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Non-technical summary

Research Question

Long-term interest rates on government bonds are just as relevant for investors’ strategies
as they are for analyzing macroeconomic developments or monetary policy decisions. For
example, it is currently important for European monetary policymakers to know whether
long-term interest rates have risen recently because market participants are expecting
further policy rate hikes or whether an anticipated faster reduction in the Eurosystem’s
bond stock increasing the risk premium on long-term bonds.

Term structure models can decompose the data in this manner. Recent years have
seen the development of statistical methods that use simple linear regressions to deter-
mine the structural parameters of a term structure model. They replace time-consuming,
non-linear optimization. However, the existing linear regression approaches require a
specific data structure, in particular an observable short-term interest rate. Although
these requirements are met for US Treasury bonds, even German Bunds do not have an
observable short-term interest rate.

Contribution

I develop two new linear regression approaches — called Difference Estimators — which
determine the structural parameters of a term structure model without an observable
short-term interest rate. The basic idea is to implicitly derive short-term interest rates
from longer-term interest rates. I apply the new Difference Estimators to the term struc-
ture of German Bunds and determine interest rate expectations and risk premia for a
history starting in 1967.

Results

A term structure model with three factors is sufficient to describe the dynamics of the
German Bund yield curve since 1967. The expectation component benefits from additional
constraints in the model that increase the persistence of interest rates. The implied
short-term Bund rates derived from the Difference Estimators display plausible dynamics
compared to central bank policy rates. Risk premia also have desirable properties: They
move contrary to the economic cycle and are positively related to uncertainty measures.
The long history allows the interest rate components to be classified in the macroeconomic
environment. Currently, the comparison with the 1970s is particularly relevant. At that
time, high supply-driven inflation, as a result of the oil crises, increased risk premia. In
the 1980s, inflation was on the decline but the risk premium remained high initially. It
took time to convince investors that the successful inflation reduction was permanent.
At present, risk premia are not rising significantly, in spite of the high inflation. A clear
stability-oriented monetary policy in the euro area can prevent higher (inflation) risk
premia in the future and thus lay the basis for favorable financing conditions.



Nichttechnische Zusammenfassung

Fragestellung

Langfristige Zinsen von Staatsanleihen sind fiir Strategien von Investoren ebenso relevant
wie fiir die Analyse gesamtwirtschaftlicher Entwicklungen oder geldpolitischer Entschei-
dungen. Beispielsweise ist es gegenwértig fiir die Geldpolitik im Euroraum wichtig zu wis-
sen, ob langfristige Zinsen zuletzt deutlich gestiegen sind, weil Marktteilnehmer weitere
Leitzinserh6hungen erwarten oder ob ein antizipierter schnellerer Abbau des geldpoliti-
schen Anleiheportfolios die Risikopriamie langlaufender Anleihen steigen lésst.

Zinsstrukturkurvenmodelle erlauben eine solche Zerlegung. In den letzten Jahren wur-
den statistische Methoden entwickelt, die mit Hilfe einfacher linearer Regressionen die
strukturellen Parameter eines Zinsstrukturmodells bestimmen. Sie ersetzen damit eine
aufwandige, nichtlineare Optimierung. Die bestehenden linearen Regressionsansétze stel-
len jedoch starke Anforderungen an die Datenstruktur, insbesondere muss ein Kurzfrist-
zins vorhanden sein. Diese Anforderungen sind zwar fiir US Staatsanleihen erfiillt, aber
selbst bei deutschen Bundeswertpapieren fehlt ein beobachtbarer Kurzfristzins.

Beitrag

Ich entwickle zwei neue lineare Regressionsansétze — genannt Differenzenschétzer — die
ohne einen beobachtbaren Kurzfristzins die strukturellen Parameter eines Zinsstruktur-
modells bestimmen. Die Grundidee besteht darin, die Kurzfristzinsen implizit aus ldnger-
fristigen Zinssétzen abzuleiten. Ich wende die neuen Differenzenschéitzer auf die Zinss-
truktur von Bundeswertpapieren an und bestimme Zinserwartungen und Risikopridmien
fiir eine 1967 beginnende Historie.

Ergebnisse

Ein Zinsstrukturmodell mit drei Faktoren reicht aus, um die Dynamik der deutschen
Zinsstrukturkurve seit 1967 zu beschreiben. Die Zinserwartungskomponente profitiert von
zusétzlichen Beschriankungen im Modell, welche die Persistenz der Zinsen erhéhen. Ge-
messen an der Leitzinsentwicklung weisen die impliziten Kurzfristzinsen deutscher Bun-
deswertpapiere aus den Differenzenschétzern eine plausible Dynamik auf. Auch die her-
geleiteten Risikopramien weisen wiinschenswerte Eigenschaften auf: Sie verlaufen dem
Wirtschaftszyklus entgegengesetzt und sind hoch in Zeiten grofler Unsicherheit. Die lange
Historie erlaubt eine Einordnung der Zinskomponenten in das makrockonomische Umfeld.
Gegenwirtig ist insbesondere der Vergleich mit den 1970er Jahren relevant. Damals stei-
gerte die hohe angebotsgetriebene Inflation als Folge der Olkrisen auch die Risikopramien.
Der Riickgang der Inflation in den 1980er Jahren konnte nur allméhlich bei Investoren
glaubwiirdig verankert werden — die Risikopréamie blieb zunéchst hoch. Aktuell steigen die
Risikopramien trotz hoher Inflation nicht deutlich an. Eine klare Stabilitdtsorientierung
der Geldpolitik im Euroraum kann einen Anstieg der (Inflations)-Risikopréamien auch
kiinftig verhindern und damit die Grundlage fiir giinstige Finanzierungsbedingungen le-
gen.
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Abstract

Affine term structure models of bond yields are important tools for analyzing fixed
income markets and monetary policy. Estimators of Adrian, Crump, and Ménch
(2013) and Diez de Los Rios (2015) replace time-consuming nonlinear search proce-
dures with a set of simple linear regressions. However, these estimators require an
observable short rate, which is not available at a one-month maturity for many mar-
kets, including that for German Bunds. This paper introduces new regression-based
Difference Estimators that require no observable short rate but are determined from
long-term yields only. My new estimators replicate results of the traditional estima-
tors for US Treasuries, although my approaches omit the available US short rate.
For German Bund data since 1967, three factors are sufficient to represent the yield
curve dynamics, and additional restrictions improve yield forecasts. Implicit short
Bund rates are in line with policy interest rates. The term premium is counter-
cyclical to business activity and positively related to uncertainty. Thus, the Bund
yield decomposition into short-rate expectations and the term premium is suitable
for a wide range of policy applications.
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1 Introduction

Affine term structure models are important tools for the analysis of fixed-income mar-
kets. They decompose long-term government bond yields into expected short-term yields
and term premia and thus allow different channels of monetary policy to be identified.
Conventional policy rate adjustments and forward guidance are supposed to drive rate
expectations, while asset purchase programs are designed to affect the term premium.!
Affine models have also been applied to inflation-indexed markets to derive inflation ex-
pectations or in a multi-country setting to investigate international linkages of monetary
policy.

Affine term structure models take the form of a state space-model with nonlinear pa-
rameters. Standard filtering techniques and maximum likelihood estimation are therefore
the natural choice for their estimation. However, those approaches used to be time-
consuming and prone to local minima. For example, Duffee (2002, p. 418) states for the
US Treasury market that “general three-factor affine models are already computation-
ally difficult to estimate [with maximum likelihood| owing to the number of parameters.
Adding another factor would make this investigation impractical.” Increasing computing
power, alternative model formulations, in particular Joslin, Singleton, and Zhu (2011,
JSZ), and novel estimation techniques like Hamilton and Wu (2012) allowed the compu-
tational burden of maximum likelihood estimation to be reduced.

More recently, new approaches avoid numerical optimization altogether. Adrian et al.
(2013, ACM) and Diez de Los Rios (2015, DLR) estimate an affine Gaussian term struc-
ture model with observable factors using a set of linear regressions.? Without nonlin-
ear optimizations, these estimators complete an estimation in milliseconds. This allows
standard errors to be bootstrapped or extensive searches to be conducted for parameter
restrictions, as in Golinski and Spencer (2018). Despite their elegance and numerical per-
formance, the existing linear regression approaches of DLR and ACM require a specific
data structure: Most importantly, they require an observable short rate whose maturity
determines the data frequency.®> Thus, the estimation with existing linear regressions
on a monthly frequency requires a one-month yield. By contrast, maximum likelihood
approaches do not require an observable one-month rate but can be estimated from long-
term yields only.

An observable one-month short rate is not available in many markets, including that
for German Bunds. The German Bund yield curve published by the Bundesbank — Bbk
in the remainder — is interpolated with a Svensson (1994) model from all traded German
government bonds with a residual maturity of more than three months since 1972.* There-

!Policy applications of term structure models in the euro area include De Backer, Schupp, and Vladu
(2021), Deutsche Bundesbank (2023) and Horny, Sabes, and Sahuc (2018).

2Extensions to multiple curves are Abrahams, Adrian, Crump, and Ménch (2013) with inflation-
protected US Treasuries and Diez de Los Rios (2017) for a joint term structure model with seven countries.

3 A second requirement are consecutive maturities (i.e. for monthly data frequency 60- and 61-months
yield maturities) which does not constitute an effective restriction in the interpolated government bond
yield datasets studied in this paper.

4Money market papers (Bubills) are not included even if their residual maturity exceeds three
months. See Schich (1997) for details of the estimation. The data are available for download on the
Bundesbank webpage https://www.bundesbank.de/en/statistics/money-and-capital-markets/
interest-rates-and-yields/term-structure-of-interest-rates.
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Figure 1: Short-Term Yield Characteristics

Last observation October 2022. First observation September 1972 (Germany) and June 1961 (USA).
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fore, the one-month rate is extrapolated and observes irregular movements with spikes
of implausibly large negative or positive values, as illustrated in Figure 1. As a result,
yields with a maturity below six months have a high volatility that reflects extrapolation
noise rather than economic fluctuations. The yield curve for US Treasuries constructed
by Giirkaynak, Sack, and Wright (2007) — GSW in the remainder — imposes a minimum
maturity of three months to estimate the interpolation of Svensson (1994). The lower row
in Figure 1 highlights that extrapolation noise is present in the GSW dataset as well.’
Since the implementation of a minimum maturity is standard in the field of government
yield curve construction, see BIS (2005, Tab. 1), an extrapolated and noisy one-month
government bond yield is a stylized fact of government bond yield curve datasets.
Researchers are well aware of the problems with the extrapolated one-month yield
from GSW or Bbk. They try to circumvent them by adapting the data: For US Treasury
curves, many authors use the one-month Treasury Bill rate (T-Bill), including Adrian

5GSW exclude on-the-run bonds and apply other data-cleaning procedures to get a more homogenous
bond dataset that enters the interpolation. Furthermore, more frequent issues (and expirations) of US
Treasuries compared to Bunds ensure a maturity of the shortest bond close to three months in GSW
which reduces the extrapolation magnitude. The data are available for download on the Federal Reserve
Board webpage https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs .html.
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et al. (2013). However, T-Bills experience jumps in Figure 1 as well.® Amihud and
Mendelson (1991) or Lenel, Piazzesi, and Schneider (2019) find a specialness premium
of T-Bills over Treasury bonds.For Germany, the Bubill issuance policy does not allow
a one-month rate to be constructed for a long history. Furthermore Brand, Ferrante,
and Hubert (2019) document a specialness premia for German Bubills on the specific
repo market. Lemke and Werner (2020) correct for outliers in the one-month Bbk yield
by interpolating between the previous and the following months’ the observation of the
1M Bbk yield. Golinski and Spencer (2018) use interbank rates to proxy the one-month
Bund yield which creates heterogeneity in the German curve from interbank default risk
and missing Bund specialness premia.” Lemke and Vladu (2017), Horny et al. (2018),
Geiger and Schupp (2018) or Berardi and Plazzi (2022) avoid the Bund curve and study
the euro-area term structure with overnight index swaps.® Interest rate swap data are
available with a granular maturity spectrum for short maturities including an observable
one-month rate. However, swaps with a long maturity are unreliable in the first years
of the European monetary union. The Canadian yields used in Diez de Los Rios (2015)
are available for maturities in three-month maturity steps only.? As a consequence, he
estimates his model at a quarterly but not a monthly frequency. Thus, the available
maturity spectrum for Canadian data reduced the data frequency and increased the step
size for the short-rate expectation path to three months. Overall, the data structure of
the US Treasury market — with an observable one-month yield — consistent with the data
requirements of ACM and DLR on a monthly frequency, seems to be the exception rather
than the rule.

The major contribution of this paper is to develop new linear regression estimators that
adapt to an imperfect structure of the dataset under investigation. Forming differences
between two yields or returns of long-term bonds eliminates the dependence on the short
rate: With the new estimators — called Yield Difference estimator (YD) and Return
Difference estimator (RD) — one can estimate a term structure model from long-term
yields at a monthly frequency without actually observing a one-month rate. This enables
an estimation without extrapolation noise or a short rate that is inconsistent with the
rest of the yield curve. Thus, the new regression approaches can be estimated without an
observable short rate, and there is no reason to prefer a maximum likelihood estimation
over Difference Estimators.

I benchmark the new Difference Estimators against the traditional approaches of DLR
and ACM for the US Treasury curve which contain an observable one-month T-Bill rate.
The goal of this exercise is to investigate whether the Difference Estimators achieve sim-

6The 1M data from the Federal Reserve Economic Database (FRED) used in this paper are the most
recently issued 4-week T-Bill. Between the weekly issues of these papers, the maturity declines and the
change in the underlying Bill may lead to rate jumps. The data are available for download on the FRED
webpage https://fred.stlouisfed.org/series/TB4WK.

"The early paper of Cassola and Luis (2003) uses Bbk data from 1972 to 1998 with a maximum
likelihood estimation. They assume non-zero measurement error for factors and use a minimum maturity
of one year (which has a relatively large fitting error). A similar estimation approach is chosen by Fendel
(2008).

8The bulletin article of Horny et al. (2018) is a policy application of Monfort, Pegoraro, Renne, and
Roussellet (2017) to the euro area.

9See Bolder, Johnson, and Metzler (2004) for the data construction with exponential splines of Vasicek
and Fong (1982). The data are available for download on the Bank of Canada webpage http://www.
bankofcanada.ca/rates/interest-rates/bond-yield-curves/.
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ilar results to the traditional estimators even if the available short rate is not used by
the Difference Estimators. There are three major findings: (1) Although Difference Es-
timators omit the short rate, they are able to derive plausible implicit one-month short
rates for the US and reproduce the short-rate expectation component published by the
Federal Reserve Bank of New York based on ACM. (2) The short rate should be excluded
from the factors driving the model dynamics if it is noisy or inconsistent with the rest
of the curve. (3) Short-rate parameters should be determined implicitly from long-term
yields but not from noisy observed short rates. Overall, there is no reason to prefer tra-
ditional approaches that include a short rate like ACM and DLR over the new Difference
Estimators for US data. Moreover, traditional linear regression approaches yield robust
results even for extrapolated and noisy short rates if factors and short-rate parameters
are determined without the short rate, i.e. if results (2) and (3) are respected.

The empirical contribution of this paper is the longest available history of yield de-
compositions for German Bunds into expected short rates and term premia starting in
1967. Three factors are sufficient to represent the yield curve dynamics. In particular,
restrictions that increase the time-series persistence of the yield dynamics improve yield
forecasts. Model-implied Bund short rates are in line with Bundesbank and ECB policy
rates. The term premium is counter-cyclical to business activity and positively related
to uncertainty. With these desirable properties, the model decomposition of Bund yields
into short-rate expectations and the term premium is suitable for a wide range of policy
applications. Given the current record-high inflation caused by supply shocks, a compari-
son with similar periods in the 1970s and early 1980s from my long sample is particularly
valuable. Currently, term premia remain low despite the high inflation. However, a
stability-oriented monetary policy in the euro area is needed to reduce inflation and thus
ensure low (inflation) risk premia and favorable financing conditions.

The remainder of the paper is structured as follows. Section 2 reviews the affine model
structure and illustrates the role of the observable short rate in traditional linear regres-
sion estimators. Readers familiar with these models can skip this section and proceed
directly to the derivation of the new Yield Difference estimator in section 3 that is in-
dependent of an observable short rate. The empirical application to German Bunds is
contained in section 5 after I show for US Treasuries in section 4, that my new Differ-
ence Estimators replicate traditional estimates even if they omit an available short rate.
Section 6 concludes.

2 Affine Term Structure Models

This section reviews the model structure of an affine term structure model with Gaussian
innovations (section 2.1) and the estimation by maximum likelihood (section 2.2). Lastly,
the linear regression estimators of DLR and ACM are introduced with a focus on the role
of the short rate (section 2.3). This creates the starting point for the development of the
new Difference Estimators in section 3.



2.1 Model Structure

An affine term structure model is characterized by a log price p}' of a zero-coupon bond
with maturity n that is an affine function of K factors P, and measurement errors vy

pi = Ap+ BpPi+ 1) (1)

Duffie and Kan (1996) show that affine log prices require an affine process for the risk-
neutral dynamics to ensure no-arbitrage:'®

Pi1 = vop + PopPi+el (2)
e~ N(0,9p) (3)

The risk-neutral parameters ®gp and vgp as well as the error covariance {2p are structural
parameters that need to be estimated from the cross-section of log prices (1).

No-arbitrage requires a consistent pricing of long-term zero-coupon bonds with a ma-
turity n and the short-term bond with a maturity that corresponds to the data frequency.
These restrictions imply a recursive form of the parameters fl% and B?p from the log price
equation (1):

Bit' = Bh+ Bpdgr ()
} S 1. _
Ap™ = Ap+ Ap + Bpvop + 5 Bpp(Bp)’ ()

The boundary conditions A% = 0 and B% = 0 ensure full repayment at maturity (p{ = 0)
independent of the state of the economy represented by P;. For default-free (Treasury)
bonds, the short-rate constant A% and loadings B3 are parameters of the model that need
to be determined.

[ follow Dai and Singleton (2000) and Duffee (2002) who find Gaussian time-series
P-dynamics are best suited to close the model:

P = vpp+ PppPi+ iy (6)
5?]:1 ~ N (0,Qp) (7)

The variation Qp of the one-period innovations 7 is identical to the variation Qp in
equation (3). The error covariance Qp creates a link between the time-series dynamics
and the constant A% of the log bond price.

The recursion (4) of the loadings B of the log bond prices depends only on the risk-
neutral ®gp but not on the time-series dynamics ®pp. This is a prerequisite to estimate
®pp and Pgp in separate and independent steps in all linear regression approaches studied
in this paper. However, the independence of the cross-section of yields from the time-series
dynamics and the loadings’ (B") independence from the yield level prevents the linear
regression approach from being carried out for lower-bound models inspired by Black

0Here we concentrate on Gaussian innovations in line with most of the existing literature starting with
Dai and Singleton (2000) and Duffee (2002).

1 Appendix A.1 contains a derivation. The first discrete-time derivation is contained in Backus, Foresi,
and Telmer (1996).



(1995), like Priebsch (2013) and Wu and Xia (2016) for the US or Lemke and Vladu
(2017), Horny et al. (2018) and Geiger and Schupp (2018) for the euro area.
For monetary policy analysis, log prices are less relevant than zero-coupon yields y;":

yi = Ap+ BpPit+uy (8)

Yield parameters and price parameters are related by the maturity in multiples n of the
data frequency At which is denoted in years: A% = —n-At-A% and Bp = —n-At-B%. The
decomposition of an n-period yield into its expectation and term premium components
relies on the average short-rate expectation E'(y') contained in an n-period yield:

i
L

Ef(y') = (Ap + Bp - E; (Prsn)) (9)

0

S|

>
Il

The factor expectations EY (Py, ;) are determined from the time-series dynamics (6). The
term premium 7'F/ including the constant convexity is the difference between the fitted
yield and short-rate expectations TP = y* — E"(y').

2.2 Maximum Likelihood Estimation

The affine term structure model takes a state-space form with the transition equation (6)
and the measurement equation (1) or (8). The parameters to be determined are the time-
series dynamics (®pp, vpp, (2p), the risk-neutral dynamics (Pgp, vgp) and the short-rate
parameters (AL, B)).!2 The yield loadings B2 or B of the measurement equation depend
on Pgp in a nonlinear fashion. Furthermore, the error covariance (2p of the transition
equation has a nonlinear impact on the constant fl% or A% of longer-term bonds in the
measurement equation. Therefore, the natural way to estimate a term structure model is
by maximum likelihood.

Joslin et al. (2011) introduce a new identification scheme and develop a canonical
form that facilitates the estimation. They assume that factors are linear combinations of
yields (P; = W - ;) measured without error (0 = W - v;). In that case, the parameters
vpp and Ppp from the real-world dynamics (6) can be estimated by least squares with
standard vector autoregression techniques for the observable factors P;.'* Furthermore,
the risk-neutral constant vgp can be concentrated out of the likelihood function, and
the short-rate parameters are normalized. That reduces the nonlinear parameters in
Joslin et al. (2011) to specific elements of @y and €2 and speeds up maximum likelihood
estimation considerably.

2.3 Linear Regression Estimator of DLR

DLR and ACM estimate the risk-neutral dynamics vgp and ®gp from two-step regres-
sions instead of a nonlinear search in maximum likelihood estimation. To this end, both

12Not all elements of these parameters need to be estimated. Some are normalized to achieve unique
factor identification.

B Technically, the assumption of no measurement error implies that the likelihood can be split into two
independent parts: one governing the cross-sectional pricing and the other the transition of the observable
factors. The latter can be estimated by least squares.



approaches first require an observable short rate. Second, they require consecutive ma-
turities, i.e. for each bond with maturity n used in the estimation, an observable yield
of maturity n + 1 is needed. The remainder of this section reviews their methods and
highlights the use of the observable short rate.

ACM and DLR both use observable yield factors P, as in Joslin et al. (2011). There-
fore, they estimate the real-world dynamics vpp, Ppp and Qp by least squares. The
short-rate constant A} and loadings Bj are proxied by a regression of the observable
short rate 5! on the observed factors P;. What distinguishes DLR from ACM is the
method used to determine the risk-neutral dynamics vgp and ®gp. In the remainder I
will concentrate on DLR, while ACM is covered in Appendix A.2.

The idea of DLR is to determine, in a first step, observable proxies of the log-price
loadings B, BT, and B} that are contained in the recursions (4). DLR treats equation
(1) as a least-squares regression of observable log prices on the observable factors.!* The
coefficients from this first regression for maturity n are denoted a; and l;;} Subscript p
indicates the origin from a log price regression. For each maturity n, regressions for a
matching maturity n 4+ 1 are estimated. The regression parameters for N log prices with
maturity n are collected in a, and I;p, the N matching n 4+ 1 maturities are collected in
a,; and lA); The coefficients l;p, B;;_, and l;lly_are regression-based proxies for B, B, and
Bg. The short rate parameters A}, and Bj are proxied by regression coefficients &}17 and
1311) of the observable short bond p; on the factors P;.

The second step of DLR inverts the pricing recursion (4) for the risk-neutral dynamics
®yp using the proxies from the first regression step l;p, l;; , and 13110:

NN IPSIN ~
dap = (Bby) b (B — Lysr -0}) (10)

Given the risk-neutral ®gp, the risk-neutral constant vgp is determined from the recur-

sions of the log price constant (5) with the first-step regression constants a;, that proxy
A

op = ((Bp)/pr)_l (Bp)l (d; - (Alzl) — &p — BPQP(BP),> (11)

The convexity adjustment is based on the implicit Qp from the time-series regression. Bp
are recursion-based with maturities n matched to a,.

Thus, the traditional DLR requires an observable short rate to determine the risk-
neutral dynamics: It uses I;Il, in the inversion (10) for ®gp. Furthermore, the short rate is
used to determine the short-rate parameters 12171; and B%;. If the short rate contains data
errors from extrapolation or is inconsistent with the rest of the curve, the risk-neutral
dynamics are estimated with error.

“Tn DLR’s special case of constructing the yield portfolio factors (principal components) from all
maturities, rescaled eigenvectors replace the first regression step.



3 Yield Difference Estimator

My approach to circumventing the dependence of the risk-neutral dynamics ®gp on an
observable short rate is to take differences between two bond prices of longer-term matu-
rities. The next section derives the Yield Difference estimator (section 3.1) for the risk-
neutral dynamics ®@gp.' The time-series parameters are determined from least squares
of observable yield factors, as in JSZ or DLR. The implicit short-rate parameters and
the risk-neutral constant vgp — which determine the level of all yields — are derived from
long-term yields in section 3.2.

3.1 The Yield Difference Estimator

Dependence on the observable short-rate parameters b' in DLR can be overcome by form-
ing a difference in log prices of long-term bonds with maturity n 4+ 1 and k£ + 1. This
approach will be called Yield Difference estimator (YD) in the remainder. Both maturities
n and k that form the difference are longer-term maturities which are unaffected by data
noise, for example between six months and ten years for Bunds from the Bbk dataset or
US Treasuries from the GSW dataset.

From a theoretical point of view, forming differences and replacing the coefficients for
maturity n+ 1 and k + 1 with its elements from the no-arbitrage recursion (4) eliminates
the short-rate parameters B%):

prtl —phtl = A;L)Jrl _ Al;;rl _ (B%Jrl _ B;g+1)zpt
= AR AE 4 (Bp - BE)DopP, (12)

The first estimation step of YD is similar to DLR: Estimate (12) using a regression of
log price differences on the factors P;,. This gives the regression coefficients ayp ., =
At — ABT and éypr = (Bp — BE)®gp. Bb are proxied by log price regression
coefficients l;; from DLR.!® The inversion for the parameters of the Q-dynamics is then

given by:!7
S N o
Bop = ((bg—bp) (bg—bp>> (0 = %) evp (13)

The calculation of the risk-neutral constant vgp in Appendix A.3 is an extension of
the DLR approach. The Yield Difference estimator is an extension of DLR without an
observable one-period bond. If there is an observable short rate, DLR is a special case of

YD for k = OVE.

15The Return Difference estimator is developed in Appendix A.2 as an extension of the ACM estimator.

16In my empirical implementation, n and k are maturities used to construct the principal compo-
nents P;. In that special case, the maturity-scaled eigenvectors W exactly correspond to the regression
coefficients (;;L = —n - At - W™. This follows the implementation of Diez de Los Rios (2015).

I"Here I use a slight abuse of notation, b and b* is now a vector of all 13; with maturities ¢ matched
to the maturities used to calculate the price differences and determine ¢y p.




3.2 Short-Rate Parameters and Risk-Neutral Constants

The risk-neutral factor dynamics ®gp and vgp are determined from the Yield Difference
estimator or the traditional DLR and ACM approaches. They are accompanied by the
real-world dynamics ®pp, vpp and Qp from a time-series VAR. Thus, we finally need to
estimate the short-rate parameters AL and B} which determine the level of the yields.

If the short rate is noisy or not observed, its parameters can be backed out from the
parameters of long-term bonds. The recursions of the loadings (4) can be expressed in a
form that is linear in short-term loadings Bh:

Bp = Bp(I—®p) (I —Pgp) " (14)

In the empirical implementation, I proxy B% on the left-hand side by maturity-scaled
eigenvectors W for all estimators (B ~ —n - At - W").18 ®gp is given by traditional
ACM, DLR or the new Yield Difference estimator. Thus, short-rate parameters B}; are
determined from post-multiplying (14) by the inverse of the terms in brackets. In general,
one is free to choose one or more arbitrary maturities n to determine the short-rate
loadings. In the empirical estimation below, n are all yield maturities that are used to
determine the observable factors.!®

The constants of the short-rate A} affect long-term log price constants A% in a linear
fashion.

n—1 n—1

_ _ _ . 1 _ . _ .
AL = n- AL+ Z Bprgp + 5 Z BpQp(Bp)' (15)
i=1 i=1

BI are model-consistent from recursions with B and ®gp. The risk-neutral constant vgp
is from the linear regressions (see Appendix A.3). The convexity adjustment is determined
with Qp from the time-series regression.

An observed equivalent of [1% is based on the average log price a, = p" — B% -P. Thus,
the estimate of the short-rate constant A} depends on the sample average of yields y" and
factors P. In line with the determination of the short-rate loadings, n are all maturities
used to construct the observed factors P;.

3.3 Transformation into Self-Consistent Estimators

All linear regression estimators of the risk-neutral dynamics ®gp are overidentified — the
traditional ACM or DLR and the new Yield Difference estimator. That means there are
more free parameters than necessary: In a model with K factors, all regression-based
risk-neutral dynamics have K? + K parameters in ®gp and Bh. The regression-based
constants have K + 1 coefficients in vgp and A%. A self-consistent canonical form like

18We could as well proxy the long-term loadings on the left-hand side with first-step regression param-
eters 13; for DLR and YD or b for ACM.

19 Again, DLR and ACM are a special case in my approach since they use the observable short rate
(n = 1) to determine the short-rate loadings. In that case, the brackets on the right-hand side of equation
(14) cancel. The short-rate loadings correspond to the regression coefficients of the observed factors on
the log price of the short bond B} = B%D N~ l;zl,. The same applies to the determination of the short-rate

constant in equation (15) below A% = A} ~~ a).



the one of Joslin et al. (2011) has risk-neutral dynamics that are driven by K parameters
and one constant for each curve.?). With more parameters than necessary in the linear
regression estimators, they are prone to overfitting.

I transform the overidentified ®gp from the linear regression estimator into a self-
consistent JSZ form using the eigenvalue decomposition of Golinski and Spencer (2018).2!
This approach allows me to prevent overfitting and preserves the numerical performance
of all linear regression approaches.

3.4 Why use the Yield Difference Estimator?

The Yield Difference estimator needs no observable short rate. Therefore, extrapolation
noise in short maturities does not affect the results. We can derive an implicit one-
period short rate even if the minimum yield maturity in the data is larger. For example,
for the interpolated Bund curve investigated in section 5, with long-term maturities n
(and k) of one year or more, I use the Yield Difference estimator to determine ®gp.
The latter avoids the noisy observable short rate with a maturity of one month and
can always be transformed into the self-consistent JSZ canonical form with the original
method of Golinski and Spencer (2018) outlined in section 3.3. This possibility is even
more important for datasets that have a large minimum maturity by design.?

In principal, by choosing the maturities n and k£ to form the differences in the Yield
Difference estimator, one can assign specific weights to maturity segments that have the
best data quality for the estimation of the risk-neutral dynamics and the implicit short-
rate parameters. For interbank rate swap curves, a larger weight for (non-interpolated)
short maturities may be desired. In that case, forming differences with respect to the
shortest maturity (k = min(n)) may offer little benefit over the existing DLR and ACM
approaches. For inflation markets, seasonality or the indexation lag have a comparably
large impact on short maturities such that the longest maturity may serve as a reference
point for differencing (k = max(n)). From a theoretical perspective, using neighboring
maturities is close to the double differencing over time and maturity suggested by Crump
and Gospodinov (2019). However, for the interpolated government bond yield datasets
used in this paper, the choice of n and k has a negligible effect on the results. Therefore,
[use N - (N +1)/2 differences between all N maturities used to construct the observable
factors P;,.

Overall, one can use the Yield Difference estimator for all datasets that are unsuited
for the use of the traditional linear regression approaches of DLR and ACM and used to
require maximum likelihood estimation.

20The same number of parameters are counted in the alternative canonical form of Hamilton and Wu
(2012).

21See Appendix A.4 for details. Diez de Los Rios (2015) uses a recursive approach to ensure self-
consistency.

220ne important example are inflation-linked products. Inflation swaps usually have a minimum ma-
turity of one year. Gilirkaynak, Sack, and Wright (2010) recommend, for their real yield curve derived
from US Treasury Inflation Protected Security (TIPS), using interpolated real yields only for maturities
exceeding two years. With the Difference Estimators, a TIPS or inflation swap term structure model
with a minimum maturity of two years (n > 24) can be estimated at a monthly frequency.
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Table 1: Overidentification (OI) versus Self-Consistency (SC) for US Treasuries

Root-mean-square error (RMSE) for all yields from 1Y to 10Y with one-month spacing in basis points.
Four observable factors are determined from yields with maturities from 6M to 10Y with 6M spacing.
“DLR GSW” indicates that the 1M short rate is extrapolated from the GSW dataset, and “DLR TB”

indicates that the 1M T-Bill rate is used as the short rate. “YD” is the new Yield Difference estimator.
| DLR GSW DLRTB YD

Traditional OI, 1M short rate 9.5 11.5  283.9
OI, long rates 5.1 4.5 3.9
SC, long rates 4.7 4.2 4.0

4 US Treasury Curve

The market for US Treasuries allows the new Yield Difference estimator (YD) to be
compared with traditional DLR in a dataset that contains an observable one-month yield.
The key question of this section is to investigate, whether important dynamics are lost
by discarding the available short rate from the estimation. The short answer is: no.

All models are estimated from end-of-month observations of the GSW dataset from
1961 to 2019. Principal components serve as observable factors P; and are determined
from yields implied by the GSW parameters with maturities from 6M to 10Y with 6M
spacing. These 20 yields are used to derive the observable factors P, and represent n
and k in the YD estimation, with the differences being taken between all 190 unique
combinations. The benchmark model has four factors and is transformed into a self-
consistent representation. The standard deviation of yield errors is one basis point from
my four-factor model. It corresponds to the error variation of the five-factor excess return
model of Adrian et al. (2013). Choosing three or five factors in my dataset leads to
explosive risk-neutral yield dynamics (eigenvalues above one) for DLR models, which is
implausible from an economic perspective.??

4.1 Yield Difference versus Traditional DLR

The major contribution of this paper is to avoid the impact of a noisy or inconsistent
short rate by using the Yield Difference estimator: first, in the risk-neutral dynamics by
forming differences between longer-term yields (section 3.1). Second, in the short-rate
parameters by estimating them from long-term yields (section 3.2). This section zooms
in the implications of both parts.

Table 1 compares the yield fit in terms of RMSE of the traditional DLR approach to
my new Yield Difference (YD) estimator. “DLR TB” uses the 1M US Treasury Bill as
the short rate, which is the approach normally used in the literature to estimate short-
rate parameters. “DLR GSW” uses the extrapolated and noisy 1M GSW yield, which
proxies the imperfect data availability for most countries including Germany, where a

ZFor the US Treasury curve, Ménch (2019) uses four factors in the ACM approach. Three factors are
used by Duffee (2002), Kim and Wright (2005), Joslin et al. (2011), Bauer (2018) or Golinski and Spencer
(2018). The latter authors use a more sparse maturity set for the yields to determine the factors. Using a
maturity set that is closer to their choice (6M, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y), I find overfitting in maximum
likelihood approaches if more than three factors are used, i.e. the out-of-sample RMSE increase for four
or more factors in the JSZ MLE approach. Thus, the yield selection underlying the factor construction
has a crucial impact on the preferred factor dimension.
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T-Bill rate is unavailable. The yields to measure the RMSE are at a monthly frequency,
with monthly-spaced maturities from one year to ten years. Thus, the statistic in Table 1
is a mix of in-sample errors for every 6M maturity and out-of-sample errors for all other
monthly maturities. Ileave out the short-term yields below one-year maturity to construct
the RMSE, since a good fit of those maturities might represent fitting the extrapolation
noise of the 1M yield.

The first row, “Traditional OI, 1M short rate”, of Table 1 contains the traditional
approach to estimating a linear regression model: The risk-neutral dynamics are overi-
dentified (OI) and the short-rate parameters correspond to the regression parameters of
the observed one-month short rate (A}, = &11), B} = ZA);) The YD estimator fits extremely
poorly, which implies that the risk-neutral dynamics derived from long-term yields are
inconsistent with the short-rate loadings from a one-month yield. Interestingly, using
the extrapolated one-month GSW yield in DLR results in a better fit than using the
one-month T-Bill rate for DLR. Thus, potential inconsistencies between Treasury Bills
and seasoned Treasury bonds seem more problematic in the traditional approaches than
erratic noise from extrapolation in the one-month GSW yield.

The fit is considerably better in the second row, “OI, long rates”, in which the risk-
neutral dynamics are still overidentified but the implicit short-rate parameters originate
from yields with the longer maturities as outlined in section 3.2. For that approach,
short rates in DLR only affect the results through 511) in the inversion for the risk-neutral
dynamics (10). The RMSEs of both DLR, approaches are only half the size of the first
row. YD is completely independent of the short rate and reaches a RMSE of only 3.9 bps.

The last row, “SC, long rates”, of Table 1 contains results for the self-consistent model
(SC) which may reduce overfitting (see section 3.3). The comparison of the last two rows
in Table 1 provides evidence of minor overfitting in both DLR variants, while there is
no overfitting in the YD model. Five-factor models that allow for more flexibility in the
linear regression are more affected by overfitting (not displayed).

The results in Table 1 are in line with Golinski and Spencer (2018), who show that
a self-consistent estimation (3rd row in Tab 1) improves the fit over the traditional esti-
mation based on an observable short rate (1st row in Tab 1). However, Table 1 suggests
the improvement they identify them for US Treasuries is caused to a large extent by the
independence of short-rate parameters from the observable short rate but not from self-
consistency. Overall, it is better to avoid the noisy short maturity spectrum altogether,
which is only possible with the new Yield Difference estimator.

4.2 Factor Construction With(Out) a Short Rate

All self-consistent estimators in Table 1 have a broadly similar fit in terms of RMSE.
This might be surprising at least for “DLR GSW”, which uses the extrapolated and noisy
1M GSW yield with implausible spikes in Figure 1.2 Both DLR estimators in Table 1
perform well despite the use of noisy data because the short rate is not used to construct
the observable factors P,. Hence, the noisy data in DLR only affect ®gp through l;ll) in
equation (10). Excluding the short rate from the factor dynamics is supposed to exclude

24This finding is not driven by a specific maturity spectrum in Figure 2. Even for short maturities
in the left part, YD performs just as well or poorly as the DLR variations that take into account an
observable short rate (the blue line is hardly visible below the red line).
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Figure 2: DLR versus Yield Difference for US Treasuries

Root mean squared error (RMSE) of the yield errors. The gray vertical grid lines indicate maturities used
to construct the principal components that serve as observed factors. The errors of those maturities are
in-sample. The other monthly-spaced maturities are out-of-sample errors. Dashed lines with x marker
are T-Bills with 1M, 3M and 6M maturity. “ 1M ...in PC” indicates that the 1M rate is contained
in the principal components (PC) that serve as observable factors P;. All displayed models are from a
self-consistent model that uses the long-term yields to determine the short-rate parameters.
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potential data noise from the economic dynamics of P;. However, this potentially ignores
economically relevant information about the short end of the yield curve.?

In Figure 2, the violet and green lines are models that include a 1M yield in the
factor construction in addition to the 6M-spaced yields from 6M to 10Y. This implies
that the variation of the 1M rate — including the extrapolation noise — is considered to
be economically relevant. Since the number of factors is unchanged at four, this comes
at the cost of a worse fit of the longer maturities in the right part. If the 1M T-Bill rate
(IM GSW yield) is included in the factor dynamics, the average RMSE between 1Y and
10Y is about eight basis points (above 30 basis points).?

Using the one-month rate in the factor construction changes it from an out-of-sample
to an in-sample measure. Therefore, the fitting error of that particular in-sample yield is
lower for both GSW and TB. However, the improved fit of the 1M rate has no evident
positive effect on the neighboring short-term maturities. If the 1M rates were dominated
by economic signals but not by noise, we would expect to have a better fit of the short
maturities because the short end has more weight in the factor construction. However,
for the six-month GSW yield, the RMSE is only about 4 bps for models that exclude
the 1M rate, compared with more than 10 bps for both models with a 1M rate in the
factor construction. For the GSW dataset, data noise dominates economic information
contained in the one-month horizon. For the violet model that includes the 1M T-Bill
rate, the T-Bills with 3M and 6M maturity have a better fit compared to the linear
regression estimators that exclude a one-month maturity. However, their RMSE is at an
elevated level: the RMSE for 3M and 6M maturity T-Bills is 20bps which is a multiple

25 Adrian et al. (2013) construct factors without the 1M US Treasury Bill rate, while Golinski and
Spencer (2018) include it in their factor construction.

26T his is larger than the average (in-sample) RMSE of three to four basis points in Golinski and Spencer
(2018), who include the one month T-Bill in the factor construction. The better fit might be due to the
fact that they include only eight yields in their estimation as opposed to 20 yields in my estimation.
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of the 1M T-Bill rate RMSE and at a comparable level to the worst fit of a GSW yield,
the 10Y maturity. Thus, the 1M US T-Bill rate contains a considerable amount of data
noise or a T-Bill premium as suggested by Lenel et al. (2019). An affine term-structure
model of the US Treasury yield curve should exclude an observable short rate from the
factor construction.

4.3 Expected Treasury Short Rates

A term structure model is estimated to deliver insights into the term premium and the
expected short-rate path contained in long-term yields. Figure 3 compares the expectation
component of the 10-year US Treasury yield for a selection of my estimations to model-
based benchmarks from the literature. Also shown are survey expectations of the average
3M T-Bill rate over 10 years from Consensus Economics.?”

The first benchmark is estimated by staff of the Federal Reserve Bank of New York
(FRBNY), which updates the Adrian et al. (2013) estimation based on the GSW dataset.?®
It is a five-factor model with only yield data estimated using the overidentified method
of ACM. The 1M T-Bill rate is not used to construct principal components that serve as
observable pricing factors P;. It is only used to estimate short-rate parameters. Thus,
the data sample and the methods of my estimates are similar to the FRBNY ACM. The
same can be said for the expectation component’s dynamics of the 10-year US Treasury
yield in Figure 3.2° This holds not only for the linear regression estimators but also for
the JSZ models estimated by maximum likelihood: hardly any other model’s expectation
component is visible below the five-factor YD. Thus, I confirm the major finding of Li,
Meldrum, and Rodriguez (2017) that the expectation component is quite similar, no
matter whether maximum likelihood or linear regressions are used for the estimation as
long as the yield dataset and the model structure are similar.

The second benchmark is estimated by Federal Reserve Board (FRB) staff based on
Kim and Wright (2005, KW). It is a three-factor model estimated with maximum likeli-
hood that includes yields and interest rate surveys.®® It is estimated with a history starting
in 1990, shortly after the short-horizon surveys become available. From a technical per-
spective, the advantage of using surveys is that the small sample downward bias of the
persistence in the time-series dynamics can be alleviated. Furthermore, the long-term ex-
pectation of the short-rate level is anchored by the level of the survey expectations. There
is a consensus in the literature that the dynamics of the expectations are similar across
model specifications.?! Figure 3 illustrates a decline in short-rate expectations for all
models since 1990 but the magnitude of the fluctuations and the level differ. The decline

2"There are no surveys available at Consensus Economics concerning the 1M T-Bill, so the 3M T-Bill
is the closest survey-based proxy for the expected short rate. The survey for a horizon up to 10 years
starts in 1998, and shorter forecast horizons are available since 1989.

28The updated data is available for download at the FRBNY webpage https://www.newyorkfed.org/
research/data_indicators/term_premia.html

29The remaining difference results from slightly different data specifications (maturities used to con-
struct factors and excess returns). Furthermore, the FRBNY ACM includes a convexity adjustment in
the constant, and their estimates are not transformed into the self-consistent canonical form of JSZ.

30The updated data are available for download at the Federal Reserve Board webpage https://www.
federalreserve.gov/data/three-factor-nominal-term-structure-model.htm

31See Li et al. (2017), Cohen, Hérdahl, and Xia (2018) and Adrian, Crump, Mills, and Ménch (2014)
for the US. Malik and Meldrum (2016) come to a similar conclusion for UK data.
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Figure 3: Expectation Component of US Treasury Models

The expectation components are re-based to match the the average level between of the FRBNY ACM
expectation component. Data is censored at 10 percent.
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of the survey expectation data after the financial crisis was more moderate. Therefore,
the model-implied expectations of the FRB KW data is at a higher level compared to the
yields-only models like the FRBNY and my estimates. The long-term rate expectations
of the latter reflect only the sample mean of the yield data.

The difference between the model estimates is less affected by the estimator than by
the data choice — that means whether using surveys or not. Therefore, the main takeaway
from this section on US Treasuries is that the Yield Difference estimator works well even
in a data environment for which the data structure allows estimations of the traditional
approaches of DLR (and ACM). The ability of the Yield Difference estimator to replicate
well-established model dynamics in the US gives confidence to apply the Yield Difference
estimator in the next section to German Bunds, which have a more challenging dataset
structure.

5 German Bund Curve

The final part of this paper covers German Bund data. I decompose the Bund yield curve
into short-rate expectations and term premia with a long history starting in January
1967. The yield maturities used for the construction of the observed factors (princi-
pal components P;) have maturities between one and ten years with six-month spacing.
Appendix B contains details of the dataset. All models are estimated using the Yield
Difference approach and transformed to the self-consistent version. Three principal com-
ponents explain 99.99% of the yield variation. The in-sample standard deviation of the
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cross-sectional error is less that two basis points.3?

While the estimation of the risk-neutral dynamics is determined by the canonical form
of JSZ with the Yield Difference estimator, there are uncounted potential specifications
of the time-series dynamics that determine the short-rate expectations. My model choice
is based on three economic criteria. First, a yield decomposition should provide reason-
able implicit short rates (section 5.2). They constitute the starting point for the path
of short-rate expectations. Second, following the consumption asset pricing theory, the
term premium should be a compensation for systematic risks and, therefore, be related to
macroeconomic drivers and uncertainty (section 5.3). Third, and most importantly, only
a model that delivers a reliable forecast of future yields provides a trustworthy expecta-
tion component from the yield decomposition for current investment or policy decisions
(section 5.1).

5.1 Out-of-Sample Bund Yield Forecasts

The major criterion to narrow the set of model candidates is the out-of-sample forecasting
ability: If a model was unsuited to forecast zields in the past, it is unlikely to produce
reasonable current expected policy paths. The extremely fast estimation of the Yield
Difference estimator allows for a recursive estimation to perform out-of-sample forecasts
for many model specifications. The models displayed in the remainder represent only a
subset of candidate models.?3

The imposition of No Arbitrage in an observed factor model alone does not improve
the forecasting performance, see Duffee (2011a).>* The reason is obvious from the canon-
ical form of Joslin et al. (2011) used in the linear regression estimators: The risk-neutral
parameters that ensure no-arbitrage are separated from the time-series dynamics. There-
fore, we can use OLS to estimate the time-series dynamics of an unrestricted model.
However, it is notoriously difficult for time-series models — and therefore unrestricted
affine term structure models — to beat a simple random walk forecast for yields. An
econometric reason for that result is emphasized by Bauer, Rudebusch, and Wu (2012):
They highlight a small-sample bias in the OLS estimation of the time-series VAR. This
bias leads to a lower estimated persistence in the time-series dynamics than in the true
data generating process. Since the yield data themselves are very persistent, the naive
random walk forecast of a yield may outperform the forecasts of a time-series VAR with

32Using four factors reduces the in-sample error standard deviation to less than one basis point. The
economic results of the four-factor model are comparable to those of the three-factor version. Therefore, I
choose the parsimonious model with three factors. The conditional Sharpe Ratios of the all self-consistent
models with three factors introduced below are between 0.4 and 0.55. This corroborates the evidence
against overfitting.

33Not shown here are models estimated with two to six factors. Furthermore, variations of the re-
stricted models introduced below were considered. Variations include different risk ranks, variations of
the econometric bias adjustment and a variation to the random walk. Lastly, different samples were
estimated, most importantly a start of the data in 1983 and a dataset based on Schich (1997) with a
limited maturity spectrum starting in 1972.

34The key assumption here is that the observed factors are measured without error, i.e. 0 = W -v; with
v from equation (8). If there is a measurement error, the No-Arbitrage restrictions help because they
give structure to the loadings in the measurement equation. But in that case, principal components as
observed factors used by Joslin et al. (2011) or linear regression approaches contain measurement errors
and one has to resort to filtering techniques and maximum likelihood estimation.
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a downward-biased persistence.

No-Arbitrage restrictions may help to forecast Bund yields if they are combined with
auxiliary restrictions on the risk premia or the time-series dynamics. [ consider three
approaches from the literature that can be easily integrated into the linear-regression
framework in a way that preserves its numerical performance:*®

Rank-restricted risk premium: A single rank restriction on the risk premium im-
plies that the risk premium in all yields is driven by a single linear combination of the K
factors, and not by K combinations, as in an unrestricted canonical model. By restricting
the flexibility of the risk process, the time-series dynamics are tied to the risk-neutral
dynamics. Since the latter are usually very persistent, the implicit real-world dynamics
become more persistent. Rank restrictions on the risk process are motivated by the excess
return regressions of Cochrane and Piazzesi (2005) and implemented in affine term struc-
ture models by Duffee (2011b) and Joslin et al. (2011) for US data. Bauer (2018), Joslin,
Priebsch, and Singleton (2014) and Cochrane and Piazzesi (2008) use zero restrictions on
the risk premium that implicitly reduce its rank.?® Details of the implementation of a
rank restriction in the linear regression framework can be found in Appendix A.6.

Level factor with random walk: A slow-moving random walk is contained in shifting
endpoint models as in Bauer and Rudebusch (2020), van Dijk, Koopman, van der Wel,
and Wright (2014) or Cieslak and Povala (2015). A slow-moving random walk usually
requires a filter to estimate a slow-moving trend. A simple alternative is chosen by
Duffee (2011a), who imposes a random walk for the observed level factor. Compared
to the shifting endpoint, the random walk of the observed level implies more noise in
the implicit long-term rate. While the noise might be an undesirable property from a
theoretical viewpoint, the simple estimation of the level random walk model is its key
advantage: In the time-series regression, the level random walk translates into a VAR
with simple linear parameter restrictions that can be estimated by least squares, see e.g.
Liitkepohl (2005, section 5.2): The autoregressive parameter of the level factor is set to
one and zero restrictions ensure that the level is neither predictable by other factors nor
that the level factor (being a random walk) will affect the stationary slope and curvature
factor. Only parameters that describe the joint movement of slope and curvature factor
are estimated by GLS.

Econometric bias adjustment: The parametric approach of Kilian (1998) corrects for
the bias in the VAR based on sample size, and error covariance. In the Bund dataset under
investigation, the raw correction yields explosive real-world dynamics. The shrinkage
suggested by Kilian (1998) ensures stable dynamics. For Bund data, the result is basically
a unit root, since the largest time-series eigenvalue is above 0.9999. The bias adjustment

35 A1l restricted models create a link between the yield level A" and the time-series dynamics by the
covariance 2. This requires estimating with GLS and iterating on the Q as outlined in Appendix A.6.

36The Bayesian approach of Bauer (2018) prefers zero restrictions that imply a risk rank of one in a
three-factor model. The model search in a five-factor macro-finance model of Joslin et al. (2014) results
in a risk rank of two. The return prediction factor of Cochrane and Piazzesi (2008) implies a risk rank
of one.
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Table 2: Out-of-Sample Bund Yield Forecasts

The table shows Theil’s U for the model in the row header compared to a forecast from a yield random
walk. A value below (above) one indicates that the model provides better (worse) forecasts than the
yield random walk. The + + +/ + +/+ (— — —/ — —/—) signs indicate an increase (decrease) in the
model’s forecasting ability versus the yield random walk at the 1%/5%/10% significance level in the test
of Diebold and Mariano (1995).

Panel A: 6-month yield

h=3M h=12M h=3Y h=5Y
Unrestricted 095 ++F 0.99 1.23 ——— | 143 ———
Risk Rank 0.93 0.89 T+ 131 ——— | 1.26 ~———
Level Random Walk 092 *++ | 0.90 *++t+ | 079 *++ | 065 *++
Bias Adjustment 093 *Ft+ 1095 ++ 1.01 0.85 TF+
Forward 1.35 —— 0.91 072 *t*+ 1 0.95

Panel B: 10-year par yield

h=3M h=12M h=3Y h=5Y
Unrestricted 1.03 118 — | 163 ——— | 189 ~——~
Risk Rank .11 =~ 1.07 0.67 Tt 1048 *FF
Level Random Walk 1.00 1.04 —— 1.18 ——= | 1.25 ——~
Bias Adjustment 0.99 097 * 092 ++ 093 ++
Forward 1.03 ——— | 1.04 —— .11 — | 1.10 ——

is slightly more flexible compared to the level random walk restrictions of Duffee (2011a)
because there are no additional zero restrictions imposed on the time-series dynamics.

Table 2 contains the out-of-sample forecast performance of the four models from Jan-
uary 1999 to October 2022. The forecast horizons h span from three months to five years.
The estimation window is recursively extended each month from 1994 to 2022 for all mod