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Abstract

The most widely used approaches in hedonic price modelling of real estate data and
price index construction are Time Dummy and Imputation methods. Both methods,
however, reveal extreme approaches regarding regression modeling of real estate data.
In the time dummy approach, the data are pooled and the dependence on time is
solely modelled via a (nonlinear) time effect through dummies. Possible heterogeneity
of effects across time, i.e. interactions with time, are completely ignored. Hence, the
approach is prone to biased estimates due to underfitting. The other extreme poses
the imputation method where separate regression models are estimated for each time
period. Whereas the approach naturally includes interactions with time, the method
tends to overfit and therefore increased variability of estimates.

In this paper, we therefore propose a generalized approach such that time dummy
and imputation methods are special cases. This is achieved by reexpressing the separate
regression models in the imputation method as an equivalent global regression model
with interactions of all available regressors with time. Our approach is applied to
a large dataset on offer prices for private single as well as semi-detached houses in
Germany. More specifically, we a) compute a Time Dummy Method index based on a
Generalized Additive Model allowing for smooth effects of the continuous covariates on
the price utilizing the pooled data set, b) construct an Imputation Approach model,
where we fit a regression model separately for each time period, c) finally develop a
global model that captures only relevant interactions of the covariates with time. An
important methodolical aspect in developing the global model is the usage of model-
based recursive partitioning trees to define data driven and parsimonious time intervals.
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1 Introduction

Prices of residential properties, according to de Haan and Diewert (2011), play a major
role as both a macroeconomic indicator of economic activity and asset wealth as well as in
monitoring risk exposure and hence financial stability. Thus, it is of great importance to
assess prices of real estate properties and their development over time.
The main challenge in the computation of house price indices lies in controlling for the
dwellings’ varying characteristics and locations. Following ILO et al. (2004), hedonic in-
dices have become the gold standard for this purpose. Hedonic indices are characterized
by expressing house prices as a function of characteristics within the framework of a re-
gression model. Thus, the obtained indexes show price evolutions controlled for variation
in the underlying characteristics. Potential problems include an omitted variable bias next
to the usually unknown functional relationship between the house price and its regres-
sors. Thus, in many applications, it has been shown to be advantageous to utilize more
flexible nonparametric estimation techniques. A common way to incorporate these, is the
construction of Generalized Additive Models and within its framework, the use of splines.
Applications of such methodologies include Waltl (2016), Brunauer, Lang, and Feilmayr
(2013) and Razen and Lang (2020), who compute hedonic indices utilizing penalized splines
within flexible Generalized Additive Models or Hill and Scholz (2018), who employ a spline
surface to capture geospatial effects.
Within the context of hedonic regression, the Time Dummy Method, next to the Imputa-
tion Approach, are the most relevant approaches. They are both characterized as hedonic
indexes and their differences arise usually from changes in average characteristics. When
utilizing the Time Dummy Method, a model is usually fit to the pooled data set compris-
ing all periods. In this way, it is straightforward to obtain the price index simply as the
(exponential) coefficients of the time dummies. The Imputation Approach is more flexible
as it does not rely on fitting the model to the pooled data. In practice, separate models are
usually fit to each time period, which relaxes the constant parameter assumption over time,
which is a restrictive assumption within the framework of Time Dummy indexes. This set-
ting represents a typical bias-variance tradeoff: Generally, increased complexity of a model
results in a decreased bias at the cost of inflated variance, see e.g. Hastie, Tibshirani,
and Friedman (2009). Assuming parameter stability over time could be inappropriate, but
modeling each time period separately possibly poses an extreme methodology as well.

In this paper, we therefore generalize the Time Dummy and Imputation Method which
allows models (and indices) between the two extreme approaches. We re-express the sep-
arate regression models in the Imputation approach as one global model, such that the
selection of statistically relevant interactions with time through statistical model choice is
possible. Moreover, we propose the application of model-based recursive partitioning to
stratify the data into time partitions in contrast to a naive stratification strategy within
the context of Imputation Approach indices. We finally contribute to the discussion of
the bias variance tradeoff by analyzing a large sample of semi-detached and single family
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houses in Germany from 2005 to 2019.

The remainder of the paper is structured as follows. This introduction is followed
by a brief presentation of the concept of hedonic price indices. Here, we review Time
Dummy and Imputation Approach indices and propose our generalized index construction
using global regression models. Our empirical analysis in section 3 involves, following a
description of the data, a) the computation of a Time Dummy Method model based on a
Generalized Additive Model allowing for smooth effects of the continuous covariates on the
price utilizing the pooled data set. We then b) construct an Imputation Approach model,
where we fit a regression model separately for each time period and c) fit a model-based
recursive partitioning tree to partition the time span into a set of regions. We d) fit a
global model, in which we interact the covariates with the time regions obtained from the
recursive partitioning tree. We analyze the respective performance and choose the optimal
model with respect to out-of-sample prediction accuracy. Finally, e) we construct hedonic
indices on the basis of the employed models and discuss them regarding their differences
and implications. In section 4 we conclude with a discussion of our results.

2 Hedonic Price Indices

In accordance with de Haan and Diewert (2011), hedonic regression methods serve the
purpose of constructing quality-adjusted price indices. At the basis of this lies the assump-
tion that property prices depend on a set of characteristics, such as location and structure,
which cannot be observed separately. Regression methods are employed in order to assess
the marginal effects and ultimately, to construct indices.
Following Brunauer, Feilmayr, and Wagner (2012), the literature distinguishes two ap-
proaches: The Time Dummy Method and the Imputation Approach. Both techniques
involve regressing the price of a property on its characteristics. The Time Dummy Ap-
proach usually utilizes a pooled regression comprising all time periods, while the Imputation
Method often assesses the characteristics’ marginal effects through a separate regression
for each time period.
In subsections 2.1 and 2.2 we review both approaches while subsection 2.3 provides a
generalization containing the Time Dummy and Imputation Method as special cases.

2.1 Time Dummy Indices

The Time Dummy Approach is, following Triplett (2004), the most frequently applied
method to construct price indices. The convenience in this approach lies in its simplicity,
as the index is derived directly from the regression coefficients, making its application and
interpretation very straightforward. The subsequent taxonomy is notationally motivated
as laid down in the Handbook on Residential Property Price Indices, authored by de Haan
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and Diewert (2011). The standard Time Dummy Variable model is formulated in a semi-
logarithmic form

ln pit = β0 +
T∑
t=1

δtDit +
K∑
k=1

βkzkit + ϵit, (1)

where pit is the price of property i in period t as a function of K characteristics captured
by zkit. Thereby, β0 and βk give the intercept term and the characteristics’ parameters
estimated by the model, respectively. Dit is the time dummy variable taking the value 1,
if an observation comes from period t and 0 otherwise, where a time dummy for the base
period 0 is left out to prevent an identification problem. Finally, ϵit is the error-term and is
considered to be white noise. The given model is estimated on the pooled data comprising
all time periods. Hence, the time dummies provide a measure for the marginal effect of
time on the logarithm of price.

The price index P TD
0t from period 0 to period t is usually derived by

P TD
0t = exp(δ̂t), (2)

i. e. is simply given by the respective exponential of the estimated time dummy coefficients.
However, since equation (2) represents a nonlinear transformation, the obtained price index
is biased. Under the assumption of normally distributed errors, Kennedy (1981) proposes
the unbiased estimator

P TD∗
0t = exp

(
δ̂t +

1

2
V̂ ar(δ̂t)

)
. (3)

Although some authors note that the actual bias is small, like de Haan (2010) or Yu and
Prud’homme (2010), we include the bias correction, since it is not computationally costly.

2.2 Imputation Approach Indices

Imputation Approach Indices are, next to the Time Dummy Method, a prominent method
to compute hedonic indices. As formulated by de Haan and Diewert (2011), the approach
is easily motivated by viewing it from an index construction view: Prices of dwellings sold
in period t can only be observed at time t, but are unknown in all other periods. To
obtain standard price indices, these unobserved prices need to be imputed. Thus, price
predictions for housings are obtained, whose characteristics are held fixed, while the time
period is varied. In many applications, this involves a hedonic regression model that is
run separately for each period, see Hill and Melser (2008). Within the methodology of
Imputation indexes, single imputation and double imputation indices are distinguished.
Single imputation indices impute solely missing observations, while double imputation
indices involve imputing both missing and observed prices. Hill (2011) argues that imputing
both actual and unobserved prices decreases a potential omitted variable bias. Henceforth,
only double imputation indices are considered. To finally obtain a price index, classic
price index formulae are applied. There exists a broad range of formulae in literature,
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which include e. g. Laspeyres, Paasche, Törnqvist, or Fisher type indexes. The most
commonly applied are Laspeyres and Paasche indices, although these two approaches have
some disadvantages compared to e. g. the Törnqvist index. However, since this work
is not aimed at contributing to the discussion of index formulae, we restrict ourselves to
the application of the Laspeyres index. For a detailed discussion of the mentioned index
alternatives, see for example Balk (1995), Diewert (2007), Hill and Melser (2008), or de
Haan (2010). Again, the taxonomy is (mostly) in analogy to de Haan and Diewert (2011).
The heuristic of double imputation Laspeyres indices can be summarized as follows:

1. A model is fit separately to each time period, e.g. every quarter for a quarterly price
index and every year for a yearly index, respectively.

2. To receive the Laspeyres type index, the base period characteristics are plugged into
each model to obtain predictions for each period. Hence, base model characteristics
are evaluated at time t.

3. Finally, the sum of the predictions is obtained in each period and divided by the sum
of predicted prices in the base period. Thus, the price evolution over time is tracked.

In terms of notation, the first step of the described methodology translates into the regres-
sion model

ln pit = β0t +
K∑
k=1

βktzkit + ϵit, (4)

which differs from equation (1) with respect to a) the missing time dummy term, and b)
the subscript t for the estimated coefficients, i. e. shadow prices for characteristics zkit.
The subscript is added, since there is a model for each time period.
Finally, predicted property prices for period 0 and t are ln p̂i0 = β̂00 +

∑K
k=1 β̂k0zki0 and

ln p̂it = β̂0t +
∑K

k=1 β̂ktzkit, respectively.
Steps 2) and 3) of the described algorithm can be expressed with the following notation.
Generally, following Hill (2011), a Laspeyres type hedonic Imputation index is written as

PL
0t =

n0∑
i=1

p̂it

n0∑
i=1

p̂i0

,

which tracks the dwellings’ price evolution from the base period 0 to period t. n0 thereby
gives the total number of houses sold in the base period 0. The price of housing i sold in
period t is referred to as pit, while pi0 indicates the price of dwelling i sold in period 0.
Plugging in the imputed prices obtained in step 2) in both numerator and denominator of
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the equation yields the hedonic double imputation (DI) Laspeyres index, which is defined
as

PHDIL
0t =

n0∑
i=1

[
exp

(
β̂0t +

K∑
k=1

β̂ktzki0

)]
n0∑
i=1

[
exp

(
β̂00 +

K∑
k=1

β̂k0zki0

)] . (5)

Base period prices are imputed for properties corresponding to the period t sample, evalu-
ated at base period 0 characteristics. As the logged price per square meter is regressed on
the set of covariates, prices are converted back onto a linear scale by exponentiation.
Analogously to the procedure concerning the Time Dummy Method, conversion onto a
linear scale requires correction for bias. In accordance with Greene (2018), and applied by
e.g. Hill (2013), Malpezzi, Chun, and Green (1998), equation (5) becomes

PHDIL
0t∗ =

n0∑
i=1

[
exp

(
β̂0t +

K∑
k=1

β̂ktzki0 + s2t /2

)]
n0∑
i=1

[
exp

(
β̂00 +

K∑
k=1

β̂k0zki0 + s20/2

)] ,

where s2t are the estimated variances of the model errors ϵit.

2.3 Price indices based on a global model

From a statistical point of view, the Time Dummy Approach contains only main effects of
the covariates zkit thereby ignoring potential interactions of the house characteristics with
time. As a consequence, the Time Dummy approach is prone to (possibly substantial) bias.
On the other hand, the Imputation Method considers all possible interactions which may
lead to highly complex models and to increased variability of estimates. We are facing here
a classical bias-variance tradeoff, see in the context of regression modelling e.g. Fahrmeir
et al. (2022), Chap. 3.4. We therefore generalize the Time Dummy and Imputation Method
such that models between the two extreme approaches are possible. To do so, we express
the separate regression models in the Imputation approach as one global model, i.e.

ln pit = β0 +
K∑
k=1

βkzkit +
T∑
t=1

δtDit +
T∑
t=1

K∑
k=1

βktDitzkit + ϵit. (6)

Here, the Time Dummy approach is obtained as a special case by assuming βkt ≡ 0. For
the Imputation model β0 is the intercept and the βk’s are the effects for time period t = 0,
β0+δt is the intercept in period t and βk+βkt are the effects of covariate zk at time period
t. The βkt’s in (6) can also be regarded as the deviation effects for covariate zk in time t
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compared to time period t = 0.
The advantage of our global approach is that it allows models between the two extremes
of no interactions with time (Time Dummy method) and a full interaction model (Impu-
tation approach) by setting some of the interaction effects βkt’s to zero through variable
and model choice.
On the basis of the introduced model framework of the global model, we proceed by con-
structing a hedonic Laspeyres type price index. The steps undertaken can be summarized
as follows:

1. Obtain the predicted prices of all dwellings in the base period evaluated at period t.

2. Obtain predicted prices of dwellings in the base period evaluated at the base period.

3. The sum of predicted prices evaluated at period t divided by the sum of predicted
prices evaluated at period 0 gives the hedonic Laspeyres type price index at period
t.

Formally, the global hedonic double imputation Laspeyres (GHDIL) index is expressed as

PGHDIL
0t∗ =

n0∑
i=1

[
exp

(
β̂0 +

K∑
k=1

β̂kzki0 + δ̂t +
K∑
k=1

β̂ktzki0

)]
n0∑
i=1

[
exp

(
β̂0 +

K∑
k=1

β̂kzki0 + δ̂0 +
K∑
k=1

β̂k0zki0

)] .

The numerator comprises the sum over the bias-corrected predicted prices of houses ob-
served in the base period evaluated at period t. The denominator gives the sum of predicted
prices of houses observed in the base period evaluated at the base period.
This kind of index design can also be referred to as a double Imputation index as both the
base period and the prices in period t are imputed.

2.4 Statistical models beyond linear regression

Since many effects of the zk in (6) are possibly nonlinear, we further generalize our global
model to allow for possibly nonlinear effects. We obtain

ln pit = β0 +
K∑
k=1

fk(zkit) +
T∑
t=1

δtDit +

T∑
t=1

K∑
k=1

Ditfkt(zkit) + ϵit, (7)

where now the fk’s and fkt are possibly nonlinear main and interaction effects with time,
respectively. In the fk’s and fkt’s we additionally subsume cluster specific, in particular lo-
cation specific, i.i.d Gaussian random effects. In our case study in section 3 we will include
3-digit postcode locational random effects into our models in order to capture locational
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heterogeneity of house prices. Again, the sums fk + fkt can be regarded as the (nonlinear)
covariate effect of covariate zk at time t, whereas the fkt’s are the deviation effects for
covariate zk in time t compared to time period t = 0. Model (7) is a specific additive
model, more precicely a varying coefficient model, see e.g. Fahrmeir et al. (2022), Chap. 9
for details. The model can be easily estimated using the R package mgcv by Simon Wood,
see Wood (2007) and Wood (2017) for details. Here, the nonlinear functions fk and fkt are
estimated based on polynomial splines, see also Appendix A for an introduction.
As elicited in the previous chapter, the choice of relevant interaction terms between time
periods and the other regressors, represents a bias-variance tradeoff. The Imputation ap-
proach interacts all periods with all of the regressors, while the Time Dummy method
neglects interactions completely. We tackle this tradeoff by fitting a tree-based model that
allows us to identify relevant interactions with time on a model basis. Tree-based methods
are especially relevant e. g. in the context of Automated Interaction Detection (AID),
as introduced by Morgan and Sonquist (1963), or decision trees (Breiman et al. (2017)).
Among their main advantages lies their capacity to model interactions of even high di-
mensions. Examples of applications of tree-based methods on real estate data include Ho,
Tang, and Wong (2021), who, among other methods, utilize Random Forests and Gradient
Boosting to predict property prices in Hong Kong, or Stang et al. (2022), who apply XG-
Boost in the context of Automated Valuation Models (AVMs) with German housing data.
We employ model-based recursive partitioning as introduced by Zeileis, Hothorn, and
Hornik (2008). The idea behind the approach is to fit a partitioning tree to the data,
where we associate a GAM with each of the terminal nodes of the tree instead of just a
simple average. Thus, we obtain an intuitively interpretable model that is able to identify
interactions of the covariates with time. The tree returns time slices that are interacted
with the other regressors in the context of our global model (7). In R, we use the mob()-
function from the partykit-package, introduced by Hothorn and Zeileis (2015). Figure
1 illustrates the result produced by the algorithm. In this model, time, or the quarter
in which an object was sold, is used as a partitioning variable and each leaf of the tree
features a GAM, where the log price is regressed on a set of covariates, analogously to the
models featured in Section 3.2. The algorithm, after pruning with BIC, splits the data
into seven terminal nodes. As can be seen in the graph, each node is associated with a
separate models, and thus, with separate effects of regressors on the dependent variable.
For illustration purposes, we only plot the effect for area here. For more details on the
results, see Section 3.3, and for a more thorough introduction into the concept of regression
trees and model-based recursive partitioning, see Appendix A.2.2.
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Figure 1: Result of model-based recursive partitioning.

Notes: The plot shows the resulting tree from the model with a GAM in each terminal node and
time as the partitioning variable. The number of observations (n) is indicated in gray along with the
corresponding node number and the quarter at which the data is split. The graphs on the bottom give
marginal effect plots at mean of the area variable on log price in each terminal node.

3 Empirical Analysis

In this section, we introduce the dataset and the estimated models. Subsequently, we
present the regression results as well as the obtained hedonic price indices.

3.1 Data

The data we utilize for our analysis is provided by the German ’F+B Forschung und
Beratung für Wohnen, Immobilien und Umwelt GmbH’ and comprises 682,435 observations
of asking prices for private single family as well as semi-detached houses in Germany. The
data set covers a time horizon from the first quarter in 2005 to the first quarter in 2019.
Asking prices generally come with advantages and disadvantages. The major advantage
lies in a larger sample size. This in turn implies smaller standard errors in the predicted
prices and price indices next to larger variability in the explanatory variables. The major
disadvantage is an upward bias of the asking prices as the last offer price is usually greater
than transaction prices. In our work, we disregard this upward bias of the prices.
A list of the variables included in our analysis along with some summary statistics is
provided in Table 1. We removed extreme outliers to avoid distorted results.
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variable description mean / rel. frequency std. deviation min max

ppsm Price per square meter 1793.600 765.660 250.000 7000.000

area Area of flat in square meters 143.940 39.070 80.000 300.000
age Age of flat in years 21.400 28.460 -2.000 135.000
plot.area Plot area of object in square meters 558.210 333.040 150.000 2000.000

quarter Quarter of last offer 25.480
year Year of last offer 2010.740

PLZ3 first three digits of postcode

alarm Whether object has alarm system
0 = no 0.993
1 = yes 0.007

balcony Whether object has balcony
0 = no 0.767
1 = yes 0.233

basement Whether object has a basement
0 = no 0.583
1 = yes 0.417

bright Whether object is bright
0 = no 0.829
1 = yes 0.171

calm Whether flat is calm
0 = no 0.814
1 = yes 0.186

electric.heating Whether object has electric heating
0 = no 0.998
1 = yes 0.002

elevator Whether object has elevator
0 = no 0.999
1 = yes 0.001

facilities Degree of quality of object’s facilities
1 = simple 0.049
2 = normal 0.673
3 = higher 0.277

fire.place Whether object has fire place
0 = no 0.871
1 = yes 0.129

floor.heating Whether object has floor heating
0 = no 0.800
1 = yes 0.200

gallery Whether object has a gallery
0 = no 0.977
1 = yes 0.023

garage Whether object has a garage
0 = no 0.320
1 = yes 0.680

gas.heating Whether object has gas heating
0 = no 0.969
1 = yes 0.031

night.storage Whether object has night storage heating
0 = no 0.994
1 = yes 0.006

oil.heating Whether object has oil heating
0 = no 0.978
1 = yes 0.022

parquet Whether object features parquet floors
0 = no 0.922
1 = yes 0.078

quality Degree of object’s quality
less 0.088
normal 0.325
higher 0.511
luxurious 0.077

renovation.need Whether object is in need of renovation
0 = no 0.951
1 = yes 0.049

villa Whether object is a villa
0 = no 0.984
1 = yes 0.016

wellness Whether object features a swimming pool / whirlpool
0 = no 0.925
1 = yes 0.075

yoc1900 Whether object is build after 1900
0 = no 0.017
1 = yes 0.983

Table 1: List of variables included in the analysis including corresponding summary statistics.
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In order to assess the locational distribution of the investigated houses, a heatmap of
the observations in three-digit postcode areas is presented in Figure 2a. More data is ac-
cumulated in the central north, far west, and in the Berlin area. Especially in the rural
east of Germany and in rural Bavarian areas the density of observations is lower.
Figure 2b displays the distribution of observations over time. Obviously, most observations
are accumulated between 2008 and 2013. Especially in 2018 and 2019 there are less obser-
vations, but given the high absolute count, the data is still sufficient for regression analysis
and index creation.

Figure 2: Distribution of observations over location and time.

(a) 3-digit postcode areas. (b) Quarters.

Notes: Panel 2a reports the density of observations in three-digit postcode areas in Germany. Dark
green areas around larger cities, e. g. Cologne, Hamburg, Berlin, or Munich, refer to a higher density
of houses. Light green areas indicate a lower density of observations. In panel 2b, the frequency of
observations over time is given. Each bin corresponds to one quarter. Dark green bins refer to a higher
frequency of houses, light green indicate low frequencies.

3.2 Models

Our analysis comprises the computation and comparison of the following models (terms in
brackets refer to the corresponding shortcuts):

(TD) A model comprising data pooled over all time periods corresponding to a typical
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Time Dummy Method approach. More specifically we estimate the model

ln pit = β0+

T∑
t=1

δtDit+f1(areait)+f2(ageit)+f3(plotareait)+f4(PLZit)+

K∑
k=1

βkzkit+ ϵit,

(8)

where the effects f1-f3 of the continuous variables area, age, and plotarea are modeled
in a smooth, nonlinear way utilizing penalized regression splines, the βkzkit comprise
further effects of categorical dwelling characteristics, see Table 1 for a complete list
of the covariates included. In analogy with Brunauer, Feilmayr, and Wagner (2012),
spatial heterogeneity is captured utilizing i.i.d. Gaussian random effects f4(PLZit)
over 3-digit postcode dummies.

(yImp) Separate models

ln pit = β0t + f1t(areait) + f2t(ageit) + f3t(plotareait) + f4t(PLZit) +

K∑
k=1

βktzkit + ϵit, (9)

stratified for years t = 2005, . . . , 2019 are built. This setting represents a typical
application of a yearly Imputation Approach index.

(qImp) Separate models as in (9) now stratified for quarters rather than for years, i.e. t =
2005/1, . . . , 2019/4.

(S1) For model (S1), in the first step, we fit a model-based recursive partitioning tree,
where the logged price per square meter is regressed on all variables in Table 1 and
the continuous variables area, plotarea, and age are fit using penalized splines. We
choose time in quarters as the partitioning variable, such that the model returns
relevant interactions between time and other covariates. In the second step, we fit a
global model in the form (6) and interact each covariate with the time slices obtained
from the partitioning in the first step. This allows to identify the variables, for which
interaction with time is most important utilizing standard model selection criteria.

(S2) Analogous to (S1), but we leave out the interaction term between the time partitions
and area.

(S3) Analogous to (S1), but we leave out the interaction term between the time partitions
and plotarea.

(S4) Analogous to (S1), but we leave out the interaction term between the time partitions
and age.

(S5) Analogous to (S1), but leave out the interaction term between the time partitions
and the postcode dummy random effects.

12



(S6) Analogous to (S1), but leave out the interaction terms between the time partitions
and the continuous variables area, plotarea, and age.

The model-based recursive partitioning in models (S1)-(S6) yields the following parti-
tion of time

1. 2005 Q1 - 2007 Q4,

2. 2008 Q1 - 2009 Q4,

3. 2010 Q1 - 2011 Q3,

4. 2011 Q4 - 2013 Q1,

5. 2013 Q2 - 2015 Q1,

6. 2015 Q2 - 2016 Q1, and

7. 2016 Q2 - 2019 Q1,

resulting in only seven time periods in contrast to 15 or even 57 periods in case of (yImp)
and (qImp), respectively.

3.3 Results

For model comparison, we randomly split the data into a training (comprising 682,435
observations) and a validation dataset (comprising 75,870 observations). The training
data is employed to estimate the models, the validation data is used to assess the models
by comparing predicted with observed prices. More specifically, we compute the root mean
square error (RMSE), which, in accordance with Greene (2018), is given by

RMSE =

√√√√ 1

n

n∑
i=1

(p̂i − pi)
2,

where n = 75870, p̂i are the predicted prices according to the respective model and pi are
the observed prices.
Table 2 reports the out-of-sample prediction errors of the evaluated models. We draw the
following conclusions:

• The Time Dummy model (TD) has the hightest prediction errors of all computed
models.

• The Imputation Approach based on yearly time intervals (yImp) outperforms the
approach based on quarterly intervals (qImp).
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• The models (S1), (S2), (S3) and (S4) further have (slightly) lower values in RMSE.
Thus, Interactions play a role, but not all interactions are equally important. Model
(S2) is the globally best performing model implying that an interaction between
area and time is not relevant. Models (S2), (S3), and (S4) further all outperform
the Imputation Approach models, which indicates that the continuous covariates are
not substantially interacted with time. Even if we exclude all continuous covariate
interaction terms in model (S6), the predictive accuracy is not substantially reduced.

• The most important interaction is that with location. Model (S5) has a substantially
higher RMSE than both (yImp) and (S2). The RMSE is rather much closer to that
of the Time Dummy (TD) fit, which represents the case of no included interactions
at all.

(TD) (yImp) (qImp) (S1) (S2) (S3) (S4) (S5) (S6)

RMSE 480.03 459.12 470.23 458.48 458.38 459.02 458.97 472.44 459.67

Table 2: Out-of-sample prediction accuracy of evaluated models in terms of root mean squared error
(RMSE).

To discuss the relevance of each covariate’s interaction with time in depth, we provide
marginal effect plots for model (S1) in Figure 3. The first panel indicates that the average
price per square meter declines with increasing values in age, i. e. older buildings are asso-
ciated with lower average prices per square meter. All curves are aligned close to parallel
to each other and differ only in their level. However, a shift in level is irrelevant regarding
a possible interaction between the depicted variables.
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Figure 3: Marginal effect plots for continuous variables for model (S1).

Notes: Marginal effect plots at mean for the continuous variables area, age, and plot area. Regarded
variables are varied over the given range, while other variables are fixed at their mean level. Colors of
the curves refer to the time periods obtained from recursive partioning.

As seen in the second panel, the average price square meter monotonously descends
with rising area of the underlying dwelling. The slope of descent appears to be greater (in
absolute value) for smaller values in area than for larger ones. This can be interpreted as
a form of bulk discount, where the price of an additional price per square meter declines
for larger objects. Analogous to the previous graph, the lines mainly differ in their level
rather than their functional form. The Figure thus further supports the conclusion that
interaction with area is irrelevant. Finally, the marginal effect plot of plotarea implies that
the average price of housing generally rises with increasing plotarea and there appears to
be a saturation effect for greater values of plot area. The functional relationship seems
similar over all time slices. However, the curves appear slightly flatter for later than for
earlier years.
The graphs emphasize, why out-out-sample prediction accuracy is only improved slightly,
if at all, when introducing the corresponding interaction terms. For age and plotarea, there
could be a relevant interaction with time, but the interaction does not appear to be large
in magnitude.

Figures 4 and 5 provide further insights into the relevance of the interaction between
time and location. The chosen form of display gives insights into not only the absolute
level of house prices in Germany, but also allows to identify which regions are subject to
steeper price appraisals compared to other parts of the country. Regions in former West
Germany, especially metropolitan areas like Munich, Stuttgart, Berlin, or Hamburg, are
associated with higher price levels compared to former East Germany in general, especially
rural regions. Some regions in and around Munich have average prices per square meter
much higher than 3000 Euros, while some rural regions in former East Germany feature
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prices of below 1000 Euros per square meter.
The first two panels in Figure 5 do not indicate a strong space-time interaction. Prices do
not substantially change between 2008 Q2 and 2011 Q3 on average. The following graphs,
however, emphasize the relevance of location-time interaction terms. Between 2011 Q4 and
2015 Q2, price changes in Germany are distributed quite heterogeneously. Areas around
large cities like (especially) Munich, Hamburg, Nuremberg, but also Dresden, face steep
price increases of close to and beyond 500 Euros per square meter, while other urban re-
gions are even associated with price drops. For the period 2017 Q1 and following, there
is an overall upward shift in the price level. Blue zones almost completely disappear and
the map is dominated by (deep) red areas. However, price increases in urban areas are on
average higher than for rural regions.
Overall, Figures 4 and 5 emphasize the importance of the time-location interaction in the
data. An interaction is visible underlining the results of the out-of-sample prediction ac-
curacy comparison.
For completeness, we provide Figures 8, 9, 10, and 11 in Appendix B, where the evolution
of the discrete variables’ coefficients over time is depicted.

Figure 4: Marginal Effect of postcode dummies over time periods in model (S1) - first period.

Notes: This graph gives the marginal effect at mean level of the postcode dummies in the first period
obtained from recursive partitioning. The graph refers to the predicted absolute level of price per square
meter in Euros for houses sold between 2005 Q1 and 2008 Q2. Light areas correspond to lower average
prices, dark areas refer to high average prices per square meter. Prices are again reported on a linear
scale including bias correction.
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Figure 5: Marginal Effect of postcode dummies over time periods in model (S1) - with reference to first
period.

Notes: Graphs show the deviation of the marginal effect at mean level of the postcode dummies from
the first period. Green colored polygons refer to zones subject to price drops compared with the first
period, red zones refer to increases in the predicted price per square meter.

3.4 Resulting indices

Figure 6 shows the obtained hedonic indices from the models (TD), (qImp), (yImp) and
the global best model (S2). The curves correspond to the price evolution on a linear scale
including bias correction.
Until the second quarter in 2009, the underlying houses are not subject to price increases.
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The Time Dummy index (TD) reaches a local minimum of close to 1 at that time. From
2010 until mid 2013, the hedonic curves are subject to steep price raises. From 2010 to
2019, all hedonic indices begin to gradually rise. This overall trend does not appear to
end within the investigated time horizon. The general form and level of all hedonic indices
does not vary from each other until roughly mid 2011.

Figure 6: Hedonic price indices.

Notes: Resulting indices from utilized models. The red line depicts the quarterly imputation type
index referring to model (qImp). The green curve indicates the evolution of the imputation index,
resulting from the globally best model (S1). The index produced by the Time Dummy index from
(TD) is given by the blue line. Finally, the purple line gives the yearly Imputation index from (yImp).
The numbers at the ends of the curves indicate the final value of the corresponding curve.

Although the indexes’ RMSEs are not substantially different in value, we find that these
small variations translate into relatively large differences in the corresponding price indices:
Over the complete time span, the quarterly Imputation Approach (qImp) index indicates
a price increase of roughly 44%, while the Imputation index derived from (S1) returns a
price increase of close to 55% over the 15 regarded years. All hedonic indexes are relatively
close to each other until roughly mid 2011. In the subsequent periods, (TD) model’s index
runs underneath the other investigated indices. The functional form is similar in shape,
but the general level is shifted downwards. Taking into consideration the higher RMSE of
the model compared with e. g. (S1), this implicates that the index resulting from (TD) is
downward biased.
Regarding variation in the investigated hedonic indices, the index obtained from (qImp)
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is the most volatile. This finding implicates that regarding the bias variance tradeoff,
the model is too complex, which yields less biased, but highly volatile estimates. The
inflated RMSE of the corresponding model supports this finding. The index of the yearly
Imputation Approach model (yImp) is less volatile and proceeds parallel to the (S2) index.
However, it provides only a yearly index and hence no information about the underlying
quarters.

4 Discussion

Hedonic Price Indices play a major role in assessing quality-adjusted price changes of hous-
ing over time. Within its class, the Imputation Approach next to the Time Dummy Method
play a prominent role. A great problem is to capture interactions of the covariates with
time. We construct hedonic indices for a range of models and compare them regarding
their underlying assumptions, predictive accuracy, and resulting indices.
Based on our analysis, the following main findings emerge. First, pooling the data over
both space and time appears too restrictive and the implicit constant parameter assump-
tion seems to be violated, which is indicated by the lower out-of-sample prediction accuracy
with regard to RMSE. Imputation Approach indices outperform those based on the Time
Dummy Method. We find the hedonic house price index resulting from the pooled model
to be downward biased.
However, typical Imputation approach indices, that naively stratify data into periods, pose
extreme methodologies, too. We show that stratification into too many periods leads to
inflated RMSEs, even utilizing a large data set, like in our case. The resulting indices
are often very volatile (qImp). The quality of the respective index further highly depends
on the underlying data. Regarding more regional data, stratification into even years could
lead to inflated variation in the estimated prices, which in turn translates into volatile price
indexes. Naive stratification further rules out the possibility to exclude possibly irrelevant
interaction terms with time. Evaluating the relevance of the regarded interactions is not
possible either.
We construct a global approach using model-based recursive partitioning to identify rele-
vant interactions of the covariates with time and fit a global model, enabling us to employ
standard model selection criteria to select relevant interaction terms. This approach fur-
ther enables us to make statements about the variables for which parameter stability plays
a role. We find that the most important interaction is that between time and location.
Excluding the corresponding interaction from our model leads to a relatively big inflation
in RMSE, i. e. a decrease in prediction accuracy. The exclusion of other interaction terms
only leads to small losses in predictive accuracy. For the exclusion of the interaction term
with area, we even find an improvement in RMSE. Since we stratify the data on a model
basis, our approach is more flexible and we expect it to be more suitable compared with
the classic approaches for other data sets. For smaller samples, e. g. regional data, the
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algorithm would likely select less time periods and we expect the advantage of model-based
recursive partitioning to be even larger with respect to out-of-sample prediction accuracy.
The investigation of such regional data remains subject of future work. The same holds
for partitioning the model over variables other than time in order to investigate relevant
interactions.
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A Model Methodology

Following de Haan and Diewert (2011), the construction of any house price index is gener-
ally based on matching the prices for identical dwellings over time. However, this matching
is problematic for several reasons. First, all housings are different in nature, i. e. their
characteristics largely differ both in quality and location. Second, even if the same dwelling
is sold in differing time periods, an exact comparison leads to biased indices as stated by
Diewert (2009). Issues arise, because regarded buildings depreciate over time or when prop-
erties have been subject to substantial changes in form of additions, repairs or remodeling.
Hedonic indices address these issues, as they are constructed on the basis of regression
models that explain the observed prices as a function of the dwellings’ characteristics.
Hence, an appropriate index relies on a model that captures the relationship between the
price and its regressors accurately.
In this section, we shortly present the employed model methodology. I begin by outlin-
ing the Generalized Additive Model (GAM) and the concept of nonparametric regression
approach within its framework. The provided illustrations of the various methodologies
primarily follow those by Fahrmeir et al. (2022). The remainder of the section briefly
outlines the concept of model-based recursive partitioning.

A.1 Generalized Additive Models

Estimating the prices utilizing penalized spline regression within a Generalized Additive
Model framework comes along with several advantages over more classic approaches. Linear
regression seeks to capture the relationship between the target variable and the explana-
tory variables. It is often unclear, however, what the functional relationship between the
dependent variable and a specific regressor is. While classic linear models allow a nonlinear
functional relationship through a transformation of the covariates or inclusion of polyno-
mials, the nature of the exact functional dependence often remains unclear, however. Over
the years, nonparametric regression methods have become increasingly popular. The goal
of nonparametric methods is to obtain a smooth function to capture the relationship be-
tween the dependent variable and its regressor.
Hastie and Tibshirani (1987) introduced the framework of Generalized Additive Models
(GAM), which was later implemented in R by Wood (2001) and Wood (2007). Following
Fahrmeir et al. (2022), the GAM can be regarded as an extension of the multiple linear
regression model with

yi = f1(zi1) + · · ·+ fq(ziq) + β0 + β1xi1 + · · ·+ βkxik + ϵi, (10)

where the dependent variable yi is regressed on an intercept β0, and a set of regressors
xi1, . . . , xik. This classic linear model is then extended by the f1(zi1), . . . , fq(ziq) terms,
which are nonlinear and smooth effects of the regressors. Thereby, it must hold that
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∑n
i=1 f1(zi1) = · · · =

∑n
i=1 fq(ziq) = 0 to avoid an identification problem.

A.1.1 Basis splines

The idea of splines is to divide the range of regressors into several equidistant segments.
The points dividing these segments are subsequently referred to as knots. For polynomial
splines, a separate polynomial is fitted for each of the intervals. These in turn are restricted
to be continuous and differentiable at the knots.
The application of polynomial splines in nonparametric regression requires a constructive
representation of polynomial splines. Following Wood (2017), this means that the function
f needs to be represented in a way so that it becomes a linear model. One possible way to
achieve this representation is to choose basis functions. Among these, we restrict ourself
to the use of basis splines, as they offer several advantages from a numerical viewpoint.
Again, the derivation of the motivation and method closely follows Fahrmeir et al. (2022).
Basic references include Dierckx (1995) and de Boor (1978). The starting point is the
construction of piecewise polynomials. Now, basis functions are constructed in such manner
that the transitions are sufficiently smooth at the knots. A B-Spline then consists of (l+1)
polynomial fractures, where l is the degree of the respective spline. The fractures are put
together in a way so that they are (l − 1)-times continuously differentiable. Through a
linear combination of d = m+ l− 1 basis functions with m knots, a representation of f(z)
is obtained. Hence, one obtains

f(z) =

d∑
j=1

γjBj(z), (11)

where Bj are the basis functions and γj its corresponding coefficients. The derivation of
basis function has been done by Wahba (1990) and Gu (2013), so that for B-splines of
degree l ¿ 1, the basis functions are defined as

Bl
j(z) =

z − κj
κj+1 − κj

Bl−1
j (z) +

κj+l+1 − z

κj+l+1 − κj+1
B0

j+1(z), (12)

where κ1, . . . , κm are the inner m knots. As equation (12) has a recursive structure, an
extended knot range of length 2l, κ1−l, κκ1−l+1

, . . . , κm+l−1, κm+l, is required. A notation
for splines of degree l <= 1 is omitted here, since we don’t apply it. See e. g. Fahrmeir
et al. (2022) for a more detailed overview.
Finally, in order to obtain and estimate a model that is linear in its parameters, equation
(11) is substituted into equation (10)and written in matrix notation such that

y = Zγ + ϵ,
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where y is the vector of obser vations (y1, . . . , yn)
′, γ is a vector containing the basis

functions’ coefficients (γ1, . . . , γd)
′ and Z is the n × d design matrix, which is defined for

the basis splines as

Z =

Bl
1(z1) · · · Bl

d(z1)
...

...
Bl

1(zn) · · · Bl
d(zn)

 .

Then the least squares estimator is

γ̂ =
(
Z⊤Z

)−1
Z⊤y.

The interpretation of the resulting coefficients is however not meaningful. Diagnostic plots
from the predictions are more insightful.

A.1.2 Penalized splines

Given the implementation into statistical software, such as the mgcv-package in R, B-splines
are relatively easy to construct and compute. In most applications, the main challenge lies
in choosing the quantity of (equidistant) knots and find a good compromise between a good
fit to the data and increasing model complexity and thus overfitting. A different approach
is to use a fixed, and relatively large, number of equidistant knots (usually circa 20-40) and
introduce a term into the least squares condition that penalizes complexity in the model.
The first implementations of such penalties were introduced by Silverman (1985) or O’Sullivan
(1986). The latter introduced the penalty term

λ

∫
(f ′′(z))2,

where the smoothing parameter λ drives the penalty’s influence. Hence, higher curvature
in f(z) implies a higher penalty term and a smoother is favored over a wiggly fit.
Eilers and Marx (1996) translate the problem into a penalized least squares criterion

PLS(λ) =

n∑
i=1

yi −
d∑

j=1

γjBj(zi)

2

+ λ

d∑
j=k+1

(
∆kγj

)2
, (13)

which puts a difference penalty on the coefficients rather than the integral over the second
derivative of the fitted curve. ∆k are the differences of k-th order and are defined recursively
as

∆1γj = γj − γj−1

∆2γj = ∆1∆1γj = ∆1γj∆
1γj−1 = γj − 2γj−1 + γj−2

...

∆kγj = ∆k−1γj −∆k−1γj−1.
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In matrix notation, equation (13) can be written as

PLS(λ) = (y −Zγ)′(y −Zγ) + λγ ′Kkγ,

where Kk is the penatly matrix for the k-th difference of ∆k.
Finally, as written by Fahrmeir et al. (2022), the penalized least squares estimator is

defined as
γ̂ = (Z ′Z + λK)−1Z ′y.

The only term that differs from the B-spline least squares estimator is λK, which is in
turn mainly driven by the smoothing parameter λ. If λ = 0, then the penalized estimator
becomes the standard least squares estimator. As λ grows very large, the obtained fit
becomes equivalent to a linear fit. Eilers and Marx (1996) propose the use of the Akaike
information criterion (AIC) as introduced by Sakamoto, Ishiguro, and Kitagawa (1986) or
the generalized cross-validation method (GCV). The latter is implemented in the context
of penalized splines estimation in the mgcv-package in R by Wood (2007).

A.2 Model-Based Recursive Partitioning

Like generalized additive models, model-based recursive partitioning are considered tech-
niques of supervised statistical learning. In this section, we briefly explain the utilized
model-based recursive partitioning within the class of tree-based methods, and more specif-
ically, regression trees. Our outline and notation follows the work by Hastie, Tibshirani,
and Friedman (2009).

A.2.1 Regression Trees

Regression trees refer to tree-based models that are fit for a metric target variable. They
pose a relatively simple, but mighty tool. In their basic form, they partition the charac-
teristic space into rectangles and simply fit an average in each space. The main concept of
regression trees is to identify split points within the covariates, at which the characteristic
space is split into two regions. For each of the obtained regions, the average is computed.
This procedure is repeated until there some minimum threshold of observations is reached
in a node, or some other stopping criterion is met. The final graphical representation re-
sembles a tree, which is where the name stems from.
In order to shortly illustrate the approach, a dependent variable Y is considered along
with p explanatory variables for n observations. The algorithm is designed, so that it
identifies splitting variables and split points. We then create a partition with M regions
R1, R2, . . . , Rm and model the response as constant cm in each region, so that

f(x) =

M∑
m=1

cmI(x ∈ Rm).
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If we then set the minimization of the sum of squares
∑

(yi−f(xi))
2, we obtain the optimal

ĉm as
ĉm = ave(yi | xi ∈ Rm),

which is simply the average yi in Rm. Since the computation of an optimal partition
regarding the sum of squares numerically is usually infeasible, a greedy algorithm is utilized:
First, define a splitting variable j for which the characteristic space is split at point s, so
that

R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj > s}
are obtained. Finally, the splitting variable j and split point s are received by solving

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 ,

where
ĉ1 = ave(yi | xi ∈ R1(j, s)) and ĉ2 = ave(yi | xi ∈ R2(j, s))

solve the inner minimization. In this way, the optimal pair (j, s) is obtained and the
procedure is repeated typically until some minimum terminal node size is reached. In the
subsequent, the tree may be pruned to avoid overfitting.

A.2.2 Model-Based Recursive Partitioning

The methodology of model-based recursive partitioning was introduced by Zeileis, Hothorn,
and Hornik (2008), whose notation we adapt to shortly outline the method in the following.
Model-based recursive partitioning represents an integration of parametric models into
regression trees. Within this methodology, a tree is computed, in which every leaf is not
associated with a simple average, but instead with a fitted model, e. g. a linear regression:
Suppose a global parametric model M(Y, θ) is given with observations Y and parameter
vector θ. The model is then estimated by minimization of some objective function Ψ(Y, θ)
resulting into

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(Yi, θ), (14)

where θ̂ is the parameter estimate given n observations Yi(i = 1, . . . , n). For OLS, Ψ is
simply the error sum of squares. Then, instead of a global modelM, the characteristic space
is divided into regions, or partitions, R1, R2, . . . , Rm. Thus, each cell Rm holds a model
Mm(Y, θm) corresponding to a cell-specific parameter θm yielding a globally segmented
model MM (Y, {θm}). {θm}m=1,...,M thereby corresponds to the full combined parameter.
Equation (14) formulated over all regions can then be written as the optimization problem

M∑
m=1

∑
i∈Im

Ψ(Yi, θm) → min, (15)
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over all partitions {Rm} with the indexes Im,m = 1, . . . ,M . Equation (15) corresponds to
a single model corresponding to each terminal node in a tree. To decide whether a possible
split is necessary, a fluctuation test is utilized. The fitting of a model-based recursive
partitioning model can then be summarized in the following algorithm:

1. In a possible node, fit the model with θ̂ to all corresponding observations by mini-
mizing the objective function Ψ , in our case, least squares.

2. Utilizing a fluctuation test, evaluate whether the parameter estimates are stable
with respect to every ordering in the partitioning variables j. If there is significant
parameter instability, choose the variable j which corresponds to the highest degree
of instability. If there is no significant instability in the parameters, stop.

3. Calculate the split point s that locally minimizes Ψ .

4. Split the current node into a set of daughter nodes and repeat the previous steps.

For a more detailed description of the steps, see Zeileis, Hothorn, and Hornik (2008). The
algorithm as outlaid above relies on pre-pruning based on significant parameter instability
in each node. To increase power and prediction accuracy, the authors propose some form
of post-pruning. We employ the party-package by Hothorn, Hornik, and Zeileis (2006),
which includes the lmtree() function. The function includes a prune option that we use
for post-pruning using the BIC model selection criterion.
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B Interaction of time with discrete variables

Single model with interactions − main effects
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Figure 7: Main effects coefficient values and confidence intervals for (S1). The dots refer to the point
estimate, while the bars give corresponding 95% confidence intervals.
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Figure 8: Interaction of dummies with time (part 1). The dot in the first period corresponds to the value
of the main effect’s coefficient. All subsequent periods’ values refer to the sum of the main effect plus the
interaction effect with the according period. Bars give 95% confidence intervals.

30



rh, sdh villa yoc1900

gallery garage night storage

balkony elevator floor heating

<
=

 2
00

8 
Q

2

>
 2

00
8 

Q
2 

<
=

 2
01

0 
Q

1

>
 2

01
0 

Q
1 

<
=

 2
01

1 
Q

3

>
 2

01
1 

Q
3 

<
=

 2
01

3 
Q

3

>
 2

01
3 

Q
3 

<
=

 2
01

5 
Q

2

>
 2

01
5 

Q
2 

<
=

 2
01

6 
Q

4

>
 2

01
6 

Q
4

<
=

 2
00

8 
Q

2

>
 2

00
8 

Q
2 

<
=

 2
01

0 
Q

1

>
 2

01
0 

Q
1 

<
=

 2
01

1 
Q

3

>
 2

01
1 

Q
3 

<
=

 2
01

3 
Q

3

>
 2

01
3 

Q
3 

<
=

 2
01

5 
Q

2

>
 2

01
5 

Q
2 

<
=

 2
01

6 
Q

4

>
 2

01
6 

Q
4

<
=

 2
00

8 
Q

2

>
 2

00
8 

Q
2 

<
=

 2
01

0 
Q

1

>
 2

01
0 

Q
1 

<
=

 2
01

1 
Q

3

>
 2

01
1 

Q
3 

<
=

 2
01

3 
Q

3

>
 2

01
3 

Q
3 

<
=

 2
01

5 
Q

2

>
 2

01
5 

Q
2 

<
=

 2
01

6 
Q

4

>
 2

01
6 

Q
4

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

−0.2

−0.1

0.0

0.1

0.2

time

ef
fe

ct

Figure 9: Interaction of dummies with time (part 2).
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Figure 10: Interaction of dummies with time (part 3).
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Figure 11: Interactions of variables facilities and quality with the time partitions.
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