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Pricing under asymmetry and ambiguity

Trivikram Dokka∗ Sonali SenGupta†

January 2023

Abstract

Robust pricing models often suffer from being overly conservative. This is due to lack of asymme-

try information within the set of possible valuation distributions. However, even when information

on asymmetry is available incorporating it within pricing models makes the characterization of

pricing policies very difficult. Our main results address this challenge by providing an explicit

characterization of the worst-case prior under the extended information setting that includes semi-

variance as a measure of asymmetry on top of mean and variance. We illustrate the gain from

having the asymmetry information captured via semivariance.

Keywords Pricing, Ambiguity, Distributionally Robust Mechanism, Asymmetry

1 Introduction

Price, argued by many, is the most effective control lever in increasing profitability, albeit a risky lever

to pull. A bad price, whatever that means, can lead to an immediate and long standing decrease in

profits. Undoubtedly, there are many dimensions to the question “what is a good price”, given the

fact that buyers may have many options to choose from, and each buyer may value the same product

differently. Clearly, the question of a good price presents a seller with a difficult conundrum because

seller does not possess (completely) either of these information about the options available to the

buyer or their valuations. The focus of this paper is to analyze the pricing problem in such contexts.

Being at the heart of mechanism design, such problems with limited and/or minimal information

about the prior of valuation distribution, motivated increase in literature in this direction of robust

mechanism design. Within this literature, characterizing optimal pricing mechanism has been the
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primary focus, eg. [Carrasco et al., 2018], where worst-case revenue maximising price is found by

solving a sequential game between seller and adversarial nature. In fact, optimal monopoly pricing

forms the basis of profit maximizing mechanism design with incomplete information. Robust versions

of classical pricing problem have gained a lot of attention in the last decade. Robust pricing literature

mainly attempts to accommodate minimal information within models in providing revenue estimates

and pricing decisions. The minimal information set often only includes information about first two

moments of the buyer’s valuation distribution making them prone to becoming overly conservative.

This is due to worst case prior i.e., worst case valuation distributions are often very asymmetric. This

highlights the need to accommodate asymmetry in robust models which is our main contribution in

this work. More specifically, we study the pricing policy when ambiguity set also holds information

about the asymmetry hence enriching the existing robust models. We start by describing the model

when no information about asymmetry is given or considered which we then extend to incorporate

asymmetry.

1.1 Model: robust pricing without asymmetry

A seller wants to sell a single unit of a good to a price sensitive buyer. Buyer’s valuation (θ) of

seller’s product stems from her reservation price or willingness-to-pay (WTP) denoted as c. That is,

θ = min(c, r), where r is seller’s price, and seller’s product is sold only if r is less than c. Seller cannot

observe the reservation price of buyer, in other words, valuation θ is unknown to seller. Moreover, the

distribution from which c is drawn is not fully known to seller. In particular, seller only knows the

mean (µ) and variance (σ2), and the non-negative support (Ω = [m,M ]) of the distribution. Hence,

the set of distributions he considers possible is given by:

P = P(µ, σ,Ω, ) =


P

∣∣∣∣
EP[c] = µ,

EP[(c− µ)2] = σ2

EP(1) = 1


. (1)

(1) is commonly known as moment-ambiguity set in distributionally robust optimization [Rahimian

and Mehrotra, 2019].

In this article we consider deterministic posted price mechanisms. That is, when the distribution,

P, of c is known to seller he sets a price r that maximizes his revenue:

R(P) := max
r
R(r,P), (2)
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where R(r,P) =
∫M
r rP(c)dc. Traditionally, seller’s problem in the presence of ambiguity is modeled as

D := max
r

min
P∈P

R(r,P). (3)

As is common in literature, seller’s revenue optimization problem under ambiguity is seen as a

sequential bilevel optimization problem, often also referred to as a game, between seller and nature,

with decision-making happening in that sequence:

max
r∈Ω

R(r,P) (4)

s.t P := argminP∈PN(r,P)

where N() = R(). When seller optimizes over worst prior, namely (3) is equivalent to playing against

an adversarial nature. We first recall the following important property about optimal solution to

nature’s problem. A k-point distribution assigns all probability to exactly k points in the support.

Lemma 1. Nature’s optimal distributions are at most three-point.

Proof. Follows from [Popescu, 2007].

Before stating our aims and contributions, we state 3 Lemmas that capture the characterization of

(Monopolist’s) optimal pricing policy under ambiguity.

Lemma 2. For any price r chosen by seller, nature’s optimal distributions are two-point.

The two-point property of nature’s solution implies the following lemma.

Lemma 3. The demand under adversarial nature is: 1− σ2

σ2+(µ−r)+2 , when r ∈ [m,M ].

The concavity of the resulting revenue function will allows to solve for optimal price:

Lemma 4. Optimal price characterization:

r∗ = µ+
∆2 − σ2

∆
, (5)

where ∆ = (−µσ2 + σ2
√
µ2 + σ2)

1/3
.

1.2 Aims and contributions

Our two aims and the associated contributions in the rest of the paper are as follows:
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• Our primary aim is to extend pricing model to account for asymmetry and characterize the

pricing decision, just as in Lemmata (3)-(4). The key to achieving a similar result as in Lemma

3 in an extended model that takes asymmetry in to account is characterization of the optimal

solution to the inner problem, that is, the nature’s problem. Unlike the case of (3), achieving

this characterization becomes highly involved and non-trivial task as this requires constructing

various forms of dual feasible solutions to nature’s primal problem. There is no result in literature

which characterizes nature’s solution for more than three moments. As will be seen in Theorem

1, nature’s solution is quite complicated and hence an explicit expression for optimal price in this

case is only bound to be very messy. Nevertheless, our analysis provides an easy bisection search

type algorithm to compute optimal price. From a technical point of view analysis of nature’s

best response was previously only analyzed in a piece-wise linear case but not for piece-wise

constant which is more common in robust models. We fill this gap as one of our main technical

contribution.

• Our secondary aim is to illustrate the gain of incorporating the asymmetry information on price

and revenue estimates. More specifically, we will show that even in the symmetric distributions

(3) can end up suggesting highly conservative prices and this is because of lack of asymmetry

knowledge within the model. In the process, we show that behavior of revenue curve is non-

smooth and non-concave in general but illustrate that there exist three price ranges where we

have the desirable property for bisection search.

To this end we motivate and formally extend (3) to incorporate asymmetry information in the following

section.

2 Robust pricing with asymmetry

A drawback of mean-variance model is that P does not provide any information on the asymmetry

of buyer’s WTP distribution. Therefore P includes various distributions with distinct asymmetries.

Though widely acknowledged, asymmetry is still not incorporated as it (generally) makes (3) intractable

and hard to analyze. Following recent literature, we represent asymmetry using semivariance. Semi-

variance was originally proposed as a better metric than variance which captures downside risk by

Markowitz. The semivariance of a random variable x for some target α is a special case of the lower

partial moment E((α−x)+2). Semivariance, as a measure of asymmetry, is at least 4 decades old when

it is used to tighten Chebyshev inequality in [Berck and Hihn, 1982]. On the estimation side, several

approaches exist for estimation of semivariance, [Sortino and Forsey, 1996,Bond and Satchell, 2002].
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Following [Natarajan et al., 2018], we use normalized semi-variance,

s =
EP[(c− µ)+2 − (µ− c)+2]

σ2
, (6)

to characterize the solution to the pricing problem under ambituity and asymmetry information. Note

that the value of s indicates whether random WTP (of buyer’s) deviations from the mean are concen-

trated above or below the mean; and it takes a value between -1 and 1. Symmetric distributions, such

as Normal and Uniform, will have s = 0 but the reverse is not necessarily true. Negative skewed (

resp. positive skewed) distributions have negative s (resp. positive s) values.

We can now define the extension of P, defined in (1), by incorporating asymmetry information via

normalized semivariance:

P(s) = P(µ, σ, s,Ω, ) =


P

∣∣∣∣
EP[c] = µ,

EP[(c− µ)2] = σ2

EP[(c− µ)+2]− EP[(µ− c)+2] = sσ2

EP(1) = 1


. (7)

The extension of (3) can now be written:

D := max
r

min
P∈P(s)

R(r,P). (8)

Remark 1. Information on the knowledge of variance is often expressed as an upper bound for reasons

mentioned in [Carrasco et al., 2018]. However, all results apply for equality and inequality cases

of variance, as noted also in [Suzdaltsev, 2018]. Similarly, knowledge of higher moments is usually

expressed as upper bound, in this case the results will be similar when only upper bound on semivariance

is known.

3 Related literature

The subject of this paper is setting prices of a product when seller faces ambiguity about options

available to buyers and/or about valuations of buyers. Within this stream of literature, [Bergemann

and Schlag, 2011], [Carrasco et al., 2018], [Pinar and Kizilkale, 2017] are closer to our work. [Bergemann

and Schlag, 2011], [Y. Giannakopoulos and Tsigonias-Dimitriadis, 2020] consider a single product

pricing under ambiguity and assume that distribution of buyer’s valuations belong to a neighbourhood

of a nominal distribution and analyze both max-min utility and min-max regret models. [Pinar and
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Kizilkale, 2017] considers different cases of the seller possessing partial information about buyer’s

valuations by modeling the ambiguity about buyer’s valuation in a Knightian uncertainty setting with

discrete prices. Finally, [Carrasco et al., 2018] considers randomized mechanisms when the seller has

information on the moments of distribution of the buyer’s valuation.

Our work naturally relates to rapidly growing literature on (robust) mechanism design and auctions,

see a survey [Carroll, 2019]. Within auctions literature, within distributionally robust setting, [Azar

et al., ,Azar and Micali, 2013,Suzdaltsev, 2018] also study partial information setting similar to ours

with the seller possessing information on mean and variance within a multi-product multiple-buyers

setting and searches for mechanisms that work well a given class of distributions. However, they also

restrict to only mean and variance information.

Our work differs from the existing literature by considering the setting that incorporates asymmetry

within the ambiguity set. To the best of our knowledge such a setting has not been studied in literature.

4 Pricing under asymmetry - Main result

Before stating our main result we need the following proposition which characterizes all possible feasible

distributions for a given value of semivariance.

Proposition 1. [Natarajan et al., 2018] Feasible distributions characterization] Consider a non-

negative random variable with µ > 0, σ > 0 and normalized semivariance s. Then necessary and

sufficient condition for the moments to be feasible is

σ2 − µ2

σ2 + µ2
≤ s ≤ 1. (9)

The key idea in characterizing the nature’s solution is by careful analysis of dual formulation. In

fact, the constants h and y1 correspond to dual prices. We are now ready to state our main result in

the next theorem.

Theorem 1. For a given (µ, σ, s) when seller chooses a price r, nature’s solution is as follows: let

m1 = 1+s
2 σ2 and m2 = 1−s

2 σ2 then,

1. when 0 < r ≤ µ −
√

m2
m1

(m1 +m2) nature’s optimal solution is a three point distribution with

support (ω1
1, ω

1
2, ω

1
3) and respective probabilities (q1

1, q
1
2, q

1
3) as follows:

ω1
3 = µ+

√√√√ m1

(1− π)
(

1− m2

(µ−r)2

) w.p. q1
3 = (1− π)

(
1− m2

(µ− r)2

)
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ω1
2 = µ w.p. q1

2 = π

(
1− m2

(µ− r)2

)
ω1

1 = r w.p. q1
1 =

m2

(µ− r)2 ,

where π =
m1((µ−r)2−m2))−m2

2

m1((µ−r)2−m2)
.

2. when µ −
√

m2
m1

(m1 +m2) ≤ r < µ nature’s optimal solution is a three point distribution with

support (ω2
1, ω

2
2, ω

2
3) and respective probabilities (q2

1, q
2
2, q

2
3) as follows:

ω2
3 =

r (2r − µ(h+ 4))

h(r − 2µ)
w.p. q2

3 =
m1(

r·(2r−(h+4)µ)
h·(r−2µ) − µ

)2

ω2
2 = r w.p. q2

2

ω2
1 = 0 w.p. q2

1 = 1− (q2
3 + q2

2),

where h =
(r−2µ)2

√
m1·(4µ2r2+m1r2−8µ3r−4m2µr−4m1µr+4µ4+4m2µ2+4m1µ2)r

µ·(r−µ)(4µ2r2+m1r2−8µ3r−4m2µr−4m1µr+4µ4+4m2µ2+4m1µ2)
+ r·(r−2µ)

m·(r−µ) and

q2
2 = 1

r

(
µ− 1

r

(
hµ(µ−r)

2µ−r + h2(2µ−r)m1

4(hµ(µ−r)−r(2µ−r)) + hm2
2µ−r

))
.

3. when r ≥ µ nature’s optimal solution is a three point distribution with support (ω3
1, ω

3
2, ω

3
3) with

respective probabilities (q3
1, q

3
2, q

3
3) as follows:

ω3
3 =

(
2µy1 −

(
−2y1

(
(r − µ) +

√
− r
y1

)))
2y1

w.p. q3
3

ω3
2 = r w.p. q3

2

ω3
1 = 0 w.p. q3

1 =
m2

µ2
= 1− (q3

2 + q3
3),

where y1 = −

(
((µ2−m2)r2−µ3r)

((m2−µ2)r2+2µ3r−µ2m2−µ2m1−µ4)

)2

r ;

q3
3 =

(
µ− r

(
1− m2

µ2

))√
−y1

r ;

q3
2 =

µ−w3


(
2µy1−

(
−2y1

(
(r−µ)+

√
− r
y1

)))
2y1


r .

Sketch of Proof We reformulate the inner problem (Nature’s problem) in (8) to write the dual

of the problem. We then exploit the nature of dual feasible region by differentiating different cases

particularly when r is greater or less than µ. We show three price ranges and show the optimality

using strong duality by extracting primal solution from dual solution.

Proof of Theorem 1 can be found in Appendix.
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Corollary 1. Optimal price is obtained by solving:

r∗ := argmax
r

{R1, R2, R3} (10)

where R1 = r
(

1− m2

(µ−r)2

)
; R2 = r

(
m1(

r·(2r−(h+4)µ)
h·(r−2µ)

−µ
)2
)

, R3 = r
((
µ− r

(
1− m2

µ2

))√
−y1

r

)
; h and y1

are as stated in Theorem 1.

Remark 2. From Corollary 1, it follows that we can obtain an expression for optimal price by solving

three uni-dimensional optimization problems. In all three cases the revenue function is concave hence

giving a unique maximizing price. Given that these functions are quite complex, obtaining an explicit

expression for the optimal price is rather difficult, if not impossible, even under concavity. However, the

concavity of revenue curves in three cases implies a simple bisection search to compute the optimal price.

We emphasize that without explicit characterization of the nature’s solution the only way to compute

optimal price is by reformulating dual of the nature’s problem, which is at best a conic program, which

is computationally intensive to solve, see [Natarajan et al., 2018].

4.1 Numerical illustration

The objective of this section is to illustrate the gain in pricing decision and estimated revenue by

incorporating the asymmetry information. Figure 1 illustrates the revenue curves against changing

price in three different semivariance settings: negative (Figure 1a), zero (Figure 1c), and positive

(Figure 1b). Dashed curve represents the model that does not take semivariance in to account and

solid curve represents revenue curve of the semivariance model. In all three cases mean and variance

are kept constant and chosen arbitrarily at µ = 4 and σ = 2.45, while semivariance values were chosen

at −0.35, 0 and 0.35. Note that with these chosen mean and variance values, the feasible set of

semivariance values is [−0.46, 1].

The non-convexity and rather humpy looking shapes of revenue curves are due to different nature

solutions arising in three different cases defined by the price (r) as detailed in Theorem 1. Note that the

three cases (and the respective price ranges) are semivariance dependent and hence vary between the

three chosen semivariance values, these are reported in Table 1 along with optimal price and estimated

revenues.

Interestingly, even in the case when semivariance is equal to zero, which contains all symmetric

distributions (and more), the impact of ignoring asymmetry information can be very high. Note that

Figure 1b suggests a much higher price when semivariance information is considered. Moreover, this

impact is seen to be even more significant in the negatively skewed case, see Figure 1a, where the price
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suggested, when taking semivariance in to account, can be double the price suggested otherwise. On the

other hand, unsurprisingly, the price suggested, by semivariance model, while still very different from

no semivariance model, is less drastically different to base model which does not include asymmetry

information, see Figure 1c. However, in all three cases it can be clearly seen that revenue estimates

can be seen to be overly conservative when asymmetry is ignored. Note that the revenue curve change

for prices greater than µ is noticeable in the illustration due to the nature of the revenue functions in

cases 2 and 3 of Theorem 1.

Semi-variance Area 1 Area 2 Area 3 Optimal price Estimated Revenue

-0.35 [0,0.47] (0.47,4] > 4 3.79 2.14
0.0 [0,1.55] (1.55,4] > 4 3.04 1.179
0.35 [0,2.29] [2.29,4] > 4 1.76 1.07

No Semivariance 1.87 0.805

Table 1: Comparison of optimal price and estimated revenue

5 Concluding Remarks

Our work provides impetus for a number of potential and interesting research areas. We character-

ize the optimal deterministic pricing under asymmetry information. Similar analysis for randomized

mechanisms is a natural extension. Extensions to more general settings such as auctions is another

direction, but challenging. Similarly, multi-product settings are yet another case for future study. None

of these extensions are studied, to the best of our knowledge, in the information settings that consider

beyond the knowledge of mean and variance.
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Appendix - Proofs

Proof of Theorem 1. Recall the definition of P(s):

P(s) = P(µ, σ, s,Ω, ) =


P

∣∣∣∣
EP[c] = µ,

EP[(c− µ)2] = σ2

EP[(c− µ)+2]− EP[(µ− c)+2] = sσ2

EP(1) = 1


. (11)

Primal feasibility of nature’s problem can be equivalently written as

EP(c1) = E(c2) (12)

EP(c2
1) = m1 (13)

EP(c2
2) = m2 (14)

c1 ≥ 0, c2 ∈ [0, µ], c1c2 = 0 (15)

where we let c1 = (c − µ)+ and c2 = (µ − c)+, σ2 = m1 + m2 and m1 −m2 = sσ2. Note that this

implies m1 = 1+s
2 σ2 and m2 = 1−s

2 σ2.

Let g1(x) = t+ h(x− µ) + y1(x− µ)2, g2(x) = t− h(µ− x) + y2(µ− x)2, f1(x) = r, f2(x) = 0.

Case 1

Using Isii’s strong duality theorem [Isii, 1962], problem (8) is equivalent to the following dual problem:

max t+ y1m1 + y2m2

s.t. t+ h(x− µ) + y1(x− µ)2 ≤ r x ≥ µ

t− h(µ− x) + y2(µ− x)2 ≤ r r ≤ x ≤ µ

t− h(µ− x) + y2(µ− x)2 ≤ 0 0 ≤ x ≤ r

When 0 < r ≤ µ−
√

m2
m1

(m1 +m2) consider the dual solution where g2(x) intersects f2(x) at r and

intersects f1(x) at µ and suppose g1(x) = f1(x) (as depicted in Figure 2), then the dual solution is as

follows:

h = 0

12



y1 = 0

y2 = − r

(µ− r)2

t = r

with a dual objective

r

(
1− m2

(µ− r)2

)
.

We have Pr(c1 > 0) = Pr(c2 = 0) = 1 − m2
(µ−r)2 (note that to calculate this we note that there is only

one point where c2 6= 0, that is, c ≤ µ and c 6= µ, this point is r. Also, probability Pr(c2 = r) =

Pr(c = µ− r) is nothing but one minus optimal dual objective value (which is t− rm2
(µ−r)2 ) divided by

r.); E[c1] = E[c2] = m2
(µ−r)2 · (µ− r). Note by definition E[c2

1] = m1. This implies conditional moments

for c1 are:

E[c1|c1 > 0] = E[c− µ|c > µ] =
E[c1]

Pr(c1 > 0)
=

m2
(µ−r)

(µ−r)2−m2

(µ−r)2

E[c2
1|c1 > 0] = E[(c− µ)2|c > µ] =

E[c2
1]

Pr(c1 > 0)
=

m1

(µ−r)2−m2

(µ−r)2

These conditional moments are only valid if and only if

E[c2
1|c1 > 0]− (E[c1|c1 > 0])2 ≥ 0

which is only possible when r ≤ µ−
√

m2
m1

(m1 +m2).

The primal solution with objective value r(1− m2
(µ−r)2 ) is given in Table 2, where

π =
m1r

2 − 2mm1r −m2
2 −m1m2 +m2m1

m1 ·
(

(r −m)2 −m2

) .

Support point probability

µ+
√

m1

(1−π)
(

1− m2
(µ−r)2

) w.p. (1− π)
(

1− m2

(µ−r)2

)
µ w.p. π

(
1− m2

(µ−r)2

)
r w.p. m2

(µ−r)2

Table 2: Primal solution when 0 < r ≤ µ−
√

m2
m1

(m1 +m2)

Case 2

13



Figure 2: Illustration of dual optimal solution when when 0 < r ≤ µ−
√

m2
m1

(m1 +m2), dual optimal

solution where dashed correspond to g1(x) and solid line correspond to g2(x). In this illustration
r = 0.25, hence solid blue lines correspond to x = r and f1(x).
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Dual formulation when µ−
√

m2
m1

(m1 +m2) ≤ r < µ is same as in Case 1. To construct a dual feasible

solution, suppose that, g1(x) intersects f1(x) exactly once at x > µ and g2(x) is convex and intersects

f2(x) at x = 0 and x = r (see Figure 3), therefore the following relationships hold which define dual

feasible solution:

h =
(r − 2µ)2

√
m1 · (4µ2r2 +m1r2 − 8µ3r − 4m2µr − 4m1µr + 4µ4 + 4m2µ2 + 4m1µ2)r

µ · (r − µ) (4µ2r2 +m1r2 − 8µ3r − 4m2µr − 4m1µr + 4µ4 + 4m2µ2 + 4m1µ2)

+
r · (r − 2µ)

m · (r − µ)

y1 = − h2

4 (r − t)

y2 =
h

2µ− r

t = hµ− y2µ
2

Note that all variables are expressed as functions of h. The optimal value of h is obtained by solving

the following

max
h∈[0,r]

hµ−
(

h

2µ− r

)
µ2 +

− h2

4
(
r −

(
hµ−

(
h

2µ−r

)
µ2
))
m1 +

(
h

2µ− r

)
m2

 . (16)

The function in (16) is concave when h ∈ [0, r] and convex elsewhere, hence the stationary point in the

range [0, r] gives the expression for optimal h.

This solution gives a dual objective value equal to

(
hµ (µ− r)

2µ− r
+

h2 (2µ− r)m1

4 (hµ (µ− r)− r (2µ− r))
+

hm2

2µ− r

)
,

which is obtained by the primal feasible solution given in Table 3. The primal solution is obtained

from the intersection points of dual constraints with right hand sides.

Support point probability
r(2r−µ(h+4))
h(r−2µ) w.p. w3 = 1

r

(
hµ(µ−r)

2µ−r + h2(2µ−r)m1

4(hµ(µ−r)−r(2µ−r)) + hm2
2µ−r

)
⇐⇒ m1(

r·(2r−(h+4)µ)
h·(r−2µ)

−µ
)2

r w.p. w2 = 1
r

(
µ− 1

r

(
hµ(µ−r)

2µ−r + h2(2µ−r)m1

4(hµ(µ−r)−r(2µ−r)) + hm2
2µ−r

))
0 w.p. w1 = 1− (w2 + w3)

Table 3: Primal solution when µ−
√

m2
m1

(m1 +m2) ≤ r < µ

To get the expression for upper support point note that t+ h (x− µ) + y1 (x− µ)2 is concave and

intersects y = r exactly at one point. Therefore, this has to be the maximizer, hence, this point can

15



Figure 3: Illustration when µ−
√

m2
m1

(m1 +m2) ≤ r < µ dual optimal solution where dashed correspond

to g1(x) and solid line correspond to g2(x). In this illustration r = 1.04, hence solid blue lines
correspond to x = r and f1(x).

be obtained by taking derivatives and equating to zero,

∂(t+ h (x− µ) + y1 (x− µ)2)

∂x
= h+ 2xy1 − 2µy1 = 0 −→ x =

2µy1 − h
2y1

,

substituting the values of y1 and h from optimal dual solution will give the upper primal support point

given in Table 3.

We have Pr(c2 > 0) = Pr(c1 = 0) = 1 − m1
(B−µ)2

(note that to calculate this we note that there

is only one point where c1 6= 0, that is, c ≥ µ and c 6= µ, this point is B = r(2r−µ(h+4))
h(r−2µ) . Also,

E[c2] = E[c1] = m1
(B−µ)2

· (B − µ). Note by definition E[c2
2] = m2. This implies conditional moments for

c2 are:

E[c2|c2 > 0] = E[µ− c|c < µ] =
E[c2]

Pr(c2 > 0)
=

m1(B − µ)

(B − µ)2 −m1

E[c2
2|c2 > 0] =

m2(B − µ)2)

(B − µ)2 −m1

16



These conditional moments are only valid iff

E[c2
1|c1 > 0]− (E[c1|c1 > 0])2 ≥ 0

which is only possible when µ+ µm1

m2
≥ B ≥ µ+

√
m1
m2

(m1 +m2). Substituting the value of B we get

r ≤ m,

and

r ≥ µ−
√
m2

m1
(m1 +m2)

Case 3: r ≥ µ

Dual formulation in this case is:

max t+ y1m1 + y2m2

s.t. t+ h(x− µ) + y1(x− µ)2 ≤ 0 µ ≤ x ≤ r

t+ h(x− µ) + y1(x− µ)2 ≤ r x > r

t− h(µ− x) + y2(µ− x)2 ≤ 0 0 ≤ x ≤ µ

Suppose that g1(x) intersects f2(x) and f1(x) exactly once at x = r and x > r respectively; and g2(x)

intersects f2(x) once at x = 0, as shown in Figure 4, which gives dual feasible solution as follows:

y1 = −

(
((µ2−m2)r2−µ3r)

((m2−µ2)r2+2µ3r−µ2m2−µ2m1−µ4)

)2

r

y2 = −2y1r

µ2

(
(r − µ) +

√
− r

y1

)
+
y1

µ2
(r − µ)2

t = y1

(
(r − µ)2 + 2 (r − µ)

√
− r

y1

)
h = −2y1

(
(r − µ) +

√
− r

y1

)

Where y1 is obtained solving

max
y1

y1

(
(r − µ)2 + 2 (r − µ)

√
− r

y1

)
+ y1m1+

m2

(
−2y1r

µ2

(
(r − µ) +

√
− r

y1

)
+
y1

µ2
(r − µ)2

)
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This is a concave function in y1, taking derivatives and equating to zero gives us:

−
((
m2 − µ2

)
r2 + 2µ3r − µ2m2 − µ2m1 − µ4

)√
− r
x x+

(
µ2 −m2

)
r2 − µ3r

µ2
√
− r
x x

= 0,

which gives us the required expression for y1 in terms of r, m1, m2 and µ. Primal feasible distribution,

that achieves same objective value as dual, can be constructed from intersection points of the dual

solution as given in Table 4 The calculation of upper support point is similar to that in Case 2, that

Support point probability(
2µy1−

(
−2y1

(
(r−µ)+

√
− r
y1

)))
2y1

w.p. w3 = 1
rm2 ·

(r − µ)2 y1

µ2
−

2r ·
(√
− r
y1

+ r − µ
)
y1

µ2


+1
r

(
2 (r − µ)

√
− r

y1
+ (r − µ)2

)
y1 +m1y1

⇐⇒
(
µ− r

(
1− m2

µ2

))√
−y1

r

r w.p. w2 =

µ−w3


(
2µy1−

(
−2y1

(
(r−µ)+

√
− r
y1

)))
2y1


r

0 w.p. w1 = m2
µ2

= 1− (w2 + w3)

Table 4: Primal Solution r > µ

is using concavity of g1(x) and its intersection point with y = r gives the required expression.

We have Pr(c2 > 0) = Pr(c1 = 0) = m2
(µ)2

. Also, E[c2] = E[c1] = m2
(µ)2
· (µ − 0). Note by definition

E[c2
2] = m2. This implies conditional moments for c1 are:

E[c1|c1 > 0] = E[c− µ|c > µ] =
E[c1]

Pr(c1 > 0)
=

m2(µ)

(µ)2 −m2

E[c2
1|c1 > 0] =

m1(µ)2)

(µ)2 −m2

These conditional moments are only valid if

E[c2
1|c1 > 0]− (E[c1|c1 > 0])2 ≥ 0

These conditions are merely the conditions that define feasible distributions.
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Figure 4: Illustration of r > µ dual optimal solution where dashed correspond to g1(x) and solid line
correspond to g2(x). In this illustration r = 4.5, hence solid blue lines correspond to x = r and f1(x).
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