E[xT |Ft])
2|Ft].

Note that

xT − E[xT |Ft] = E[xT |FT ]− E[xT |Ft] =

∫ T

t
dE[xT |Fs] =

∫ T

t
dms(T ).

The dynamics of the conditional mean for fixed T > t can be obtained by using Itô’s lemma:

dmt(T ) =
[
−g1eg1(T−t)xt − g0e

g1(T−t)
]
dt+ eg1(T−t)(µ(xt)dt+ σ(xt)dWt) + eg1(T−t)JtdNt

= eg1(T−t) [−(l0 + l1xt)µJdt+ σ(xt)dWt + JtdNt] .

Note that the process mt(T ) for fixed T is a local martingale. Thus, we can use the Itô

isometry to obtain the conditional variance:

Var(xT |Ft) = E

[(∫ T

t
dms(T )

)2 ∣∣∣Ft

]

= E
[∫ T

t
e2g1(T−s)σ2(xs)ds

∣∣∣Ft

]
+ µJ2 · E

[∫ T

t
e2g1(T−s)λ(xs)ds

∣∣∣Ft

]
=

∫ T

t
e2g1(T−s)(h0 + h1E[xs|Ft])ds+ µJ2 ·

∫ T

t
e2g1(T−s)(l0 + l1E[xs|Ft])ds

= (h0 + l0µJ2)

∫ T

t
e2g1(T−s)ds+ (h1 + l1µJ2) ·

∫ T

t
e2g1(T−s)E[xs|Ft]ds,

where we have again used Fubini’s theorem in the third line. Given the conditional expectation,

the second integral on the far right-hand side can be simplified further:∫ T

t
e2g1(T−s)E[xs|Ft]ds =

∫ T

t
e2g1(T−s)

[
eg1(s−t)xt +

g0
g1

(
eg1(s−t) − 1

)]
ds

= e2g1T
[∫ T

t
e−g1(s+t)xt +

g0
g1

(
e−g1(s+t) − e−2g1s

)
ds

]
= e2g1T

[
− 1

g1

(
e−g1(T+t) − e−2g1t

)
xt −

g0
g21

(
e−g1(T+t) − e−2g1t

)
+

g0
2g21

(
e−2g1T − e−2g1t

)]
= − 1

g1

(
eg1(T−t) − e2g1(T−t)

)
xt +

g0
2g21

(
1− eg1(T−t)

)2
.

Thus, the conditional variance in the univariate case is given by

Var(xT |Ft) =− 1

2g1
(h0 + l0µJ2)

(
1− e2g1(T−t)

)
− 1

2g21
(h1 + l1µJ2)

[
2g1

(
eg1(T−t) − e2g1(T−t)

)
xt − g0

(
1− eg1(T−t)

)2]
. (B.3)

Equations (B.2) and (B.3) serve as the basis for the formulation of the transition equa-

tion (20) as discussed in Section 3.1. It is crucial for our application to note that the conditional
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mean (B.2) and conditional variance (B.3) of the univariate AJD process xT at time T > t,

conditional on information at time t, are affine functions in xt. The affinity of the conditional

moments yields the linear state updating equation, which, in turn, allows us to use the linear

Kalman filtering technique.

Using the same reasoning, it is in principle also possible to derive the analogues of equa-

tions (B.2) and (B.3) for the multivariate AJD process. However, these expressions typically

involve matrix exponentials and integrals thereof, which makes them burdensome to work with.

Fortunately, the conditional moments can easily be obtained numerically by differentiating the

CCF, which, as discussed in Section 2.2 is known in semi-closed form for the AJD class. Indeed,

finite difference approximations of the first and second derivatives around the origin yield the

moments with high precision and little additional computational costs. One can also easily

verify that the affine property of the conditional moments holds in the multivariate case by

differentiating the exponentially-affine CCF.

Appendix C Interpolation-Extrapolation Scheme

and CCF Replication

In this appendix, we discuss in detail the option interpolation-extrapolation scheme we adopt

and illustrate the impact of the different measurement errors on the option-implied CCF ‘payoff’

replication.

C.1 Interpolation-extrapolation scheme

C.1.1 Interpolation

For each trading day and for each tenor, we interpolate option prices between moneyness levels

using cubic splines. For interpolation, we consider option data expressed in terms of their total

implied variance, defined as ϖ(m, τ) = κ2(m, τ) · τ , where κ(m, τ) is the Black-Scholes implied

volatility for an option with log-moneyness m and tenor τ . This is similar to interpolating on

the implied volatility domain, but it will provide us further advantages when we proceed to the

extrapolation scheme, discussed in the next subsection.

Cubic splines provide a useful tool for the interpolation of options data and are commonly

employed for this purpose in the literature; see, for instance, Jiang and Tian (2007), Malz (2014)

among many others. Furthermore, they are also used as an approximation method that allows

to smooth out noise in the data; see, for instance, Bliss and Panigirtzoglou (2002), Fengler

(2009). For the latter, it is common to penalize the squared second derivative of the spline.

This might, however, induce a loss of flexibility of the spline leading to larger approximation

errors, especially for short-dated options, which are of pivotal importance in our analysis. In

this paper, we therefore use a standard cubic spline, but instead of providing all data as knot

points for spline interpolation, we explicitly specify which data points shall be used as knots.

This allows us to interpolate in some domains and smooth out in others, taking the ‘best’ out

of the spline interpolation and approximation schemes.
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Figure C.1: Spline interpolation-extrapolation example: April 1, 2021, 15 days to maturity

Note: This figure plots an example of the interpolation-extrapolation scheme for options traded on April 1, 2021 with 15

days to maturity. The option data (blue dots) are interpolated using a cubic spline (orange line). Interpolation is conducted

on the total implied variance domain. The left panel plots the data in terms of Black-Scholes implied volatility, whereas

the right panel plots the data in terms of log prices. Moneyness K/Ft is on the horizontal axis.

Close to ATM options are more liquid than very deep OTM counterparts. Thus, intuitively,

information in the former options is more reliable, and we would not like to distort this informa-

tion by imposing smoothing constraints. Very deep OTM options, on the other hand, may be

quite illiquid. Furthermore, the tick size for deep OTM options becomes large relative to their

value. This might lead to observing a sequence of the same midpoint quote prices in the data.

Figure C.1 provides an example of such ‘flat’ prices for put options, visible in the right panel

for very deep OTM options (i.e., small k). These prices clearly violate no-arbitrage assump-

tions. However, throwing them away would reduce available information, needed to extract the

CCF; these prices are not uninformative, but the tick size distorts their information. Therefore,

instead of eliminating ‘flat’ prices, we will just not include them as knot points in our spline

interpolation scheme. In other words, we do not require the spline function to go through all

data points for deep OTM options, but rather let it approximate the information in them.14

More formally, we first include the closest to ATM put option, mn∗ , in the knot sequence and

then iteratively include put options with smaller moneyness level mi for i = n∗−1, . . . , 2 such

that all of the following conditions are satisfied: (i) P (mi) < P (mi−1) and C(mi) > C(mi−1);

(ii) P (mi+1) < P (mi) and C(mi+1) > C(mi); (iii) daily trading volume for P (mi) is larger

than one. The first two criteria check for no-arbitrage conditions. The third one filters out

possible stale prices from being a knot point. Similar mirrored conditions are applied to OTM

call prices. The knot sequence thus constructed will likely contain more close to ATM options

and fewer deep OTM options, resulting in more interpolation in the former range and more

approximation in the latter one.

We emphasize again that we do not filter out option data that violate no-arbitrage conditions,

which would reduce available information for CCF extraction. Instead, we do not include

these points into the knot sequence, thus we do not require the spline to go exactly through

14Recall that we interpolate/approximate data on the total implied variance domain, not in terms of implied

volatility, option prices or log prices as considered in Figure C.1.
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these points. Furthermore, another reason not to filter out options that violate no-arbitrage

conditions, is that we use option-implied CCFs rather than option prices themselves as inputs in

our estimation procedure. Similarly, the CBOE does not impose any no-arbitrage filters in the

calculation of the VIX index, except for eliminating zero-bid quotes (CBOE, 2015). Figure C.1

provides an example of the interpolation-extrapolation scheme for an option slice traded on

April 1, 2020, with 15 days to maturity.

C.1.2 Extrapolation

Truncation errors are, in a sense, more challenging to address than discretization errors, since

they require to make assumptions about the dynamics of option prices (either in dollar or

volatility terms) beyond the observable range of strikes. On the other hand, as prices of OTM

options decrease with |m|, the impact of the truncation errors is expected to be small for highly

liquid options that cover a wide range of strike prices (such as index options). Nevertheless,

truncation might deteriorate the CCF approximation even for small argument values. This can

especially be a relevant issue after a sudden market shock, since options with smaller or larger

strikes might not be issued immediately to cover a new range of strikes.

It is common in the literature to use flat extrapolation; see again e.g., Bliss and Panigirt-

zoglou (2002), Jiang and Tian (2005) and Malz (2014). Under a flat extrapolation scheme, the

implied volatility beyond the observable range of strikes is simply set equal to the volatility of

the observable extreme-strike options, i.e., κ(m, τ) for the left-hand side of the volatility smile

and κ(m, τ) for the right-hand side. This approach is very easy to implement. However, the

main caveat of flat extrapolation is that it assumes the Black-Scholes log-normal model to apply

in the tails, for the extrapolated range of strikes.

Instead, we extrapolate the total implied variance ϖ(m, τ) linearly in log-moneyness m

beyond the observable range of strikes. This particular linear parametrization is motivated by

the asymptotic results of Lee (2004), who analyzed the behavior of the implied volatility smile

as strikes tend to infinity. Another example of a parametrization that satisfies Lee’s asymptotic

results is the SVI model, commonly used among practitioners (Gatheral & Jacquier, 2014).

However, it is well known that the SVI approach may not provide a good fit for short-dated

options. Thus, different from SVI, we use the more flexible cubic spline for interpolation within

the observable range of strikes, as detailed above, and, similar to SVI, extrapolate implied

variance linearly in log-moneyness.

The asymptotic results of Lee (2004), exploited also in Appendix A and recalled here for

convenience, entail that the implied volatility wings should not grow faster than |m|1/2 and,

unless the underlying asset has finite moments of all orders, should not grow slower than |m|1/2.
More specifically, Lee (2004) first shows that

lim sup
m→−∞

κ2(τ,m)τ

|m|
= β∗ with β∗ ∈ [0, 2], and (C.1)

lim sup
m→∞

κ2(τ,m)τ

|m|
= β

∗
with β

∗ ∈ [0, 2]. (C.2)

Furthermore, he establishes that there is a one-to-one correspondence between β
∗
and the
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number of finite moments of the underlying process Fτ , and between β∗ and the number of finite

moments of 1/Fτ . For instance, for the right tail, the moment formula for implied volatility is

given by

1

2β
∗ +

β
∗

8
− 1

2
= sup{p : E[F 1+p

τ ] <∞}.

These results allow us to conjecture the asymptotically valid parametrization to extrapolate

implied volatility beyond the observable range of strikes. Hence, we assume that the total

variance ϖ(m) = κ2(τ,m)τ is an affine function of log-moneyness:

ϖ(m) = c+ βm.

An intercept coefficient is introduced to guarantee continuity between the interpolation and

extrapolation domains. The intercept coefficients for the left and right tails, denoted by c and

c, are exactly determined by the smallest and largest observable strike prices (or corresponding

log-moneyness levels) given the slopes β and β for the left and right tails, respectively:

c = ϖ(m)− βm and c = ϖ(m)− βm.

Therefore, what is left to be done is to establish the choice of the slope coefficients β and

β. Note that the formulas (C.1) and (C.2) provide asymptotic bounds for the slope coeffi-

cients. Furthermore, finding the number of finite moments of the underlying, and exploiting

the respective moment formulas, would require parametrizing the dynamics of Fτ .
15 The latter

is not desirable in our application, since we want to fit another parametric model afterwards.

Instead, we simply use the derivatives of the fitted cubic splines at the last observable strikes

to determine the slope coefficients:

β = −∂ϖ(m)

∂m

∣∣∣∣∣
m=m

and β =
∂ϖ(m)

∂m

∣∣∣∣∣
m=m

.

Lee’s bounds for the slopes constitute an asymptotic result. The chosen slopes β and β

should satisfy these bounds. (Note that, due to the adopted sign convention in the extrapolation

formula, this translates into β ∈ [−2, 0] for the left slope.) However, no-arbitrage conditions for

our parametrization can be tighter, since we are in a setting with finite log-moneyness levels.

To obtain these conditions, we follow the derivation sketched in Jäckel (2014). This yields the

following no-arbitrage bounds for the right-tail slope β (our detailed derivations are available

upon request; they are suppressed to save space):

0 ≤ β < min(βmax, 2),

where

βmax =


max

(
m(ϖ−2)+

√
∆

m2+1
,
−2m+2

√
m2+2ϖ2+4ϖ
ϖ+2

)
, if ∆ > 0;

−2m+2
√

m2+2ϖ2+4ϖ
ϖ+2 , if ∆ ≤ 0;

15Note that flat extrapolation assumes log-normality of the underlying asset in the tails. Since all moments of

the log-normal distribution exist, it means that the slope indeed has to be zero in this case.
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with ϖ := ϖ(m) and ∆ := 4m2 −ϖ2 + 4ϖ.

Similarly, for the left-tail slope β,

max(βmin,−2) < β ≤ 0,

where

βmin =


max

(
m(ϖ−2)−

√
∆

m2+1
,
−2m−2

√
m2+2ϖ2+4ϖ

ϖ+2

)
, if ∆ > 0;

−2m+2
√

m2+2ϖ2+4ϖ

ϖ+2 , if ∆ ≤ 0;

with ϖ := ϖ(m) and ∆ := 4m2 −ϖ2 + 4ϖ.

C.2 CCF replication

As discussed in Section 3.1, we replicate the CCF ‘payoff’ using a Riemann sum approximation,

and employ the interpolation-extrapolation scheme detailed in the previous subsection, applied

to the set of observable option prices, to reduce the discretization and truncation errors. Fig-

ure C.2 illustrates the impact of the different measurement errors on the option-implied CCF.

For the illustration, we simulate option prices from the SVCDEJ model using a similar setup

as described in Section 4. In particular, at each time point we have a discrete set of strikes

and additive observation errors in the observed option prices. We fix the time-to-maturity to

τ = 10 days, take u = 20 and focus only on the real part of the CCF. These values are chosen

to emphasize the impact of the measurement errors. The impact of the discretization errors,

for instance, is typically smaller for larger maturities and smaller argument values.

Panel (a) of Figure C.2 plots the measurement errors when we use a finite set of observed

option prices Ôt(τ,m). That is, it shows the full measurement errors ζϕt (u, τ), given by the sum

of the observation errors ζ
(1)
t (u, τ), the truncation errors ζ

(2)
t (u, τ) and the discretization errors

ζ
(3)
t (u, τ), formally defined in Appendix A. We observe that the errors are not exactly centered

at zero, implying a small bias in the CCF approximation. From panel (b), which eliminates the

impact of the observation errors ζ
(1)
t (u, τ) (by using a finite set of true option prices Ot(τ,m)),

we observe the same small non-zero mean in ζ
(2)
t (u, τ) + ζ

(3)
t (u, τ). We overlay this plot with

the ATM BSIV to illustrate that the sum of the truncation and discretization errors is strongly

negatively correlated with the implied volatility, and hence driven by the volatility dynamics.

For panels (c) and (d), we use a cubic spline interpolation and extrapolate option prices

outside of the observed range of strikes, as described in Appendix C.1. Panel (d) plots the

errors in the CCF approximation when we use the true finite set of option prices. As we can see,

the discretization and truncation errors are largely reduced by the interpolation-extrapolation

scheme (note the scale of the vertical axis). Finally, panel (c) illustrates the errors in the

CCF approximation when we apply the same interpolation and extrapolation to option prices

observed with error. We observe that the observation errors ζ
(1)
t (u, τ) (which dominate both

panels (a) and (c)) are largely unaffected by the interpolation-extrapolation scheme, but the

(already small) bias from the impact of the discretization and truncation errors has been further

reduced, leading to errors that are virtually centered around zero.
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Figure C.2: The three types of measurement errors

(a) ζ
(1)
t + ζ

(2)
t + ζ

(3)
t (b) ζ

(2)
t + ζ

(3)
t (solid) and −ATM BSIV (dots)

(c) ϕ(u, τ)− ϕ(spl(Ô))
(d) ϕ(u, τ)− ϕ(spl(O))

Note: This figure plots the impact of the three types of measurement errors on the option-implied CCF. The figures

illustrate the approximation for the real part of the CCF with τ = 10, u = 20. The same Monte Carlo simulation setup as

described in Section 4 is used here to simulate data from the SVCDEJ model.

Appendix D Additional Simulation and Empirical Results

In this appendix, we first provide additional simulation results for two related alternative option

pricing models, to supplement Section 4. We also consider a model specification that includes

a variance risk premium. Next, we provide some additional empirical results to analyze the

robustness of our empirical findings reported in Section 6.

D.1 Additional simulation results

D.1.1 SVCJ

We additionally illustrate the developed estimation procedure using the ‘double-jump’ stochastic

volatility model of Duffie et al. (2000) with a Gaussian jump size distribution. In particular,

we assume the following process, referred to in shorthand as ‘SVCJ’, for the log forward price

under both the P and Q probability measures:

d logFt = (−1
2vt − µλt)dt+

√
vtdW1,t + JtdNt, (D.1)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW2,t + Jv

t dNt, (D.2)
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where nearly all ingredients are the same as in the SVCDEJ specification in Section 4.1, except

for the distribution of the jump sizes. In particular, we assume here that the jump sizes in

returns are Gaussian, J ∼ N (µJ , σ
2
J), and the jump sizes in volatility are independent from the

jump sizes in returns with Jv ∼ exp(1/µv).

Similar to the specification in the main text, this model belongs to the AJD class and the

log of the option-spanned CCF is linear in the latent state process vt. The conditional mean

and variance of the latent stochastic volatility process are given by

E[vt+1|Ft] = eg1∆tvt +
g0
g1

(
eg1∆t − 1

)
, (D.3)

Var(vt+1|Ft) = −σ
2 + 2δµ2v
2g21

[
2g1
(
eg1∆t − e2g1∆t

)
vt − g0

(
1− eg1∆t

)2]
, (D.4)

with g0 = κv̄ and g1 = −κ + δµv. Equations (D.3) and (D.4) are used to define the state

updating equation:

vt+1 = ct + Ttvt + ηt+1, (D.5)

where ct =
g0
g1

(
eg1∆t − 1

)
, Tt = eg1∆t and Var(ηt+1|Ft) = Var(vt+1|Ft). We also impose the

Feller condition 2κv̄ > σ2 and the covariance stationarity condition κ > δµv.

Table D.1: Monte Carlo results for the SVCJ model

parameter σ κ v̄ ρ δ µJ σJ µv σκ

u = 1, . . . , 15

true value 0.400 5.000 0.02 -0.95 20.000 -0.100 0.04 0.05 0.02

mean 0.410 4.869 0.0207 -0.9382 17.013 -0.110 0.0343 0.0520 0.0215

std dev 0.012 0.115 0.0007 0.0151 3.171 0.014 0.0124 0.0026 0.0044

q10 0.400 4.681 0.0201 -0.9516 11.209 -0.136 0.0100 0.0501 0.0166

q50 0.405 4.905 0.0204 -0.9445 18.537 -0.103 0.0404 0.0507 0.0206

q90 0.433 4.988 0.0219 -0.9114 19.573 -0.100 0.0431 0.0570 0.0274

u = 1, . . . , 20

true value 0.400 5.000 0.02 -0.95 20.000 -0.100 0.04 0.05 0.02

mean 0.403 4.913 0.0202 -0.9444 18.866 -0.103 0.0397 0.0502 0.0198

std dev 0.006 0.091 0.0003 0.0085 1.420 0.006 0.0050 0.0010 0.0062

q10 0.396 4.830 0.0199 -0.9524 17.903 -0.105 0.0375 0.0496 0.0156

q50 0.403 4.930 0.0202 -0.9456 19.048 -0.102 0.0408 0.0501 0.0185

q90 0.410 5.000 0.0206 -0.9373 20.088 -0.100 0.0426 0.0506 0.0234

u = 1, . . . , 25

true value 0.400 5.000 0.02 -0.95 20.000 -0.100 0.04 0.05 0.02

mean 0.395 4.907 0.0200 -0.9555 20.424 -0.097 0.0435 0.0495 0.0207

std dev 0.009 0.129 0.0003 0.0146 1.297 0.004 0.0029 0.0005 0.0097

q10 0.384 4.776 0.0196 -0.9710 19.209 -0.101 0.0405 0.0489 0.0152

q50 0.395 4.934 0.0200 -0.9564 20.392 -0.097 0.0436 0.0495 0.0178

q90 0.404 5.010 0.0203 -0.9409 22.029 -0.093 0.0473 0.0500 0.0284

Note: This table provides Monte Carlo simulation results for the SVCJ model, based on 500 replications. Three

settings with different ranges of the argument u are considered. Each panel lists, for each parameter, the true

value, the Monte Carlo mean and standard deviation, and the 10th, 50th and 90th Monte Carlo percentiles,

respectively. We use T = 500 time points with ∆t = 1/250. The initial values are set to F0 = 100 and

v0 = 0.02. The threshold for singular values is set to s̄ = 10−7.
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We use the same simulation setting as in Section 4.1, mutatis mutandis. The simulation

results are provided in Table D.1. Just like for the SVCDEJ model specification of Section 4.1,

the results for the SVCJ model also display high-quality finite-sample properties. We also note

that the ‘double-jump’ specification includes other widely used option pricing models as special

cases, such as the stochastic volatility model of Heston (1993).

D.1.2 SVCJ with a variance risk premium

Since the transition equation in the state space representation reflects the P-dynamics of the

latent components, it is, in principle, possible to conduct inference on the risk premia associated

with this latent process. In this subsection, we provide Monte Carlo simulation results for the

SVCJ model with a variance risk premium (VRP). (To facilitate identification, we focus on

the slightly more parsimonious SVCJ model rather than the SVCDEJ model; it will turn out

that already in the more parsimonious model, the VRP is weakly identified.) In particular,

we model the VRP πv as the difference between the mean-reversion parameters under the P
and Q measures, that is, in the state transition equation (D.5) we change the mean-reversion

parameter to κP = κ+ πv.

Table D.2: Monte Carlo results for the SVCJ model with variance risk premium

parameter σ κ v̄ ρ δ µJ σJ µv σκ πv

constrained, πv = 1.0

true value 0.400 5.000 0.0200 -0.950 20.000 -0.100 0.0400 0.0500 0.0200 1.000

mean 0.402 4.924 0.0202 -0.946 18.882 -0.103 0.0396 0.0503 0.0158 -

std dev 0.007 0.073 0.0003 0.008 1.515 0.006 0.0051 0.0010 0.0031 -

q10 0.396 4.841 0.0199 -0.953 18.012 -0.105 0.0374 0.0496 0.0127 -

q50 0.401 4.931 0.0202 -0.947 19.136 -0.101 0.0408 0.0501 0.0155 -

q90 0.409 5.003 0.0205 -0.939 20.182 -0.099 0.0427 0.0508 0.0189 -

constrained, πv = 0.0

true value 0.400 5.000 0.0200 -0.950 20.000 -0.100 0.0400 0.0500 0.0200 1.000

mean 0.402 4.924 0.0202 -0.946 18.882 -0.103 0.0396 0.0503 0.0158 -

std dev 0.007 0.073 0.0003 0.008 1.515 0.006 0.0051 0.0010 0.0031 -

q10 0.396 4.841 0.0199 -0.953 18.012 -0.105 0.0374 0.0496 0.0127 -

q50 0.401 4.931 0.0202 -0.947 19.136 -0.101 0.0408 0.0501 0.0155 -

q90 0.409 5.003 0.0205 -0.939 20.182 -0.099 0.0427 0.0508 0.0189 -

unconstrained

true value 0.400 5.000 0.0200 -0.950 20.000 -0.100 0.0400 0.0500 0.0200 1.000

mean 0.402 4.923 0.0202 -0.945 18.865 -0.103 0.0395 0.0503 0.0158 4.029

std dev 0.007 0.074 0.0003 0.008 1.546 0.006 0.0052 0.0011 0.0031 4.942

q10 0.396 4.835 0.0199 -0.953 17.985 -0.105 0.0373 0.0496 0.0127 -4.338

q50 0.401 4.931 0.0202 -0.947 19.136 -0.101 0.0408 0.0502 0.0155 4.558

q90 0.409 5.003 0.0206 -0.939 20.182 -0.099 0.0427 0.0508 0.0189 9.883

Note: This table provides Monte Carlo simulation results for the SVCJ model with a variance risk premium,

based on 500 replications. Each panel lists, for each parameter, the true value, the Monte Carlo mean and

standard deviation, and the 10th, 50th and 90th Monte Carlo percentiles, respectively. We use T = 500 time

points with ∆t = 1/250. The range of arguments is set to u = 1, . . . , 20 and the threshold to s̄ = 10−7. The

initial values are set to F0 = 100 and v0 = 0.02.

Table D.2 provides Monte Carlo simulation results for the SVCJ model with a VRP. We
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consider three estimation strategies. First, we fix the VRP parameter to its true value πv = 1.

Second, we assume no VRP when estimating the model, although the true model is simulated

with a non-zero VRP, that is, we fix πv = 0 in the estimation procedure. Finally, we estimate

the VRP along with all model parameters.

As the results suggest, it is hard to identify the VRP in this setting (see the third panel

in Table D.2). It appears that the Q-information in option prices largely dominates the P-
information, making the identification of the VRP relatively weak. A similar issue arises in

the term structure literature, where calibrated bond prices often imply unrealistic P-dynamics

(see, e.g., the discussion in Kim & Orphanides, 2012). However, we also notice that under

all three estimation strategies, the identification of the Q-parameters barely changes. That is,

even in the misspecified model with the VRP parameter fixed to zero, the parameter estimates

display good finite-sample properties (see the second panel in Table D.2). Consistent with this,

we also find (in results not provided here) that if we were to introduce a VRP parameter in

the SVCDEJ model in the empirical application of Section 6 (which, supported by the Monte

Carlo results, we do not), it would not have a significant effect on the estimates of the model’s

Q-parameters. For more focused VRP estimation, one can use, e.g., a non-parametric approach

based on high-frequency data, as in Bollerslev and Todorov (2011) and Andersen, Fusari, and

Todorov (2015b).

D.1.3 SVCEJ

Instead of the double-exponential jump size distribution considered in Section 4.1, or the Gaus-

sian distribution considered above, one may also consider separate exponential distributions

for positive and negative jumps. Following Bardgett et al. (2019), we consider two separate

counting processes N−
t and N+

t for negative and positive jumps, respectively, and modify the

SVCJ specification to obtain the ‘SVCEJ’ model as follows:

d logFt = (−1

2
vt − µ−λ+t − µ−λ+t )dt+

√
vtdW1,t + J−

t dN−
t + J+

t dN+
t , (D.6)

dvt = κ(v̄ − vt)dt+ σ
√
vtdW2,t + Jv

t dN
−
t , (D.7)

where λ−t and λ+t are the corresponding jump intensities for negative and positive jumps, and

−J−
t and J+

t are exponentially distributed negative and positive jump sizes in log returns with

means η− and η+, respectively. Note that the negative jump sizes have negative support, that

is, J−
t is negative exponential. Given the jump size distributions, the expected relative jump

sizes in returns are µ− = E[eJ−−1] = −η−/(1 + η−) and µ+ = E[eJ+−1] = η+/(1 − η+). We

further let the intensities be affine functions of the stochastic volatility, that is, λ−t = δ−0 + δ−1 vt

and λ+t = δ+0 + δ+1 vt. However, to keep a moderate number of parameters, we set δ+1 = 0 and

δ−0 = 0.

This specification is somewhat richer than the SVCDEJ considered in Section 4.1 since

positive jumps are modeled by a separate counting process with its own jump intensity process

λ+t . Nevertheless, this specification also belongs to the AJD class and the CCF of log forward

prices has a semi-closed form. The state updating equation is defined in a similar way as for

the other specifications.
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Table D.3: Monte Carlo results for the SVCEJ model

parameter σ κ v̄ ρ δ+0 δ−1 η+ η− µv σκ

u = 1, . . . , 15

true value 0.450 8.000 0.015 -0.95 2.000 100.000 0.01 0.05 0.05 0.02

mean 0.483 8.063 0.0159 -0.9242 0.512 99.475 0.0355 0.0527 0.0529 0.0626

std dev 0.069 1.506 0.0026 0.0796 1.690 21.104 0.0211 0.0196 0.0351 0.1820

q10 0.459 7.642 0.0150 -0.9577 0.028 90.701 0.0191 0.0485 0.0473 0.0170

q50 0.486 7.914 0.0157 -0.9261 0.125 99.718 0.0320 0.0495 0.0482 0.0229

q90 0.511 8.306 0.0168 -0.9049 0.578 106.121 0.0524 0.0505 0.0504 0.0302

u = 1, . . . , 20

true value 0.450 8.000 0.015 -0.95 2.000 100.000 0.01 0.05 0.05 0.02

mean 0.462 8.178 0.0149 -0.9551 1.309 110.631 0.0166 0.0510 0.0464 0.0482

std dev 0.042 0.804 0.0020 0.0266 1.566 18.690 0.0130 0.0156 0.0056 0.1425

q10 0.443 7.849 0.0144 -0.9851 0.531 101.950 0.0121 0.0478 0.0452 0.0143

q50 0.454 8.099 0.0148 -0.9588 0.964 107.556 0.0155 0.0489 0.0468 0.0184

q90 0.488 8.410 0.0154 -0.9165 1.742 115.366 0.0190 0.0498 0.0484 0.0368

u = 1, . . . , 25

true value 0.450 8.000 0.015 -0.95 2.000 100.000 0.01 0.05 0.05 0.02

mean 0.466 7.966 0.0154 -0.9417 1.526 104.783 0.0157 0.0515 0.0479 0.0381

std dev 0.048 0.615 0.0022 0.0321 1.322 17.732 0.0203 0.0140 0.0114 0.1101

q10 0.442 7.671 0.0146 -0.9726 0.602 97.221 0.0106 0.0488 0.0462 0.0129

q50 0.454 7.963 0.0150 -0.9484 1.394 103.412 0.0126 0.0496 0.0476 0.0152

q90 0.494 8.171 0.0159 -0.8935 2.130 109.523 0.0167 0.0505 0.0492 0.0417

Note: This table provides Monte Carlo simulation results for the SVCEJ model, based on 300 replications.

Three settings with different ranges of the argument u are considered. Each panel lists, for each parameter,

the true value, the Monte Carlo mean and standard deviation, and the 10th, 50th and 90th Monte Carlo

percentiles, respectively. We use T = 500 time points with ∆t = 1/250. The initial values are set to F0 = 100

and v0 = 0.015. The threshold for singular values is set to s̄ = 10−7.

The Monte Carlo simulation results for the SVCEJ model are provided in Table D.3. We

notice that most of the parameters exhibit good finite-sample performance. However, the pa-

rameters related to the positive jumps are biased and have a large standard deviation.

D.2 Additional empirical results

Table D.4 provides additional empirical results for the model specification of Section 6. Next

to the empirical results with fixed p− = 0.7 reported in Section 6, we provide the estimates

for an unrestricted probability of negative jumps and for different fixed values p− = 0.65 and

p− = 0.75. Overall, the results indicate similar parameter estimates as in Table 5, which is

reassuring for the robustness of our empirical results. We also note larger standard errors of the

parameter estimates in the unrestricted model, specifically for the parameter δ, which enters the

model as a multiple of p−. This is in line with our simulation results for the unrestricted model

(not provided here), which show the limits to identification in the considered unrestricted model.

Therefore, in the empirical application in the main text, we focus on the restricted model.

Table D.5 provides empirical results for the alternative model specification SVCEJ detailed

in Subsection D.1.3, without and with external state variables. Positive and negative jumps

are modeled by separate counting processes with their own jump intensities λ+t and λ−t , pos-
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Table D.4: SVCDEJ estimation results

σ κ v̄ ρ δ p− η+ η− µv σκ

unconstrained

θ̂ 0.505 8.368 0.0152 -1.000 167.68 0.6619 0.0195 0.0424 0.0516 0.253

s.e. 0.071 0.762 0.0018 0.054 17.04 0.0155 0.0014 0.0007 0.0039 0.004

constrained, p− = 0.75

θ̂ 0.503 8.259 0.0153 -1.000 148.01 0.75 0.0218 0.0422 0.0517 0.253

s.e. 0.006 0.091 0.0004 0.011 2.66 0.0005 0.0006 0.0004 0.004

constrained, p− = 0.65

θ̂ 0.506 8.007 0.0160 -1.000 162.09 0.65 0.0196 0.0432 0.0523 0.253

s.e. 0.006 0.178 0.0003 0.021 1.36 0.0003 0.0006 0.0009 0.004

Note: This table provides the parameter estimates and standard errors for the SVCDEJ model.

The model is estimated based on u = 1, . . . , 20 and s̄ = 10−7.

Table D.5: SVCEJ estimation results

σ κ v̄ ρ δ+0 δ−1 η+ η− µv γ+ γ− q σκ

no external factors

θ̂ 0.481 8.31 0.0139 -1.00 3.76 107.3 0.0100 0.0445 0.061 - - - 0.221

s.e. 0.007 0.26 0.0002 0.01 0.08 3.99 0.0002 0.0006 0.002 0.004

R0

θ̂ 0.547 11.28 0.0133 -1.00 0.999 83.11 0.0150 0.0439 0.079 0.036 1.587 0.016 0.213

s.e. 0.005 0.25 0.0003 0.01 0.045 2.97 0.0004 0.0006 0.002 0.300 0.142 0.015 0.004

Note: This table provides the parameter estimates and standard errors for the SVCEJ model. The model is estimated

based on u = 1, . . . , 20 and s̄ = 10−7.

sibly depending on the external state variable with coefficients γ+ and γ−, respectively. We

observe a similar magnitude as in Table 5 (and Table D.4) for most of the parameter estimates,

corroborating again the robustness of our empirical results.
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