
Bottazzi, Giulio; Kang, Taewon; Tamagni, Federico

Working Paper

Persistence in firm growth: Inference from conditional
quantile transition matrices

LEM Working Paper Series, No. 2022/27

Provided in Cooperation with:
Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies

Suggested Citation: Bottazzi, Giulio; Kang, Taewon; Tamagni, Federico (2022) : Persistence in
firm growth: Inference from conditional quantile transition matrices, LEM Working Paper Series,
No. 2022/27, Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM),
Pisa

This Version is available at:
https://hdl.handle.net/10419/273629

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/273629
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


LEMLEM
WORKING PAPER SERIES

Persistence in firm growth: inference from
conditional quantile transition matrices

  

   Giulio Bottazzi a         

                 Taewon Kang b       

       Federico Tamagni a

    

        a Scuola Superiore Sant’Anna, Pisa, Italy.
        b Chungnam National University, Korea.

    

        2022/27                                         September 2022
ISSN(ONLINE) 2284-0400



Persistence in firm growth: inference from conditional
quantile transition matrices

Giulio Bottazzi ∗◦, Taewon Kang‡, and Federico Tamagni◦

◦Scuola Superiore Sant’Anna, Italy
‡Chungnam National University, Korea

Abstract

We propose a new methodology to assess the degree of persistence in firm growth, based
on Conditional Quantile Transition Probability Matrices (CQTPMs) and well-known in-
dexes of intra-distributional mobility. Improving upon previous studies, the method al-
lows for exact statistical inference about TPMs properties, at the same time controlling for
spurious sources of persistence due to confounding factors such as firm size, and sector-,
country- and time-effects. We apply our methodology to study manufacturing firms in
the UK and four major European economies over the period 2010-2017. The findings
reveal that, despite we reject the null of fully independent firm growth process, growth
patterns display considerable turbulence and large bouncing effects. We also document
that productivity, openness to trade, and business dynamism are the primary sources of
firm growth persistence across sectors. Our approach is flexible and suitable to wide ap-
plicability in firm empirics, beyond firm growth studies, as a tool to examine persistence
in other dimensions of firm performance.
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1 Introduction

To what degree are firm growth rates persistent? Does success breeds success, in the sense
that currently expanding firms show a higher probability of further expanding their market
share, while those that are shrinking are destined to continue shrinking over time? Or, con-
versely, do industry dynamics unfold through mean-reverting or even random growth patterns,
ultimately leading to instability in firm growth rates over time?

The answers to these questions have relevant implications for both theory and policy. From
a policy perspective, studying firm growth persistence is important for understanding the extent
to which financial support schemes or regulatory changes targeting firm growth, can actually
promote durable economic growth, employment and value creation in sectors and countries.
Growth policies have more likelihood of producing long-lasting effects –provided the right firms
are targeted– if firm growth rates show a high persistence, implying that firms that are already
growing tend to repeat their positive performance over time. Conversely, policies to sustain
growth are likely to have only temporary effects, even when the correct firms are targeted,
if firm growth exhibits low or even negative persistence. In this case, targeted firms that
initially grow, are very likely to stop growing relatively quickly. At the same time, the empirical
assessment of firm growth persistence is also important for anti-trust policy. In fact, although
growth may not continue forever, for instance due to a saturation of demand, strong persistence
suggests a tendency toward the rapid emergence of firms with strong market power. That
would call for timely policy interventions in those sectors in which market concentration is
undesirable. Evidence of low or negative persistence instead suggests that industry dynamics
follow a process that involves substantial market shares reshuffling and instability, thereby
reducing the likelihood that strongly dominant firms will emerge and persist in a market.

From a theoretical viewpoint, studying firm growth persistence helps in comparing the em-
pirical merit of alternative models of firm growth and firm-industry dynamics. Firstly, any sign
of persistence, even low, would be at odds with models that describe the evolution of the firm
size over time as the outcome of purely random, serially independent growth shocks (Gibrat,
1931; Geroski, 2000). Secondly, the degree of persistence observed in the data could help dis-
criminate between models that assume convex vs. non-convex adjustment costs (Rothschild,
1971). Convexities entail some degree of persistence in firm growth due to a smooth convergence
toward optimal size, while non-convexities predict low or negative persistence due to lumpiness
in investment and (S,s)-practices characterizing firm dynamics (see the review in Caballero,
1999). In addition, considerable persistence in growth patterns is implied by models such as
those in the evolutionary tradition, which rationalize industry dynamics as stemming from the
interaction between persistently superior vs. persistently inferior firms (Nelson and Winter,
1982; Silverberg et al., 1988; Dosi et al., 1995; Metcalfe, 1998; Dosi et al., 2000). In this family
of models, in fact, persistent differences in relative firm-specific capabilities (e.g. in efficiency
or innovation, due to cumulativeness of knowledge, increasing returns, stability of routines
and organizational structures, or path-dependence), lead to persistent differences in market
outcomes, particularly in terms of profitability and growth. Notably, neoclassical equilibrium
models of industry dynamics with firm heterogeneity, deliver similar predictions, although the
core mechanisms differ across models, according to either passive learning (Jovanovic, 1982;
Hopenhayn, 1992) or active learning (Ericson and Pakes, 1995).

The considerable information content that firm growth persistence carries for both theory
and policy, has generated a large empirical literature, which we briefly review in Section 2. In
summary, there are three types of empirical analyses. The vast majority of works study the
average autocorrelation or autoregressive (AR) structure of firm growth rates, with inconclusive
results, ranging from positive to negative to insignificant autocorrelations. More recent studies
have extended the AR analysis by applying quantile regression (QREG) techniques. These
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report negative autocorrelations at both the bottom and the top quantiles of the growth rates
distribution, but disagree as to whether the relative abundance of small-micro firms in these
quantiles represents a convincing explanation for their results. Thirdly, a limited number
of papers exploit transition probability matrices (TPMs) defined on growth rates quantiles
(Quantile TPMs, QTPMs) to examine intra-distributional dynamics (Dopke and Weber, 2010;
Capasso et al., 2013; Daunfeldt and Halvarsson, 2015; Mathew, 2017; Dosi et al., 2020). These
QTPM studies tend to show that persistence is overall relatively low, as the majority of firms
frequently move across the growth rates quantiles over time. Also, they find peculiar patterns
in the extreme quantiles. The firms in the top quantiles (i.e., the top-performers) and in
the bottom quantiles (the under-performers), both show a higher probability of retaining their
relative positioning over time than other firms, but they also undergo significant anti-persistent,
bouncing effects.

This paper relates to this third stream of research that exploits TPMs and QTPMs in search
of a more general characterization of growth persistence than the AR model. We improve upon
previous works in two substantial ways, which we detail in Section 4. First, we introduce
the Conditional Quantile TPMs (CQTPMs) to correctly assess the frequencies in QTPM cells,
accounting for the dependence on additional confounding variables. We use this technique to
remove any spurious persistence possibly arising from the well-documented relation between
properties of firm growth QTPMs and firm size (Daunfeldt and Halvarsson, 2015; Capasso
et al., 2013). Through the CQTPM approach, we can replace the ex-ante defined firm size
classes used in previous studies, with a conditional definition that adapts to the evolution
of the size distribution inside each industrial sector. We also control for time-, country- and
sector-specific effects, thus obtaining CQTPMs that are not affected by the spurious dependence
possibly induced across firm growth quantiles by factors such as business cycle phases, demand
dynamics, or technology patterns in individual sectors or countries.

Our second improvement, is the development of a framework to draw formal inferences
regarding the overall degree of persistence in the intra-distributional dynamics described by
transition matrices. Starting from the CQTPMs, we consider two mobility indexes −the
Prais/Shorrocks index (Prais, 1955; Shorrocks, 1978) and the Bartholomew index (Bartholomew,
1982)− on which we can build a formal test for the null hypothesis of independent growth rates.
Without a precise inferential analysis, the qualitative discussion of these indexes attempted in
previous studies (Dopke and Weber, 2010; Dosi et al., 2020) is inconclusive. Drawing a pre-
cise inference is difficult, since the asymptotic properties of the elements of the CQTPMs and
the associated mobility indexes depend on the joint density of the variables under study. We
show that, under the null of independence, inferential analysis is in fact feasible through a
relatively easy Monte Carlo exercise. The asymptotic standard errors derived via the Monte
Carlo analysis enable us to define a standardized, asymptotically normally distributed version
of the mobility indexes. This forms the basis for a formal test of the null of independence.

In the empirical part of the paper, we apply CQTPMs and mobility indexes to examine per-
sistence in sales growth dynamics at the aggregate economy and the sectoral level, exploiting a
cross-country firm-level dataset. As we describe in Section 3, our data include a large sample
of manufacturing firms active over the period 2010-2017 in the four major European economies
(France, Germany, Italy, Spain) and the UK. In Section 5, we show that country-level CQTPMs
are more persistent than under the null of fully independent growth rates. However, they also
reveal a good deal of turbulence in the distributional dynamics. In particular, top-performers
and under-performers are more persistent than other firms, and are also more likely to expe-
rience the bouncing effects reported in previous studies. On the other hand, our analysis of
sectoral CQTPMs (by 2-digit sectors) reveals considerable variation in the extent of persis-
tence across sectors, countries and time. Since we find that this variation is primarily driven
by sector-specific effects, we then explore, in Section 6, the relation between sectoral standard-
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ised indexes and a set of sectoral characteristics. Dosi et al. (2020) made a similar attempt,
correlating (unstandardized) mobility indexes with industry growth. In our case, we explore a
wider set of industry-level variables, including sectoral characteristics that are commonly con-
sidered to be tightly linked to patterns of firm growth and firm-industry dynamics. We find
that productivity, business dynamism and openness to international markets inversely relate to
persistence. We discuss the implications of our study in Section 7, together with suggestions
for future research.

2 Empirical literature on firm growth persistence

The empirical assessment of firm growth persistence has traditionally relied upon estimation
of autoregressive (AR) firm growth models, in panels of firms active in a given sector or country
over time, possibly controlling for additional covariates (typically initial firm size). This litera-
ture on the AR structure of firm growth rates is vast and the results not easy to compare, as the
studies differ by firm growth proxies, country, sector and time period considered. A fair sum-
mary is that these works are far from delivering a consistent picture. Early studies, based on
relatively small samples of large firms (see e.g., Ijiri and Simon, 1967; Kumar, 1985; Dunne and
Hughes, 1994), find positive autocorrelation. The subsequent works do not confirm this finding
in larger and more detailed samples. Positive autocorrelation is reported in Chesher (1979) for
the UK listed companies, in Wagner (1992) for the German manufacturing sector, in Bottazzi
and Secchi (2003) for US manufacturing, up to the evidence of long-lasting autocorrelation (till
the 7th lag) found in Bottazzi et al. (2001) for the case of the international drug industry. Con-
versely, a number of works report negative serial correlation, e.g. in Boeri and Cramer (1992) for
Germany, in Goddard et al. (2002) for Japanese listed firms, and in Bottazzi et al. (2007) and
Bottazzi et al. (2011) across Italian and French manufacturing firms, respectively. Together,
there are also studies that do not find any serial correlation at all, such as Geroski and Mazzu-
cato (2002) for the US automobile sector and Bottazzi et al. (2002) for Italian manufacturing
industries, as well as studies documenting that the sign of the autoregressive coefficients varies
depending on the lag considered, as in Coad (2007).

Most studies following the “AR approach” to firm growth persistence, estimate AR firm
growth models either via standard estimators (OLS and panel) or LAD regression. They thus
focus on the central tendency of the sample. Some more recent papers extend the AR analysis
by applying quantile regression (QREG) techniques, allowing to examine serial correlation
along the quantiles of the growth rates distribution (see, e.g. Lotti et al., 2003; Coad, 2007;
Coad and Hölzl, 2009; Capasso et al., 2013; Daunfeldt and Halvarsson, 2015). The results of
these studies tend to agree that growth rates autocorrelation (or anti-correlation) is generally
weak, no matter the quantile considered. There is however some interesting variation. Growth
rates serial correlation is very low or practically zero in the central quantiles, while negative
autocorrelation is found across both low-performing firms in the bottom quantiles and high-
growth firms in the top quantiles. Negative autocorrelation in the top quantiles is particularly
relevant, as the result speaks to the debate on the role of high-growth firms for long-run growth.
Indeed, this finding casts doubts that high-growth firms persist in their growth performance,
complementing previous studies evidence that high-growth firms are most often one-hit wonders
rarely repeating high-growth performance over time (Daunfeldt and Halvarsson, 2015), while the
few persistent high-growth firms do not seem to bring clear advantages in terms of productivity
and other key dimension of performance (Bianchini et al., 2017; Moschella et al., 2019).1 In
relation to that, there is mixed about whether negative autocorrelation in extreme quantiles can

1See also Erhardt (2021), showing that the extent of high-growth persistence observed empirically, is highly
sensitive to alternative measures of high-growth persistence employed in the literature.
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be explained by firm size. The findings in Coad (2007) on a sample of French manufacturing
firms, suggest that negative autocorrelation in the tails of the growth rates distribution is mostly
due to small firms, especially in the case of small high-growth firms in top quantiles. Coad and
Hölzl (2009) corroborate this conclusion, in a comprehensive sample of Austrian service firms,
showing in particular that negative autocorrelation is peculiar of very small, micro firms. In
contrast, the estimated QREG-AR coefficients are significantly negative even for larger firms,
in the near-population sample of Dutch firms examined in Capasso et al. (2013).

A major limitation of studies that focus on the AR structure of firm growth rates, no matter
whether they examine central tendency or QREG estimators, lies in the implicit assumption
that growth rates of all firms follow the same parametric and linear process over time. This is
a restrictive untested hypothesis, which does not necessarily hold true. Further, the AR model
describes the growth dynamics of each single firm independently from the dynamics of the other
firms in the reference population, disregarding intra-distributional dynamics over time.

A more general characterization of persistence, addressing these limitations, is offered by
the very few papers that examine persistence in the intra-distributional dynamics of growth
rates through the analysis of TPMs, in particular of Quantile TPMs (QTPMs), allowing to
assess mobility/stability across growth rates quantiles (Dopke and Weber, 2010; Capasso et al.,
2013; Daunfeldt and Halvarsson, 2015; Mathew, 2017; Dosi et al., 2020). A comparison of
results across these studies is complicated by differences in samples, level of analysis (country
vs. sector), definition of QTPM states (quartiles, deciles or percentiles of growth rates) and
length of transition (usually one year, but in some cases longer, 3-to-5 year transitions). A few
common findings emerge, however. First, the main diagonal elements of the estimated QTPMs
are typically far below 1, meaning that the vast majority of firms do not keep their relative
positioning over time. This is qualitatively interpreted as evidence of strong deviation from
a fully persistent process. Second, there are persistent out-performers and persistent under-
performers in top and bottom quantiles. Third, anti-persistent dynamics are often found in
the off-diagonal cells, particularly in extreme quantiles, as indeed firms in extreme quantiles in
the initial period have a relatively high probability to end-up in the opposite extreme quan-
tiles. Bouncing effects of this type are more apparent in studies taking a comparatively more
fine-grained definition of quantile-states (deciles or percentiles of growth), such as in Dopke
and Weber (2010) for German non-financial firms, in Capasso et al. (2013) for the Dutch man-
ufacturing, and in Daunfeldt and Halvarsson (2015) for the population of Swedish firms. The
evidence is more nuanced in Mathew (2017) and Dosi et al. (2020), examining movements
across growth rates quartiles, respectively for Indian and US-COMPUSTAT firms. Apart from
these few common findings, the QTPMs reported in the studies display considerable variability
according to a number of factors, in particular by firm size (Capasso et al., 2013; Daunfeldt and
Halvarsson, 2015), sector of activity (Mathew, 2017; Dosi et al., 2020) and also with respect to
time and business cycle (Dopke and Weber, 2010).

A key weakness of all these studies is that the discussion of QTPMs remains largely qual-
itative. There is no attempt to provide formal inferential analysis about the properties of the
matrices, not even in the papers (as in Dopke and Weber, 2010; Dosi et al., 2020) introducing
the mobility indexes we use in the present study. The authors in general compare values in
QTPMs cells and mobility indexes obtained in different sub-samples, trying to interpret their
relative values as an indication of persistence. However, without a proper measure of the con-
fidence interval that can be assigned to the computed statistics, these qualitative comparisons
are seldom informative.
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Table 1: # of firms available to compute growth rates

Year France Germany Italy Spain UK
[2010/2011] 50,478 15,090 80,559 59,669 10,077
[2011/2012] 52,671 19,009 83,505 59,817 10,121
[2012/2013] 53,400 33,964 86,676 59,604 10,360
[2013/2014] 44,794 36,272 90,796 60,959 10,530
[2014/2015] 39,021 32,687 102,892 62,284 10,551
[2015/2016] 30,882 32,506 112,056 63,709 10,478
[2016/2017] 25,888 28,936 127,413 62,605 10,736

3 Data and descriptive evidence on firm growth rates

The empirical analysis of this paper exploits the ORBIS database maintained by Bureau
Van Dijk. ORBIS is a widely used source of information on financial statements and other
firm characteristics, covering over 200 million firms across the globe. Although limitations are
well-known, especially in terms of under-representation of micro firms (below 10 employees),
it constitutes the best available source for cross-country analysis (Kalemli-Ozcan et al., 2015;
Bajgar et al., 2020). We have access to data for France, Germany, Italy, Spain and the UK,
over the period 2010-2017. We focus on manufacturing firms, classified according to their sector
of primary activity at 2-digit level (NACE Rev.2 classification).2 We define the growth of firm
i in year t as the log-difference

gi,t = si,t − si,t−1 (1)

where

si,t = log(Si,t)−
1

N

N∑
i

log(Si,t) (2)

is the logarithm of firm annual revenues Si,t normalised by removing the average annual revenues
computed over all the firms active in the same (2-digit) sector of firm i. This normalization
is often used in firm growth empirics to account for common factors affecting the size of all
firms in the same sector. It implies that g measures the growth of relative size, thus capturing
market shares dynamics.

We take annual sales as the empirical proxy of firm size but other proxies are possible and
have been used in firm growth empirics, as for instance employment or tangible assets. The
latter proxies describe the input side of the growth processes and are suited to capture growth
of production capacity, relating to labour and investment dynamics. Taking sales as a proxy
of size, instead, implies that the measured growth rates more closely adhere to the notion that
theories of firm-industry dynamics typically consider, that is the ability to succeed in the output
market.

Table 1 shows the number of firms for which we can compute 1-year growth rates, that
is firms reporting non-missing values of sales over two consecutive years. ORBIS being an
unbalanced panel, the observations vary by year.

2ORBIS reports 4-digit industries. However, as we show in Appendix A, if we take finer sectoral disaggrega-
tion than the 2-digit level (at 3 or 4-digit), the number of firms is too small to run sensible statistical analysis.
In fact, as it will become clear in the following, computation of CQTPMs is heavily data demanding. Notice
also that we do not consider NACE 12 (Manufacture of tobacco products), NACE 15 (Manufacture of leather
and related products), and NACE 19 (Manufacture of coke and refined petroleum products) since the number
of firms in these sectors is already too small (less than 20 firms) at the 2-digit level, in all countries.
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Table 2: AR persistence

Year France Germany Italy Spain UK
[2011/2012] 0.003 0.003 0.019∗∗∗ 0.027∗∗∗ -0.026∗∗

(0.003) (0.005) (0.004) (0.006) (0.013)
[2012/2013] 0.002 0.000 0.007∗∗ 0.011∗∗ -0.052∗∗∗

(0.003) (0.001) (0.003) (0.006) (0.016)
[2013/2014] 0.002 0.006∗∗ 0.013∗∗∗ -0.020∗∗∗ 0.025∗∗

(0.004) (0.003) (0.003) (0.005) (0.011)
[2014/2015] 0.018∗∗∗ 0.011∗∗∗ 0.018∗∗∗ 0.008∗ -0.018

(0.007) (0.004) (0.003) (0.004) (0.011)
[2015/2016] 0.000 0.004 0.001 0.008∗ -0.030∗

(0.006) (0.003) (0.002) (0.004) (0.016)
[2016/2017] 0.006 0.010∗ 0.001 -0.001 0.007

(0.006) (0.005) (0.002) (0.005) (0.010)
All years 0.004∗∗ 0.005∗∗∗ 0.009∗∗∗ 0.006∗∗∗ -0.010∗∗

(0.002) (0.002) (0.001) (0.002) (0.004)

Notes: LAD estimates of the AR coefficient β in Equation (3). Bootstrap
standard errors in parentheses. Asterisks denote significance levels: ∗p <
0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

3.1 Autoregressive analysis of growth persistence

An AR model of firm growth of the form

gi,t = β gi,t−1 + εi,t (3)

or variation thereof (e.g., including further lags on the right hand side) represents the empirical
approach most commonly followed in the literature to assess persistence in growth rates. It
therefore represents a useful benchmark to start with. An AR(1) coefficient β statistically equal
to zero indicates no persistence, while a significantly positive (negative) estimated β provides
evidence of serially autocorrelated (anti-correlated) growth episodes over time. Ideally, one
would like to estimate β separately for each firm, but the time series dimension of standard
firm-level datasets is usually too short to allow for reliable firm-by-firm estimation.3 Having 7
years available in our data for computing firm growth rates, we follow the common practice to
pool firm-year observations, implying that the estimated β captures the average growth rates
autocorrelation in the sample.

Table 2 reports country estimates of the AR specification in Equation (3), obtained through
the LAD estimator, which is robust to non-normalities in the distribution of the considered
variable. This estimator is appropriate since our data replicate the stylised fact that firm growth
rates exhibit a fat-tailed, tent-shape behaviour (see Figure 1, left panel), robustly documented
in the literature across countries, levels of sectoral aggregation and time period considered (see
e.g., Stanley et al., 1996; Amaral et al., 1997; Bottazzi and Secchi, 2003, 2006a; Coad, 2009;
Bottazzi et al., 2011, 2014).

When pooling data over the available years (last line in Table 2), coefficient estimates are
close to zero, implying very low persistence, positive in all countries but the UK. Separate
estimates by year confirm that AR persistence is generally low. Despite some variability over
time and across countries, coefficient estimates are not statistically different from zero in most
cases, or otherwise range in between -0.052 and 0.027 when statistically significant.

3See Dosi et al. (2020) for a notable exception, exploiting long firm-level time series from US-COMPUSTAT
data.
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Figure 1: Left: Empirical density of firm (sales) growth rates, estimates for aggregate manufac-
turing in the year 2017, by country. Right: Empirical density of firm growth rates conditional
on firm size, estimates for aggregate manufacturing in Italy, reporting sales growth rates in
2017 by quintiles of firm size (sales) in 2016. Comparable results are obtained in other years,
in all countries.

Table 3: Growth rates distribution conditional on size - AEP parameters

Size quintiles
Q1 Q2 Q3 Q4 Q5

al 0.210 0.180 0.155 0.147 0.124
(0.003) (0.002) (0.002) (0.002) (0.002)

ar 0.239 0.161 0.147 0.140 0.125
(0.004) (0.002) (0.002) (0.001) (0.001)

bl 0.410 0.611 0.601 0.603 0.588
(0.005) (0.008) (0.008) (0.007) (0.007)

br 0.375 0.692 0.774 0.914 1.084
(0.004) (0.009) (0.011) (0.013) (0.016)

Notes: Scale (al and ar) and shape (bl and br) pa-
rameters of AEP estimates of growth rates of Italian
manufacturing firms in 2017, by quintiles of firm size
distribution in 2016. Standard errors in parenthesis.
Comparable results are obtained in other years in the
sample period, in all countries.

3.2 Relation between growth rates and firm size

A general problem affecting the estimation of AR models like in Equation (3) is the het-
eroskedastic nature of growth rates. More specifically, the often reported existence of depen-
dence between firm size and the distribution of firm growth rates (Stanley et al., 1996; Amaral
et al., 1997; Bottazzi et al., 2001; Bottazzi and Secchi, 2003, 2006b; Calvino et al., 2018). In fact,
size-growth dependencies are present and strong in our sample. As we show in Figure 1 (right
panel) taking data for Italian firms across the years 2017-2016, the empirical density of sales
growth rates changes across classes of initial firm size, identified here by quintiles of the initial
sales distribution. In fact, Maximum Likelihood estimates of shape and scale parameters of the
asymmetric exponential power (AEP) distribution, in Table 3, reveal that smaller firms show
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higher average growth and larger growth variance.4 We found consistent results also in the
other years and countries covered in our data, in line with previous findings in the literature.

A possible strategy to addressing size-growth dependence within the AR approach, could be
by extending Equation (3) to include an explicit scaling function accounting for heteroskedastic
shocks (Bottazzi et al., 2007). In this paper we propose a different solution, accounting for size-
growth dependence within the overall goal to study firm growth persistence through transition
matrices, allowing for a more general characterization of persistence than in a parametric AR
structure.

4 Methodology

This paper improves upon previous uses of the Quantile TPMs (QTPMs) and related mobil-
ity indexes for the empirical analysis of persistence in firm growth rates. Compared to standard
TPMs, QTPMs have a clear advantage. Standard TPMs rely upon pre-defined partitions of the
support of the variables used to define rows and columns of the matrix. This can be reasonable
for certain kind of data for which a natural or formal partition is commonly accepted, but it is
hardly justified when dealing with over time changes in the growth rates distribution. QTPMs
are more robust in this respect, since they do not depend on the specific shape of the marginal
distributions of the variables considered. The partitioning of the support of the variables is
based on quantile functions, and therefore it is insensitive to any invertible monotonic trans-
formation applied to the variables themselves. In firm growth analysis, this means that the
matrices obtained for –say– different sectors or countries, can be directly compared even if the
growth rates distributions are, in those cases, different.

Despite the characterization of probabilistic dependence provided by QTPMs is far more
general than the restrictive parametric assumption implicit in AR models, there are two in-
herent difficulties in the application of QTPMs to studying firm dynamics. First, the direct
application of the tool to a bivariate distribution might be affected by the dependence of the
two considered variables on other variables that are not specifically considered. To overcome
this difficulty, in Section 4.1 we introduce the Conditional Quantile TPM (CQTPM). Second,
inference with QTPMs is more difficult than with standard TPMs. Analogously to the elements
of a standard TPM, the elements of the empirical QTPM are consistent, efficient and asymp-
totically normally distributed estimators of the corresponding “true” elements, which could be
obtained under complete knowledge of the underlying distributions. However, the asymptotic
variance-covariance structure of matrix elements of a QTPM is more complicated than in the
case of a standard TPM. In Section 4.2 we show how the choice of an appropriate null, that is
the null of independence, helps solving this difficulty and makes the inferential analysis based
on mobility indexes relatively simple.

4.1 Conditional Quantile TPMs

To see how the CQTPMs work, let us start with the definition of its unconditional version,
the QTPM. Assume to have a sample of N paired observations S = {(xn, yn)} with n =
1, . . . , N . The first element xn is often associated with the initial state and the second element
yn with the final state of some observed variable. Let F̂x and F̂y be the empirical distribution

of the values {xn} and {yn} respectively. In other terms, F̂x and F̂y are the marginals of the

joint empirical distribution F̂ (x, y), obtained from the sample S. The respective empirical

4The AEP distribution introduced in Bottazzi and Secchi (2011) is largely used in firm growth literature to
assess asymmetries and fat-tails in growth rates. Left and right shape parameters (bl and br) smaller than two
correspond to tails fatter than a Gaussian. The left and right scale parameter (al and ar) capture width of the
support below and above the modal value.
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quantile functions are defined as Q̂x(u) = inf{x | F̂x(x) ≥ u} and Q̂y(u) = inf{y | F̂y(x) ≥ u}
for u ∈ [0, 1].5 Given a partition of the interval [0, 1] in Q equispaced intervals of size 1/Q,
consider the quantities x̂i = Q̂x(i/Q) and ŷi = Q̂y(i/Q) for i = 0, 1, . . . , Q. In particular,

x̂0 = ŷ0 = −∞. Then, the QTPM matrix P̂ (S) associated to the sample S is a Q×Q matrix
defined as

P̂i,j(S) =

∑N
n=1 I{x̂i−1 < xn ≤ x̂i, ŷj−1 < yn ≤ ŷj}∑N

n=1 I{x̂i−1 < xn ≤ x̂i}
, i, j = 1, . . . , Q , (4)

where I{·} is the indicator function, taking value 1 if its argument is true, and 0 otherwise.
The (i, j) element of the matrix P̂ contains the number of paired observations whose first
component is between x̂i−1 and x̂i (included) and whose second component is between ŷi−1 and
ŷi (included), divided by the number of observations whose first component is between x̂i−1
and x̂i (included), irrespective of the value of the second component. Since the partition of the
interval [0, 1] is equispaced, the denominator in (4) is approximately equal to N/Q.6 Because
the sample QTPM is a consistent and asymptotically efficient estimator of the true QTPM (see
for instance, Section 3.2.2 in Formby et al., 2004), if the observations are drawn from a joint
distribution F (x, y) with marginals Fx and Fy, when N →∞ one has

P̂i,j(S)/Q→ F (F−1x (i/Q), F−1y (j/Q)) + F (F−1x ((i− 1)/Q), F−1y ((j − 1)/Q))

− F (F−1x (i/Q), F−1y ((j − 1)/Q))− F (F−1x ((i− 1)/Q), F−1y (j/Q)) . (5)

The matrix P̂ (S) is bi-stochastic, that is the sum of the elements of each row and each column
is equal to 1:

∑Q
j=1 P̂i,j =

∑Q
j=1 P̂i,j = 1 for any i, j.

The QTPM does not contain more information than the joint empirical distribution F̂ (x, y),
but it is convenient in highlighting the existence of dependence between the two components
x and y of the paired observations. If larger values of x are more often paired with larger
values of y, then the entries of the matrix P laying along or near the main diagonal will show
relatively larger values. If the opposite holds, that is if larger values of x are more likely
paired with smaller values of y, then the elements away from the diagonal will have the larger
values.7 Differently from standard regression models trying to establish a specific functional
relation between the variables x and y (e.g., in our context, the linear AR model relating gt
with gt−1), the way QTPMs capture probabilistic dependence is not constrained by a specific
parametrization, and can easily account for the presence of non-linear effects.

There is however an important issue that may prevent the interpretation of the patterns
observed in the QTPM as conveying direct and precise information about the probabilistic
dependence between the two considered variables. If there existed a third variable z on which
the realizations of both x and y depend, then spurious patterns would appear in the QTPM
due to the clustering of observations of x and y around the realizations of the third variable.
To keep the parallel with regression analysis, this is similar to the bias that would arise due to
omitting z in a regression between x and y.8

5The quantile function is theoretically defined as the inverse of the distribution function. A more elaborate
definition is required when the empirical distribution function is considered because the latter is in general not
invertible.

6Deviations are due to the sample size not being perfectly divisible by Q.
7Larger and smaller must not to be intended in absolute terms, but rather relative to the values observed in

the sample itself.
8This problem could also spoil the interpretation of the QTPM as the transition matrix of a Markov process

between states defined by values of x and y, and its use to obtain an invariant measure of the process. In fact,
in a Markov process the initial state contains all information necessary to determine the distribution of the
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In the context of this paper, where the focus is on dependence in firm growth rates over time
(that is, x is gt−1 and y is gt), just computing the QTPM as done in previous firm growth studies,
would assume that the probabilities in the QTPM cells correctly reflect the joint distribution
of the two states, disregarding that firm growth may depend on other variables. That would
ignore, for instance, the size-growth dependencies discussed in Section 3.2. But, in fact, any
other omitted variable that correlates with firm growth –not only firm size– might create a
spurious tendency toward overpopulating main diagonal entries of the matrix, resulting into an
overestimation of persistence.

The conditional version of the QTPM, the CQTPM, exactly allows to account for “variable
dependence” in QTPM analysis. Assume to augment the sample of ordered couples under
investigation with the observations on a third variable z potentially related to the first two.
The sample S is now made of N triplets S = {(xn, yn, zn)} with n = 1, . . . , N . Then, in order
to condition upon z, one can simply split the sample according to the values of z itself and
examine the QTPMs between x and y within each sub-sample defined according to the values
of z. If z is a discrete variable, the split procedure is obvious as one simply builds different
sub-samples, each collecting observations on x and y for each different discrete value of z. The
QTPMs computed according to Equation (4) within each sub-sample, are the CQTPMs in this
case, as they are conditional upon the realization of z by construction. If the z variable is
continuous, instead, one can resort to the quantile definition. Labeling as Q̂z the marginal
empirical quantile function associated to z, the sample S can be split into L equipopulated
sub-samples Sl defined as

Sl = {(xn, yn) | ẑl−1 < zn ≤ ẑl} , (6)

by setting ẑl = Q̂z(l/L), with l = 0, . . . , L. Then, a CQTPM P̂ (Sl|z) is build for each sub-
sample Sl applying Equation (4) above. The rationale is that when the third component zn
is constrained in a limited range of values, its effect on the first two variables xn and yn does
not change significantly and thus can be neglected when building the transition matrix. The
support of observations (xn, yn) is in general different for different sub-samples Sl, so that the
different matrices P̂ (Sl|z) are built using different empirical quantile functions F̂x and F̂y.

Once the CQTPMs relative to the different sub-samples are computed (one CQTPM for
each discrete value of z or one for each quantile-based sub-sample Sl), they can be examined
separately to assess properties of the relation between x and y which are now free of bias due
to dependence on z. For instance, to identify properties that are robust vis-a-vis properties
that vary across different values of z. Alternatively, it might be convenient to combine the
CQTPMs computed over the different sub-samples, to obtain an “aggregate” CQTPM that
describes the (now unbiased) relation between x and y. Upon checking for homogeneity, an
aggregate CQTPM can be computed by averaging, as P̄ (S|z) =

∑L
l=1 P̂ (Sl)/L. One reason for

averaging is increasing the size of the sample. This will be relevant in the inference analysis of
the following sections.

The entire procedure to compute CQTPMs, can be generalized to the case where there are
several variable {z1, . . . , zK} to be controlled for. One simply needs to: (i) split the original
sample on x and y in equipopulated bins with respect to the values of the K (discrete or
continuous) omitted variables; (ii) compute the CQTPM relative to x and y separately on each
sub-sample; and (iii), if useful, average across sub-samples to obtain the “aggregate” CQTPM.
However, one should be parsimonious about the number of variables to condition upon, as the
size of the sub-samples may decrease rapidly with the number of conditioning variables. This

final states. This would hold in the case of QTPMs only if the first observation were a sufficient statistic for
the realizations of the second, which is in general not guaranteed to be true. See, for instance, the exercise
performed over productivity levels in Bartelsman and Dhrymes (1998) –that the authors rightly acknowledge
as inconclusive– or the estimate of the Markov process driving the dynamics of firms between “growth regimes”
in Dopke and Weber (2010).
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is the price one is paying to enjoy a more flexible characterization than in a standard regression
model.

4.2 Inference through mobility indexes

While transition matrices (in general, not only QTPMs or CQTPMs) provide a rich non-
parametric description of the dependence between two variables, just looking at the numbers
in specific cells or comparing cell values across matrices, might not be particularly informative.
The identification of interesting patterns by visual inspection is not trivial when the matrices
are large or there are many matrices to be compared. In addition, there are no guarantees that
the supposedly identified patterns are statistically significant.

A number of so-called mobility indexes has been proposed in the literature to summarize
the properties of or to extract specific information from QTPMs. Starting from the observed
couples (x, y), these indexes capture the tendency that the relative position of the realized value
y in the empirical distribution of values {yn}, is similar to the relative position occupied by the
realization of initial variable x in the empirical distribution of values {xn}.

We consider two indexes originating from studies of income distribution and recently “im-
ported” in studies of firm growth persistence. The first is the Prais/Shorrocks index (Prais,
1955; Shorrocks, 1978), defined as

Is(P ) =
Q− tr(P )

Q− 1
, (7)

where P is the QTPM (or the CQTPM), Q is the number of quantiles and tr denotes the trace
of the matrix. The second index we consider is the Bartholomew index (Bartholomew, 1982)

Ib(P ) =
1

Q− 1

Q∑
i=1

Q∑
j=1

ni
n
Pij|i− j| , (8)

where i and j indicate, respectively, initial and final quantiles identifying an entry of the QTPM
(or the CQTPM), and ni/n is the number of observations in the initial quantile i over the total
number of observations, thus approximately equal to 1/Q.

The two measures offer complementary yet different characterization of the degree of mo-
bility, and thus persistence, in a matrix. The Shorrocks index Is conveys information about
the probability to remain in the initial quantile. It just considers movements in or out from
the diagonal of the matrix. If there is no mobility, that is when all observations yn are in the
same quantile of their respective xn, the value of the index is zero. Then, the index increases
with mobility: the more observations are characterized by a change in the relative order of the
variables, the larger the index. It reaches its maximum value equal to Q/(Q− 1) when all the
yn occupy different quantiles than the respective xn.

The Bartholomew index provides a different account of off-diagonal movements. It also
equals zero under no mobility, when all observations yn remain in the same quantile of their
respective xn. However, off-diagonal entries contribute to the value of the Bartholomew index
in the case there is some mobility, with a weight |i−j| that increases with the distance between
the initial and final quantile. In this respect, the Bartholomew index is more apt than the
Shorrocks’ index to account for anti-persistent dynamics and bouncing effects across distant
quantiles that have been observed in previous qualitative studies of firm growth QTPMs. A
jump in relative growth rates from –say– the first to the tent decile, contributes to the Shorrocks
index in the same way a jump from the first to the third quantile does. The Bartholomew index
gives different weights to these two jumps.
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In order to statistically compare the indexes computed over different matrices, or to draw
inference about whether the index values obtained for a given matrix differ statistically from a
given benchmark, one needs to assign a standard error to them. Theoretically, the indexes are
statistics defined over the entries of the matrix. Thus, their asymptotic properties derive from
the asymptotic properties of the latter. In case the matrix is a QTPM, one faces the problem
that the asymptotic variance-covariance structure of the matrix entries is more complicated
than in the case of a standard TPM. There are two reasons for this. First, while in a standard
TPM the boundaries of the cells in which the samples are split are fixed, in a QTPM they are
themselves estimated from the empirical quantile function and, as such, subject to noise (see
the previous Section and Formby et al., 2004, p. 189). Second, in a QTPM the number of obser-
vations in each row and column is constrained to be exactly N/Q. The increased complexity of
the variance-covariance structure of the matrix elements induced by these two effects, implies
that simple approaches as the one presented in Schluter (1998) are not suited. In particular, the
delta method analysis in Formby et al. (2004) shows that the asymptotic variance-covariance
structure of the elements of the QTPM depends on the joint probability density of the un-
derlying variables. Thus, in order to derive the asymptotic behaviour of the elements of the
QTPM and of the associated mobility indexes, one needs an estimate of the underlying joint
density. In many situations, this requirement makes the direct use of the asymptotic expression
excessively cumbersome. A viable alternative could be to apply bootstrap techniques, along
the lines suggested in Biewen (2002) and Richey and Rosburg (2018) for the case of mobility
indexes derived from standard TPMs. In the case of QTPMs the bootstrap approach would
be even more recommendable than in the case of standard TPMs. However, when Conditional
QTPMs are considered –as in this paper– the bootstrap procedure is complicated by the need
to find an appropriate stratification of the sample with respect to the omitted/control variable.

In our case, a simpler approach is possible. The key observation is that our inferential
analysis involves comparing the empirical indexes with the (asymptotic) distribution they have
under the null of independent growth rates. In fact, inspired by the classical Gibrat’s model of
size-growth dynamics, independence of firm growth rates over time is the natural benchmark
in our context. It has been already used to gauge qualitative considerations about firm growth
QTPM entries in Dosi et al. (2020) and Capasso et al. (2013).

In general terms, the null of independence implies that, starting from any initial quantile,
there is the same probability to end up in any one of the final quantiles. If Q quantiles are
considered, this corresponds to a theoretical matrix with 1/Q in all the entries. Under this null,
the derivation of the properties of the indexes greatly simplifies. First, one can easily derive
that, under the null, the expected values of the observed indexes Îs and Îb read

E[Îs] = 1 and E[Îb] =
Q+ 1

3Q
. (9)

Second, the invariance of the QTPM under invertible monotonic transformation of the underly-
ing random variables implies that, when the variables are independent, the asymptotic behavior
of the variance-covariance structure of the elements of the QTPM becomes distribution inde-
pendent and one can use a Monte Carlo approach to derive it.

Specifically, since the elements of the QTPM are consistent, efficient and asymptotically
normal, then the considered indexes, being smooth functions of these quantities, are themselves
consistent, efficient and asymptotically normal. Therefore, under the null of independence, with
sample size N going to infinity, the indexes Îs and Îb are normally distributed with mean given
in (9) and variance

VN [Îx] ∼
Cx(Q)

N
, x = s, b . (10)

The asymptotic coefficients Cs(Q) and Cb(Q) only depend on the number Q of quantiles consid-
ered and can be therefore computed via Monte Carlo simulations with any distribution. Since
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Figure 2: Monte Carlo analysis of rescaled variance (N VN [Î], from Eq. 10), for the Shorrocks
(left) and the Bartholomew (right) index. Figures obtained using R=106 replications of the
respective index, each replication computed over a sample of N independently drawn couples
and using QTPMs with Q=10. For the generation of the underlying data we test three different
distributions: Standard Normal, Uniform and Laplace.

in the paper we will perform the empirical analysis using deciles, we are interested in the case
Q=10. Accordingly, we perform the following exercise. For a given sample size N , we randomly
generate R independent samples of N couples of independent observations drawn from a given
distribution. On each sample, we compute the QTPM with Q=10, and the Prais-Shorrocks and
Bartholomew indexes associated to this matrix. We end up with R independent realizations
for each index, Îx(r;N), with r = 1, . . . , R and x = s, b. Then, we compute their mean and
variance

EN [Îx] =
1

R

R∑
r=1

Îx(r;N) , VN [Îx] =
1

R− 1

R∑
r=1

(
Îx(r;N)− EN [Îx]

)2
, x = s, b .

When N goes to infinity, EN [Îx] goes to the values E[Îx] reported in Equation (9). Concerning
the behavior of the variance, we report in Figure 2 the quantities N VN [Îs] (left panel) and
N VN [Îb] (right panel) obtained over R=106 independent replications, three different distribu-
tion of the underlying variables (Standard Normal, Uniform in [0, 1] and Laplace centered in 0
with tail coefficient a=1), and sample size ranging from N=100 to N=1000. The confidence
intervals in the plots are derived from the Chi-Square quantile function with R−1 degrees of
freedom, Qχ2(q, R − 1), under the assumption that the indexes are normally distributed. The
bands represent a 95% confidence level and are obtained multiplying the computed value times
(R − 1)Qχ2(0.025, R − 1) or times (R − 1)Qχ2(0.975, R − 1), respectively for the upper and
lower bound.9

The numbers reported in the plots confirm that the behavior does not depend on the under-
lying distribution. While a clearly visible downward slope signals the presence of sub-asymptotic
corrections, their effect is so small that they are already negligible, for any practical purpose,
when the size of the sample is as small as N=100. This is below the size of the samples we will
consider to build CQTPMs in this paper. In the inferential analysis of the following sections,
when an expression for the variance of the indexes is required, we will use Cs(10)=0.1120 and
Cb(10)=0.0563, corresponding to the average of the two coefficients over the three considered
distribution for N=1000 (taken to the last significant digit).

9In the case of R=106 replications, the bounds are 0.9972 and 1.0028.
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5 Distributional analysis of firm growth persistence

We exploit the CQTPM framework developed above to condition out possible dependence
of growth rates on time, country, sector, and firm size. We consider the observations on firm
growth rates separately for each transition between year t and t+ 1 allowed by the sample time
period, split them further by country and, within each country, by (2-digit) industries. This
implicitly controls for spurious persistence in growth rates due to country, sector or time factors,
exploiting the simple fact that these potentially omitted sources of dependence are naturally
coded as discrete variables (they are discrete z variables, in the wording of Section 4.1).

Then, within each of the transition-country-sector sub-samples obtained this way, we control
for growth-size dependencies as follows. We start with the triplet {gn,t, gn,t+1, sn,t}, where sn,t
is initial firm size (in terms of sales, in line with the definition of g), and build 5 equipopulated
sub-samples according to the quintiles of the distribution of initial firm sizes (i.e., L=5 in
Equation 6 above). Then, within each size-quintile sub-sample, we build a CQTPM by taking
the deciles of the marginal empirical distribution of growth rates in t and t+1 as the initial and
final states of the transition (i.e., Q=10). Lastly, we “aggregate back” the 5 QTPMs computed
over the size-quintiles via averaging them, thus obtaining a CQTPM for each of the transition-
country-sector sub-samples. In total, we are left with 600 CQTPMs to work with (5 countries,
20 2-digit sectors, 6 transitions).10

Conditioning on firm size is particularly important. As discussed in Section 3.2, growth rates
are known to depend on firm size. QTPMs computed by sector or country ignoring growth-size
dependencies, might show more persistence in some cells than in others just because firms of
similar size are likely to exhibit similar growth rates in both initial and final period. In fact,
Daunfeldt and Halvarsson (2015) and Capasso et al. (2013) report apparent differences between
the QTPMs computed separately across firms belonging to different size classes. Instead of
using ex-ante defined size classes, as these previous studies do, our procedure to build CQTPMs
adapts to the specific characteristics and evolution of the size distribution inside each sector-
country-transition sample.

5.1 Country-level analysis

We start by examining CQTPMs properties at the country level. These are obtained by
averaging the 20 sectoral CQTPMs obtained for each country in a given transition (controlling
for firm size as described above), leaving us with 6 separate matrices to study for each country.

Figure 3 shows the CQTPMs corresponding to the 2016/2017 transition. Numbers by row
represent shares of firms staying in the same decile or moving to a different decile of yearly
growth rates over the two years. Given the size of the samples we are working with, the
statistical estimation error of matrix elements is of the order of one thousand. Thus, we only
include significant digits in all our figures, while the gray scale helps identifying the main
patterns.

Two main patterns emerge, common to all countries. First, we observe some tendency
to remain in the same decile, as shown by the darker stripe along the main diagonal. This
tendency is stronger in the top and bottom deciles, revealing the presence of persistent over-
and under-performing firms. Together, and second, there is a relatively high probability of
moving to the opposite decile, as suggested by the darker stripe along the secondary diagonal.
In particular, there is a relatively higher probability of switching from Q1 to Q10, or vice-versa.

10We tested the robustness of our results by experimenting with two different definitions of the CQTPMs.
First, we conditioned upon initial size deciles instead of initial size quintiles. Second, we kept conditioning
on quintiles of initial size as in the baseline analysis, but considered 20 equipopulated growth bins instead of
growth deciles (computing Monte Carlo values of Cs and Cb for Q = 20). These alternative specifications did
not affect significantly our main findings.
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(a) France (b) Germany

(c) Italy (d) Spain

(e) UK

Figure 3: Conditional Quantile TPMs, defined on growth rates deciles – by country, 2016/2017
transition.
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Table 4: Mobility indexes and test of the null of independence

Transition France Germany Italy Spain UK
Shorrocks [2011/2012] 0.967∗∗∗ 0.955∗∗∗ 0.959∗∗∗ 0.960∗∗∗ 0.985∗∗∗

(-21.876) (-14.382) (-34.195) (-28.237) (-4.453)
[2012/2013] 0.970∗∗∗ 0.934∗∗∗ 0.962∗∗∗ 0.964∗∗∗ 0.968∗∗∗

(-19.809) (-23.955) (-34.441) (-25.388) (-9.244)
[2013/2014] 0.970∗∗∗ 0.934∗∗∗ 0.960∗∗∗ 0.964∗∗∗ 0.960∗∗∗

(-18.486) (-30.512) (-34.513) (-25.939) (-11.659)
[2014/2015] 0.969∗∗∗ 0.941∗∗∗ 0.958∗∗∗ 0.956∗∗∗ 0.969∗∗∗

(-17.389) (-30.312) (-37.836) (-31.715) (-9.297)
[2015/2016] 0.970∗∗∗ 0.936∗∗∗ 0.953∗∗∗ 0.958∗∗∗ 0.973∗∗∗

(-15.145) (-31.845) (-44.355) (-30.365) (-7.897)
[2016/2017] 0.966∗∗∗ 0.945∗∗∗ 0.956∗∗∗ 0.957∗∗∗ 0.974∗∗∗

(-15.769) (-25.576) (-43.359) (-30.762) (-7.680)

Bartholomew [2011/2012] 0.352∗∗∗ 0.339∗∗∗ 0.342∗∗∗ 0.338∗∗∗ 0.364
(-13.462) (-12.649) (-28.561) (-29.113) (-1.043)

[2012/2013] 0.357∗∗∗ 0.335∗∗∗ 0.346∗∗∗ 0.347∗∗∗ 0.367
(-8.769) (-16.054) (-24.635) (-20.003) (0.286)

[2013/2014] 0.358∗∗∗ 0.331∗∗∗ 0.345∗∗∗ 0.352∗∗∗ 0.332∗∗∗

(-7.581) (-22.805) (-27.217) (-15.056) (-14.491)
[2014/2015] 0.352∗∗∗ 0.336∗∗∗ 0.341∗∗∗ 0.344∗∗∗ 0.354∗∗∗

(-11.497) (-22.394) (-31.943) (-22.880) (-5.420)
[2015/2016] 0.354∗∗∗ 0.333∗∗∗ 0.345∗∗∗ 0.344∗∗∗ 0.359∗∗∗

(-9.260) (-23.659) (-29.145) (-23.097) (-3.350)
[2016/2017] 0.352∗∗∗ 0.332∗∗∗ 0.345∗∗∗ 0.350∗∗∗ 0.349∗∗∗

(-9.177) (-22.534) (-29.687) (-16.809) (-7.135)

Notes: Shorrocks and Bartholomew mobility indexes (standardized values in parenthesis) com-
puted on CQTPMs, by country and transition years. Asterisks refer to an F-test of the null hy-
pothesis that the CQTPMs exhibit independence, implemented as an assessment of the distance
between observed standardized indexes and their expected value under the null (1 for Shorrocks;
0.36̄ for Bartholomew). Significance level: ∗∗∗p < 0.01.

This is evidence of sizable, anti-persistent bouncing effects particularly affecting extreme growth
events. Consistent patterns replicate also in all the other transition years, in all countries (see
Appendix B). The behavior observed in extreme quantiles is in accordance with previous
studies which examined unconditional TPMs. Our analysis confirms that they survive also
after controlling for firm size and country-, sector- and time-effects.

These peculiar properties of growth dynamics would be totally invisible within the standard
AR regression approach. Moreover, they show that the linear AR model discussed in Section 3.1
is a poor description of the underlying process. In fact, were the AR model able to provide a
satisfactory characterization of the underlying dynamics, we should observe a similar behavior
across all initial states, that is across all the 10 rows of a matrix. Apparently, this is never the
case in any of the countries considered.

Notice also that –here as well as in the rest of the paper– we do not present a pooled analysis
aggregating CQTPMs over time. That would require averaging the CQTPMs obtained across
the different transitions. This is not allowed in our data, since we verified that the CQTPMs
computed for the different transitions do not pass an homogeneity test (details in Appendix C).
This may be a further source of bias in previous studies that apply TPMs or QTPMs to firm
growth persistence, where the reported matrices are often obtained after pooling data over
time, without previously checking for homogeneity.

The qualitative analysis of the matrices is already revealing of interesting patterns. However,
a central question remains: to what extent the numbers observed in the CQTPMs cells deviate,
in a statistical sense, from the “0.1 benchmark” that one expects under the null of independent
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growth rates? Are the intra-distributional movements observed in the empirical CQTPMs large
or small, compared to the benchmark of independence? The theoretical and Monte Carlo results
developed above about mobility indexes properties help addressing these questions.

As a preliminary step, notice that, since the different CQTPMs involve a different number
of firms, the values of the indexes directly computed on the observed CQTPMs cannot be
compared across the different matrices. However, since we derived their properties under the
null for the case Q=10, we can compute a standardized version of the indexes, as a function of
the sample size

Ĩs =
Îs − E[Îs]√

VN [Îs]
= 3
√
N(Îs − 1) , Ĩb =

Îb − E[Îb]√
VN [Îb]

= 4.22
√
N(Îb − 11/30) . (11)

The nice feature of these quantities is that they are asymptotically distributed as a N (0, 1) and,
thus, they are comparable across different samples and different matrices. By definition, their
value indicate how many standard deviations the empirical data are away from their expected
value under the null of independence. Negative values indicate that there is more persistence
in the observed CQTPMs than under the null, while the opposite holds for positive values.

Table 4 reports un-standardized mobility indexes and their standardized version, computed
for the country-level CQTPMs discussed above, by country and transition. Previous studies
provide qualitative comparisons between unstandardized values and some theoretically mean-
ingful value (e.g, corresponding to “no firms remain in the initial quantile”). Figures in Table 4
show that such comparisons might be deceiving, while the standardization procedure is essen-
tial in drawing definite conclusions about the nature of the process. To see this, consider the
Shorrocks’ index. If all firms remained in the same quantile over time (the case of “no mobility”,
i.e. main diagonal elements all equal to 1), we would expect to observe un-standardized values
close to 0. Conversely, if no firms preserved their initial quantile over time (i.e., all zeroes in
the main diagonal), the expected value of the un-standardized index would be 10/9 = 1.1. The
numbers observed in Table 4, all in the range 0.94-0.98, are not that far from this case, while
they seem quite far from zero. However, they are also not too far from the benchmark value
of 1 that would emerge under the null of independence (recall Equation 9). The standardized
values allow to decisively discriminate between the two alternatives. In fact, they show that the
un-standardized figures are several standard deviations smaller than under the null, implying
that there is more persistence in the data than an independent growth process would imply.

The emergence of consistently negative standardised values suggest that this is in fact a
general pattern. To corroborate this, Table 4 also reports an F-test for the statistical significance
of the distance between the observed standardized values and the expected value under the null
of independence. The F-tests confirm that the observed negative deviations from the benchmark
are statistically significant.

The analysis of the Bartholomew indexes yields consistent patterns and support similar
conclusions. The un-standardized indexes are well above 0, i.e. the value expected under
no mobility, and they are also well below the value of 7/9 = 0.7̄ which would be expected
under “max mobility”, if all firms made the longest possible jump compared to their initial
quantile.11 In fact, the un-standardized values are very close to the value expected under the
null of independence for Q=10, which is 0.36̄ (see Equation 9). Again, the standardized values
and the associated F-tests reveal negative and statistically significant deviations from the null.
This confirms that firm growth is more persistent than an independent process, in all countries
considered and across all transitions.12

11Note that the theoretical maximum value of the Bartholomew index is a function of the number of quantiles
Q. It equals (3Q− 2)/(4 (Q− 1)) if Q is even, and equals (3Q+ 1)/(4Q) if Q is odd.

12As shown in Appendix D, the conclusion remains the same when the CQTPMs is computed over 3-year
growth rates.
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Figure 4: Comparison of Standardized Shorrocks (left) and Standardized Bartholomew (right)
in two selected sectors. Points refer to different countries and transitions. The line is the 45◦

sloping bisector.

Within this general result, the Shorrocks and the Bartholomew indexes also reveal differences
across countries. The UK and, to a lesser extent, France appear as the countries with less
persistent growth rates, as the value of the indexes are less negative than in other countries.
This ranking in the degree of persistence across countries, essentially replicates in all years,
although there is some variability within each country over time.

A notable difference between the two measures, is that the standardized Bartholomew in-
dexes are generally less negative compared to the corresponding standardized Shorrocks’ in-
dexes. That is, despite the general rejection of the null of independence, the Bartholomew
indexes suggest more mobility (lower persistence) than the Shorrocks indexes do. This is com-
patible with the Bartholomew statistic giving more weight to off-diagonal movements and, thus,
being more suited to account for the bouncing effects we observed in the top and bottom deciles
of the CQTPMs.

Overall, the analysis of country-level CQTPMs supports the idea that firm growth intra-
distributional dynamics are more persistent than an independent process would imply, even
after controlling for biases that could arise due to dependence of growth rates on firm size
and country-, sector- or time-specific factors. This emerges out of relatively low persistence
in most CQTPMs cells, coupled with the peculiar dynamics in the corners of the matrices,
characterizing firms experiencing extreme relative growth episodes.

5.2 Sector-level analysis

The CQTPM framework we developed can also be exploited to examining similarities and
differences in firm growth persistence across sectors. As an example of the variety of sectoral
patterns across the 600 2-digit sectoral CQTPMs we can work with, the scatter plots in Figure 4
correlate the standardized values of the Shorrocks and the Bartholomew indexes computed by
transition and country for two sectors, “Basic pharmaceutical and pharmaceutical preparations”
(NACE 21) and “Machinery and equipment” (NACE 28).

In general, no matter the index considered, the plots reveal a good deal of sectoral hetero-
geneity. The supports spanned by both indexes are wide and the points are scattered away
from the 45◦ degree line, implying that the two sectors show different extent of persistence.
We also observe apparent differences across the two indexes, much likely due to the ability of
the Bartholomew index to account for off-diagonal movements. According to the Shorrocks
indexes, although both sectors display higher persistence than under the null of independence
(negative standardized values), NACE 28 shows more persistent growth dynamics (less negative

19



standardized value). The Bartholomew indexes, instead, feature various points where negative
deviations from the null observed for NACE 21 associate with positive deviations for NACE 28,
in the same transition and country. This supports that firms in NACE 21 display more per-
sistent dynamics than firms in NACE 28. Similarly heterogeneous patterns emerge also across
other 2-digit sectors covered in our data. This evidence confirms the choice to compute sector-
wide CQTPMs in the first place. More generally, it also suggests that sector-specific factors
may indeed be a relevant source of variation in firm growth persistence.

Notice, however, that in the plots of Figure 4, the points referring to the same country
exhibit some tendency to cluster relatively close to each other. This would hint that country-
specific heterogeneity, already observed in country-level CQTPMs, survive at the level of single
sectors. Conversely, we do not observe significant clustering by transition year, suggesting that
the variation due to time-effects is relatively modest, once the sector and the country dimensions
are fixed.

To disentangle statistically the relative explanatory power of country, sector and time fac-
tors, we estimate the following variance decomposition regression model

Ĩj,c,t = α + δj + δc + δt + εj,c,t (12)

where the dependent Ĩ is either the standardized Shorrocks or the standardized Bartholomew
index associated to the CQTPM of sector j in country c over the transition between t-1 and t,
while the δ covariates represent full sets of sector, country and transition fixed-effects.

Estimation results are reported in Table 5 for different specifications. When we include
country dummies only (in model 1 and 5, France is the baseline), the relative ordering of the
coefficients is broadly in line with the results in Table 4. Italian and Spanish firms display more
persistence than firms in other countries, while France and particularly the UK data show lower
persistence. Recall that in the exercise of Table 4, we were averaging the sector-year CQTPMs
of a given country and then computing the indexes. In the regression model in Equation (12),
we are doing somewhat the opposite: the coefficients associated to the country dummies are
proportional to the averages of the sectoral indexes across all sectors within a given country. All
values need to be interpreted as a deviation with respect to the constant and,for both indexes,
the net value is negative for all countries.

The estimates of models where we only include sector fixed-effects (model 2 and model 6,
NACE 32 is the baseline) reveal that the coefficients on the sectoral dummies are more het-
erogeneous than the country dummy coefficients. They span a support of around 10, while
the support of country dummies is about 5.6. In the regression on the Shorrocks indexes,
all sectoral dummies have a negative net value (considering the constant). This confirms that
there is generally more persistence than under the null of independence, with firms in NACE 10
(“Manufacture of food products”) having particularly persistent growth rates. On the other
hand, in the regression taking the Bartholomew index as the dependent variable, NACE 28
(“Machinery and equipment”) is the only sector with positive net contribution.

The dummies relative to the different transition years (model 3 and model 5) are not sig-
nificant, in line with the intuition from Figure 4 that time provides a negligible contribution to
total variation.13

The three sets of dummies explain, together, 63.5% of total variation in Shorrocks indexes
and 62.1% of variation of Bartholomew indexes (see the “complete” models 4 and 8). Because
of the symmetric nature of the sample (same number of observations for each sector and same
sectors for each country), one can estimate the contribution of each group of dummy variables
to the models’ R2 by just dropping the other dummies. It turns out that, for both the indexes,
country and sector dummies together account for essentially the whole explained variance.

13This finding suggests that growth dynamics is consistent over time, despite the rejection of homogeneity
across QTPMs, examined in Appendix C.
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Table 5: Decomposition of sector, country and time contribution to firm growth persistence

Standardized Shorrocks Standardized Bartholomew
(1) (2) (3) (4) (5) (6) (7) (8)

Country Germany -1.478∗∗ -1.478∗∗ -1.448∗∗ -1.448∗∗

(0.465) (0.344) (0.520) (0.338)
Italy -3.757∗∗ -3.757∗∗ -2.927∗∗ -2.927∗∗

(0.515) (0.324) (0.610) (0.373)
Spain -1.915∗∗ -1.915∗∗ -1.678∗∗ -1.678∗∗

(0.441) (0.238) (0.602) (0.424)
UK 1.908∗∗ 1.908∗∗ 1.216∗ 1.216∗∗∗

(0.405) (0.309) (0.530) (0.412)
Sector 10 -6.223∗∗ -6.223∗∗ -8.995∗∗ -8.995∗∗

(1.416) (1.070) (1.439) (1.285)
11 2.821∗∗ 2.821∗∗ 2.742∗∗ 2.742∗∗

(0.526) (0.498) (0.699) (0.574)
13 2.367∗∗ 2.367∗∗ 1.801∗ 1.801∗∗

(0.687) (0.500) (0.722) (0.490)
14 1.202 1.202 0.059 0.059

(0.933) (0.642) (0.771) (0.577)
16 2.124∗∗ 2.124∗∗ 3.529∗∗ 3.529∗∗

(0.664) (0.493) (0.612) (0.528)
17 2.666∗∗ 2.666∗∗ 1.424∗ 1.424∗∗

(0.635) (0.464) (0.622) (0.440)
18 0.247 0.247 0.273 0.273

(0.831) (0.453) (0.615) (0.443)
20 1.361∗ 1.361∗∗ -0.057 -0.057

(0.683) (0.486) (0.684) (0.510)
21 3.284∗∗ 3.284∗∗ 2.136∗∗ 2.136∗∗

(0.536) (0.536) (0.548) (0.432)
22 1.555∗ 1.555∗∗ 0.625 0.625

(0.629) (0.387) (0.678) (0.471)
23 1.846∗ 1.846∗∗ 3.222∗∗ 3.222∗∗

(0.765) (0.472) (0.705) (0.514)
24 3.442∗∗ 3.442∗∗ 2.940∗∗ 2.940∗∗

(0.710) (0.517) (0.580) (0.458)
25 -1.183 -1.183 3.411∗∗ 3.411∗∗

(1.178) (0.632) (0.865) (0.597)
26 1.713∗ 1.713∗∗ 2.207∗∗ 2.207∗∗

(0.736) (0.593) (0.583) (0.465)
27 2.094∗∗ 2.094∗∗ 2.404∗∗ 2.404∗∗

(0.703) (0.523) (0.516) (0.438)
28 1.086 1.086∗ 5.330∗∗ 5.330∗∗

(0.741) (0.525) (0.616) (0.659)
29 2.965∗∗ 2.965∗∗ 2.105∗∗ 2.105∗∗

(0.615) (0.477) (0.554) (0.417)
30 3.931∗∗ 3.931∗∗ 3.558∗∗ 3.558∗∗

(0.606) (0.463) (0.452) (0.433)
31 2.695∗∗ 2.695∗∗ 3.712∗∗ 3.712∗∗

(0.669) (0.481) (0.628) (0.544)
Transition [2011/2012] 0.736 0.736∗ 0.050 0.050

(0.477) (0.290) (0.538) (0.368)
[2012/2013] 0.351 0.351 0.612 0.612

(0.500) (0.332) (0.569) (0.412)
[2013/2014] -0.078 -0.078 -0.144 -0.144

(0.525) (0.327) (0.525) (0.391)
[2014/2015] -0.248 -0.248 -0.403 -0.403

(0.547) (0.318) (0.598) (0.381)
[2015/2016] -0.405 -0.405 -0.074 -0.074

(0.551) (0.388) (0.559) (0.369)
Cons -3.700∗∗ -6.248∗∗ -4.808∗∗ -5.259∗∗ -2.264∗∗ -4.852∗∗ -3.238∗∗ -3.892∗∗

(0.357) (0.512) (0.377) (0.458) (0.477) (0.450) (0.405) (0.441)
Obs 600 600 600 600 600 600 600 600
R2 0.275 0.350 0.011 0.636 0.126 0.488 0.006 0.620

Notes: OLS estimates of Equation (12). Baseline categories are: NACE 32 (Other manufacturing) for sector dum-
mies; transition 2016/2017 for the transition dummies; France for country dummies. Bootstrap standard errors in
parenthesis. Asterisks denote significance levels: ∗p < 0.05, ∗∗p < 0.01.
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Country dummies account for 27.5% of the variance of the Shorrocks indexes and for 12.6% of
the variance of the Bartholomew index. Sector dummies capture more: 35% of the variance of
the Shorrocks indexes and 48.8% of the variance of the Bartholomew indexes.

Overall, the analysis of sector-level CQTPMs supports that sectoral specificities stand out
as the main source of deviations of intra-distributional persistence from the null of independent
firm growth rates.

6 Sectoral determinants of growth persistence

The primary role of sector specific factors emerged from the analysis of sectoral CQTPMs,
suggests the presence of a relevant relation between firm growth persistence and the economic
characteristics of sectors. In this Section we further explore this relation.

We relate sectoral persistence, as measured by standardised indexes, to a set of sectoral
variables which are plausibly linked to patterns of firm growth and industry dynamics. Specif-
ically, we consider profitability, productivity, market concentration, business dynamism and
openness to international markets. Profitability is defined as gross operating margins over total
sales. Since we study manufacturing sectors, focusing on profits from operating performance
excluding the effect of financial assets and liabilities seems more appropriate. Data are taken
from the Structural Business Statistics (SBS) database maintained by EUROSTAT. We define
productivity as labour productivity (LP), measured in terms of real value added per hours
worked, available at sectoral level from the EU-KLEMS database. As a measure of concentra-
tion, we take the standard Hirschman-Herfindahl index, computed on sales of the firms active
in the same 2-digit sector in ORBIS (by year and country). Business dynamism is proxied via
the churning rate, defined as the sum of firm birth and death rates per year in each sector, that
we collect from EUROSTAT-SBS. Finally, we define openness as the ratio between the number
of exporting firms and the total number of firms in a sector. Figures to compute this ratio
are taken from EUROSTAT-Trade by Enterprise Characteristics (TEC) and EUROSTAT-SBS,
respectively for the numerator and the denominator. Table 6 summarizes the definition of
variables, their sources and coverage. Coverage varies according to whether it was possible to
find complete information for all the 600 sector-country-transition combinations spanned by
the definition of CQTPMs. The only problematic variable is Openness, for which we have only
280 observations, due to the limited number of 2-digit sectors included in the TEC database.

The signs to be expected in the relationships between firm growth persistence and the
sectoral characteristics considered, are not all completely clear a-priori, in particular for profits,
productivity and openness. If high profitability levels in a sector are interpreted as a signal of
market power, then high barriers to entry or the incumbents’ ability to hamper competition
should stabilize relative firm growth rankings and keep persistence higher, compared to low
profitability sectors. On the other hand, high profitability in a given sector may indicate
attractive investment/profit opportunities, which may be accompanied by substantial entry
attempts and, as a consequence, increased turbulence and reduced persistence in growth rates.
The relation with productivity is equally difficult to predict. In fact, high productivity sectors
are environments where competitiveness is on average high, but this may lead to opposite
predictions. On the one hand, since performing better than the average is difficult in such
environments, one could expect relative growth and market shares to be more stable compared
to low-productivity sectors. On the other hand, firms in highly competitive environments
are arguably subject to stronger selective pressures, which is likely to increase turbulence.
Concerning openness, one has to consider that involvement in international markets is both an
opportunity and a threat to firms. Accessing export markets may help to sustain sales growth,
especially when the domestic market is stagnant, and induce more stability in growth rates. At
the same time, however, firms operating in more open sectors are also increasingly subject to

22



Table 6: Sectoral characteristics

Variable Source Description #Obs

Profitability EUROSTAT-SBS Gross operating surplus over sales turnover (%) 597

Labour Productivity (LP) EU KLEMS (log of) Value added per hours worked by persons engaged 600

Concentration ORBIS Herfindahl-Hirschman Index x 100 600

Business dynamism EUROSTAT-SBS Sum of birth and death rates of firms (%) 585

Openness EUROSTAT-SBS and TEC Exporting firms over total firms (%) 280

Notes: Sectoral variables are defined at 2-digit NACE level and by country, over the period 2011-2017.

adverse external shocks, and typically face fiercer competition. This may create turbulence in
growth dynamics, resulting in a nuanced relation between openness and firm growth persistence.

Sharper predictions seem possible about the role of concentration and business dynamism.
We expect persistence in growth rates to be relatively higher in more concentrated sectors,
since concentration is a signal of market power, either due to the structural characteristics of
the sector or to the anti-competitive behavior of incumbents, which counters changes in relative
market shares over time. Lastly, persistence is naturally expected to decrease with business
dynamism, since the sectoral turbulence due to entry and exit, by definition, involves instability
in relative market shares.

To investigate how these characteristics affect growth rates persistence, we consider a series
of regression models where the standardized mobility indexes associated to sectoral CQTPMs
are regressed on the sectoral variables. To avoid simultaneity issues, we take lagged the vari-
ables. Specifically, the standardized indexes computed over the transition between t− 1 and t,
are regressed against sectoral variables measured in t− 2

Ĩc,j,t = α + βXc,j,t−2 + εc,j,t , (13)

where X is the vector of sectoral characteristics. Recall that negative values of standardized
indexes indicate more persistence than under the null of independent growth rates. Therefore,
negative estimates of the β coefficients imply a positive association between sectoral character-
istics and persistence.

Preliminary estimates where each variable is included alone in the model (not reported
for brevity), reveal that profitability, productivity and business dynamism show a statistically
significant and negative association (positive β) with persistence, while openness does not
display statistically significant association. These findings emerge irrespective of whether we
consider the Shorrocks or the Bartholomew index as the dependent variable. Concentration
also negatively associates with persistence, but the correlation is statistically significant only
against the Shorrocks indexes.

In Table 7 we examine multivariate specifications, including all the sectoral variables to-
gether. The estimates in column 1 report baseline results without country, sector and time dum-
mies. Looking at the Shorrocks index, we see that persistence decreases (positive coefficients)
with productivity, business dynamism and openness. The regression with the Bartholomew
index confirms a significant and inverse relation (positive β) between persistence and produc-
tivity.

We then extend the model by adding fixed-effects, to control for unobserved heterogeneity
along the sources of variation in the data. Given our interest in sectoral characteristics, inclusion
of sector fixed-effects needs to be carefully considered. Indeed, sector fixed-effects may absorb
the statistical significance of the relations, if sectoral characteristics vary mostly across sectors,
rather than within sector. In column 2 we only include country and time fixed-effects. Business
dynamism and openness display a statistically significant coefficient vis-a-vis the Shorrocks
indexes, while openness is the only variable showing a statistically significant association with
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Table 7: Firm growth persistence and sectoral characteristics

All variables Excl. Openness
(1) (2) (3) (4) (5) (6)

Dependent: Standardized Shorrocks

Profitability -0.023 -0.045 -0.038 0.052 -0.082 -0.141∗

(0.040) (0.038) (0.061) (0.023) (0.032) (0.036)
LP 0.258∗ 0.560 1.996∗∗ 0.019 1.854∗∗ 1.415∗∗

(0.085) (0.443) (0.602) (0.066) (0.327) (0.382)
Concentration 0.046 0.015 0.012 0.036 0.022 -0.005

(0.029) (0.017) (0.023) (0.021) (0.011) (0.012)
Business dynamism 0.318∗∗ 0.144∗ 0.093 0.277∗∗ 0.097 0.078

(0.055) (0.063) (0.079) (0.036) (0.039) (0.061)
Openness 0.055∗∗ 0.064∗∗ 0.065∗∗

(0.015) (0.016) (0.025)
Cons -11.044∗∗ -8.291∗∗ -13.886∗∗ -8.990∗∗ -11.850∗∗ -10.060∗∗

(1.240) (2.054) (3.104) (0.539) (1.651) (1.893)
Country FE no yes yes no yes yes
Time FE no yes yes no yes yes
Sector FE no no yes no no yes
R2 0.176 0.436 0.688 0.125 0.324 0.653
Obs 275 275 275 582 582 582

Dependent: Standardized Bartholomew

Profitability 0.004 0.023 0.010 0.066 -0.018 -0.073
(0.037) (0.055) (0.070) (0.027) (0.032) (0.042)

LP 0.267∗ -0.378 2.423∗∗ 0.062 0.796 2.173∗∗

(0.087) (0.451) (0.653) (0.060) (0.361) (0.450)
Concentration 0.019 0.001 0.018 0.014 0.003 0.012

(0.029) (0.024) (0.019) (0.017) (0.013) (0.012)
Business dynamism 0.147 0.042 0.207 0.150∗∗ -0.005 0.167∗

(0.065) (0.086) (0.097) (0.038) (0.062) (0.054)
Openness 0.035 0.049∗ 0.059

(0.022) (0.020) (0.031)
Cons -6.873∗∗ -2.170 -16.215∗∗ -5.975∗∗ -5.152 -13.510∗∗

(1.659) (2.683) (3.557) (0.623) (2.301) (2.170)
Country FE no yes yes no yes yes
Time FE no yes yes no yes yes
Sector FE no no yes no no yes
R2 0.049 0.138 0.662 0.039 0.137 0.645
Obs 275 275 275 582 582 582

Notes: OLS estimates. All models include country, sector and transition fixed-effects. Bootstrap standard errors in
parenthesis. Asterisks denote significance levels: ∗ p < 0.05, ∗∗ p < 0.01.
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the Bartholomew indexes. The positive coefficients of these variables confirm that they associate
with reduced persistence. Since identification works across sectors, the findings are informative
on the association between standardized indexes and sectoral variables in deviation from their
average values computed across industries, within country and transition year. So for instance,
the positive coefficient on business dynamism means that the sectors where churning is above the
average sectoral churning observed in a country in a given transition, display lower persistence
than the average sectoral persistence observed in a country in a given transition.

In column 3 we also add sector fixed-effects. The identification of parameters exploits the
deviation of indexes and regressors from their within-sector specific average, computed within
country and transition year. In the specification with the standardized Shorrocks indexes,
productivity and openness are the only statistically significant variables. They both associate
with reduced persistence. The same conclusion holds for productivity, but not for openness,
when considering the regression on the Bartholomew indexes.

In columns 4-6, we perform a robustness check excluding openness from the models’ specifi-
cation. As mentioned, data on openness are missing for about one half of the 600 sector-country-
year combinations for which we can compute CQTPMs and associated mobility indexes. The
estimates on the other sectoral characteristics might be biased, if the sector-country-time com-
binations where we can observe openness, are systematically different. The estimation results
show that this is not generally the case. We broadly confirm the conclusion from the baseline
estimates that productivity and business dynamism display statistically significant association
with persistence, while concentration does not.

Overall, productivity, business dynamism and openness to trade stand out as the variables
with more stable patterns of statistical significance. They all tend to display an inverse relation
with firm growth persistence.

7 Discussion and conclusion

We have applied CQTPMs and related mobility indexes to draw precise inference on persis-
tence in intra-distributional dynamics of firm growth rates, exploring its determinants across
sectors and countries. The analysis is based on a sample of manufacturing firms active in four
major European economies and the UK over the period 2010-2017.

Our first and main finding is that, although there is more persistence than under an inde-
pendent growth process, a good deal of intra-distributional mobility characterizes firm growth
dynamics. This result contributes to the long-standing debate about the validity of Gibrat’s
classical model of firm growth and the “illusion of randomness” (Henderson et al., 2012; Der-
byshire and Garnsey, 2014; Coad et al., 2015). In fact, strictly speaking, our analysis supports
a rejection of any model of firm growth based on independent growth shocks. At the same time,
however, our evidence conflicts with theories predicting high stability in growth rates rankings,
induced by fitter firms experiencing sequences of positive growth events and less fit firms con-
tinuously shrinking over time. In this respect, our results resonate with previous evidence that
growth rates are, if not totally erratic, at least quite difficult to predict (even with machine
learning algorithms, see Coad and Srhoj, 2020).

As a qualification of the general finding of considerable turbulence in intra-distributional
dynamics, CQTPMs display more persistence for relatively fast-shrinking and fast-growing
firms. Persistence in the top of the growth rates distribution is supportive of the attention that
high-growth firms receive in the literature. However, it is precisely in the extreme deciles that
we also find evidence of anti-persistent, bouncing effects, entailing that firms in the extreme
deciles are likely to experience large jumps to the opposite extreme deciles of the distribution.
These episodes of extreme volatility and reversal document a good deal of lumpiness in growth
processes, whereby large (positive or negative) adjustments tend to be followed by periods
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of relative inaction. Previous studies on firm growth TPMs relate this particular dynamics in
extreme quantiles to the relative abundance, in those quantiles, of small and hence more volatile
firms. Our analysis of CQTPMs show that such dynamics represent a pervasive property of the
growth process, which is still present even after conditioning on firm size (and also on country,
time and sector). These patterns also relate to the stylized fact that growth rates distributions
exhibit thick tails. Frequently occurring large growth shocks (positive or negative) are not just
due to the presence of a fixed set of top and bottom performing firms. They also result from
significant intra-distributional mobility, volatility and bouncing effects.

From a policy perspective, the considerable turbulence in firm growth patterns that we
document, is hardly good news for policies targeting the growth of specific groups of firms and
aimed to achieve long-lasting effects. As there are generally low chances that firms growing in
a given period will steadily grow over time, growth policies are likely to have a volatile and
transient effect. In particular, the bouncing effects observed in the top deciles, lend additional
support to previous studies showing that high-growth firms are often “one-hit wonders”. Con-
versely, instability of growth rates rankings over time is good news for anti-trust policies. In
the sectors and countries analyzed, there seems to be no serious concern for a tendency toward
strong cumulative growth, potentially leading to excess dominant position in markets. At the
same time, however, the growth process does not appear to naturally contribute to a gradual
reduction of market concentration.

Our findings also highlight the role of sectoral factors as drivers of firm growth persistence.
Previous studies have provided qualitative evidence on variation of TPMs properties at the
aggregate country level or at the level of specific sectors, typically without conditioning on
size. Our multi-country, multi-sector analysis of CQTPMs, simultaneously conditioning on
firm size and time-, country- and sector-specific factors, reveals that sectoral specificities explain
considerably more variation than country-specific and time-specific factors do. That is, growth
rate persistence does not primarily depend on country context and institutions, nor does it
vary significantly with specific year-by-year contingencies. Rather, it correlates significantly
with some structural characteristics of sectors, such as productivity, business dynamism, and
openness to trade. This provides an initial basis to inform about how industry performance
and dynamics may interplay with policies targeting firm growth persistence, in case the latter
is seen as a target for policy.

There are several extensions of the analysis which we did not consider in this study, mostly
due to the characteristics of the available data, yet which seem particularly promising for future
research.

Firstly, our methodology could be extended to consider further potentially confounding
factors that may create spurious persistence in intra-distributional dynamics. Conditioning on
the sector, country, and time effects, and on firm size –as we have done here– seemed a natural
starting point. Growth-size dependencies play a prominent role in firm growth theory and
empirics, while sector, country and time effects are obvious sources of dependence in growth
patterns. Future research could include additional conditioning. The analysis in Coad et al.
(2018), although the authors do not examine CQTPMs, suggests that firm age could be a
particularly interesting candidate. But any other firm-level characteristics potentially related
to firm growth –such as efficiency, innovativeness, or access to finance– could be easily integrated
into the procedure to obtain conditional matrices. Also, with larger data (e.g. covering the entire
population of firms in a country) one could take a more fine-grained disaggregation of sectors
to compute the CQTPMs. This would enable to focus on the intra-distributional dynamics
occurring across firms that can be more reliably assumed to compete in the same market,
compared to the 2-digit sectors we have used here. The CQTPMs framework we developed is
flexible enough to be adapted to all these cases. The only caveat is that more and more data
points are required whenever an additional conditioning is applied.

26



Another interesting avenue for further research relates to the time scale over which intra-
distributional dynamics are studied. Given the relatively short sample period available, we
mainly focused on yearly growth rates and one-year transitions and just examined a robustness
check confirming our main results for 3-years growth rates. However, with longer-in-time data,
our methodology could be exploited to explore persistence over longer transitions (e.g., 5-year
or 10-year growth) and/or over longer time horizons (e.g., over several decades). Theories of
firm-industry dynamics that reject independence, predict stronger persistence in relative growth
over the short-run, due to capabilities and firm-specific attributes being relatively slow-changing
variables. Yet, those models abstract from a clear definition of the time scale over which their
predictions unfold. For instance, do firms’ structural advantages apply over yearly growth rates
or over longer time scales, such as 3-5 years of growth? How long is the short-run? 5 years or
perhaps a decade? By gathering empirical evidence on growth persistence over different time
scales, one could verify over which time scales the theoretical predictions are more consistent
with the data. That would help better judge those theories. It would also help to connect the
empirics of firm growth persistence with genuinely long-run theories, which predict successive
phases of stability and instability in industry dynamics, according to Schumpeterian creative
destruction vs. creative accumulation, and over the development of the product life-cycle.

With its limitations and opportunities for further development, this work provides a bench-
mark framework for future research on firm growth persistence. It highlights the importance
of conditional analysis and it shows how to address it, allowing to assess how much persistence
remains in the data, once firm growth dynamics is cleaned from the underlying confounding
factors. Also, the proposed framework makes a crucial step forward, from a purely qualita-
tive and possibly misleading analysis of TPMs towards formal inference. We applied the new
framework to analyze persistence in relative market success as proxied by sales growth, but the
same analysis can be easily adapted to study persistence using other proxies of firm size, such
as employment or fixed assets. More generally, the proposed methodology could apply in any
area of research in firm dynamics, not confined to firm growth studies, as a tool to investigate
the extent of intra-distributional persistence in key dimensions of firm performance.
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Appendix

A Number of firms by 2-digit industries

Our choice to compute CQTPMs and associated mobility indexes by 2-digit sectors, is
driven by the coverage of ORBIS data across the different countries. In Tables 8-12 we report
the number of firms available to compute transitions across yearly growth rates in each country,
by 2-digit industries. Coverage varies by country (see also Table 1 in main text). For France,
Italy and Spain, at least some of the 2-digit sectors show enough firms to further disaggregate
the analysis, e.g. computing CQTPMs and indexes at the level of 3-digit industries. This is
not the case for the UK and Germany data, which show considerably lower coverage. In order
to keep the same level of sectoral disaggregation across all the countries examined, we choose
2-digit sectors. In any case, as we mention in the conclusions, an interesting direction for future
research, in case larger dataset are available, would be to examine more disaggregated definition
of industries. Our approach is flexible in this respect.

Table 8: France: # of firms available to compute TPMs by sector/transition

NACE [2011/2012] [2012/2013] [2013/2014] [2014/2015] [2015/2016] [2016/2017]
10 11,243 11,756 9,295 7,871 5,857 4,700
11 1,234 1,255 1,097 1,021 875 803
13 1,167 1,147 982 849 676 560
14 953 952 853 743 596 483
16 2,507 2,494 2,087 1,795 1,279 1,008
17 663 664 656 622 528 450
18 3,516 3,451 2,750 2,254 1,732 1,376
20 1,321 1,328 1,241 1,164 1,025 938
21 219 227 225 227 223 221
22 2,021 1,987 1,847 1,720 1,391 1,201
23 2,134 2,111 1,797 1,590 1,262 1,093
24 488 483 458 435 394 350
25 9,347 9,419 8,231 7,337 5,510 4,516
26 1,281 1,278 1,181 1,084 925 800
27 1,050 1,077 999 918 767 675
28 2,645 2,664 2,409 2,192 1,795 1,562
29 981 993 906 828 703 616
30 315 315 306 271 259 239
31 1,580 1,549 1,172 991 742 598
32 3,393 3,361 2,541 1,999 1,499 1,211
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Table 9: Germany: # of firms available to compute TPMs by sector/transition

NACE [2011/2012] [2012/2013] [2013/2014] [2014/2015] [2015/2016] [2016/2017]
10 904 1,128 1,581 1,757 1,669 1,431
11 160 187 299 353 344 300
13 231 294 470 586 526 450
14 132 147 206 240 220 183
16 464 606 1,241 1,628 1,560 1,405
17 231 261 377 477 456 371
18 694 901 1,416 1,582 1,446 1,243
20 476 578 822 987 958 806
21 154 192 250 280 258 212
22 620 811 1,310 1,692 1,628 1,410
23 584 732 1,238 1,467 1,365 1,112
24 318 406 551 697 668 564
25 2,115 2,738 4,964 6,481 6,252 5,646
26 842 1,049 1,681 2,002 1,896 1,623
27 568 707 1,111 1,425 1,379 1,189
28 1,663 2,016 3,269 4,205 4,047 3,545
29 258 297 410 511 469 396
30 126 145 231 271 255 228
31 242 309 602 773 748 649
32 696 935 1,506 1,767 1,623 1,343

Table 10: Italy: # of firms available to compute TPMs by sector/transition

NACE [2011/2012] [2012/2013] [2013/2014] [2014/2015] [2015/2016] [2016/2017]
10 6,828 7,225 7,626 8,047 9,861 11,045
11 1,068 1,108 1,157 1,237 1,349 1,424
13 3,179 3,288 3,406 3,507 3,904 4,126
14 3,699 3,840 4,029 4,293 5,423 6,346
16 2,748 2,903 3,016 3,157 3,893 4,321
17 1,558 1,607 1,644 1,694 1,813 1,881
18 2,888 2,987 3,117 3,245 3,678 3,976
20 2,470 2,582 2,649 2,742 2,903 2,994
21 421 436 447 460 473 492
22 4,108 4,257 4,399 4,562 4,867 5,069
23 4,716 48,58 5,001 5,143 5,666 5,976
24 1,433 1,467 1,514 1,558 1,654 1,712
25 17,558 18,291 19,115 20,029 22,715 24,331
26 3,030 3,128 3,216 3,347 3,549 3,659
27 3,509 3,635 3,771 3,910 4,225 4,427
28 10,228 10,614 10,971 11,398 12,151 12,610
29 1,101 1,120 1,160 1,197 1,304 1,361
30 1,143 1,192 1,203 1,264 1,405 1,509
31 3,421 3,558 3,686 3,883 4,460 4,810
32 3,061 3,182 3,320 3,488 4,387 5,075

33



Table 11: Spain: # of firms available to compute TPMs by sector/transition

NACE [2011/2012] [2012/2013] [2013/2014] [2014/2015] [2015/2016] [2016/2017]
10 8,153 8,279 8,484 8,742 8,811 8,686
11 1,991 2,047 2,152 2,308 2,429 2,403
13 2,028 1,976 2,006 2,043 2,071 2,033
14 1,668 1,641 1,681 1,718 1,748 1,703
16 3,251 3,161 3,168 3,283 3,288 3,194
17 912 913 925 947 966 944
18 4,599 4,529 4,558 4,684 4,706 4,585
20 2,155 2,171 2,229 2,295 2,355 2,302
21 279 286 281 297 295 293
22 2,338 2,357 2,390 2,426 2,469 2,469
23 3,680 3,566 3,585 3,607 3,673 3,551
24 1,179 1,167 1,191 1,204 1,218 1,208
25 11,761 11,621 11,682 11,990 12,199 12,021
26 847 866 881 919 946 913
27 1,110 1,101 1,124 1,132 1,148 1,128
28 3,633 3,695 3,756 3,831 3,930 3,861
29 1,027 1,027 1,051 1,098 1,120 1,086
30 334 341 340 357 375 372
31 3,346 3,243 3,188 3,237 3,257 3,163
32 1,601 1,595 1,666 1,742 1,784 1,764

Table 12: UK: # of firms available to compute TPMs by sector/transition

NACE [2011/2012] [2012/2013] [2013/2014] [2014/2015] [2015/2016] [2016/2017]
10 827 899 922 964 976 1,016
11 157 172 165 169 180 194
13 215 212 224 216 200 198
14 160 155 159 153 145 142
16 213 209 210 205 199 189
17 237 258 261 258 255 247
18 447 428 419 420 377 348
20 558 573 595 606 615 617
21 222 231 228 238 247 255
22 555 564 593 602 582 600
23 262 260 261 263 248 241
24 246 259 264 266 257 263
25 1,192 1,214 1,246 1,249 1,184 1,170
26 604 609 630 629 627 631
27 476 484 489 505 489 491
28 853 867 875 861 853 835
29 252 254 260 265 268 281
30 188 190 198 201 198 199
31 249 255 262 254 245 241
32 1,311 1,335 1,387 1,383 1,341 1,312

34



B Country-level CQTPMs, all years

For completeness, we report the country-level CQTPMs computed by averaging the sectoral
CQTPMs conditional on size computed in the different countries for each transition. As one
can see in Figures from 5 to 9, these CQTPMs are very similar to those computed for the
2016/2017 transition and reported in the main text. In particular, transition probabilities are
relatively higher in the corner cells, suggesting some more persistence coupled with bouncing,
anti-persistent effects in the top and bottom deciles of firm growth.

(a) France (b) Germany

(c) Italy (d) Spain

(e) UK

Figure 5: CQTPMs across growth rates deciles – selected countries, 2011/2012 transition.
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(a) France (b) Germany

(c) Italy (d) Spain

(e) UK

Figure 6: CQTPMs across growth rates deciles – selected countries, 2012/2013 transition.
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(a) France (b) Germany

(c) Italy (d) Spain

(e) UK

Figure 7: CQTPMs across growth rates deciles – selected countries, 2013/2014 transition.
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(a) France (b) Germany

(c) Italy (d) Spain

(e) UK

Figure 8: CQTPMs across growth rates deciles – selected countries, 2014/2015 transition.
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(a) France (b) Germany

(c) Italy (d) Spain

(e) UK

Figure 9: CQTPMs across growth rates deciles – selected countries, 2015/2016 transition.
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C Homogeneity Test

In this work we compute and report CQTPMs referring to separate 1-year transitions over
the years covered by the data. Computing CQTPMs on data pooled over different transitions is
legitimate only if the same underlying process governs all the transitions. As noted in the main
text, we verified that this is not the case in our data, via a standard χ2 test of homogeneity.

Let ni,j,t be the number of observations in state i at date t− 1 and in state j at date t and
ni,t the number of observations in state i at date t− 1. The estimated transition probability at
date t reads Pi,j,t = ni,j,t/ni,t while the transition probability estimated pooling the observations

over two consecutive dates is P
(2)
i,j,t = (ni,j,t + ni,j,t+1)/(ni,t + ni,t+1). For each country and each

date we compute the quantity

Q2(t) =
t+1∑
τ=t

Q∑
i=1

Q∑
j=1

ni,τ
(Pi,j,τ − P (2)

i,j,t)
2

P
(2)
i,j,t

. (14)

Under the hypothesis of homogeneity, Q2(t) follows a χ2 distribution with Q(Q − 1)(T − 1)
degrees of freedom, where Q is the number of states (10 in our case, since we use deciles) and
T = 2. The p-values obtained under the null are reported in Table 13. The hypothesis of
homogeneity cannot be rejected at a significance level of 0.01 only in the case of French firms.
We also perform the test over all transitions at once, considering the quantity

Q6 =
6∑

τ=1

Q∑
i=1

Q∑
j=1

ni,τ
(Pi,j,τ − P (6)

i,j )2

P
(6)
i,j

, (15)

where the pooled transition matrix is now defined as P̂
(6)
i,j = (

∑6
t=1 ni,j,t)/(

∑6
t=1 ni,t). Under the

hypothesis of homogeneity, Q6 has the same distribution of Q2(t) but with T = 6. The p-values
obtained under the null foe the different countries are reported in the last row of Table 13.
Also in this case the hypothesis of homogeneity is rejected at a confidence level of 0.01 in all
countries apart France.

Table 13: Homogeneity test

France Germany Italy Spain UK

Compared TPMs P-value P-value P-value P-value P-value

[2011/2012] [2012/2013] 0.021 0.000 0.003 0.000 0.011

[2012/2013] [2013/2014] 0.118 0.000 0.326 0.001 0.000

[2013/2014] [2014/2015] 0.916 0.000 0.154 0.000 0.001

[2014/2015] [2015/2016] 0.988 0.000 0.000 0.042 0.000

[2015/2016] [2016/2017] 0.540 0.000 0.000 0.017 0.000

All TPMs 0.339 0.000 0.000 0.000 0.000
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D Analysis of 3-year growth rates

Having access to a limited number of years in the data (the period 2010-2017), in our main
analysis we consider transitions across yearly growth rates, in order to maximize the number
of transitions examined. As a robustness check and also as an example of the flexibility of our
approach, we here examine 3-years growth rates.

Table 14: 3-year growth rates - Mobility indexes and Test of the null of independence

Transition France Germany Italy Spain UK
Shorrocks [g1/g2] 0.970∗∗∗ 0.955∗∗∗ 0.962∗∗∗ 0.968∗∗∗ 0.966∗∗∗

(-16.418) (-11.227) (-32.412) (-22.084) (-9.490)
[g2/g3] 0.970∗∗∗ 0.949∗∗∗ 0.954∗∗∗ 0.955∗∗∗ 0.972∗∗∗

(-13.590) (-22.084) (-40.062) (-30.842) (-7.688)

Bartholomew [g1/g2] 0.348∗∗∗ 0.333∗∗∗ 0.343∗∗∗ 0.353∗∗∗ 0.343∗∗∗

(-14.202) (-11.837) (-28.507) (-12.747) (-9.239)
[g2/g3] 0.348∗∗∗ 0.333∗∗∗ 0.334∗∗∗ 0.334∗∗∗ 0.352∗∗∗

(-11.968) (-20.911) (-39.482) (-31.036) (-5.649)

Notes: Shorrocks and Bartholomew mobility indexes (standardized values in parenthesis) com-
puted on CQTPMs, by country and transition. Transition measured over 3-year growth rates,
defined as: g1=s(2013)-s(2011), g2=s(2015)-s(2013), g3=s(2017)-s(2015). Asterisks refer to an
F-test of the null that the CQTPMs exhibit independence, implemented as an assessment of the
distance between observed standardized indexes and their expected value under the null (1 for
Shorrocks; 0.36̄ for Bartholomew). Significance level: ∗∗∗p < 0.01.

For each firm, we define the three growth rates g1=s(2013)-s(2011), g2=s(2015)-s(2013),
and g3=s(2017)-s(2015). Then, we compute the CQTPMs associated to the transitions g1/g2
and g2/g3, following the same steps outlined in the main analysis (that is, with Q = 10 and
conditional to country, sector and quintile of initial size). Table 14 reports mobility indexes
computed aggregating by country. In line with results in the main text (cf. Table 4), negative
values of standardised indexes reveal that there is more persistence than under the null of
independence. The null is in fact strongly rejected in all countries and transitions, for both the
indexes.
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