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Summary 

Estimating farmers’ supply responses to changes in framework conditions is important to in-

form decision-makers on the expected impacts on production volume as well as the resulting 

land-use shifts. Existing agricultural supply response models generally require either larger 

databases with farm-level data for microregional analysis or are implemented with a coarse 

resolution (e.g., country level) due to the lack of data. While such approaches are suitable for 

regions with abundancy of data or for global-scale analysis, there is a need for an alternative 

for micro-level analysis in countries with low data availability. In addition, it is important to 

include the spatial component in the regional supply response analysis, allowing not only the 

quantification of the overall change in output but also the likely spatial land-use change. 

Against this background, this dissertation aims to answer the research question whether a 

combination of a biophysical model with farm-level economic data can be used to estimate 

farm-level profitability of individual crops and respective cropping systems and thereby simu-

late farmers’ supply responses in countries with limited data availability. To answer this ques-

tion, a new modeling approach called Profitability Assessment Model (PAM) is developed, 

tested and validated. This new modeling approach follows the principles of minimum data, 

focusing on delivering timely and quantitative analyses with satisfactory accuracy to inform 

decision-makers. That is an important feature since the overall goal of the concept is to limit 

the data required by the model to a minimum, allowing quick implementation while accepting 

moderate accuracy. 

The PAM is a spatially explicit model with simulation units’ size of spatial resolution grid vary-

ing between 5 and 30 arcmin (10x10 to 50x50 km in area), following that used by the Global 

Biosphere Management Model (GLOBIOM). PAM estimates the profitability of each farming 

alternative at the simulation unit level and allocates the land to maximize farmers’ return to 

land. The model has four main modules developed to account for the different components 

of the profitability estimation: 

− Plant module: Using the EPIC-IIASA crop growth model (biophysical), this module es-

timates crop yields and fertilizer input use based on a standard production system. The 

module uses weather and soil data, farm operation schedules and crop growth param-

eters to estimate actual daily biomass gain, which is a function of potential daily gains 

penalized due to stress factors such as lack of nutrients, water, etc.  

− Transport module: Transport costs are needed primarily to simulate farm-gate prices 

for both inputs and outputs. The tool endogenously estimates the transport costs be-

tween the simulation units and the nearest port. It uses observed data to estimate 

freight cost per km, which is combined with the estimated travel distances. 
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− Economic module: This is the main innovation of the PAM model. It extrapolates 

known production cost data per crop from the agri benchmark typical farms to all the 

simulation units, using individual functions for each cost component. Finally, the mod-

ule combines the information from the previously mentioned modules to calculate the 

return to land of each farming alternative at the simulation unit level. 

− Land allocation module: Maximizes the return to land for each simulation unit, allo-

cating land to the most profitable farming alternative. Constraints such current land 

use and maximum share of each crop are also considered. The output is a land-use 

map. 

The PAM model is developed and calibrated for the Brazilian agricultural sector. Using Brazil 

as the case study is interesting due to its overall importance in the global production of agri-

cultural commodities as well as the environmental impact of land-use changes. Due to its 

prominent role as an exporter, changes in international prices and trade agreements are ex-

pected to impact Brazilian farmers directly and may cause land-use changes. Besides the em-

pirical relevance of Brazil, the availability of data helps the development of the extrapolation 

routines and the model validation. Additionally, the predominant cropping systems are rela-

tively simple, supporting the development and implementation of the model. 

For this case study, four production system are represented in the PAM model: (a) double 

cropping of soybeans and maize, (b) soybeans with a cover crop, (c) sugarcane monoculture 

and (d) beef production. While the profitability of the arable crops is endogenously estimated, 

beef is considered as an opt-out option, which is modeled based on exogenous return-to-land 

information. Since soybean, maize and sugarcane production accounts for 84% of the total 

seeded area in Brazil, the current version of the PAM model represents the most important 

cropping alternatives to farmers in Brazil, but not all. 

An important methodological contribution of the dissertation is the development of routines 

for the extrapolation of each production cost component from the known typical farms’ data 

to all regions in the country. These routines are based on local expertise as well as existing 

information on yield levels, prevailing production systems and farming conditions. Each cost 

component is analyzed individually and, based on theoretical discussions, specific cost func-

tions are proposed following the expected behavior of each cost item – e.g., linear relationship 

with yields or fixed per ha. That should improve the accuracy of the model in estimating pro-

duction costs (and finally profitability) while also allowing the model to be adapted to simulate 

changes in framework conditions that may affect only selected cost items (e.g., a significant 

increase in fuel prices). 

In addition, the PAM model improves on existing models because it accounts for specific cost 

components such as the transport of sugarcane from farm to mill, which is required due to 

the perishability of the crop. Besides the important impact of inbound transport cost on the 

overall profitability of sugarcane production, the endogenous simulation of this cost item al-

lows the model to spatially differentiate among regions depending on the current availability 
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of mills. That is expected to play an important role regarding farmers’ supply responses de-

pending on the time horizon of the analysis since the lack of milling infrastructure increases 

the inbound transport cost significantly in the short-term (e.g., less than 5 years). In the me-

dium-term (5 to 15 years), however, mills may be built and thereby substantially improve the 

on-farm competitiveness of sugarcane. 

A major constraint for regional profitability analysis is the lack of information regarding farm 

input and output prices. To overcome this problem, the PAM model provides an interesting 

alternative by endogenously estimating prices via the transport module. By considering the 

different transportation costs of each crop and basing the distance estimation on the actual 

availability of roads, the model allows a straightforward conversion of reference prices to 

farm-gate prices. For Brazil, reference price is the nearest port because much of its production 

is exported while the majority of its bulk inputs, such as fertilizer, are imported. For other 

countries, the reference price point can be adapted (i.e., domestic market) while still following 

the same approach to calculate the farm-gate price. The ability to endogenously simulate 

transport cost is a useful feature for the simulation of scenarios based on price shocks. 

Apart from the development of the modeling approach, this dissertation focuses on the quan-

titative model validation as a key step to identify strengths and limitations of the concept. 

Projected yields are validated against regional statistics and production cost estimates are 

benchmarked against the two available datasets, with a suitable number of primary typical-

farm data. Furthermore, the resulting land-use maps are evaluated against two simplified val-

idation maps representing current land use. 

In the business-as-usual scenario, the PAM model estimates a national weighted average of 

returns to land of 248 USD/ha for double cropping and 188 USD/ha for sugarcane. This rela-

tionship, however, is different in the states of Sao Paulo and Minas Gerais, where, on average, 

sugarcane has a higher return to land than double cropping. Benchmarking PAM’s production 

cost estimates with observed local data shows a satisfactory model accuracy with a relative 

mean absolute error (𝑟MAE) lower than 14%. The lowest error found in the production cost 

estimation is in sugarcane (𝑟MAE of 8.7%) and the highest in second-crop maize (𝑟MAE of 

14%). Spatially, the model has a better performance in the Center-west region for grains and 

in the Center-south region for sugarcane. That likely is the result of model parametrization 

focused on the main production regions and the lack of typical farms in certain regions. 

Conversely, yield estimation with the biophysical model is challenging due to the distinct error 

patterns among the crops in Brazil. Compared with official statistics, the EPIC-IIASA model with 

standard calibration overestimates soybean yields (𝑟MAE of 52%) while it underestimates sug-

arcane yields (𝑟MAE of 24%). Since this error pattern artificially changes the relative profita-

bility among the crop alternatives, crop yields are adjusted for this case study using available 

regional statistics, allowing the development and testing of the remaining modules in the PAM 

modeling approach. 
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The validation of the business-as-usual land-use map shows that the PAM model is able to 

satisfactorily reproduce the current land use in Brazil. The visual and quantitative validation 

results show a strong correlation between the available land-use maps, with PAM allocating 

the same crop as observed in 86% of total arable land. For important agricultural states, such 

as Mato Grosso, the agreement between the PAM’s results and observed data is as high as 

95%. That is an interesting result showing, on one hand, the importance of carefully calibrating 

the model with local expertise and, on the other, that the specialization of Brazilian farms with 

relatively simple crop rotations reduces the complexity of estimating land allocation strate-

gies, thereby increasing the model accuracy. 

To test the ability of the PAM model to predict land-use and output changes due to changing 

framework conditions, a scenario analysis is carried out: What will happen in case yields of 

key crops change significantly as a consequence of climate change? An extensive literature is 

available on the consequences of climate change in Brazil, with a strong regional and crop-

specific variation regarding expected future yield developments. To simulate the impact of the 

growers’ reaction to yield changes due to climate change, two adaptation scenarios are de-

veloped: 

− No double cropping in the tropical region (NoDC): Due to the expected yield penalty 

in short-cycle soybeans grown in double-cropping systems, farmers move out of the 

double-cropping system to single soybean cultivation in the tropical regions. 

− Double cropping with yield penalty (DCYp): Farmers keep producing in the current 

double-cropping systems while accepting the yield penalty for soybeans and maize. 

Due to the strong reduction in the returns to land for grains (i.e., maize and soybeans) in the 

tropical region – i.e., on average 26% in NoDC and 39% in DCYp - more than 24% of the current 

arable land is simulated to move from grains to sugarcane production. These results, however, 

vary significantly in the different regions, where the most affected states are Goiás, Paraná 

and Mato Grosso, jointly accounting for more than 55% of the total land-use change. The re-

sults highlight two important considerations: (a) the reduction in returns to land for grains is 

usually smaller in the NoDC scenario and (b) sugarcane is expected to benefit if simulated 

future yield patterns are observed. Both indicate a reduction of grain availability from Brazil 

with grain producing areas moving to sugarcane. A stronger impact is expected on the pro-

duction of second-crop maize, with farmers switching from double cropping to single-soybean 

production systems. 

Although the scenario analysis shows an interesting trend, it is important to highlight that such 

strong yield impacts on maize and soybeans are expected to trigger different dynamics that 

are not considered. For example, farmers are expected to adjust seeding period, use drought-

resistant varieties and irrigation, reducing the magnitude of the change. Moreover, interna-

tional prices also should react to such a significant change in Brazilian exports and thereby re-

adjust the profitability of the cropping alternatives, which in turn impacts farmers’ supply re-

sponses. 



Summary v 

 

That shows an important limitation of the PAM approach, which is the lack of an internal de-

mand function. The model is not designed to internally estimate the new market equilibrium, 

so changes, such as depicted in the scenario analysis, do not affect farm-gate prices and de-

mand. To overcome this problem, the PAM model should be integrated in the more developed 

market-equilibrium model, benefiting from the complex estimation of macro-economic dy-

namics (e.g., GLOBIOM) while improving the production cost estimation. Such integration 

should also improve the simulation of the land use by adding important agricultural sectors 

(e.g., forestry and livestock), which are important in Brazil. 

The PAM model has other limitations and areas for further development that should be care-

fully considered: (a) Due to the strong dependency on typical farm data, it is important to 

consider broadening the coverage of typical farms in the entire research region. (b) The tai-

lored construction of the cost function required an in-depth local knowledge of production 

systems that may not always be readily available. (c) The land allocation module requires fur-

ther development to account for more complex production systems. (d) The model does not 

consider conversion costs so it assumes any additional return to land in one alternative rela-

tive to another will induce land-use change. (e) It is necessary to further improve the biophys-

ical model or use a locally calibrated alternative. 

Further improving the biophysical model is particularly important due to the decisive role that 

yields play directly in the profitability estimation and, indirectly, as a proxy for the production 

cost extrapolation. The standard EPIC-IIASA model currently lacks the regional calibration for 

Brazilian cultivars, where soybeans, for example, are grown in a shorter cycle to allow the 

double cropping with maize. An ongoing cooperation with local research groups and produc-

tion system experts (e.g., agri benchmark partners) should allow improving the model by using 

field trials to better calibrate the crop growth parameters and finetune the farm operations’ 

schedule to represent the regional differences in the country. 

Conceptually, it also is important to highlight that the PAM model provides a profit-based 

farmers’ supply response analysis for a time horizon between 5 to 20 years. This feature is not 

given by methodological constraints but mainly by the conceptual difficulties in estimation 

significantly shorter or longer time horizons. On one hand, short-term price movements are 

not expected to motivate major changes in production systems (i.e., moving from grains to 

sugarcane) at regional level since farmers are aware that crop prices fluctuate and changing 

activities may require knowledge and investments. On the other hand, long-term simulation 

(more than 20 years) requires a technical adaption of the costing structure, which also should 

consider whether fundamental changes in the current production system are expected. The 

suitable time horizon for each analysis should be determined by regional characteristics of 

crops (perennial vs annual) and the ability to depict the expected changes in production sys-

tem with the typical farm data. 
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This dissertation contributes to the overall development of regional farmers’ supply response 

models for countries with limited data availability, showing that it is feasible to combine a 

biophysical model and farm-level economic data as the basis for the profitability estimation in 

a high spatial resolution. The ability to estimate individual cost components separately gives 

the model the required flexibility for the simulation of market- and policy-related questions, 

providing timely and accurate information for decision-makers. The bottom-up approach 

based on local expertise is an important strength of the PAM model, avoiding unrealistic par-

ametrization and ensuring that the majority of local features of production systems are in-

cluded in the estimation. Finally, considering the overall goal of using minimum data, the 

model accuracy indicates a strong potential of the model to answer research questions, with 

additional parametrization and integration expected to further improve its performance. 

Keywords: Brazil, Land-use change, Biophysical model, Production costs, Supply 

analysis, Soybeans, Maize, Sugarcane, Climate change, Profitability 
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Zusammenfassung 

Die Schätzung der Angebotsreaktionen von Landwirten auf veränderte Rahmenbedingungen 

ist wichtig, um Entscheidungsträger über die erwarteten Auswirkungen einer Maßnahme auf 

das Produktionsvolumen und die daraus resultierenden Landnutzungsänderungen zu infor-

mieren. Bestehende Modelle für landwirtschaftliche Angebotsreaktionen erfordern in der Re-

gel entweder größere Datenbanken für mikroregionale Analysen auf Betriebsebene oder wer-

den aufgrund fehlender Daten mit einer groben Auflösung (z. B. auf Länderebene) implemen-

tiert. Solche Ansätze eigenen sich für Regionen mit einer hohen Datenverfügbarkeit oder für 

Analysen auf globaler Ebene. Für die Analyse auf Mikroebene, in Ländern mit geringer Daten-

verfügbarkeit, bedarf es jedoch eines alternativen Ansatzes. Darüber hinaus ist es wichtig, die 

räumliche Komponente in die Analyse der regionalen Angebotsreaktion einzubeziehen, um 

nicht nur die Gesamtveränderung der Produktion sondern auch die anzunehmende räumliche 

Landnutzungsänderung quantifiziert zu können. 

Vor diesem Hintergrund soll in dieser Dissertation die Forschungsfrage beantwortet werden, 

ob die Kombination eines biophysikalischen Modells mit ökonomischen Daten auf einzelbe-

trieblicher Ebene dazu verwendet werden kann, um die Rentabilität einzelner Kulturen und 

entsprechender Anbausysteme auf Betriebsebene zu schätzen. Insbesondere sollen mit die-

sem Ansatz die Angebotsreaktionen von Landwirten in Ländern mit begrenzter Datenverfüg-

barkeit simuliert werden. Zur Beantwortung dieser Frage wird ein neuer Modellierungsansatz, 

das Profitability Assessment Model (PAM), entwickelt, getestet und validiert. Dieser neue 

Modellierungsansatz folgt dem Prinzip des Mindestdatensatzes und konzentriert sich darauf 

zeitnahe und quantitative Analysen mit zufriedenstellender Genauigkeit zu liefern, um eine 

gesonderte Informationsbasis für Entscheidungsträger zu schaffen. Dies ist ein wichtiges 

Merkmal, da das Gesamtziel des Konzepts darin besteht, die für das Modell erforderlichen 

Daten auf ein Minimum zu beschränken, sodass eine schnelle Umsetzung bei zufriedenstel-

lender Genauigkeit möglich ist. 

Das PAM ist ein räumlich explizites Modell, bei dem die Größe der Simulationseinheiten in 

einem Raster von 5 bis 30 arcmin (10x10 bis 50x50 km Fläche) variiert, in Anlehnung an das 

Global Biosphere Management Model (GLOBIOM). PAM schätzt die Rentabilität jeder Bewirt-

schaftungsalternative auf Ebene der Simulationseinheit und weist das Land so zu, dass die 

Grundrente der Landwirte maximiert wird. Das Modell besteht aus vier Hauptmodulen, die 

entwickelt wurden, um die verschiedenen Komponenten der Rentabilitätsschätzung zu be-

rücksichtigen: 

− Plant module: Unter Verwendung des EPIC-IIASA-Pflanzenwachstumsmodells (biophy-

sikalisch) schätzt dieses Modul die Ernteerträge und den Düngemitteleinsatz auf der 

Grundlage eines Standardproduktionssystems. Das Modul verwendet Wetter- und Bo-

dendaten, Betriebsabläufe und Wachstumsparameter der Pflanzen, um den tatsächli-

chen täglichen Biomassezuwachs zu schätzen. Dieser ist eine Funktion des potenziellen 

täglichen Zuwachses, welcher jedoch durch Stressfaktoren wie Nährstoff- und Wasser-

mangel usw. beeinträchtigt wird.  
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− Transport module: Die Transportkosten werden in erster Linie benötigt, um die Hof-

tor-Preise sowohl für die Inputs als auch für die Outputs zu simulieren. Das Tool schätzt 

endogen die Transportkosten zwischen den Simulationseinheiten und dem nächstge-

legenen Hafen. Es verwendet beobachtete Daten zur Schätzung der Frachtkosten pro 

km, welche mit der geschätzten Entfernung kombiniert werden. 

− Economic module: Dieses Modul ist die wichtigste Neuerung des PAM-Modells. Das 

Modul extrapoliert für jede Kultur die bekannten Produktionskostendaten der typi-

schen agri benchmark Betriebe auf alle Simulationseinheiten. Dabei werden individu-

elle Funktionen für jede Kostenkomponente verwendet. Schließlich kombiniert das 

Modul die Informationen aus den zuvor genannten Modulen, um die Grundrente jeder 

landwirtschaftlichen Alternative auf Ebene der Simulationseinheit zu berechnen. 

− Land allocation module: Dieses Modul maximiert die Grundrente für jede Simulations-

einheit und weist das Land der profitabelsten Anbaualternative zu. Einschränkungen, 

wie die aktuelle Landnutzung und der maximale Anteil der einzelnen Kulturen, werden 

ebenfalls berücksichtigt. Das Ergebnis stellt eine Landnutzungskarte dar. 

Das PAM-Modell wurde für den brasilianischen Agrarsektor entwickelt und kalibriert. Die Ver-

wendung von Brasilien als Fallstudie ist aufgrund der allgemeinen Bedeutung des Landes für 

die weltweite Produktion von Agrarrohstoffen sowie der Umweltauswirkungen von Landnut-

zungsänderungen interessant. Aufgrund der überdurchschnittlichen Rolle des Landes als Ex-

porteur ist davon auszugehen, dass sich Veränderungen der Weltmarktpreise und mögliche 

Handelsabkommen direkt auf die brasilianische Landwirtschaft auswirken und zu Landnut-

zungsänderungen führen können. Neben der empirischen Relevanz Brasiliens hilft die Verfüg-

barkeit von Daten bei der Entwicklung der Extrapolationsverfahren und der Modellvalidie-

rung. Außerdem sind die vorherrschenden Anbausysteme relativ einfach strukturiert, was die 

Entwicklung und Implementierung des Modells erleichtert. 

Für diese Fallstudie werden vier Produktionssysteme im PAM-Modell dargestellt: (a) Zweikul-

turanbausystem von Sojabohnen und Mais, (b) Sojabohnen mit einer Zwischenfrucht, (c) Zu-

ckerrohranbau in Monokultur und (d) Rindfleischproduktion. Während die Rentabilität der 

Ackerkulturen endogen geschätzt wird, wird Rindfleisch als Ausstiegsmöglichkeit betrachtet, 

die auf der Grundlage exogener Informationen über die Grundrente modelliert wird. Der An-

bau von Sojabohnen, Mais und Zuckerrohr macht 84 % der gesamten Anbaufläche in Brasilien 

aus, somit stellt die aktuelle Version des PAM-Modells die wichtigsten Anbaualternativen für 

die Landwirte in Brasilien dar, jedoch nicht alle. 

Ein wichtiger methodischer Beitrag der Dissertation ist die Entwicklung von Verfahren für die 

Extrapolation einzelner Produktionskostenkomponenten der bekannten Daten von typischen 

Betrieben auf alle Regionen eines Landes. Diese Verfahren beruhen auf lokalem Fachwissen 

sowie vorhandenen Informationen über Ertragsniveaus, vorherrschende Produktionssysteme 

und landwirtschaftliche Bedingungen. Jede Kostenkomponente wird einzeln analysiert und 

wird – auf Grundlage theoretischer Erörterungen – spezifischen Kostenfunktionen zugeord-

net, je nachdem wie das erwartete Verhalten jeder Kostenposition ist – z. B. eine lineare 
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Beziehung zu den Erträgen oder ein Fixwert pro ha. Dies dürfte die Genauigkeit des Modells 

bei der Schätzung der Produktionskosten (und letztlich der Rentabilität) verbessern und 

gleichzeitig eine Anpassung des Modells zur Simulation von veränderten Rahmenbedingungen 

ermöglichen, die sich nur auf ausgewählte Kostenpositionen auswirken können (z. B. ein er-

heblicher Anstieg der Kraftstoffpreise). 

Darüber hinaus verbessert das PAM-Modell die bestehenden Modelle durch die Berücksichti-

gung spezifischer Kostenpositionen, wie z. B. den Transport des Zuckerrohrs vom landwirt-

schaftlichen Betrieb zur Mühle, welcher aufgrund der Verderblichkeit des Erntegutes erfor-

derlich ist. Neben dem bedeutenden Einfluss der Transportkosten auf die Gesamtrentabilität 

der Zuckerrohrproduktion ermöglicht die endogene Simulation dieses Kostenfaktors dem Mo-

dell auch, in Abhängigkeit der regionalen Verfügbarkeit von Mühlen, eine räumliche Differen-

zierung zwischen einzelnen Regionen herzustellen. Es ist zu erwarten, dass dies, je nach Zeit-

horizont der Analyse, eine wichtige Rolle für die Angebotsreaktionen von Landwirten spielen 

wird, da eine mangelhafte Mühleninfrastruktur die Kosten für den Transport kurzfristig (z. B. 

in weniger als 5 Jahren) erheblich erhöht. Mittelfristig (5 bis 15 Jahre) jedoch, können neuen 

Mühlen gebaut werden und damit die Wettbewerbsfähigkeit von Zuckerrohr auf dem Betrieb 

erheblich verbessern. 

Ein wesentliches Hindernis für die regionale Rentabilitätsanalyse ist der Mangel an Informati-

onen über die Preise der landwirtschaftlichen Inputs und Outputs. Diese Problematik wird 

durch einen alternativen Ansatz des PAM-Modelles umgegangen, indem es die Preise endo-

gen über das Transportmodul schätzt. Die Berücksichtigung der unterschiedlichen Transport-

kosten für einzelne Kulturen und die Schätzung der Entfernungen auf Grundlage tatsächlich 

existierender Straßen ermöglichen dem Modell eine unkomplizierte Umrechnung von Refe-

renzpreisen in Hoftor-Preise. Für Brasilien ist der Referenzpreis der nächstgelegene Hafen, da 

ein großer Teil der Produktion exportiert wird, während der Großteil der Betriebsmittel wie 

z. B. Düngemittel importiert werden. Für andere Länder kann der Referenzpreis angepasst 

werden (d. h. Inlandsmarkt), wobei der Ansatz zur Berechnung des Hoftor-Preises gleichbleibt. 

Die Möglichkeit, die Transportkosten endogen zu simulieren, ist eine nützliche Funktion für 

die Simulation von Szenarien, die auf Preisshocks basieren. 

Neben der Entwicklung des Modellierungsansatzes liegt der Schwerpunkt dieser Dissertation 

auf der quantitativen Modellvalidierung, welche ein wichtiges Element für die Ermittlung der 

Stärken und Limitationen des Konzepts bildet. Die prognostizierten Erträge werden anhand 

regionaler Statistiken validiert und die Produktionskostenschätzungen mit den beiden verfüg-

baren Datensätzen verglichen, wobei eine angemessene Anzahl primärer, typischer landwirt-

schaftlicher Datensätze verwendet wird. Darüber hinaus werden die resultierenden Landnut-

zungskarten anhand von zwei vereinfachten Referenzkarten validiert und bewertet. 

Im Business-as-usual-Szenario schätzt das PAM-Modell den nationalen gewichteten Durch-

schnitt der Grundrenten auf 248 USD/ha für das Zweikultursystem (Soja und Mais) und 

188 USD/ha für Zuckerrohr. Dieses Verhältnis weicht jedoch in den Bundesstaaten Sao Paulo 

und Minas Gerais ab, da Zuckerrohr hier im Durchschnitt eine höhere Grundrente aufweist als 

der Zweikulturanbau. Ein Benchmarking der PAM-Produktionskostenschätzungen mit 
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beobachteten lokalen Daten zeigt eine zufriedenstellende Modellgenauigkeit mit einem rela-

tiven mittleren absoluten Fehler (𝑟MAE) von weniger als 14 %. Der geringste Fehler, bei der 

Schätzung der Produktionskosten, wurde bei Zuckerrohr (𝑟MAE von 8,7 %) und der höchste 

bei Mais in der zweiten Kultur (𝑟MAE von 14 %) festgestellt. Räumlich gesehen hat das Modell 

eine bessere Leistung in der zentral-westlichen Region für Getreide und in der zentral-südli-

chen Region für Zuckerrohr. Dieser Umstand ist wahrscheinlich darauf zurückzuführen, dass 

die Modellparametrisierung auf die Haupterzeugungsregionen ausgerichtet ist und es in be-

stimmten Regionen keine typischen Betriebe gibt. 

Umgekehrt ist die Ertragsschätzung mit dem biophysikalischen Modell aufgrund der unter-

schiedlichen Fehlermuster bei den verschiedenen Kulturen in Brasilien eine Herausforderung. 

Im Vergleich zu offiziellen Statistiken überschätzt das EPIC-IIASA-Modell in der Standardkalib-

rierung die Sojabohnenerträge (𝑟MAE von 52 %), während es die Zuckerrohrerträge unter-

schätzt (𝑟MAE von 24 %). Da dieses Fehlermuster die relative Rentabilität zwischen den An-

baualternativen künstlich verändert, werden die Ernteerträge für diese Fallstudie anhand ver-

fügbarer regionaler Statistiken angepasst. Diese Vorgehensweise ermöglicht die Entwicklung 

und Prüfung der übrigen Module des PAM-Modellierungsansatzes. 

Die Validierung der Business-as-usual-Landnutzungskarte zeigt, dass das PAM-Modell in der 

Lage ist, die aktuelle Landnutzung in Brasilien zufriedenstellend zu reproduzieren. Die visuel-

len und quantitativen Validierungsergebnisse zeigen eine starke Korrelation zwischen den ver-

fügbaren Landnutzungskarten, wobei PAM für 86 % der gesamten Ackerfläche die tatsächlich 

zu beobachtenden Kulturen korrekt zuweist. In wichtigen Agrarstaaten wie Mato Grosso be-

trägt die Übereinstimmung zwischen den PAM-Ergebnissen und den beobachteten Daten so-

gar 95 %. Dieses interessante Ergebnis zeigt, wie wichtig eine sorgfältige Kalibrierung des Mo-

dells mit lokalem Fachwissen ist. Weiterhin verdeutlichts es, dass die verhältnismäßig einfa-

chen Fruchtfolgen der spezialisierten brasilianischen Betriebe die Komplexität der Schätzung 

der Landnutzungsstrategien verringert und sich damit die Genauigkeit des Modells erhöht. 

Um die Fähigkeit des PAM-Modells zur Vorhersage von Landnutzungs- und Ertragsänderungen 

aufgrund veränderter Rahmenbedingungen zu testen, wird eine Szenarioanalyse durchge-

führt: Was passiert, wenn sich die Erträge der wichtigsten Nutzpflanzen infolge des Klimawan-

dels deutlich verändern? Zu den Folgen des Klimawandels in Brasilien gibt es umfangreiche 

Literatur, wobei die erwarteten zukünftigen Ertragsentwicklungen regional und kulturspezi-

fisch stark variieren. Um die Auswirkungen der Reaktion von Landwirten auf Ertragsänderun-

gen infolge des Klimawandels zu simulieren, wurden zwei Anpassungsszenarien entwickelt: 

− Kein Zweikulturanbau in der tropischen Region (NoDC): Aufgrund der zu erwartenden 

Ertragseinbußen bei kurzzyklischen Sojabohnen, die in Zweikulturanbausystemen ein-

gesetzt werden, gehen die Landwirte in den tropischen Regionen beim Sojabohnenan-

bau zu einem einfachen Anbausystem über. 

− Zweikulturanbau mit Ertragsverlust (DCYp): Die Landwirte produzieren weiterhin in 

den derzeitigen Zweikulturanbausystemen, nehmen aber einen Ertragsverlust bei So-

jabohnen und Mais in Kauf. 
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Aufgrund des starken Rückgangs der Erträge aus dem Getreideanbau (bei Mais und Sojaboh-

nen) in der tropischen Region – d. h. durchschnittlich 26 % in NoDC und 39 % in DCYp – wird 

simuliert, dass mehr als 24 % der derzeitigen Anbaufläche von Getreide- auf den Zuckerrohr-

anbau umgestellt wird. Diese Ergebnisse variieren jedoch erheblich in den verschiedenen Re-

gionen, wobei die am stärksten betroffenen Staaten Goiás, Paraná und Mato Grosso sind. Zu-

sammen entfallen auf diese Staaten mehr als 55 % der gesamten Landnutzungsänderung. Die 

Ergebnisse zeigen zwei wichtige Aspekte auf: (a) Die Abnahme der Erträge aus Getreidean-

bauflächen ist im NoDC-Szenario in der Regel geringer und (b) Zuckerrohr dürfte vom Klima-

wandel profitieren, falls die simulierten Ertragseffekten eingehalten werden. Beide Szenarien 

deuten auf eine verminderte Verfügbarkeit von Getreide aus Brasilien hin, wobei die Getrei-

deanbaugebiete auf Zuckerrohrproduktion umstellen werden. Eine stärkere Auswirkung wird 

für die Produktion von Mais als Zweitfrucht erwartet, da Landwirte von Zweikulturanbausys-

temen auf den einfachen Anbau von Sojabohnen umstellen werden. 

Obwohl die Szenarioanalyse einen interessanten Trend zeigt ist es wichtig zu betonen, dass 

solch starke Auswirkungen auf die Erträge von Mais und Sojabohnen weiterführende Dynami-

ken auslösen dürften, die nicht berücksichtigt wurden. So ist beispielsweise zu erwarten, dass 

die Landwirte die Aussaatzeit anpassen, dürreresistente Sorten verwenden und Bewässerung 

einsetzen, wodurch das Ausmaß der Veränderung verringert würde. Darüber hinaus dürften 

auch die internationalen Preise auf eine solch signifikante Veränderung der brasilianischen 

Exporte reagieren und wiederum die Rentabilität der Anbaualternativen beeinflussen, was 

eine Anpassung des Angebots durch die Landwirte nach sich zöge. 

Das Fehlen einer internen Nachfragefunktion ist eine wichtige Einschränkung des PAM-Ansat-

zes. Das Modell ist nicht darauf ausgelegt, ein neues Marktgleichgewicht intern zu schätzen, 

sodass sich Änderungen, wie sie in der Szenarioanalyse dargestellt werden, nicht auf die Hof-

tor-Preise und die Nachfrage auswirken. Um dieses Problem zu überwinden, sollte das PAM-

Modell in das höher entwickelte Marktgleichgewichtsmodell integriert werden. So könnte es 

von der komplexen Schätzung der makroökonomischen Dynamik (z. B. GLOBIOM) profitieren 

sowie gleichzeitig die Schätzung der Produktionskosten verbessern. Eine solche Integration 

würde auch die Simulation der Landnutzung verbessern, da diese weitere für Brasilien bedeu-

tende landwirtschaftliche Sektoren (z. B. Forstwirtschaft und Viehzucht) einbezöge. 

Das PAM-Modell hat weitere Einschränkungen und Bereiche die weiterer Entwicklung bedür-

fen und sorgfältig geprüft werden sollten: (a) Aufgrund der starken Abhängigkeit von den Da-

ten typischer Betriebe ist es wichtig, eine Ausweitung der Abdeckung durch typische Betriebe 

in der gesamten Forschungsregion in Betracht zu ziehen. (b) Die angepasste Aufstellung der 

Kostenfunktion erfordert tiefere Kenntnisse über die lokalen Produktionssysteme, welche 

nicht immer ohne weiteres verfügbar sind. (c) Das Modul für die Landzuteilung muss weiter-

entwickelt werden, um komplexere Produktionssysteme einbeziehen zu können. (d) Das Mo-

dell berücksichtigt keine Anpassungskosten, sodass jeder Zuwachs der Grundrente in einer 

Alternative zu Landnutzungsänderung führt. (e) Es ist notwendig das biophysikalische Modell 

zu verbessern oder regional kalibrierte Alternativen zu verwenden. 
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Die weitere Verbesserung des biophysikalischen Modells ist besonders wichtig, da die Erträge 

eine entscheidende Rolle bei der Rentabilitätsschätzung und stellvertretend in der Extrapola-

tion der Produktionskosten spielen. Dem Standardmodell EPIC-IIASA fehlt derzeit die regio-

nale Kalibrierung für brasilianische Kulturpflanzen beispielsweise Sojabohnen, welche in ei-

nem kürzeren Zyklus angebaut werden, um den Anbau von Mais als Zweitkultur zu ermögli-

chen. Eine kontinuierliche Zusammenarbeit mit lokalen Forschungsgruppen und Experten für 

Produktionssysteme (z. B. agri benchmark Partner) sollte es ermöglichen das Modell durch 

Feldversuche zu verbessern. Die Parameter für das Pflanzenwachstum könnten so besser ka-

libriert und saisonale Abläufe der landwirtschaftlichen Betriebe möglichst genau abgebildet 

werden, sodass sich regionale Unterschiede innerhalb des Landes besser wiedergeben lassen. 

Aus konzeptioneller Sicht ist es auch wichtig hervorzuheben, dass das PAM-Modell eine ge-

winnorientierte Analyse der Angebotsreaktion von Landwirten für einen Zeithorizont zwi-

schen 5 und 20 Jahren liefert. Dies ist nicht auf die methodische Notwendigkeit zurückzufüh-

ren, sondern vor allem auf konzeptionelle Schwierigkeiten bei der Schätzung deutlich kürzerer 

oder längerer Zeithorizonte. Es ist nicht zu erwarten, dass kurzfristige Preisschwankungen zu 

größeren Änderungen der Produktionssysteme (z. B. Umstellung von Getreide auf Zuckerrohr) 

auf regionaler Ebene führen. Den Landwirten ist generell bewusst, dass die Preise für Kultur-

pflanzen schwanken und eine Änderung der Aktivitäten weiterführendes Wissen und Investi-

tionen erfordern kann. Eine langfristige Simulation (mehr als 20 Jahre) hingegen erfordert eine 

technische Anpassung der Kostenstruktur, bei der auch berücksichtigt werden sollte, ob 

grundlegende Änderungen im derzeitigen Produktionssystem zu erwarten sind. Der geeignete 

Zeithorizont für jede Analyse sollte durch die regionalen Merkmale der Kulturen (mehrjährig 

vs. einjährig) und die Möglichkeit bestimmt werden, die erwarteten Veränderungen im Pro-

duktionssystem mit den typischen Betriebsdaten abzubilden. 

Diese Dissertation leistet einen Beitrag zur allgemeinen Entwicklung regionaler Modelle für 

die Simulierung von Angebotsreaktion durch Landwirte in Ländern mit begrenzter Datenver-

fügbarkeit, indem sie veranschaulicht, dass es möglich ist ein biophysikalisches Modell und 

ökonomische Daten auf Betriebsebene zu kombinieren und als Grundlage für eine Rentabili-

tätsschätzung mit hoher räumlicher Auflösung zu verwenden. Die Möglichkeit einzelne Kos-

tenkomponenten separat zu schätzen, verleiht dem Modell die erforderliche Flexibilität für 

die Simulation markt- und politikbezogener Fragestellungen und liefert den Entscheidungsträ-

gern rechtzeitig genaue Informationen. Der Bottom-up-Ansatz, der sich auf lokales Fachwis-

sen stützt, ist eine wichtige Stärke des PAM-Modells, da er eine unrealistische Parametrisie-

rung vermeidet und sicherstellt, dass die meisten lokalen Merkmale der Produktionssysteme 

in die Schätzung einbezogen werden. In Anbetracht des übergeordneten Ziels möglichst we-

nige Daten zu verwenden deutet die Modellgenauigkeit auf ein großes Potenzial zur Beant-

wortung von Forschungsfragen hin, wobei zusätzliche Parametrisierung und Integration die 

Leistungsfähigkeit weiter verbessern dürften. 

Schlüsselwörter: Brasilien, Landnutzungsänderung, Biophysikalisches Modell, Produkti-

onskosten, Angebotsanalyse, Sojabohnen, Mais, Zuckerrohr, Klimawan-

del, Wirtschaftlichkeit
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1. Introduction 

1.1. Background 

Understanding farmers’ responses toward changes in framework conditions related to mar-

kets as well as production factors is of key importance for decision-makers. Market changes 

such as trade liberalization – e.g., European Union (EU) and Mercosur agreement, movements 

in crude oil prices, as well as production system changes (e.g., long-term reduction in yields), 

may shift prices and costs ratios between crop alternatives motivating farmers to respond by 

changing their land allocation to a different cropping alternative. These supply responses 

when aggregated may also induce more fundamental land-use changes, in the sense of con-

verting idle or grassland into production, for example. 

Commonly, supply response models can be classified into two main types: mathematical pro-

gramming models (process-based) and econometric approaches, with the latter usually sub-

divided into several classes depending on their estimation strategies (Colman, 1986). The for-

mer is usually based on optimization functions depicting resource allocation within the farm 

and use of aggregation techniques to upscale results to represent sectors. The latter is mainly 

based on empirical macro-level data measuring the responsiveness of sectors or producers to 

price changes on acreage (Rao, 1989). 

Although macro-level supply analyses with aggregated data are sufficient for several political 

purposes, for example analyzing total output and food available, farm-level analyses are of 

importance due to their ability to disaggregate results to regional and enterprise levels allow-

ing a better targeting at specific regions or supply chains. Additionally, micro-level analyses 

increase the understanding of farmers' behavior and motivation while allocating their re-

sources to produce a specific crop (Rao, 1989). 

Process-based supply models for micro-level analysis are usually desirable for modeling re-

gional farmers’ behavior but due to the lack of regional statistics, this approach is usually not 

feasible for countries with weak statistics infrastructure – i.e., most developing and emerging 

economies. Basic information on production costs, acreage, and output is not always available 

at regional levels (Chen & Önal, 2012). An alternative for these countries is usually a case study 

approach in which typical farms are considered to represent the main production system and 

therefore representing the largest share of the output (Nehring, 2011; Osaki & Batalha, 2014). 

Although this approach is useful to understand production systems and provide detailed in-

formation on production costs, it lacks the regional representativeness that is required to es-

timate regional supply and land-use changes. 

Against this background, there seems to be a need for a concept that allows farm-level supply 

estimation without requiring detailed farm-level datasets like Farm Accountancy Network 

(FADN) in Europe but still yields results within an acceptable error margin to inform decision-

makers (Antle & Valdivia, 2006). 
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1.2. Research scope 

This dissertation aims to develop a Minimum Data (MD)1 modeling approach that estimates 

the profitability of different crops and land use options at the farm level and mimic farmers' 

land allocation decisions. Modeling these decisions spatially explicitly allows us to understand 

land-use changes at regional levels in countries with low data availability. Thereby the follow-

ing research question will be answered: 

Can a combined biophysical and farm-level data model estimate the profitability and land al-

location strategies of farmers in countries with low data availability? 

I propose a bottom-up modeling approach that integrates crop management and costs data 

and a calibrated biophysical crop growth model. The basic idea is to use the calibrated bio-

physical model to generate yields and input use (based on crop management information) 

estimates, which are then attached to an economic module to estimate the farm-level profit-

ability of each cropping system. 

Due to limited time and financial resources, the proposed approach is developed and tested 

as a case study for Brazil, where data availability is moderate, allowing the validation of the 

model. Moreover, the Brazilian agriculture sector is of major importance worldwide, being 

among the major players in soybean and sugar production. In addition, its farmers are con-

sistently faced with the choice between soybeans/maize and sugarcane production and, as 

given the importance of exports, Brazilian farmers are expected to react quickly to signals from 

the world market. Finally, land-use changes are of key importance for decision-makers due to 

the possibility of converting natural vegetation into arable land and so affecting important 

ecosystems. 

To understand the model behavior in predicting supply responses due to changes in frame-

work conditions, I carry out a scenario analysis on the land-use changes caused by the ex-

pected impact of climate change on crop yields. This empirical analysis should help the under-

standing of how climate change may affect the relative profitability of crops and lead to real-

location of agricultural land. The long-term impact of climate change in Brazilian agriculture is 

a relevant topic due to its importance in supplying world markets with commodities. Addition-

ally, the scenario analysis should improve the understanding of the model’s capabilities and 

limitations regarding expected land-use change caused by changes in framework conditions. 

The underlying assumption for the approach is that farmers’ cropping decisions are based 

mainly on the economic returns of each alternative. However, other important factors are 

expected to affect farmers’ decision behavior that may not be fully represented by the 

                                                      
1  Minimum data approach as discussed by Antle and Valdivia (2006); aiming at timely and quantitative analysis that 

can provide sufficiently accurate analysis to inform policy decision making. 
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profitability analysis. For instance, the risk associated with each crop alternative (Liang, Miller, 

Harri, & Coble, 2011), technical recommendations regarding crop rotations (Arnberg & Han-

sen, 2012) and the role of perishability/storage of crops (Wright, 2011) are a few examples of 

additional factors that are expected to influence farmers’ cropping decisions. These factors 

are not directly simulated in the model but are part of the overall discussion on farmers’ be-

havior toward changes in the framework conditions. 

1.3. Dissertation structure 

To better understand the different approaches available to estimate farmers’ supply re-

sponses, the next chapter reviews the current literature on the most common methods used 

for such estimations. Thereafter, the framework conditions for the Brazil agricultural sector 

are described, focusing on the most important crops, such as soybeans, maize and sugarcane, 

as well as the crop rotations frequently employed by farmers. 

Keeping the focus on the development of this modeling approach, the methodology chapter 

describes in detail setting up the different building blocks of the models as well as the proce-

dure to calibrate the model for the case study in Brazil. To make sure the proposed model 

provides useful and robust results on farming economics and land allocation, the results from 

the calibration scenario (i.e., Business-as-Usual) is validated against observed data in a struc-

tured manner to highlight possible skewness of the model and how its different building blocks 

– e.g., transportation module or plant module – behave calibrated with information from re-

cent years. 

The validation chapter also lays out an interesting procedure to evaluate such models when it 

comes to assessing the ability of the approach to correctly allocate the available land to certain 

crops. To achieve a robust validation, I combine qualitative and quantitative methods to avoid, 

as much as possible, visual bias. 

Thereafter, scenarios are proposed based on reviewing the most current literature available 

regarding the expected effects of climate changes on crop yields in the different climate zones 

in Brazil. The focus of this chapter is not only empirically understanding the expected impact 

on farming profitability and land-use changes in Brazil but also highlighting the applicability of 

the proposed model in answering such key research questions in countries with relatively low 

data availability. 

Finally, the results from the different scenarios as well as the outcomes from the validation 

process are discussed and compared with the literature, focusing on possible areas for further 

development of the modeling approach, areas where the model can be useful, and its limita-

tions.
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2. Farmers’ supply responses and land use change 

This chapter reviews the literature around the idea that farmers’ supply responses lead to the 

reallocation of resources that may cause land-use change (LUC)2. Beginning with the estima-

tion of farmers’ supply responses, it focuses on the importance of such analysis, existing meth-

ods, and the level of analysis – e.g., nationwide vs regional, single vs multi-crop. In addition to 

the technical review, the following sections aim to understand existing models and how they 

are currently used. 

Furthermore, I look at the modeling of land-use changes with a strong focus on economic-

based approaches. A key aspect of this review is the specific estimation of production costs 

since they are a main driver of farming profitability. Production cost estimating is carried out 

differently in the models depending on the level of aggregation and techniques used to over-

come problems with data availability. 

Finally, I review the concept of minimum data and how framework conditions such as data 

availability, timeliness, and budget affect the complexity of methods when providing scientific 

information for decision-makers. 

An important share of the supporting literature for the development of the proposed model-

ing approach is presented directly in the technical sections of this dissertation (see chapter 4), 

with relevant literature also presented in the model validation and scenario analysis chapters 

(6 and 7 respectively). 

2.1. Importance of farmer’s supply responses 

Understanding farmers’ supply responses to changes in framework conditions such as prices, 

yields, and inputs should be a key concern of policy-makers. The aggregation of these effects 

impacts the overall economy, food prices, and availability, as well as the livelihood of those 

working in the agricultural sector (Rao, 1989). In addition to the overall economic impact (i.e., 

prices and quantities), a strong focus of the literature is to understand how different drivers 

such as trade liberalization (McKay, Morrissey, & Vaillant, 1999), governmental programs 

(Chen & Önal, 2012), and overall investments (e.g., roads and irrigation) affect agricultural 

supply responses and the stakeholders involved in the sector (Binswanger, 1989). That illus-

trates how comprehensive and important understanding farmers’ reactions to framework 

conditions is and that policy instruments may impact the underlying conditions, shifting the 

agricultural supply in various directions. Understanding the magnitude and causes driving such 

land-use change is key to help decisions-makers make more rational decisions (Noszczyk, 

                                                      
2  The term land-use change in this work refers to a broader phenomenon including land-cover change – e.g., from 

grassland to arable land, as well as changes in agricultural practices (i.e., crops grown) within the arable land. The 
latter is also considered land-use change and, according to Foley et al. (2005), has important implications for the 
environment and the global food supply. 
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2019), especially in regions with important natural resources such as tropical forests and a 

competitive agricultural sector – e.g., Brazil, Indonesia, etc. (Richards, Myers, Swinton, & 

Walker, 2012). 

In summary, estimating farmer’s supply responses is key to improve the overall understanding 

of the linkage between policy and market-driven changes affecting key economic issues such 

as food availability and agricultural income, as well as broadening the knowledge regarding 

possible changes in land use and its effect on biodiversity. Due to its key role in economics, 

several methods are commonly used to estimate agricultural supply responses. 

2.2. Agricultural supply estimation methods 

In the following subsection, I review the main characteristics of the several efforts made by 

researchers to estimate farmers’ supply responses according to their parametrization (under-

lying functions), scope (single vs multiple crops), and spatial coverage (e.g., country, regions, 

farm). It is important to note that there are innumerable ways of classifying models and tech-

niques and the basic classification and terminology used here comes from the work of Colman 

(1986) and Rao (1989). 

Econometric vs mathematical programming approach 

According to Colman (1986), most of the methods used for estimating agricultural output sup-

ply can be classified into two categories (a) econometric3 and (b) mathematical programming. 

The former includes most of the estimation work, using several functions and parametrization 

to econometrically estimate output supply response. The resulting elasticities represent the 

output change caused by movements in output price, for example. This category can be sub-

divided according to the estimation techniques – see Colman (1986) for a detailed discussion. 

The mathematical programming or process-based approach is widely used in different simu-

lation of supply response problems at sector, regional, and farm levels. This is mainly due to 

its computational efficiency and the bottom-up type of analysis (Chen & Önal, 2012). A strong 

feature of this approach is the idea of using a representative farm aggregation model (RFA), 

wherein representative farm characteristics are used to estimate the resource allocation at 

the farm level, which is later upscaled to a regional or sector level following different strategies 

(Sharples, 1969). Colman (1986) argues the main attractiveness of this approach comes from 

the ability to represent complex multi-product relationships as observed in real world farms 

by starting with a known technology at the farm level and upscaling to represent a sector. The 

latter is also a major problem with this method since the aggregation is likely to generate 

biases. There are a diversity of innovative approaches to overcome or minimize the aggrega-

tion bias, which can be found in the work of Chen and Önal (2012). 

                                                      
3  Or “dual systems of supply and input demand equations” according to Heckelei and Wolff (2003). 
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An interesting enhancement to the mathematical programming models to estimate agricul-

tural supply is the implementation of Positive Mathematical Programming (PMP) promoted 

by Howitt (1995). It allows the perfect calibration of models at the baseline year based on 

observed information by adding non-linear terms in the objective function (Heckelei & Britz, 

2005). This development has increased the applicability of agricultural supply programming 

models when tackling complex regional sectors for the purpose of policy analysis. According 

to Heckelei, Britz, and Zhang (2012), all models using PMP are either developed in Europe or 

North America, relying strongly on the detailed farm-level information observed in these re-

gions. 

Lately, a growing body of literature has focused on combining the econometric and mathe-

matical programming approaches (more specifically PMP) to create Econometric Mathemati-

cal Programming (EMP). According to Heckelei and Wolff (2003), this alternative approach 

estimates simultaneously all the parameters in the model, improving significantly upon the 

standard PMP. An empirical application of the combined EMP model can be found in the work 

from Britz and Arata (2019). 

Finally, it is important to highlight that the selection of the estimation technique depends 

strongly on the questions to be answered as well as the availability of information (Colman, 

1986). The ability to introduce constraints or shocks, such as new policy or technology, that 

allow economists to project structural changes makes mathematical programming an inter-

esting tool for policy decision support systems. The introduction of PMP has improved this 

feature even further, motivating the development of models using PMP (Heckelei & Britz, 

2005). This development matches a recent goal of multidisciplinary research connecting, for 

example, environmental questions with economic supply responses, such as the impact of 

economic changes on public goods (Heckelei et al., 2012). 

Aggregated vs single crop analyses 

Another important characteristic of farmers’ supply response estimation is the differentiation 

between single and aggregated crop analyses. Binswanger (1989) argues it is crucial to look at 

the aggregated crop level because the most important farming inputs (e.g., land, labor and 

capital) are fixed in the short term. He adds that any growth in a single crop takes up resources 

from other crops, leading to a much lower supply response at the aggregated level if compared 

with single crop estimation. Any significant output increase comes only by adding more re-

sources or changes in technology (Binswanger, 1989). 

Supporting the idea of including multi-crop analysis is the idea that farmers consider resource 

allocation based on a rotation instead of single crops, due to technical considerations such as 

pest and disease pressure as well as to reduce their risk (diversification). Furthermore, con-

sidering a mixed-crop alternative minimizes the overspecialization problem commonly found 

in mathematical programming (Chen & Önal, 2012). Finally, McCarl (1982) argues that if the 

crop mix approach is employed at the farm-level decision process, upscaling to a sector level 

should be less problematic. 
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Estimation level: country, region, and farm 

One major feature of agricultural supply response analyses is the scale of the estimation. Tech-

nically, both types of supply estimation methods can be used at all levels but, due to the lack 

of available data at regional and often at sector levels, the mathematical programming model 

is commonly preferred at the micro-level. The reason is the possibility of using a set of repre-

sentative farms to calibrate the model and, if enough information is known about the overall 

population of farms, scale up the results to sector levels (Colman, 1986). 

Such a bottom-up type of model (i.e., from farm to sector) is widely used in Europe due to the 

availability of single farm records from the FADN, the main source for most of the PMP models. 

It is important to note that in addition to the availability of data, the increased use of PMP 

models in Europe also is related to the shift in agricultural policy from price support to ad-

vanced instruments linked to environmental goods, for example, which are easier to model 

using mathematical programming approaches (Heckelei et al., 2012; Heckelei & Britz, 2005). 

In most policy support systems, it is key to be able to disaggregate the national or macro-level 

supply response analyses to regional and even micro-regional levels. According to Rao (1989) 

regional studies allow researchers to (a) break down the overall policy impact to specific re-

gions as well as farm types (e.g., size, income) to better understand possible policy mis-

matches and allow better fine-tuning, and (b) to identify whether the policy target group is 

motivated to react based on the selected instrument (e.g., subsidy, payments). 

Summary of agri supply estimation methods 

Farmers’ supply responses models are generally classified into two categories: (a) economet-

ric and (b) mathematical programming based on their estimation techniques. The selection of 

the estimation method depends primarily on the research questions and the availability of 

data. PMP models are interesting for complex and multidisciplinary analyses and have been 

widely used in the European context, in part due to the availability of single-farm records. 

Supply response analyses should aim at modeling the actual cropping alternatives available to 

farmers in terms of crop rotations or mix instead of single crop analyses. Finally, it is important 

to consider the level at which the analysis is carried out. For policy support, it is preferable to 

disaggregate the result to regions or farm-level to increase the understanding of the impact 

of the policy instrument on different farm types. That is even more important if the analysis 

involved the impact on environmental resources, in which the spatial allocation of agricultural 

production may play a stronger role. 

2.3. Modeling land use 

Building on the idea that local decisions affect the allocation of resources, it is interesting to 

expand the discussion to consider that farmers’ supply responses may affect land use. Land-

use change (LUC) research is an extremely broad and interdisciplinary field. Noszczyk (2019) 
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reviews the main methods used to study land-use change, with detailed classification and 

evaluation of the most common approaches. 

Focusing on the economic-based LUC models, the main idea is that local agents (i.e., farmers) 

aim to allocate their resources (land) to maximize profits (Dang & Kawasaki, 2016). Thereby, 

market and policy changes affecting farmers’ returns may lead to the reallocation of land and, 

in turn, land-use change. It is important to note that the term “land-use change” is used pri-

marily to indicate a modification in the land cover, such as forest to arable land. However, a 

broader meaning also should include moving from one cropping system to another (Veldkamp 

& Lambin, 2001). According to Dang and Kawasaki (2016), most economic-based models lack 

spatial attributes, focusing mainly on the overall impact and change rate. That represents an 

important drawback that, however, can be partially compensated for by integrating different 

models. 

Land-use change models commonly address two distinct questions: (a) spatial change or (b) 

quantity of change. The former is much easier to assess as it is based mainly on linking land-

scape attributes that may cause land use, such as roads. The latter involves understanding the 

underlying drivers, which usually are complex systems of macro-economic and policy changes 

(Veldkamp & Lambin, 2001). 

Agro-economic land-use models 

Following the recent focus on understanding the drivers and effects of land-use change, new 

spatially explicit agro-economic models have been developed to consider the economic be-

havior while understanding the spatial element of land-use changes. Schmitz et al. (2014) re-

view the 10 models within the Agricultural Model Inter-comparison Project (AgMIP), which 

are commonly partial (PEM) or general equilibrium models (GEM). The authors argue that the 

spatial dimension is key for modeling economic behavior in land-use change and that lately, 

more global databases are available to fulfill the data requirements for such a model. 

According to Schmitz et al. (2014), the Global Biosphere Management Model (GLOBIOM) and 

the Model of Agricultural Production and its Impact on the Environment (MAgPIE) are the only 

agro-economic land-use models constructed with grid-specific optimizations. That allows 

these models to make use of disaggregated global data. GLOBIOM has a high-resolution re-

sulting in ca. 200,000 simulation units (SimUs) compared with ca. 60,000 from MAgPIE, and 

only 114 from most of the computable general equilibrium (CGE) models. Schmitz et al. (2014) 

conclude that the spatial PEM models (i.e., GLOBIOM and MAgPIE) have the strength of fine 

resolution, accounting for the spatial heterogeneity that is crucial to model land-use changes. 

However, further research is necessary to better understand important dynamics in supply 

responses as well as the conversion costs between activities (e.g., pasture to crop land) to 

reduce the models’ dependency on exogenous assumptions. 
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Summary of modeling land use 

Global economic modeling recently has focused strongly on including land-use changes in de-

fined framework due to the relevance of the topic and the need to include agro-economic 

behavior to improve LUC modeling. Analyses primarily focus on spatial effects of land-use 

change but quantification is crucial. Finally, the spatial partial equilibrium models such as GLO-

BIOM and MAgPIE have contributed significantly to the field because their fine spatial resolu-

tion accounts for biophysical heterogeneity. 

2.4. Estimating production costs 

In the context of farmers’ supply responses and economic-based land-use models, an im-

portant component is the estimation of production costs (or cost functions) for agricultural 

activities. Based on the idea that farmers allocate their resources to maximize their profit (re-

turns), it is evident that production costs play a significant role alongside revenues. For econ-

ometric agricultural supply response models, the cost function is directly estimated from avail-

able data (Chavas & Cox, 1995). Programming models also can be based on econometric esti-

mation if data is available, or on cost information from representative farms (Colman, 1986). 

For developed regions such as Europe, large datasets containing single-farm records are avail-

able (e.g., FADN) allowing modelers to use them as the basis for the production cost estima-

tions for different agricultural systems (Heckelei & Britz, 2005). Unfortunately, that is not the 

case for most developing countries, which may have information on representative or average 

costs but rarely for multiple geographic locations (Antle, Diagana, Stoorvogel, & Valdivia, 

2010). 

To illustrate the extent of this data availability problem, one of the most spatiality explicit 

agro-economic models, GLOBIOM, has only recently developed a disaggregated-cost module 

– AgriCostModel (ACM). It utilizes technical coefficients from a German database (KTBL4) as 

well as statistical data (e.g., FAO) to calculate production costs, which are extrapolated spa-

tially using an “intensification factor”. This factor is calculated using the estimated yields and 

fertilizer application in the different scenarios (Deppermann et al., 2018). Such developments 

are likely to improve the overall performance of the model but depend on assumptions linking 

the cost items with the intensification factor5 for the extrapolation to the spatial units. 

                                                      
4  www.ktbl.de 

5  According to Deppermann et al. (2018) nitrogen, phosphorus, and irrigation requirements are explicitly given by 
the biophysical model (EPIC) at the simulation unit level. All the remaining costs are given at a monetary unit [fix] 
and extrapolate spatially using the intensification factor - except for labor, fuel, and seed that are fixed for each 
management option. 
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Summary of production cost estimation 

Production cost datasets with suitable spatial coverage are rare outside of developed coun-

tries. That has led to the development of different estimations and/or extrapolation tech-

niques to cope with this data deficit. However, these techniques rely on assumptions of the 

cost behavior of different components regarding productivity or management intensity, for 

example. That requires a thorough understanding of production cost behavior to reduce the 

assumption bias. 

2.5. Minimum data and policy advice 

Considering that policy-makers are fundamentally interested in understanding how policy in-

struments may motivate (or demotivate) farmers to take a specific course of action (i.e., grow 

a specific crop, expand their land), it is important to consider the effectiveness of each method 

mentioned in providing policy advice. In essence, all discussed methods are suitable to de-

velop a policy-supporting system to inform policy makers. However, it is crucial to understand 

that high-resolution economic data (for example) is not widely available, which makes sophis-

ticated modeling challenging. 

Minimum Data approach (MD)6 

Antle and Valdivia (2006) argue that there is a strong demand for timely and quantitative anal-

yses that provide results within an acceptable accuracy to inform policy-makers. They further 

discuss that this level of accuracy is likely to be lower than expected at scientific publications 

but should add important quantitative information to rather qualitative analyses carried out 

otherwise. 

The idea is that the underlying requirement for a land-use model is the expected economic 

returns from each competing alternative at each geographic location. If such information is 

available, this site-specific data can be used to estimate the necessary equations. However, 

the authors state that such information is hardly available. They propose a MD approach that 

allows the use of secondary data (e.g., representative farms) as well as expert judgment, when 

necessary, to fill the gap. The MD approach, according to the authors, has important charac-

teristics, such as: 

− providing timely and policy-relevant analyses for a range of countries with limited data 

availability, 

− comparatively easier to learn and implement in developing countries with relatively 

low costs, 

− availability of the data and training needed to implement in regions such as Latin Amer-

ica and Africa. 

                                                      
6  The whole subsection is based on the approach developed by Antle and Valdivia (2006). 
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The authors conclude that economic modeling based on the MD approach can provide mean-

ingful results with sufficient accuracy to help to inform policy-makers (Antle & Valdivia, 2006). 

In a recent work, Antle et al. (2010) state that since the introduction of the MD approach, 

several analyses were made, mainly in developing countries, confirming their hypothesis that 

such models have a place within agro-economic modeling. The authors further develop the 

model for subsistence farming and conclude that the MD model also performs for such farm-

ing systems. 

Summary of the minimum data approach 

Against this background, it is important to consider that if the research goal is to advise policy-

makers, a trade-off between the level of precision and timeliness is always expected. This ef-

fect is likely to be stronger in regions with limited data availability. That should motivate re-

searchers to balance the expected accuracy of results with the level of data available and other 

framework conditions such as time and budget. 

2.6. Farm-level economic data 

Due to the lack of spatially specific statistics on production costs, an alternative solution may 

be the use of representative farms. The agri benchmark network provides typical economic 

data for several production systems worldwide. The network is non-profit and non-political, 

coordinated by the Thünen Institute of Farm Economics in Germany. 

agri benchmark typical farms 

The typical farms in the agri benchmark network are collected following an internationally 

standardized operating procedure (SOP), ensuring that the steps for data collection, valida-

tion, and update are applied equally worldwide, safeguarding the quality and comparability of 

the production system data (Zimmer & Deblitz, 2005). The basic idea is to understand the 

production system of the most common type of farm in the main production regions in a 

country, following the argumentation from Elliott (1928) that those are more representative 

than the average farm for a specific region (i.e., representative farm). 

Primary data are collected in focus group discussions with 5 to 10 participants, including farm-

ers, researchers, and regional advisors. The data are not based on an existing farm, but rather 

collected by reaching a consensus among the participants on the “most common” practice, 

including fertilizer rates, machinery setup, crop rotations, etc. (Krug, 2013). The construction 

of a synthetic typical farm instead of selecting an existing farm avoids two problems: (a) the 

influence of top management on the results, even if the farm is typical in terms of resources 

(i.e., size, machinery, climate); and (b) the problem in disclosing an individual’s sensitive data 

(Feuz & Skold, 1992). 
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Finally, the typical farm information is processed by the TYPICROP model, a whole-farm model 

that computes all major economic indicators, allocating all costs and revenues to each specific 

crop grown on the farm. A detailed description of the model can be found in the work of 

Hemme (1999) and Nehring (2011). The model has been adapted for sugarcane analyses, ac-

counting for the differences compared with grains, such as semi-perennial cycle, sugar yields, 

and varying harvest cycles (Balieiro, Witte, & Weerathaworn, 2016). A detailed explanation of 

the agri benchmark typical farm approach can be found in the work from Chibanda et al. 

(2020). 

Typical farms in supply estimation analyses 

Using typical farms to understand farmers’ behavior and adaptation to changes in markets 

and policy is not new and has been discussed by several authors in the agricultural economic 

field (Carter, 1963; Elliott, 1928; Plaxico & Tweeten, 1963). According to Feuz and Skold (1992), 

the benefit of using typical farms can be summarized as: (a) lower time and cost required to 

gather farm data compared with individual data collection; (b) the ability to represent differ-

ent types of farms within a region compared with averages; (c) possibility to easily model tech-

nical and framework changes affecting the production systems. These authors also reinforce 

the benefits of using typical or model farms instead of average farms for economic analyses 

as well as the benefit of selecting these farms based on knowledge instead of random selec-

tion, which is the main component of the SOP developed within the agri benchmark network. 

Specifically, analyses of farmers’ supply responses using typical or representative farms have 

been carried out for several decades. The approach gained strong attention in the 1970s due 

to linear programming and improved computing capacities. This technique, usually referred 

to as RFA is interesting to reproduce multi-crop analyses and, depending on the farm popula-

tion, the results can be upscaled to sector levels (Sharples, 1969). This approach has also lim-

itations, which are associated mainly with the “aggregation of results” and “selection of 

farms” affecting the reliability of the analyses. 

Summary of typical farm approach 

Using typical farms in agricultural economics is not new. The benefits are the possibility to 

understand complex systems within the farm (crop rotations) and the ability to use the infor-

mation to calibrate mathematical programming models. The agri benchmark network has a 

number of typical farms worldwide and the data may be suitable for the estimation of farmers’ 

supply response in countries with a lack of production cost data. To a certain extent, results 

could be upscaled to sector levels, but the selection of farms is key to reduce aggregation bias. 

2.7. Summary 

Considering most developing countries, using a standard econometric agricultural supply re-

sponse model may not be desirable due to lack of disaggregated data and the accompanying 

difficulties to simulate framework changes (e.g., taxes, prices, climate change) to inform 
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decision-makers. Using a mathematical programming model therefore is more suitable but 

the caveat of data availability prevents the use of more sophisticated models (e.g., PMP) com-

monly employed in Europe and North America. Including the land-use change component is 

crucial to understand how farmers’ resource allocation behavior may affect the overall land-

scape. Global agro-economic land-use models have been used extensively for these questions, 

but the lack of a detailed agricultural production cost estimation is expected to influence the 

accuracy of the model. 

Against this background, using existing information from typical farms to improve the estima-

tion of production costs and profitability while having a biophysical model to enhance the 

spatial resolution should improve the agricultural supply response estimations for countries 

with limited data availability. That motivates the development of a new model based on min-

imum data values to simulate farmers’ reactions to changes in framework conditions and re-

sulting land-use changes, providing timely information with sufficient accuracy to decision-

makers. 
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3. Land use and cropping system in Brazil 

Empirically, the proposed supply response model is tested for Brazil, focusing on the main 

crops produced and possible changes to the current land use. To understand the setting up of 

the model and simulations, it is important to be aware of recent developments in land use, 

the spatial distribution of crops, and the production system or options that are available for 

Brazilian farmers. A deeper understanding of the cropping alternatives is key to ensure that 

the model is calibrated with real, practical options that farmers face when allocating their land 

resources. 

This chapter briefly explains the current land use in Brazil and describes the importance of the 

crops that are considered in the case study as well as their spatial distribution. Furthermore, 

the main drivers of the production expansion are analyzed to identify possible drivers for the 

future – i.e., yield increase vs area expansion. Finally, I describe the production alternatives 

that are typical in Brazil, which are the basis for the case study setup. 

3.1. Current land use 

Brazil is a country with a total area of approximately 851 million ha. Of this total, Brazil uses 

approximately 8% for farming (incl. perennial and annual crops) and 13% for managed pas-

ture, while 58% of its territory currently has native vegetation7. In absolute terms, ca. 66 mil-

lion ha are being farmed and can be considered arable land, whereas 113 million ha are clas-

sified as managed pasture or grassland (IBGE, 2020). Figure 1 shows the most recent land-use 

map from the Brazilian Institute of Geography and Statistics (IBGE)8 in 2016 as well as the 

administrative regions as defined by IBGE. 

                                                      
7  It includes native grassland. 

8  In Portuguese - Instituto Brasileiro de Geografia e Estatística (www.ibge.gov.br) 
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Figure 1:  Land classification and regions in Brazil 

 

Source:  Landcover from IBGE (2018) – created by the author 

Currently, most of the arable land is concentrated in the southern regions, including the states 

of São Paulo (SP), Paraná (PR), and Rio Grande do Sul (RS) as important producers. Another 

important region is the Center-west9, including the states of Mato Grosso do Sul (MS), Goiás 

(GO), and Mato Grosso (MT) . Pasture or grassland is commonly found throughout the central 

and southern regions, but the highest occurrence is in the Center-west. 

Breaking the arable land down to crop levels, from a total of 73.2 million ha of seeded area10, 

more than 47% is used for soybean production, 23% for maize and almost 14% for sugarcane 

(IBGE, 2019). As shown in Figure 2, these three crops play a major role in the Brazilian agricul-

tural sector, currently accounting for roughly 84% of the total seeded area. 

                                                      
9  Interchangeably called “Cerrado” for this dissertation. 

10  Including first, second and third season. For example, a hectare with double-cropped soybeans/maize is counted 
twice. The arable land in total is around 66 million ha.  



16 Chapter 3          Land use and cropping system in Brazil 

 

Figure 2: Share of the seeded area as a sum of soybeans, maize, and sugarcane in the 

total seeded area of each region in Brazil (1989-2019) – in % 

 

Source:  IBGE (2019) – created by the author. 

Looking back at the period between 1989 and 2019, besides the overall expansion of arable 

land, the relative importance of sugarcane, soybeans, and maize have increased in all regions 

in Brazil. For example, in the Center-west region, the share of total seeded land devoted to 

these three crops combined went from 62% in 1989 to 92% in 2019. In the same period, total 

arable land in this region increased by 3.5 fold, from 8 million ha to more than 29 million ha 

(IBGE, 2019). The combination of these two effects – i.e., overall acreage increase (more area) 

combined with relative gains in terms of their share in total arable land (displacing other crops) 

– partially explains the agricultural boom observed in these three crops in Brazil. 

Against this background, the focus should be on sugarcane, soybeans, and maize to under-

stand the recent and future land-use changes in Brazil related to crops. Focusing on these 

three crops has the benefit of using the data currently available from agri benchmark as well 

as avoiding additional complexity to depict crops of minor importance. Moreover, the recent 

acreage trend indicates that these crops have taken acreage from other crops, highlighting 

their importance in the agricultural sector in Brazil. 

Besides the main crops, the beef sector in Brazil is important, with managed pasture currently 

occupying 13% of the total area, which represents 113 million ha (IBGE, 2020). Due to the 

predominant position of the crop alternatives and the beef sector, it is important to under-

stand their regional distribution and how they typically are integrated into production sys-

tems. 
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3.2. Sugarcane 

Brazil is the largest sugarcane producer in the world, responsible for 23% of total global pro-

duction and more than 50% of sugar exports in recent years (USDA, 2021). Sugarcane produc-

tion increased from 253 million t in 1989 to 753 million t in 2019. However, the development 

of sugarcane production in Brazil started in the 1970s, driven mainly by governmental pro-

grams to foster ethanol production (Goldemberg, Coelho, & Guardabassi, 2008; Matsuoka, 

Ferro, & Arruda, 2009). 

A second rapid expansion in sugarcane production took place between the years 2000 and 

2015 driven mainly by increasing international and domestic demand for ethanol and sugar, 

higher industrial productivity and the introduction of mechanical harvesting (Cherubin et al., 

2021). For this case study, it is important to understand the key geographical and farming 

features of sugarcane production in Brazil. Figure 3 shows the spatial development of the sug-

arcane areas, comparing 1989 and 2019. 

Figure 3:  Sugarcane seeded area comparing 1989 and 2019 at the municipality level in 

Brazil (in ha) 

 

Source:  IBGE (2019) – created by the author.  

Sugarcane area expanded 2.5 folds in the period between 1989 and 2015, from ca. 4 million 

ha to more than 10 million ha (IBGE, 2019). According to Cherubin et al. (2021), this expansion 

took place mainly in pasture areas in the central-south (CS). Since 2015, sugarcane acreage 

has been stable at around 10 million ha. Spatially, the production stayed concentrated around 
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the main cluster in the southeast region, with the state of São Paulo (SP) representing ca. 55% 

of the total area in Brazil (see Figure 3). Nonetheless, it is important to recognize the expansion 

of sugarcane into the Center-west region mainly into the states of Mato Grosso do Sul (MS) 

and Goiás (GO) and, to a lesser extent, to Mato Grosso (MT). This is the first indication the 

land expansion of sugarcane may be putting pressure on other crops competing for land as 

well as allowing farmers from these new regions to switch to sugarcane, if profitable. 

A typical sugarcane production system in the Southeast of Brazil is rainfed (Bordonal et al., 

2018), with farmers growing sugarcane, on average, for six years as a semi-perennial crop. 

Within this cycle, the crop is harvested five times during the crushing season that usually ex-

tends from March to December (Balieiro et al., 2016). Due to its multi-annual feature, it is 

unfeasible to have a proper interannual crop rotation, leading to a monoculture at least for 

the period between planting and the last harvest. Differently from most other crops, sugar-

cane is perishable and must be processed locally in sugar mills that produce mainly sugar, 

ethanol and energy for the domestic and international markets (Cherubin et al., 2021). 

3.3. Soybean and maize 

Soybeans 

As for sugarcane, Brazil is a major international player in soybean production. In 2019, Brazil 

was the biggest producer, with an output of 114.2 million t of soybeans, followed by the USA 

with 96.8 million t. Brazilian soybean production represented ca. 34% of the worldwide pro-

duction in 2019 with a strong focus on exports (FAOSTAT, 2021). According to the Interna-

tional Trade Center (ITC) in 2020, Brazil exported ca. 83 million t of soybeans to the world, 

with China buying 73% (i.e., 60.6 million t) of the total exports from Brazil (ITC, 2021). 

Until 1960, soybeans were a relatively unimportant crop in Brazil. Due to governmental pro-

grams and increasing international prices, soybeans started to expand in the subtropical re-

gions in the south. However, the most notable expansion started in 1980 due to the develop-

ment of cultivars that were less sensitive to photoperiodic variations, allowing the crop to 

develop properly in lower latitudes (Cattelan & Dall'Agnol, 2018). This rapid development 

changed the agricultural sector completely in Brazil and has been the focus of several studies 

aiming to understand the link between this expansion and land-use changes (deforestation). 

Macedo et al. (2012) argue that the expansion of soybeans was overwhelmingly into previ-

ously cleared pasture areas, which is in line with the finding from Barona, Ramankutty, Hyman, 

and Coomes (2010). However, both sets of authors suggest that it is possible to have leakage 

effects of soybeans displacing cattle production into areas close to the Amazon basin, inducing 

deforestation. 

Figure 4 illustrates the expansion of soybeans in Brazil, moving mainly from the southern (sub-

tropical) regions to the tropical Center-west regions centered around the state of Mato Grosso 

(MT). Furthermore, soybeans have also reached northern states in the region known as 
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MAPITOBA – i.e., Maranhão (MA), Piauí (PI), Tocantins (TO), and Bahia (BA), which is currently 

considered the expansion frontier in Brazil (Cherubin et al., 2021). 

Figure 4: Soybeans seeded area comparing 1989 and 2019 at the municipality level in 

Brazil (in ha) 

 

Source:  IBGE (2019) – created by the author. 

Compared with sugarcane, the spatial expansion of soybeans is much more prominent. Soy-

beans moved strongly northward as well as increasing in area within the states that were al-

ready producing in 1989. It is interesting to note, that the states of Goiás (GO) and Mato 

Grosso do Sul (MS) experienced a strong increase in area which is in line with the sugarcane 

expansion, reinforcing the hypothesis that competition for land has intensified. Finally, the 

maps are based on information at the municipality level (spatial boundaries), which should be 

not confused with the actual area. That explains why sugarcane and soybeans are strongly 

represented in the same location. 

Double cropping with maize 

Double cropping is a very common practice in grain11 farming in Brazil. It is, to some extent, a 

result of breeding soybeans for shorter photoperiods, which allows farmers to adapt their 

planting calendar to better use the wet season (Abrahão & Costa, 2018). A typical practice is 

                                                      
11  Throughout the dissertation, the term “grain(s)” refers to grain crops in a broader definition, involving cereals and 

legumes – more precisely, soybeans and maize - van Alfen (2014). 
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to seed soybeans in summer (October to January/February) followed by maize grown from 

February to June (Pires et al., 2016). The system can be adapted to other crops such as cotton 

(Center-west) or wheat in the subtropical region, depending on the growing conditions. The 

share of the soybean acreage that is seeded with maize in winter depends on several factors, 

such as precipitation, the cycle length of soybeans, and farmers’ machinery setup (Osaki & Ba-

talha, 2014). Figure 5 illustrates a typical double-cropping system with soybeans as the leading 

crop in summer and maize in winter and the main operations. 

Figure 5: Double-cropping system of soybeans and maize and its main operations – 

based on a typical farm from Mato Grosso (MT) 

 

Source:  based on the typical farm BR1300MT from agri benchmark (2020) – created by the author. 

As Figure 5 highlights the sequence of operations in greater detail, it indicates the intensity of 

plant protection products during soybeans’ short cycle and, more importantly, the peak of 

operations between the last sprayings in late December, harvest of soybeans, and the simul-

taneous seeding of maize. The short time window for harvesting soybeans and seeding maize 

has a strong influence on the share of the soybean area that is sown with maize afterwards. 

Delaying the seeding of maize due to rainfall or machinery problems increases the risk of 

weather deficits for the full development of the crop, reducing yields (Pires et al., 2016). 

The importance of double cropping soybeans with maize is shown in Figure 6. The information 

on first-season maize represents the system of growing the crop in the summer season and 

the second-season stands for maize grown as a following crop – mainly after soybeans. 



Chapter 3          Land use and cropping system in Brazil 21 

 

Figure 6: Brazilian maize production depending on the growing season (in million t) 

 

Source: CONAB (2021) – created by the author. 

The production of maize as a second crop grew slowly until 2010, reaching approximately 20 

million t, after which second-season maize saw a massive expansion, resulting in a more than 

fourfold increase in one decade, reaching more than 80 million t in 2020 (CONAB, 2021). In 

2020, ca. 77% of the total maize production in Brazil was from second-season corn, compared 

with less than 40% in 2010. It is important to highlight that 66% of the maize grown as a first-

season is in the South and Southeast (subtropical) regions, whereas more than 70% of the 

total maize produced as the second crop is in the Center-west (tropical) region. 

In summary, soybean and maize production in Brazil expanded strongly in the past decades, 

positioning the country as one of the top producers worldwide. Following technical improve-

ments, a highly profitable double-cropping system was implemented, allowing farmers to 

grow two crops in one season, creating a scenario in which soybean and maize occupies 70% 

of the total seeded area in Brazil (IBGE, 2019). 

3.4. Beef production 

Brazil is a major player in the beef sector, with a cattle herd of around 215 million head in 

2019 (IBGE, 2021). While the total volume of beef traded globally increased by 50% between 

1990 and 2020, the total export volume from Brazil increased by tenfold, reaching a volume 

of 2.54 million t. That places Brazil as the largest exporter of beef, accounting for roughly 24% 

of the total exports. According to the classification of IBGE (2018), most of the 113 million ha 
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of managed pasture is located close to arable land so understanding the spatial distribution 

of beef production and its interaction with crop production is important. Figure 7 shows the 

number of head of cattle comparing the years of 1989 and 2019, at the municipality level. 

Figure 7: Total number of cattle per municipality comparing 1989 and 2019 in Brazil 

   

Source: IBGE (2021) – created by the author. 

The pattern of expansion of cattle in Brazil is similar to that for soybeans and maize, with a 

strong increase in production in the Center-west and North regions, mainly in the states of 

Mato Grosso (MT), Pará (PA), and Rondônia (RO). The significant production in the states Mato 

Grosso do Sul (MS) and Goiás (GO), which, together with MT, are a main area of grain produc-

tion, indicates there might be a close interaction between cattle and crop production – i.e., 

competition for land. 

3.5. Drivers of production expansion: yield gain vs acreage 

The rapid production expansion of soybeans, maize, and sugarcane changed considerably the 

land use in Brazil by converting pasture into arable land as well as displacing other crops in 

the current farming areas (Barona et al., 2010). Such increases usually are the result of acreage 

expansion and, to some extent, yield gains. It is important to understand which has been the 

dominant driving force to align the model to possible future development. For example, if a 

crop has experienced limited yield gain, additional demand is expected to be meet with in-

creased acreage, leading to land-use change. Observing the past trends may help understand 
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how the sector has reacted in terms of investment in yields and acreage expansion. Figure 8 

shows the development of area and production for soybeans and sugarcane in Brazil from 

1990 to 2019, considering 1990 as the reference year. 

Figure 8: Production and area change rate for sugarcane and soybeans from 1990 

(baseline) to 2019 in Brazil 

 

Source: IBGE (2019) – created by the author. 

The first interesting observation is that yield gain has played a role for both crops since the 

overall production increase is stronger than the addition of area. Considering the whole 30- 

year period, sugarcane yields increased by 21% (0.7% annually) whereas soybean yields in-

creased by 84% (2.1% annually). Focusing on the recent 15 years (2005-2019), the difference 

between the crops is even more significant. In this period, sugarcane yields improved by 0.2% 

per year (total 2.5%) while soybeans had impressive gains of 2.4% per year or 43% in the 15 

years (IBGE, 2019). That is a first indication that yields have played a more important role in 

soybean production expansion than in sugarcane and that this difference was more dominant 

in recent years. 

Although yields play an important role in the production expansion of both crops, the main 

driving force in the past seems to be acreage increase. In the same 30-year period, acreage 

for sugarcane increased by 136% or 2.9% per year whereas soybean acreage increased by 

212%, with an annual rate of 3.9% per year (IBGE, 2019). However, it does not necessarily 

mean the total area increase is due to adding new arable land. As previously shown, the im-

portance or share of these crops also has increased in recent years. 
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In summary, the data show that the soybean and sugarcane production increases observed in 

the past 30 years in Brazil were driven by a combination of strong acreage increases and sig-

nificant yield gains. Soybeans have had stronger yield gains than sugarcane, which may indi-

cate that, with all other factors constant, this crop has become increasingly more competitive. 

Note, however, that even though sugarcane yields at the farm level have stagnated in recent 

years, industrial efficiency has increased significantly which may counterbalance the farm 

yield effect and help to improve the overall economic performance of the value chain 

(Cherubin et al., 2021). 

3.6. Farmers’ production system options in Brazil 

Considering that soybeans, maize and sugarcane account for 84% of the total seeded area in 

Brazil (IBGE, 2019), the case study focus on these crops is a logical first attempt to understand 

land-use dynamics in Brazil. Regionally, other crops such as cotton, beans, and wheat may play 

an important role but currently they represent only a small share of total seeded area – i.e., 

1.6%, 4%, and 2.9% respectively (IBGE, 2019). Since these crops are of minor importance, they 

are not represented in the agri benchmark typical farms network in Brazil, which makes pro-

duction cost estimation challenging. 

There are several production systems involved in growing the major crops depending on cli-

mate and regional conditions. The following are the most common systems: 

I. Sugarcane monoculture: unfeasible to have crop rotations since the crop is semi-per-

ennial. 

II. Soybean with a cover crop: soybeans grown in summer and a cover crop in winter to 

generate biomass for the no-till system. 

III. Double cropping soybean-maize: soybeans grown in summer with maize a second-

season crop in winter. 

IV. Beef production: as an alternative for arable farms to diversify or leave the sector. 

The focus on no-till systems for the variants with grains is a result of the widespread use of 

this practice in Brazil. According to FEBRAPDP (2021), considering grain-producing land only, 

more than 32 million ha are under a no-till system. That is also the system represented by the 

typical farms from the agri benchmark network in Brazil. 

The alternative to switch between beef and cropping systems is included in the set of options 

available to farmers for the case study. As Brazil has currently ca. 113 million ha of pasture 

located close the main crop production areas, it is important to include cattle as a production 

system option. Since the focus of this work is on crop production, beef is considered an “opt-

out” alternative in case farmers decide to stop growing crops. 
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Summary 

This dissertation focuses on double cropping with soybean as the leading crop in summer with 

either a cover crop or maize in winter and sugarcane or beef production as the main alterna-

tives to farmers in Brazil. Due to their importance in total agricultural area as well as commod-

ities for international markets, the model should be able to depict the current land use in most 

regions in Brazil. The model is set with a realistic set of options to farmers, which is key to 

avoid errors such as allowing the “competition” among crops that are jointly grown in a dou-

ble-cropping system. 
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4. Methodology: developing the modeling approach 

To answer the research question, I propose a new modeling approach to test whether the 

combination of a biophysical model with farm-level economic data provides a reliable estima-

tion strategy on farmers’ supply responses. Since the focus of this work is the methodologic 

development of the modeling concept, this chapter explains in detail the building blocks of 

the model, using the Brazilian case to illustrate the practical background and applications. The 

first section focuses on the modeling concept, explaining the information flow between the 

models. Then, the individual modules are explained in greater detail. 

The proposed modeling approach is called Profitability Assessment Model (PAM) based on 

the idea that farmers’ supply responses are mainly based on the profitability of the different 

cropping alternatives in a certain region. The model is written in the program language Python 

(Python, 2020), using mainly the Pandas library (Reback et al., 2020). Additionally, Geographic 

Information System (GIS) software (ArcGIS Pro) is used to spatially allocate some of the exter-

nal information into the model as well as to map and analyze the output. 

4.1. Model structure and information flow 

The main idea behind the PAM modeling approach is the combination of a biophysical plant 

growth model with farm-level economic data and using a minimum data approach for regions 

with poor data availability. The approach is based on combining different models and layers 

of information.  Figure 9 shows a simplified scheme of the four main modules within the PAM 

approach – i.e., plant, transport, economic and land allocation.  
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Figure 9:  Schema of information flow in the different modules of the PAM model 

 

Source:  created by the author. 

The plant module is a key component, providing mainly crop yields and respective fertilizer 

input use. That information flows directly into the economic module, which also receives in-

formation from the transport module. The latter converts the Free on Board (FOB) prices of 

input (e.g., fertilizer) and output (e.g., soybeans) to simulation unit levels. The economic mod-

ule is the main new development within the PAM approach. It combines the information from 

the two modules with several input layers from statistics and agri benchmark data to calculate 

the profitability of each farming alternative for each simulation unit. Finally, the land alloca-

tion module allocates farmland to the different alternatives, maximizing farmers’ economic 

returns. This process, however, is complex, using several layers of input and output so that 

the following sections focus on further explaining the functionally and setup of modules. 

Due to the current importance of each crop (see chapter 3), the current version of the PAM is 

calibrated for the following alternatives in Brazil: 

− sugarcane monoculture, 

− soybean with a cover crop, 

− double cropping soybean-maize, 

− beef production. 

While the first three alternatives are endogenously estimated by the PAM approach, the re-

turns to land from beef production are obtained from the agri benchmark Beef network. 
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4.2. Model resolution – Simulation Units 

Before diving into the details of each module within the proposed approach, it is important to 

explain the model resolution. The spatial resolution is an important source of uncertainty in 

large-scale modeling (Mearns, Easterling, Hays, & Marx, 2001). The PAM approach follows the 

spatial resolution from the GLOBIOM model developed by the International Institute for Ap-

plied Systems Analysis (IIASA). Hence, it is possible to consistently use other IIASA models as 

well as ensure that the outputs of PAM can be implemented easily in other tools. Additionally, 

the calibration from the biophysical model follows the spatial resolution from IIASA, which is 

the highest resolution from all components of the PAM model. 

The simulation units for the GLOBIOM model are derived as follows: 

− The geospatial data required for the biophysical modeling was compiled from several 

sources by Skalský et al. (2008) and harmonized into Homogeneous Response Units 

(HRU). These clusters are derived mainly from landscape parameters that do not 

change over time – i.e., five altitude classes, seven slope classes, and five soil classes. 

− In the next step, the HRU are intersected with a spatial grid of 0.5°× 0.5° and country 

boundaries to draw the resulting SimU that contain information on global climate data, 

land use, irrigation, etc. (Havlík et al., 2011). 

The resulting SimUs are polygons with size that varies between 5 and 30 arcmin (i.e., 10x10 to 

50x50 km in area) and they define the spatial resolutions for the PAM modeling approach. The 

SimU also are defined as the enterprise or farm so the model calculates the profitability of 

each cropping alternative and the land allocation decisions at this level. Therefore, it is im-

portant to understand the scale and characteristics of the SimU. 

In Brazil, there are 11,003 SimUs with sizes varying between 7,500 to 300,000 ha. The size of 

these units depends on the heterogeneity of their conditions as well as administrative bound-

aries. Those with the largest areas are found in the Amazonia region, where agricultural pro-

duction currently is negligible and predominant land use is native vegetation. Conversely, the 

SimUs in other regions are significantly smaller due to the variety of natural conditions. Figure 

10 shows a classification map illustrating the variability of SimUs’ size across regions (left) as 

well as the distribution of size (right). The median size of the SimUs is 34,200 ha 

(18.5 x 18.5 km), as depicted in the histogram, and around 75% of the units are under 

100,000 ha (32 x 32 km). 
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Figure 10:  Map of simulation units’ size (left) and frequency distribution of unit size 

(right) – in ha 

 

Source:  created by the author. 

Another important advantage of basing the PAM approach on the SimUs is the ability to inte-

grate official statistics to these units, serving as an input for the model as well as validation of 

results. This is possible because the National Institute for Space Research (INPE) has developed 

a more detailed version of the GLOBIOM model for Brazil and, in the process, developed an 

algorithm that consistently allocated official statistics (IBGE) that are reported at the munici-

pality level (e.g., harvested area), as well as land cover information from PRODES (INPE) to 

SimU, making this information readily available for the PAM analyses (Câmara et al., 2015). 

The link between geographic information (SimU) to administrative units (municipalities) is of 

extreme importance for the calibration and validation process of the model. 

In summary, the SimUs define the spatial resolution within the PAM approach with a median 

area of 34,200 ha (18.5 by 18.5 km). This unit also is considered one enterprise when allocat-

ing cropping alternatives. The decision on this specific resolution is mainly due to possible 

synergies between models as well as the ability to use available structures and information. 

4.3. Plant module: estimating yields and fertilizer use 

A main component of the PAM approach is the yield estimation for individual crops because 

together with costs and farm-gate prices, they determine the competitiveness of each farming 
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alternative. Yield levels also are used as a proxy for the different types of production systems 

as well as in the allocation of certain production costs. Therefore, estimating yields using a 

biophysical model is a major component of the PAM approach. 

The yield estimation is necessary due to the lack of statistical information at such high spatial 

resolution as well as the ability to estimate yields and consequently production costs in areas 

that currently are not producing these specific (or any) crops. That fits exactly with the goal of 

the PAM approach in providing robust supply response estimations in countries or regions 

with limited regional statistics. 

4.3.1. Module description 

The Environmental Policy Integrated Climate model (EPIC) is the main component of the plant 

module (Williams & Singh, 1995). This model is widely used and tested to estimate yields of 

several plants based on atmospheric and soil interactions affecting biomass production and, 

consequently, yields. Crop growth is the main process modeled and the basic concept is using 

a radiation-use efficiency, where a fraction of radiation is intercepted by the plant and con-

verted to biomass (i.e., roots and above-ground). These potential daily gains are penalized due 

to factors such as carbon dioxide (CO₂) atmospheric concentration, water, and nutrient avail-

ability, temperature, etc. reducing the daily biomass gain from the potential to actual (Izaur-

ralde, Williams, McGill, Rosenberg, & Jakas, 2006). 

Main inputs into the EPIC model include the crop calibration information based on field trials 

as well as site-specific variables such as soil, weather, and management information contain-

ing all activities such as seeding, fertilizer applications, and harvesting. The first description of 

the model can be found in the work of Williams, Jones, and Dyke (1984) and the expanded 

version on Williams, Jones, Kiniry, and Spanel (1989). Figure 11 shows a schematic illustration 

of the main components and processes modeled by EPIC. 
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Figure 11:  Main components and flows of the EPIC model12 

 

Source: Azevedo (2016, ppt presentation) 

EPIC has been improved by IIASA with crop-specific calibration for the main arable crops and 

regions worldwide. This version has been used and tested in several projects and papers con-

taining detailed calibration parameters for all crops considered in the current version of the 

PAM approach (Balkovič et al., 2013). An important advantage of IIASA’s version of EPIC is the 

specific crop calibration for the second-season maize grown in Brazil. Since intensive breeding 

was required to develop varieties that can cope with drier conditions and mature in relatively 

short cycles, a special calibration of crop parameters within EPIC is required to allow realistic 

estimation of soybean plus maize production system (Câmara et al., 2015). 

The fertilization information of EPIC is of key importance for the PAM approach, providing the 

fertilizer rates to the crops. EPIC allows different options to define the fertilization scheme, 

varying mainly between fixed and variable application mode. The fixed mode can be divided 

into two categories: “user schedule” which applies the exact fertilizer mix and rates as defined 

by the production system, or “automatic” in which the fertilizer mix and rate come from the 

production system, but the application is triggered if stress levels are reached. The fertilization 

rate in the variable application mode is mainly based on the crop uptake and availability in the 

soil and the timing is based either on the “user schedule” or is “automatic” when stress levels 

are reached. The user can also define the maximum amount of fertilizer applied as well as the 

minimum interval between each application. Thus, the application rates of nitrogen (N) and 

phosphorus (P) depend on the definitions of production systems and the fertilization mode 

used. The latter determines how the model reacts to crop needs, soil supply, and the nutrient 

                                                      
12  C = carbon; N = nitrogen; P = phosphorus; ETP = evapotranspiration. 

Kapitel  1 
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stress relative to stress factors – water and temperature (Williams, Izaurralde, Williams, & 

Steglich, 2015). 

EPIC has been employed in a range of research, including soil science, climate change and 

economics. It has been tested extensively against observed data and expanded to model dif-

ferent crops in varying regions worldwide. A detailed description of publications using EPIC 

and the main findings can be found in Gassman et al. (2005). 

4.3.2. Data input into EPIC 

Yield estimation plays a major role in the overall PAM approach so it is important to under-

stand the underlying database and calibration parameters that are used for yield estimation 

with EPIC. A detailed explanation of the data input and requirements for EPIC can be found in 

the work of Skalský et al. (2008), from which the short explanations that follow are derived: 

− Weather data: Global daily weather estimations are available only from 1981 to 2010. 

Therefore, the EPIC estimations are carried out for these years and the final output is 

an arithmetic average of the period. 

− Soil and topography: Detailed information is included on average field size, slope, el-

evation, and geographic coordinates. For each soil layer, EPIC requires detailed infor-

mation such as depth, density, sand content, pH, etc. 

− Crop calendar: Using IIASA’s standard operation schedule for the analyzed crops, they 

include information on the time of operations (e.g., planting, harvesting, applications) 

as well as the type of fertilizer, amount of irrigation, tillage operation, etc. 

− Scenarios: Simulations from varying scenarios are available following IIASA’s scenarios 

mainly on maximum nitrogen application and irrigation schemes. For the current ver-

sion of PAM, these scenarios are not fully used because the fertilization rates follow 

the automatic used mode, and irrigation economics are not completely integrated into 

the model. 

4.3.3. Integrating EPIC output into the PAM model 

The main contributions of EPIC to the PAM approach are the estimation of yields and applica-

tion rates of fertilizer. The EPIC output is the starting point for the PAM modeling approach, 

providing detailed information on biomass production, nutrient balances, and main sources 

of plant stress. 

Calculating commercial yields 

The yield output from EPIC is transformed to commercial yields in the PAM by accounting for 

technical harvest losses as well as including the moisture content typically found in grains and 

sugarcane. For maize and soybeans, the dry matter of the commercial yield is assumed to be 
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86% and for sugarcane stalks, 23%. For sugarcane, EPIC estimates the above-ground biomass 

as forage yield but does not provide information on the actual fresh stalk yield. Therefore, the 

PAM model assumes that 80% of the above-ground biomass is sugarcane stalks (Marin, 

Thorburn, Nassif, & Costa, 2015). The data for harvest efficiency are taken from technical re-

ports – maize 8%, soybeans 2% (Zandonadi, Ruffato, & Figueiredo, 2015), and sugarcane 5% 

(Silva, Corrêa, Cortez, & Furlani, 2008). These values are expected to vary depending on field 

conditions and machinery so that PAM allows a different assumption (input) if local infor-

mation is available. 

For sugarcane, information on stalk yield is important because several cost such as harvesting 

and transportation are linked to it. However, the economic productivity is based on a combi-

nation of stalk yield and sugar content. Sugar content is the main parameter defined in cane 

payment system, directly affecting farming economic performance. Unfortunately, EPIC does 

not report sugar content as do other biophysical models such as the Decision Support System 

for Agrotechnology Transfer (DSSAT) and the Agricultural Production Systems Simulator 

(APSIM) that have special modules for sugarcane (Marin et al., 2011). Therefore, to convert 

fresh stalk yields from EPIC to sugar yield, the plant module uses the Total Recoverable Sugar 

information (TRS or ATR in Portuguese) from CONAB (2019), on state-level averages from sea-

sons 2017/18 and 2018/19. 

The following formulas are used to incorporate EPIC yields into the PAM modeling approach: 

 

𝑌𝐿𝐷_𝑠𝑢𝑔𝑐𝑖 =
𝑌𝐿𝐷𝐹𝑖

𝐷𝑟𝑦𝑀𝑠𝑢𝑔𝑐
×  𝑆ℎ𝑎𝑟𝑒𝑆𝑡𝑘 × 𝐻𝑎𝑟𝑣𝐸𝑓𝑓𝑠𝑢𝑔𝑐 (1) 

 

𝑌𝐿𝐷_𝑡𝑟𝑠𝑖 =  𝑌𝐿𝐷_𝑠𝑢𝑔𝑐𝑖  ×  𝑇𝑅𝑆𝑢𝑓 (2) 

 

𝑌𝐿𝐷_𝑔𝑟𝑎𝑖𝑛𝑖 =
𝑌𝐿𝐷𝐺𝑖

𝐷𝑟𝑦𝑀𝑔𝑟𝑎𝑖𝑛
 × 𝐻𝑎𝑟𝑣𝐸𝑓𝑓𝑔𝑟𝑎𝑖𝑛 (3) 

where 𝑌𝐿𝐷 is the commercial yield in t/ha; 𝑌𝐿𝐷𝐹 and 𝑌𝐿𝐷𝐺 are the EPIC forage and grain 

yields in t/ha for each SimU 𝑖, respectively. The 𝑆ℎ𝑎𝑟𝑒𝑆𝑡𝑘  is the share of stalks in the forage 

yield (in %); 𝐻𝑎𝑟𝑣𝐸𝑓𝑓 is the harvest efficiency (in %); 𝑇𝑅𝑆 is total recoverable sugar for each 

state 𝑢𝑓 (in %), and 𝐷𝑟𝑦𝑀 is the dry matter in the final product (in %). 
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Nutrient application rates 

Besides yields, EPIC also reports application rates of N and P based on the fertilization scheme, 

the management information and the actual nutrient use by the plants to produce the esti-

mated yields (see model description). The “automatic” fertilization scheme is used following 

IIASA’s standard estimation, so the fertilization mix is defined by the business-as-usual (BAU) 

crop management data, but the application is triggered if stress levels are reached. For N, the 

upper application rate is set (scenarios varying from 0 to 400 kg/ha) and P is applied to relieve 

plant stress in balance with N and water stresses. Depending on the research scope, it may be 

desirable to use either the applied fertilizer or the plant uptake; hence PAM allows the user 

to decide whether the former or the latter should be used for cost estimation. 

The current version of the PAM model uses the standard applied quantity N and P for the cost 

calculation (further explanation under the economic module). Potash (K) usage is not simu-

lated by EPIC. Hence, the model uses results from local field trials on kg uptake K per t of crop 

produced as the reference to estimate K costs (Mascarenhas, Tanaka, Wutke, Braga, & Mi-

randa, 2004; Oliveira et al., 2010). 

Finally, it is important to note that even though the current version of the PAM model uses 

EPIC as the biophysical model, any other model providing high-resolution information on 

yields and nutrient use can be employed with a similar approach. This feature is important 

since, for different regions and crops, other calibrated models may be more suitable. 

4.4. Transport module: generating farm-gate prices 

The transport module is an important structure within the PAM approach, allowing the esti-

mation of input and output prices at the farm-gate level. Currently, there are no official sta-

tistics on input (e.g., fertilizer) and output (e.g., soybean) prices at the farm level in all states 

in Brazil. Having an internal module to estimate farm-gate crop and input prices is important 

specially for large countries such as Brazil, where local prices vary greatly depending on the 

distance to market. 

For Brazil, the transport module is designed to convert FOB crop prices to farm-gate level 

based on the concept that farmers in exporting countries receive a farm-gate price that is 

derived from the international prices minus transaction costs to deliver the crop to the port 

(Freebairn, 1987). The Brazilian agricultural sector has a strong focus on exporting, with 72% 

of total production of sugar, 64% of soybeans, and 34% of maize delivered to the global mar-

kets13. Hence the prevailing local price in Brazil is expected to be a function of FOB prices and 

transport cost of delivering the crop to the port. A similar concept is used to estimate farm-

gate fertilizer prices given that more than 80% of the fertilizer used in Brazil is imported 

                                                      
13  Share of export volume on the total production calculated as an average of 2017-2020 based on the production 

volume from CONAB (2021) and export volume from ITC (2021). 
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(ANDA, 2020). Hence, fertilizer prices at farm gate are a function of the international prices 

plus the transport cost to reach the farm level. Even for domestically produced fertilizer, this 

pricing approach should apply, considering that price deviations should motivate farmers to 

switch between origins, creating a balance between domestic and imported inputs. 

Technically, the module uses the GLOBIOM-Brazil approach to estimate the travel distances 

between the SimUs and the nearest port. Coefficients for freight costs are derived from ob-

served information to calculate the transport costs per unit of product (input or output). The 

combination of these two components provides the final parameter for transport costs. Addi-

tionally, this module estimates the inbound transportation costs for sugarcane – i.e., from the 

fields to mills, which is a major cost component within the sugarcane supply chain. The fol-

lowing subchapters explain in greater detail the two main components of the transport mod-

ule and the approach developed to estimate inbound transport costs for sugarcane. 

4.4.1. Module description 

The current transport module is based on two main components: (a) the GLOBIOM-Brazil ver-

sion estimating the travel distance in km between the SimU and the nearest port, and (b) 

regression analysis to estimate the transportation costs (USD/km) based on observed freight 

costs from research team ESALQ-LOG14 in Brazil. The combination of these two components 

results in the estimation of transport costs in USD per t of product to and from the nearest 

port currently in operation. 

Getting the distance between SimU and the ports 

The distance between the SimU and the ports is estimated following the Generalized Proximity 

Matrix (GPM) approach proposed by Aguiar, Câmara, Monteiro, and Souza (2003). The 2012 

National Plan for Logistics and Transportation (NPLT) serves as the base for the available roads 

to connect the starting point (i.e., centroids of the SimU) and the destination (i.e., port or 

domestic market). Figure 12 shows the road infrastructure in Brazil (left) as well as the nearest 

port from each SimU (right). 

                                                      
14  Group of Research and Extension in Agroindustrial Logistics – https://esalqlog.esalq.usp.br/en/ 
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Figure 12: Road infrastructure in Brazil (left) and the nearest port from each SimU 

(right) 

 

Source:  based on NPLT and INPE (2019) – created by the author. 

Most SimUs located in the current arable area (see Figure 12) have as their nearest ports San-

tos and Paranaguá. These ports are the two main outlets for commodities in Brazil, together 

accounting for 93% of the total volume of sugar and 43% of total volume of soybeans exported 

in 2020 (ABIOVE, 2021; UNICA, 2021). These ports also handle the majority of the maize ex-

ported from Brazil (Souza, Reis, Abraham, & Machado, 2017).  

It is interesting to observe the lack of road infrastructure mainly in the northern states in Bra-

zil. That is the result of the very low population density in these regions as well as the largest 

share of the area being under forest. For commodities, it means that any attempt to grow a 

crop in these regions will be faced with high (imported) input costs and low output prices due 

to relatively high transport costs. 

Estimating freight costs 

Transportation costs under the GLOBIOM-Brazil approach are estimated based on travel time 

and current conditions of roads resulting in a constant transport cost from each SimU to the 

destination (Câmara et al., 2015). The differentiation between crops is mainly due to the share 

of the output sent to the international vs domestic market. This costing approach has im-

portant limitations because it does not consider different technical requirements in transport-

ing different commodities – e.g., sugar and soybeans. Sugar requires a different type of trucks 

and has an associated higher transport costs per km. More importantly, this approach does 
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not account for the fixed component of the transport costs, since the calculation is based on 

distance times the average transport costs per km, varying only according to the quality of the 

roads. 

Therefore, although PAM primarily uses the distance estimation approach from GLOBIOM-

Brazil, as mentioned, it improves its costing approach by accounting for the crop-specific 

transportation costs – differentiating between the fixed and variable components, based on 

observed freight information. Transportation costs are estimated through a regression analy-

sis of observed freight costs (ESALQ-LOG) for each specific product. The following ordinary 

least squares (OLS) linear regression is used to assess the impact of distance on transport 

costs: 

 

𝑇𝑖 =  𝛽0 + 𝛽1𝐷𝑖 + 𝜀𝑖 (4) 

where 𝑇𝑖 is the transport cost in USD per t of the product; 𝛽0 is the intercept that can be 

interpreted as fixed cost in USD/t; 𝛽1is distance coefficient that represents the variable costs 

in USD/t per km, and 𝐷𝑖  is the observed distance in km from the SimU to the nearest port. 

The freight data used in the estimation comes from the Freight Information System (SIFRECA 

in Portuguese) developed at ESALQ-LOG. Primary transportation costs for each specific prod-

uct/commodity and route are collected weekly and consolidated to a monthly indicator. The 

regression analysis uses the monthly indicator for all routes from each specific product to all 

destinations in Brazil, summing up to 14,626 pieces of freight information for 201715. Table 1 

shows the results from the OLS estimation. 

                                                      
15  I have access to the database from ESALQ-LOG for 2017. Based on the main cost component of the road transport 

(i.e., diesel), the average real diesel prices from 2015-2019 is R$ 3.64/l, whereas the real price in 2017 was R$ 3.67/l 
which indicates that 2017 can be considered an average year based on diesel costs. A comparison of the real diesel 
prices can be found in appendix 6. 
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Table 1:  OLS results: freight costs in Brazil 

Variables 
Coefficients β 

Sugar Grains* 

Intercept (β₀) 12.326 9.997 

Distance (β₁) 0.0347 0.0340 

R² 0.84 0.90 

N 1,694 12,932 

*soybeans and maize     

Note: SIFRECA monthly indicator for 2017  

Source: own calculations based on ESALQ-LOG (2019)     

The intercept values show the importance of analyzing freight costs for different products 

separately. As expected, sugar freight has a higher fixed cost component, indicating that dif-

ferent equipment or services are required to move this product compared with grains. That is 

important since SimUs, with a similar distance to ports, will face higher freight costs for trans-

porting sugar than soybeans to the ports. The distance coefficient is similar between the crops 

due to its main components – diesel, labor, maintenance (Fliehr, Zimmer, & Smith, 2019). 

With the freight cost coefficients and the travel distance, the transport costs within the PAM 

model are derived using the following equation: 

 

𝑇𝑟𝑎𝑛𝑠𝑝_𝑡𝑔𝑟𝑎𝑖𝑛𝑠𝑖
= 𝐷𝑖  ×  𝛽1𝑔𝑟𝑎𝑖𝑛𝑠

+  𝛽0𝑔𝑟𝑎𝑖𝑛𝑠
 (5) 

where: 𝐷𝑖  is the distance in km to the nearest port from the SimU 𝑖 and β’s are the coefficients 

for freight costs for grains. A similar equation is used for sugar, changing only the respective 

coefficients as shown in Table 1. 

The structure of the transport module allows an easy update of the freight costs coefficients 

if changes in inputs such as diesel prices are observed. Moreover, it allows an endogenous 

estimation of transport costs from all SimUs to ports, meaning that any FOB prices of inputs 

and outputs can be automatically converted to farm-gate prices, accounting for one of the 

major framework differences between regions in Brazil. 

4.4.2. Inbound transport costs sugarcane 

The transport of sugarcane from farms to the mill for processing is an important cost compo-

nent of sugarcane production. Differently from soybeans and maize, sugarcane is not com-

mercialized directly from the farm. Hence, transporting cane to a processing facility is a key 

cost component within the supply chain and needs to be included when modeling regional 

allocation of sugarcane production. 
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In the PAM model, sugarcane transport from the farm to the mill is built into the transport 

module. The model currently allows two alternatives based on costs per t of sugarcane: 

(a) Actual distance: using the geodesic distance between the centroid of the SimU and the 

location of the nearest operating mill in Brazil. This option allows modeling short-term 

developments so production from any extra hectare must be delivered to an existing 

mill and therefore incurs relatively high transportation costs. The distance between the 

SimUs and the current mills is estimated using the GIS software and assuming that each 

SimU can deliver to its nearest mill. The transport cost per km for this option is based on 

the work from Françoso, Bigaton, Silva, and Marques (2017) as follows: 

 

𝐼𝑛𝑏𝐺𝑒𝑜_𝑡𝑖 =  𝐺𝑒𝑜𝐷𝑖 × 0.0582 + 1.02 (6) 

where: 𝐺𝐷𝑖  is the geodesic distance between the SimU centroid and an existing mill 

(2017). The coefficients from Françoso et al. (2017) were converted to USD using the 

exchange rate of 0.2882 which is the average for 2016. That is important because the 

regression is based on data from the season 2016/17 in Brazil. 

(b) Current average: This option simulates a medium-term perspective in which expansion 

of sugarcane to new region, where no mills currently are operating, may motivate build-

ing new mills and thereby allow the reduction of the transport cost to a level comparable 

to today. Therefore, the model assumes the average transport distance to be at a max-

imum of 30 km and the resulting transport cost is calculated using the following equa-

tion: 

 

𝐼𝑛𝑏𝐴𝑣_𝑡𝑖 =  if 𝐺𝑒𝑜𝐷𝑖 ≥ 30; then 2.766 else 𝐼𝑛𝑏𝐺𝑒𝑜_𝑡𝑖 (7) 

 where: 2.766 is the transport costs at an average of 30 km based on equation 6. 

The resulting transport cost per t of sugarcane is converted to cost per ha based on the fol-

lowing equation: 

 

𝐼𝑛𝑏𝑇_ℎ𝑎𝑖 =  𝑌𝐿𝐷_𝑠𝑢𝑔𝑐𝑖 × 𝐼𝑛𝑏𝐴𝑣_𝑡𝑖 (8) 

where 𝑌𝐿𝐷_𝑠𝑢𝑔𝑐 is the fresh stalk yield based on equation 1 and 𝐼𝑛𝑏𝑇𝑎𝑣_𝑡 is the transport 

cost per t of sugarcane for each SimU 𝑖. 

Transporting sugarcane is costly (ca. 20 USD/t of recoverable sugar) and hence more than 95% 

of the production currently takes place within 50 km of a sugar mill. Figure 13 shows the geo-

desic distance (GIS) from the SimU centroids to the current mills, not considering areas that 

are currently under forest (left) as well as the share of total production at certain distances to 

the mill operating in 2017 (right). 
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Figure 13:  Distance from SimU to the nearest mill operating in 2017 (left) in km and the 

share of total production at certain distances to an operating mill (right) in % 

 

Source:  Data for current mills from UDOP (2017) and production from IBGE (2015) – created by the author. 

Confirming the expectation, most of the sugarcane production takes place within a radius of 

50 km of an operating mill. Areas far away from the main production hub in São Paulo (SP) 

have distances to an operating mill as high as 500 km, which in turn would mean a transport 

cost of more than 30 USD/t of fresh cane (equation 7) or 230 USD/t of TRS16. 

In a nutshell, considering the inbound transportation costs for sugarcane is crucial to guaran-

tee a holistic picture when it comes to profitability at the farm level, since the transport cost 

of sugarcane from farm to mill is commonly paid by the farmer. The choice of different alter-

natives to include inbound costs into the model allows a variety of analyses considering short- 

and long-term developments. 

4.5. Economic module: estimating profitability 

The economic module is the major innovation within the PAM modeling approach. It has been 

developed entirely to estimate production costs, revenues, and return to land for each crop 

alternative at the SimU level. The availability of production cost information is very limited to 

                                                      
16  Assuming 13% of recoverable sugar (TRS) per t of fresh cane. 
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the level of detail required to analyze microregional land-use allocation strategies in most de-

veloping countries (Rao, 1989). Therefore, the economic module aims to fill this information 

gap by combining the output of the auxiliary modules (i.e., plant and transport) and other 

databases, allowing the estimation of the economic performance of the different cropping 

alternatives at the SimU level. 

This module is based on several steps to compute establishment and operating costs as well 

as revenues, following assumptions regarding crop intensity, yield levels, and observed infor-

mation from case study farms (i.e., typical farms). The output is the return to land estimations 

for each cropping alternative for each SimU – under the assumptions and price scenarios used. 

The PAM economic module follows the reasoning behind the minimum data approach so the 

entire development focuses on existing data, mainly from typical farms within the agri bench-

mark network, and national statistics. For Brazil, detailed data of additional typical farms from 

PECEGE and CEPEA is used for the development of costing extrapolation strategies (produc-

tion costs). Even though these additional datasets are important for the technical develop-

ment of the model, they are not used for the simulations. The idea is to assess the model’s 

performance using only the existing data structure of typical farms from agri benchmark. The 

following subsections explain in greater detail the building blocks of the economic module 

within the PAM approach. 

4.5.1. Module description 

The main goal of the economic module is to estimate the returns to land from each cropping 

alternative at the SimU level. Return to land is the measure for profitability and it is composed 

of revenues and total costs. The key innovation within the PAM framework is the detailed 

production cost estimation using a biophysical model and farm-level data. In this module, the 

aim is to assess the different behaviors of the cost components – e.g., linear to yields or fixed 

per ha – to realistically estimate production costs based on the current production system in 

Brazil. 

The overriding question is how to estimate the different cost components such as fertilizer, 

machinery costs, etc., based on few observed production costs data (i.e., typical farms) and 

using the output from the biophysical model to rationally extrapolate these known costs to 

regions where such costing information is not available.  

In the following subsection, I assess the relationship between the cost items and yield or area, 

considering important differences between cropping systems regionally as well as the overall 

productivity of the system based on yields. The observed farm-level production cost comes 

from the agri benchmark network, explained in detail in the next subsection. Finally, this mod-

ule combines the information from the transportation module to estimate farm-gate prices of 

the crops produced, allowing the calculation of the main economic indicator – i.e., returns to 

land for each available farming alternative at the SimU level. 
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4.5.2. Production costs data: typical farms 

Considering the data availability and the benefits of using representative farms, the PAM 

model currently uses the existing typical farms from the agri benchmark network in Brazil as 

the basis for most production cost information. The network has three grain-specialized and 

three sugarcane farms in Brazil. Even though the network has only six farms (five used as in-

put)17, the local research institutions collect information from many more (validation) typical 

farms that are not part of the standard database. Figure 14 shows the location for both input 

and validation farms (see chapter 6) and the areas producing soybeans and sugarcane. 

Figure 14:  Location of typical farms (model input and validation) and production for soy-

beans (left) and sugarcane (right) in 2016  

 

Source:  Production from IBGE (2016) – created by the author. 

According to Feuz and Skold (1992), it is important to consider the following when selecting 

the typical farms: (a) the diversity among farms, (b) the level of detail and (c) the criteria re-

garding how to combine the farms to create a group. The farms selected in Brazil are in the 

most important production areas, covering the regional differences between production sys-

tems as well as representing some of the diversity of farms. For this case study, the level of 

                                                      
17  For this case study, the sugarcane typical farm BR170RE is not used as input for PAM due to the lack of recent data 

– data available only until 2016. 
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detail is regional so that the typical farms should depict the main differences between regions 

instead of having greater detail within the regions. 

To understand the differences among the farms, Table 2 shows the key indicators for all the 

input farms selected to represent the most important production systems in Brazil. 

Table 2: Key features of the agri benchmark typical farms in Brazil 

Indicator 
Sugarcane Soybean/Maize 

BR220ST BR460RV BR170RE* BR1300MT BR3000MT BR65PR 

Location       

Region Southeast Center-west Northeast Center-west Center-west South 

City SER** Rio Verde Recife Sorriso CNP** Cascavel 

Climate       

Ann. rainfall (mm) 1,518 1,367 740 1,553 1,776 1,559 

Rain distribution Oct-Apr Oct-Apr Apr-Sep Oct-Apr Oct-Apr Oct-Apr 

Production       

Farm size (ha) 220 460 170 1,300 3,000 65 

Own land (ha) 100 100 100 100 83 100 

Full-time labor¹ 2.8 3.0 4.6 5.6 6.3 1.1 

Double crop (%)² - - - 80 70 70 

Cuts per cycle 6 7 7 - - - 

Mech. Hvst (%) 100 100 0 100 100 100 

Data source PECEGE CEPEA/CNA 

* Farm data is not used as input for the case study due to the lack of recent data 

** SER = Sertãozinho and CNP = Campo Novo dos Parecis   
¹ one full-time labor unit = 2,200 hours per year 

² share of soybean area with maize as the second crop 

Source: own calculations based on agri benchmark (2020) and Climatempo (2020) 

It is important to highlight the spatial distribution of the farms, covering the main production 

areas in Brazil. For sugarcane, the focus is on the Southeast region, which has the highest 

production within the country, followed by the Center-west and Northeast. Besides the signif-

icant difference in the climatic conditions, the share of mechanical harvest indicates the great 

diversity among the sugarcane areas – the northeast farm having only manual cutting and the 

remaining farms, 100% mechanical. 

For grains, the focus is primarily on the Center-west region (Mato Grosso state) with two 

farms, followed by a farm in the traditional South region. The farm size indicates the regional 

heterogeneity the farms represent. The farm in Paraná (Cascavel) has only 65 ha compared 

with Center-west farms size at 1,300 and 3,000 ha, allowing, for example, better understand-

ing of how farm size may impact production costs. The full-time labor endowment is another 
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indication of varying regional characteristics, extending from 1.1 in Parana to more than 5 in 

Mato Grosso, which is interesting considering that the latter has 20 times more acreage. 

Considering the spatial distribution and the diversity of the key features, the agri benchmark 

typical farms seem to be a suitable basis for representing the diversity of the production sys-

tems in Brazil while keeping the sample size feasible to follow the minimum data criteria pro-

posed in this dissertation. The typical farm data is inputted as average for the region where 

the farms are located as an average from 2016 to 2018 for calibration and the BAU scenario. 

Finally, it is important to note that the importance of the typical farm data varies among the 

different cost components since some key cost items such as fertilizers are derived from the 

plant module. Throughout the economic module, the user can switch from the agri benchmark 

data as to more detailed costing data if microregional information is available. The importance 

of typical farm data in each cost component, as well as how these costs are estimated, are the 

focus of the following sections. 

4.5.3. Crop-establishment costs 

The first cost component within the economic module is crop establishment. The definition of 

crop-establishment costs follows the terminology used within the agri benchmark network, 

where the main components are seeds, fertilizer, and plant protection. The remaining com-

ponents of direct costs18 are drying, crop insurance and variable irrigation costs, which are not 

currently included in the PAM model (Nehring, 2011). According to recent data from agri 

benchmark (2020), crop-establishment costs account for 59% of the total production costs for 

soybean, 62% for maize, and 30% for sugarcane on the typical farms in Brazil. 

The basic idea is to estimate the physical input use for each crop alternative at SimU level (e.g., 

kg of N) and the farm-level input prices (e.g., USD/t of fertilizer) to calculate the crop-estab-

lishment cost per hectare for each cost component (e.g., fertilizer costs in USD/ha). The phys-

ical input use strategy is not valid for crop protection products since only costs per ha are 

available and it is not meaningful to consider input volume due to the different concentrations 

and active ingredients. To estimate crop-establishment costs, the PAM model uses the output 

from the plant model on the input use of fertilizer, combining this information with production 

costs from the typical farms, following this basic equation: 

                                                      
18  According to Nehring (2011), direct costs are crop-establishment costs plus drying, insurance and variable irrigation 

cost. 
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𝐸𝑠𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 =  𝑆𝑒𝑒𝑑𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 + 𝑃𝑃𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 +

𝐹𝑒𝑟𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑖  
(9) 

where 𝑆𝑒𝑒𝑑𝐶𝑜𝑠𝑡_ℎ𝑎 are the seed costs per ha; 𝑃𝑃𝐶𝑜𝑠𝑡_ℎ𝑎, the plant protection costs per ha; 

and 𝐹𝑒𝑟𝑡𝐶𝑜𝑠𝑡_ℎ𝑎, the fertilizer costs per ha for the SimU 𝑖. The following subsections explain 

in greater detail modeling steps to estimate each subcategory of the crop-establishment costs. 

4.5.3.1. Seed costs 

In all the analyzed crops, seed is an important cost item. Of the total crop-establishment cost, 

they account for 19% in soybeans, 37% in maize and 13% in sugarcane19, illustrating the im-

portance of correctly estimating this cost component (agri benchmark, 2020). However, it is 

challenging to link seed costs either to crop output or to consider them as a fixed cost per ha. 

The underlying function between seed’s physical input in kg/ha and yield is not expected to 

be linear because the same input use (kg/ha) of two different varieties in different climate 

conditions may lead to significant differences in yields. Additionally, seed pricing is not directly 

related to the input volume. A kilogram of genetically modified organism (GMO) soybeans 

may be valued at twice as much as non-GMO soybeans and they may still produce similar 

yields, depending on the climate conditions, but leading to quite different cost structure re-

lated to crop protection. This costing behavior poses a challenge for modeling seed costs at a 

regional level. 

In the PAM framework, the lack of information on the varieties used by farmers poses another 

challenge since such data are not publicly available. A farmer is likely to change his/her variety 

setup every year depending on price expectation and previous experiences – e.g., increase or 

reduce area with non-GM soybeans. In the process of creating a synthetic typical farm, it is 

not feasible to agree on a seed portfolio, so that the information collected within the agri 

benchmark network includes only the input use in kg/ha and price. Moreover, the plant mod-

ule (EPIC) does not provide information on seed usage. It is an input of the model under the 

crop management definitions affecting biomass only at the start crop cycle. 

Against this background, the current version of the PAM model assumes a regional linear seed 

cost per t of output. The reasoning is that SimUs with much lower yields are likely to have a 

lower investment in seeds – i.e., the relationship between input costs and output potential, 

but SimUs with production levels similar to the typical farms are likely to have similar seed 

costs per ha. The following function is used to estimate seed costs per ha: 

                                                      
19  Based on agri benchmark data for 2016 to 2018 in USD/ha for all farms in Brazil. For sugarcane, the whole cycle 

average is considered so that the high seed cost in the establishment phase is amortized throughout the productive 
cycle of the crop. 
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𝑆𝑒𝑒𝑑𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 =  𝑆𝑒𝑒𝑑𝐶𝑜𝑠𝑡_𝑡𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
×  𝑌𝐿𝐷𝑖 (10) 

where 𝑆𝑒𝑒𝑑𝐶𝑜𝑠𝑡_𝑡𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
 are the regional typical farm average seed costs in USD/t of output 

and 𝑌𝐿𝐷𝑖  is the SimU fresh yields in t/ha, either of grains or sugarcane. 

Alternatively, one could use a fixed seed input per ha and spatially correct prices as the ACM 

model (Deppermann et al., 2018) or keep seed costs as fixed per ha. The caveat regarding 

keeping seed costs completely fixed is that for areas with significantly lower yields (e.g., -50% 

compared with typical farms), it is unlikely that farmers would invest the same in seeds per ha 

as in the relatively high-yielding regions where the typical farms are located. Hence, by adjust-

ing the seed cost with yields, I expect to connect this cost with the expected crop output. 

Improving seed cost estimation requires:  

− a better understanding of the seed pricing mechanism (trying to answer whether there 

is a clear connection between seed pricing (cost) and yields). 

− additional granular information on the type of seeds that farmers use. That could im-

prove the parametrization of model to account for GMO, non-GMO or farm-saved 

seeds, for example. 

− a better understanding of the relationship between seed input and crop output. 

Increasing the complexity of the estimation of seed costs is the fact that farmers may invest 

in seed in order to optimize other costs such as plant protection. For example, farmers invest-

ing in GMO soybeans are willing to spend more for seed while saving on plant protection costs, 

even if yields are similar to conventional (non-GMO) varieties. 

4.5.3.2. Fertilizer costs 

Fertilizer costs account for 33% of the total establishment costs in soybeans, 38% in corn, and 

52% in sugarcane (agri benchmark, 2020). Following the terminology from agri benchmark, 

the model estimates total fertilizer costs via the following equations: 

 

𝐹𝑒𝑟𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 =  𝑁𝑐𝑜𝑠𝑡_ℎ𝑎𝑖 + 𝑃𝑐𝑜𝑠𝑡_ℎ𝑎𝑖 + 𝐾𝑐𝑜𝑠𝑡_ℎ𝑎𝑖 (11) 

where the total fertilizer cost per ha at the SimU 𝑖 (𝐹𝑒𝑟𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑖) is the sum of the nitrogen 

(𝑁𝑐𝑜𝑠𝑡_ℎ𝑎𝑖), phosphorus (𝑃𝑐𝑜𝑠𝑡_ℎ𝑎𝑖) and potash (𝐾𝑐𝑜𝑠𝑡_ℎ𝑎𝑖) costs per ha. In the following 

paragraphs, I outline how the individual nutrient costs are estimated. 
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Nitrogen and Phosphorus input use 

For N and P, the PAM model relies on the fertilizer use estimated by EPIC in the plant module. 

That is a great advantage of EPIC considering actual yield and plant-environment relationships 

to determine the actual nutrient usage or application. EPIC estimates the total fertilizer ap-

plied per ha as well as the total fertilizer used by the crop. PAM allows the user to define 

whether the actual applied fertilizer amount or the uptake should be considered for the cost-

ing calculation. 

For this dissertation, the application quantity20 is used because when choosing between crops 

farmers are expected to consider the economic returns including input expenses and are un-

likely to consider the uptake of natural nutrients present in soils. Due to the lack of long and 

complex crop rotations, it is plausible to assume that the bulk of nutrition applied is used by 

the crop in question, differing from regions where fertilization of systems takes place. Finally, 

the pricing of the nutrients in soils is complex due to the uncertainty regarding their availability 

(i.e., the share of the total nutrient that the plant can uptake) as well as a natural fixation, for 

example in soybeans, that can hardly be priced with nitrogen present in the urea. 

Potash input use 

Potash is the only macronutrient that is not explicitly modeled by EPIC. To estimate K input 

use within the PAM framework, nutrient uptake by plants is used as a linear function with crop 

yield – i.e., kg of K per t of output. Uptake per unit of output is kept constant at 20.7 kg/t for 

soybeans, 6.4 kg/t for maize and 1.5 kg/t for sugarcane, based on the experimental data from 

Mascarenhas et al. (2004) and Oliveira et al. (2010). According to agri benchmark (2020), typ-

ical farms in Brazil apply ca. 90 kg/ha of K for sugarcane and 70 kg/ha for soybeans, indicating 

the importance of including this fertilizer in production cost estimations. 

Fertilizer farm-gate prices 

The final step to calculate the fertilizer cost is to estimate farm-gate prices. The standard ap-

proach within the PAM model is to use FOB fertilizer prices and convert them to farm level by 

adding the transportation costs from port to farm. For this case study, I have access to an 

exclusive database from the research center CEPEA, with observed monthly fertilizer prices 

for Urea (nitrogen), DAP (phosphorus), and KCL (potash) for 10 major producing states Brazil 

– averages from 2016 to 2018. This database is the base for the farm-level fertilizer pricing in 

this version of the PAM model. 

The observed fertilizer price information is interpolated to estimate prices for the remaining 

16 states that currently do not have a significant production of soybeans and maize. This in-

terpolation uses the price at the nearest state, adding the transport cost to move the fertilizer 

                                                      
20  The actual amount applied depends on the crop requirements (FTN for N and FTP for P) – not a fixed amount per 

ha (see section 4.3.3). 
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to the specific state (see appendix 3). Finally, the fertilizer price in kg of commercialized prod-

uct is converted to single nutrients on a per kg element basis, following the international 

standard from agri benchmark (Nehring, 2011). 

Against this background, the estimation of N and P cost per hectare for each crop follows the 

equations: 

 

𝑁𝑐𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝐹𝑇𝑁𝑖 ×  𝑁𝑝𝑟𝑖𝑐𝑒_𝑡𝑢𝑓 (12) 

 

𝑃𝑐𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝐹𝑇𝑃𝑖 × 𝑃𝑝𝑟𝑖𝑐𝑒_𝑡𝑢𝑓 (13) 

where fertilizer costs per ha are a function of the 𝐹𝑇𝑃 and 𝐹𝑇𝑁 as the fertilizer applied in 

kg/ha from EPIC at SimU 𝑖, and 𝑁𝑝𝑟𝑖𝑐𝑒 and 𝑃𝑝𝑟𝑖𝑐𝑒 as fertilizer prices at the state level (𝑢𝑓). 

The costs for K are estimated using the following equation: 

 

𝐾𝑐𝑜𝑠𝑡_ℎ𝑎𝑖 =  𝐾𝑢𝑝𝑡𝑎𝑘𝑒 × 𝑌𝐿𝐷𝑖 × 𝐾𝑝𝑟𝑖𝑐𝑒_𝑡𝑢𝑓 (14) 

where K cost per ha (𝐾𝑐𝑜𝑠𝑡_ℎ𝑎) is a function of the crop yield (𝑌𝐿𝐷), the nutrient update 

(𝐾𝑢𝑝𝑡𝑎𝑘𝑒) in kg per t of output at the SimU 𝑖, and the price (𝐾𝑝𝑟𝑖𝑐𝑒_𝑡) at the state level (𝑢𝑓).  

In a nutshell, fertilizer costs in the PAM model are calculated mainly by combining the input 

quantity estimated by EPIC and farm-gate prices coming from the transport module. For Brazil, 

additional fertilizer price information for the main producing states is used to improve the 

model calibration. Since fertilizer is one of the main cost components within the establishment 

costs for sugarcane and maize, it is important the estimating is performed regionally, high-

lighting the importance of the biophysical model. 

4.5.3.3. Plant protection costs 

Plant protection costs are the final component of crop-establishment costs in the PAM model. 

Of the establishment costs, plant protection costs account for 48% in soybeans, 24% in maize, 

and 35% in sugarcane (agri benchmark, 2020). It is, however, the most challenging cost item 

to estimate regionally. 

On one hand, the economic returns for plant protection products are expected to vary strongly 

regionally and seasonally. For example, fungicide applications are expected to increase yields 

compared with no application in seasons with higher precipitation and a resulting higher inci-

dence of fungal diseases. However, in drier seasons, farmers may still apply fungicide to safe-

guard yields despite a limited economic return. On the other hand, a strong diminishing return 

with increasing application rates is expected. These are strong indications that a linear rela-

tionship between plant protection costs and yields is unlikely. Finally, physical input use (e.g., 
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kg/ha) is not a suitable parameter due to the large variation between concentration and re-

quired grams of active ingredient for different products. 

Consequently, the model assumes a constant plant protection expenditure within the region 

of the agri benchmark typical farms due to a relatively loose connection between plant pro-

tection expenses and yields. It is important to keep in mind that a regional differentiation is 

achieved assuming that SimUs within the area of the typical farm receive the plant protection 

expenses from this farm (or farms) and not the national average. 

Additionally, I attempt to improve the accuracy of the plant protection estimation by devel-

oping two different plant protection schemes based on the overall productivity (yield) of the 

SimU. The idea is that farms that have low output potential are likely to reduce their overall 

expenditures in plant protection to avoid negative margins. The two plant protection schemes 

are called “intensive” and “extensive” systems and are based primarily on adjustments to the 

current production systems observed in the typical farms. In the current version, SimUs with 

yields lower than 50% of the typical farm are classified as extensive and the remaining are 

considered intensive systems. 

It is challenging to develop a plant protection program for the extensive systems because 

these areas are not under production nowadays. The current production volume in SimU with 

equal or less than 50% of the average yield of the typical farms represent only 0.1% of the 

total soybean production, based on IBGE (2015). Under the current economic situation, it is 

not viable to produce soybeans in such low-yielding areas. Since future scenarios may change 

this situation, an expert from CEPEA was asked to develop a theoretical plant protection pro-

gram for such low-yielding areas. According to the expert from CEPEA, the major saving po-

tential is expected to be a reduction of fungicide and insecticide applications. It is not likely 

that farmers would be able to reduce herbicide costs since desiccation is key for the success 

of the no-till systems and it is already based on glyphosate application so that cheaper alter-

natives are not available. 

Hence, the two plant protection programs are adaptations of the agri benchmark typical farm 

in Sorriso/MT. In the season 2017/18, GMO soybeans received three fungicide applications 

and six insecticide applications, which is assumed to be baseline (“intensive system”) for the 

following calculations. The alternative program assumes a lower pressure from insects so that 

only four insecticide applications are considered, with relatively cheaper products and not us-

ing products to control white fly (which are very expensive and not required everywhere). 

Additionally, only two fungicide applications should enough for such low-yielding regions. This 

reduction represents a potential plant protection savings of approximately 40% compared 

with the baseline. Hence, the final equations of estimate plant protection cost in the PAM 

model are: 
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𝑃𝑃𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝑃𝑃𝐶𝑜𝑠𝑡_ℎ𝑎𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
 (15) 

If: 𝑌𝐿𝐷𝑖 ≤ 0.5 𝑌𝐿𝐷𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
 then: 

 

𝑃𝑃𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝑃𝑃𝐶𝑜𝑠𝑡_ℎ𝑎𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
× 0.6021 (16) 

where hectare cost is equal to the plant protection costs from the regional typical farm 
(𝑃𝑃𝐶𝑜𝑠𝑡_ℎ𝑎𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛

) if yields at the SimU 𝑖 equal or are higher than 50% of the yield of the 

typical farms. If this condition is not met, only 60% of the typical farm costs are allocated to 

the SimU 𝑖. 

4.5.4. Operating costs 

After the crop-establishment cost, the next important cost item estimated within the eco-

nomic module is the operating costs. They are an important component of the cost structure 

of farms in Brazil, especially for sugarcane production, where operating costs account for 56% 

of total production costs. Conversely, soybean and maize have a relatively higher share of 

establishment costs, resulting in operating costs of ca. 40% of the total costs (agri benchmark, 

2020). 

First, it is important to define operating costs. The model follows the terminology employed 

within the agri benchmark network, where the major operating cost components are labor, 

machinery, diesel and contractors. The following summary illustrates how these cost items 

are calculated for the typical farms, based on the work from Nehring (2011):  

− Labor costs account for hired and family labor, considering the former as cash expend-

itures and the latter as opportunity costs of the family members involved in manage-

ment and/or production. Costs include actual working hours defined by the typical 

production system as well as overheads incurred to depict the actual situation on 

farms. 

− Machinery costs include depreciation, financing, and repairs. It is noteworthy that the 

actual lifetime of each machine is used to compute the linear depreciation. If the focus 

group indicates that certain equipment will be repurchased after its lifetime, the cur-

rent repurchase price of the new equipment is used to calculate the depreciation (in-

stead of historical prices). Thereby, the model considers that farmers in high-inflation 

countries need to generate enough returns to repurchase a new machine, including 

inflation during the depreciation period. 

                                                      
21  For sugarcane, a plant protection cost reduction of 15% is expected for the “extensive” system since the current 

production system is already based, to a large extent, on biological control, indicating that substantial cost reduc-
tions are not likely. 
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− Diesel costs are calculated for each fieldwork operation within the production system. 

Diesel overheads are then allocated to each crop according to its share of machinery 

running hours on the total. 

− Contractor costs are the third-party fee charged for operations. It is inputted per op-

eration including all costs for diesel, labor and machinery as charged by the contrac-

tors. 

Estimating operating costs is challenging due to the lack of regional-level data as well as infor-

mation on basic farm machinery setup that could support cost estimation. The alternative 

approach using typical farm data provides detailed information for the specific regions, but 

the overarching task is to model operating cost at the unknown locations. The next subsection 

explores the underlying reasoning behind the estimation steps developed within the PAM 

framework. 

4.5.4.1. Operating costs at sugarcane farms 

The first important step is to understand the differences between the farms currently produc-

ing grains (soybean/maize) and sugarcane in Brazil. A major difference is the outsourcing of 

the most important operations to contractors. Currently, around 90% of the machinery costs 

from the typical sugarcane farms in Brazil22 are contractor costs. That is the result of outsourc-

ing importing operations such as planting, harvesting, loading, and transportation, mainly to 

sugar mills that provide these services to growers. Large sugarcane farmers also offer services 

to smaller growers at fees similar to those charged by mills, indicating that the fee levels are 

economically set to provide returns on investments, labor, and other cash expenditures. Com-

paring the harvest cost across all 45 regions from PECEGE, the average cost is USD 9.4/t of 

fresh cane with a standard deviation of only USD 1.2/t, illustrating the similarity of contractor 

fees charged in the producing regions in Brazil22. 

Another important feature of sugarcane growing in Brazil is that these operating fees are 

mainly based per ton of fresh cane, creating a direct link between operating costs and yields. 

Such costs represent 73% of the total operating costs. The remaining 27% are divided into own 

machinery (9%), labor (12%) and diesel costs (6%) that are related to ratoon23 upkeep (spraying 

and fertilizing), and a few operations during planting and farm management. Therefore, there 

seems to be a clear relationship between cost structures that are based on yield (largest share) 

and the remaining based on area. 

                                                      
22  Based on the PECEGE sample of 45 producing regions with typical farms as an average for 2016-2018 seasons. 

23  Ratoon is the common term for cane that emerges from underground buds after the harvest. Commonly the first 
year is called “plant” and the following five to six harvests “ratoons” - Ramburan, Wettergreen, Berry, and Shongwe 
(2013)  
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Accounting for these features in sugarcane production, the PAM model uses a mixed approach 

combining yield- and area-related costs, using the information from the typical farms as the 

main parameters:   

 

𝑀𝑎𝑐ℎ𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝑀𝑎𝑐ℎ𝐶𝑜𝑠𝑡_ℎ𝑎𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
 (17) 

 

𝐿𝑎𝑏𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝐿𝑎𝑏𝐶𝑜𝑠𝑡_ℎ𝑎𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
 (18) 

 

𝐷𝑖𝑒𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝐷𝑖𝑒𝐶𝑜𝑠𝑡_ℎ𝑎𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
 (19) 

 

𝐶𝑜𝑛𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝐶𝑜𝑛𝑡𝐶𝑜𝑠𝑡_𝑡𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
× 𝑌𝐿𝐷𝑖  (20) 

 
𝑂𝑝𝑒𝑟𝐶𝑜𝑠𝑡ℎ𝑎𝑖

= 𝑀𝑎𝑐ℎ𝐶𝑜𝑠𝑡ℎ𝑎𝑖
+ 𝐿𝑎𝑏𝐶𝑜𝑠𝑡ℎ𝑎𝑖

+ 𝐷𝑖𝑒𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 + 𝐶𝑜𝑛𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 
(21) 

where  𝑀𝑎𝑐ℎ𝐶𝑜𝑠𝑡_ℎ𝑎 stands for machinery costs per ha, 𝐿𝑎𝑏𝐶𝑜𝑠𝑡_ℎ𝑎 for labor costs per ha, 

𝐷𝑖𝑒𝐶𝑜𝑠𝑡_ℎ𝑎 for diesel costs per ha based on the regional typical farms in USD/ha.  

𝐶𝑜𝑛𝑡𝐶𝑜𝑠𝑡_ℎ𝑎  is a function of contractor cost per t of cane from the regional typical farm 
(𝐶𝑜𝑛𝑡𝐶𝑜𝑠𝑡_𝑡𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛

)  multiplied by the estimated yield (𝑌𝐿𝐷) at the SimU 𝑖. 

4.5.4.2. Operating costs at grain farms 

For the grain-producing farms, the situation is more complex because most farms perform 

field operations themselves, requiring a different approach to correctly estimate their oper-

ating costs. To address this issue, I considered different approaches using the complete da-

taset from CEPEA (all typical farms) to try to correctly parametrize the operating costs estima-

tion. First, a more detailed investigation of the framework conditions in Brazil is required. 

Farm size as a driver of operating costs 

The first approach considered for the estimation of operating costs for grain-producing farm-

ers is to base the estimation primarily on farm size as the main cost driver. The economic 

theory offers rich literature on the economics of size as a way of reducing unit cost, by spread-

ing the fixed cost component over a larger number of produced units (Hall & LeVeen, 1978; 

Raup, 1969). 

The marginal effect of the economics of scale is expected to decrease from a certain farm size 

onwards (Forstner et al., 2018; Hall & LeVeen, 1978). The reasoning is that for the most im-

portant fieldwork operations - i.e., seeding and harvesting – operating costs for the first hec-

tares are relatively high since the fixed cost component applies to a small number of produced 

units, and with an increasing area, a reduction of the unit costs is observed. However, when 

the full capacity of the first machinery set (i.e., seeder plus tractor and/or combine) is 
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exhausted, the farmer is motived to expand his/her machinery setup while also increasing 

acreage accordingly to stay at the most efficient size/machinery combination. 

To evaluate the impact of size on the operating cost for grain farms in Brazil, typical farm 

information from all regions covered by CEPEA is used. The idea is to compare operation costs 

across different farm sizes to understand whether a clear pattern between farm size and costs 

can be observed. Figure 15 shows the operating costs including machinery, labor, and depre-

ciation for all 31 typical farms from CEPEA on average from 2016 to 2018 in USD. 

Figure 15:  Operating costs USD/ha (left) and USD/t of soybeans (right) for all CEPEA typ-

ical farms on average for 2016 to 2018 

 

Source:  CEPEA (2019) originally in Reais converted to USD using the exchange rate of 1 BRL = 0.3 USD. Created by the 
author. 

Figure 15 indicates that a clear relationship between size and operating costs for soybean pro-

ducing farms is not found using the only information available on a large scale in Brazil. A 

possible explanation is that size alone may not explain differences and other factors such as 

topography, field size, farm structure, and the weather could play a role. 

Brazil has well-defined regional segregation of soybean production, dividing the country into 

two main areas – i.e., Cerrado and South. That motivates the next attempt to design a tailored 

modeling approach for the Brazilian grain-producing farmers considering macro-regional dif-

ferences besides size. 
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Regional differences and soybean production  

Since size alone does not seem to explain differences in operating costs among farms in Brazil, 

a closer understanding of other factors that are expected to affect machinery performance 

and farm setup should improve the estimation of operating costs. 

Available characteristics that are expected to affect machinery performance and thereby labor 

efficiency and operating costs mainly include days for operations, topography, location, and 

shape of fields (Molin, Milan, Nesrallah, Castro, & Gimenez, 2006; Sørensen, 2003). Alone, 

differences in field shape and size are expected to impact the performance of important op-

erations such as harvesting, via unproductive time lost due to moving machinery between 

fields and turns. 

To cluster areas with similar vegetation, topography, and climate, Brazil has been divided into 

six biomes, indicating that these regions may have different conditions for agriculture. Ac-

cording to the agricultural census of 2017 (IBGE), more than 98% of soybean production is 

located in two biomes, namely Cerrado (56%) and Mata Atlantica (42%).  Figure 16 shows the 

biomes in Brazil and soybean production as well as illustrative pictures from the native vege-

tation of Cerrado and Mata Atlantica. It is important to highlight that these biomes cover more 

than 3 million km² with a diversity of vegetation, so the pictures are merely illustrative. 

Figure 16:  Brazilian biomes and soybean production 

  

Source:  Biomes layer from IBGE (2018) – created by the author; Top picture from www.klimanaturali.org and bottom 
picture from  revistasagarana.com.br (accessed on 31.05.2020) 

Cerrado 

Mata Atlantica 
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Differences in topography and climate of the two biomes are significant. Soybean production 

in the Cerrado takes place mainly in areas with a slope lower than 3% (64.3% of the area) and 

31.1% with a slope lower than 8%, highlighting the suitability of this region for mechanization 

(Victoria, Bolfe, & da Silva, 2017). Conversely, Mata Atlantica is marked by higher slopes and 

a greater presence of hills and mountains, increasing the difficulties for mechanical opera-

tions. 

Rainfall patterns influence the availability of days to carry out field operations so that areas 

with more frequent precipitation require farmers to invest in more than optimum machinery 

(as compared with their farm size) to be able to seed and harvest their crops in the available 

days. Sørensen (2003) argues that available working hours are crucial information in deter-

mining machinery size and therefore affect overall operating costs. Furthermore, he concludes 

that overcapacity is 50% cheaper than under-capacity, illustrating the farmers with unreliable 

weather conditions are prone to over-mechanize and increase costs compared with areas with 

greater available working hours. An indication of the availability of days for operations is the 

number of days with rainfall in the months with a high workload. Soybeans are usually seeded 

from the middle of September to November and harvested between January and April, fol-

lowed directly by seeding of maize as the second-season crop. Therefore, the months with 

higher workloads are expected to be October and February/March as well as July/August, 

when maize is harvested. Figure 17 shows the historical average share of days with rainfall in 

a main producing state for each biome. 
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Figure 17:  Average share of days with rainfall in Paraná (Mata Atlantica) and Mato 

Grosso (Cerrado) – in % 

 

Source:  based on Marcuzzo, Oliveira, and Cardoso (2013) for Mato Grosso and on Leite, Adacheski, and Virgens Filho 
(2011) for Paraná - created by the author. 

Figure 17 indicates that the more defined seasonal pattern in Mato Grosso (Cerrado), with a 

significantly lower number of rainfall days in winter and autumn, indicates that farmers should 

be able to increase the usage of their machinery for maize harvest and soybean seeding. The 

latter is crucial to be able to use the rainfall volume in summer. It is important to note that, 

on average, both regions receive roughly the same 1,760 mm per year but with distinct distri-

bution (Climatempo, 2020). 

Finally, the Mata Atlantica biome is characterized as highly populated, with more than 50% of 

the total population and more than 3,000 cities, indicating that the availability of larger fields 

is expected to be lower than in the less populated Cerrado biome. All these factors suggest 

that besides size, regional differences may play an important role in machinery setup and ef-

ficiency of operations across farmers and therefore impact their operation costs. Hence, the 

typical farms from CEPEA were divided according to their biome and the results are presented 

in Figure 18. 
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Figure 18:  Operating costs USD/ha (left) and USD/t of soybeans (right) for all CEPEA typ-

ical farms on average for 2016 to 2018 – classified according to their biome 

 

Source:  CEPEA (2019) originally in Reais converted to USD using the exchange rate of 1 BRL = 0.3 USD. Created by the 
author. 

Figure 18 indicates that, indeed, the combination of the different regional characteristics plays 

an important role in estimating operating costs for soybean farmers. The farmers in the biome 

Mata Atlantica have higher operating costs even at farm sizes similar to farmers in Cerrado. 

Therefore, to estimate operating costs for grain farms in Brazil, it is important to consider their 

regional location, suggesting that at least one typical farm in each macro-region should be 

required to allow robust estimations. There appears to be no close relationship between op-

erating costs and yields (see Figure 18), which is expected since machinery setup and labor 

are defined for the average level of yield that can be attained in the region, reducing the in-

fluence of annual yield changes in the operating costs. 

Even though size alone does not seem to fully explain the differences in operation costs, it is 

noteworthy that farms in these regions have significant differences in size. According to IBGE 

(2019), more than 83% of the total soybean production in the Mata Atlantica biome is pro-

duced by farms with less than 200 ha, whereas roughly 60% of the soybean production from 

Cerrado is grown by farms with more than 1,000 ha, indicating farms adopted different opti-

mal operating sizes depending on their growing conditions.   

Against this background, the PAM approach divides Brazil into two main regions for the esti-

mation of the operating costs, namely Traditional (largely the Mata Atlantica biome) and 
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Expansion (for the Cerrado biome). Overlapping the biomes boundaries with the state level to 

create the regions facilitates the connection between statistical data that is provided at the 

state level (fertilizer base prices, taxes), which would be difficult to achieve by using the exact 

biome boundaries. Figure 19 shows the regions for estimation of operating costs for grain 

farms within the PAM approach as well as the distribution of soybean production according 

to the size of farms in each region. 

Figure 19:  Regions for operating cost estimation in the PAM approach (left) and the 

share of soybean production per class of size of farms in each region (right) 

 

Source: IBGE (2019) – created by the author. 

It is important to consider future scenarios including the expansion of planted area to land 

currently in pasture or native vegetation. Crop land expansion in Brazil has taken place mainly 

in the MAPITOBA region, with farm structure and growing conditions similar to the main pro-

ducing areas in Cerrado (e.g., Mato Grosso). Therefore, this area is considered part of the Ex-

pansion region within the PAM approach. 

Since yield is not expected to have significant impact on operation costs in the grain farms, 

the estimation uses per ha cost from the typical farms in the defined regions for the cost esti-

mation. It is important to highlight that the available farms also meet the structural size as 
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described earlier, with the typical farm from the Traditional24 region having 65 ha and the two 

typical farms in the Expansion Region having 1,300 ha and 3,000 ha. The formula for estima-

tion of operating cost in the grain farms is as follows: 

 

𝑂𝑝𝑒𝑟𝐶𝑜𝑠𝑡_ℎ𝑎𝑖 = 𝑂𝑝𝑒𝑟𝐶𝑜𝑠𝑡_ℎ𝑎𝑎𝑏𝑟𝑒𝑔𝑖𝑜𝑛
  (22) 

where the  𝑂𝑝𝑒𝑟𝐶𝑜𝑠𝑡_ℎ𝑎 at the SimU 𝑖 is equal to the operating cost at the typical farm(s) in 

the region where the SimU 𝑖 is located25. 

Summary 

Based on the available production costs data, farm size alone does not seem to explain the 

differences in operating costs in grain-producing farms in Brazil. Considering additional re-

gional characteristics such as topography, climate and field size may improve operating costs 

estimation. That implies at least one farm for each region is necessary to depict inter-regional 

differences. Due to the lack of a clear connection between operating costs and yields, the 

model assumes cost as similar on a per ha basis within the defined regions. Additional infor-

mation and evaluation of the drivers of operating costs should help improve the estimation 

even further. 

4.5.5. Crop prices at farm-gate level 

A key piece of information required to estimate the economic return at the farm level is the 

crop price. This information is commonly not available in the high-resolution used by the PAM 

approach. Therefore, I propose an endogenous estimation of prices based mainly on reference 

prices and transportation costs. It is important to mention, that by endogenously converting 

FOB prices to farm-gate prices, the model allows an easy input solution to run simulations 

with projected or observed prices. Finally, a tailored approach is proposed to estimate farm 

gate prices for sugarcane since it is not commercialized as fresh cane, resulting in a more com-

plex payment system. 

4.5.5.1. Based on reference price (FOB) 

Farm-level prices at the SimU levels for maize and soybeans are estimated by deducting the 

estimated transport cost (farm to the nearest port) from FOB prices. This assumes that farm-

ers in exporting countries receive international prices minus the costs to reach the market – 

                                                      
24  Within the PAM framework, the regions are renamed as “Traditional”, mainly representing the Mata Atlantica bi-

ome, and “Expansion”, accounting mainly for the production areas in the Cerrado. This is necessary since the ad-
ministrative state-level regions are considered instead the biome classification scheme. 

25  The detailed assignment of the typical farms’ data to each region for grains and sugarcane production is shown in 
appendix 11.  
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i.e., getting the product to the harbor (Freebairn, 1987). Farm-gate prices for grains are esti-

mated following the equation: 

 

𝐺𝑎𝑡𝑒𝑃𝑟𝑖𝑐𝑒_𝑡𝑗𝑖
= 𝐹𝑂𝐵𝑝𝑟𝑖𝑐𝑒_𝑡𝑗 − 𝑇𝑟𝑎𝑛𝑠𝑝_𝑡𝑗𝑖

 (23) 

where the 𝐺𝑎𝑡𝑒𝑃𝑟𝑖𝑐𝑒_𝑡 is the farm-gate price in USD/t, 𝐹𝑂𝐵𝑝𝑟𝑖𝑐𝑒_𝑡 is FOB price and 

𝑇𝑟𝑎𝑛𝑠𝑝_𝑡 is the transport cost, for the crop 𝑗 in the SimU 𝑖. FOB prices come from CEPEA daily 

in BRL per bag26. The information is converted to USD/t and averaged arithmetically. 

4.5.5.2. Farm-gate prices for sugarcane 

The transport cost approach to estimate farm-gate prices, as applied for soybeans and maize, 

is not suitable for sugarcane. The farm output (fresh cane) must be processed and the two 

main outputs – i.e., sugar and ethanol – are then commercialized. Therefore, an alternative 

concept is proposed to estimate farm-gate prices for sugarcane production. In Brazil, cane 

farmers receive shares of the proceeds from the sales of sugar and ethanol at the mill level, 

according to a predefined formula (CONSECANA, 2006). Therefore, ethanol and sugar prices 

at the SimU level are necessary to calculate the resulting cane price (TRS price). 

Sugar prices at the SimU level are estimated with the same approach as for grains – i.e., FOB 

minus transport costs. That is realistic since most of the sugar produced in Brazil is exported 

(UNICA, 2019). Ethanol prices are more challenging since the largest share of the production 

is consumed domestically. The National Agency of Oil, Gas, and Biofuels (ANP) reports monthly 

data on ethanol prices at the retail level for roughly 500 municipalities in Brazil (ANP, 2020) – 

see appendix 4. However, these are gas-station levels while the reference for the TRS formula 

is at the mill level. Therefore, the model uses CEPEA mill-level ethanol prices for the state of 

São Paulo, which is converted to the remaining locations by the following steps: 

(1) Removing the sales tax, which differs by state, from the observed retail prices (ANP). 

(2) Calculating the relationship between the average retail prices without tax of each state 

to São Paulo (ANP). 

(3) Using the resulting relationship (item 2) to convert mill-level prices from São Paulo (CE-

PEA) to state-level prices elsewhere. 

(4) The resulting state-level prices are finally converted to the municipality level by the 

same logic – based on the observed relationship between the state and municipality 

retail prices. 

                                                      
26  Sugar: reference Santos, Soybeans: reference Paranaguá; maize: reference Campinas (https://ce-

pea.esalq.usp.br/en) 
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(5) The SimU receives the ethanol price of the nearest municipality, based on the geodesic 

distance using the GIS software. 

The idea is that within the states the major driver of the price difference should be transpor-

tation and competition among gas stations27. Having the sugar and ethanol prices at the SimU 

level, the TRS price is estimated as: 

 

𝑇𝑅𝑆𝑠𝑢𝑔𝑎𝑟_𝑡𝑖 = 𝐺𝑎𝑡𝑒𝑃𝑟𝑖𝑐𝑒_𝑡𝑠𝑢𝑔𝑎𝑟𝑖
 ×  0.9528 × 0.595 (24) 

 

𝑇𝑅𝑆𝑒𝑡ℎ_𝑚³𝑖 = 𝐺𝑎𝑡𝑒𝑃𝑟𝑖𝑐𝑒_𝑚³𝑒𝑡ℎ𝑖
 ×  0.5966 × 0.6210 (25) 

 

𝑇𝑅𝑆𝑓𝑖𝑛𝑎𝑙_𝑡𝑖 =   (𝑇𝑅𝑆 𝑠𝑢𝑔𝑎𝑟_𝑡𝑖 × 𝑀𝑖𝑥𝑆𝑢𝑔𝑢𝑓)

+ (𝑇𝑅𝑆 𝑒𝑡ℎ_𝑚³𝑖 × 𝑀𝑖𝑥𝐸𝑡ℎ𝑢𝑓) 

(26) 

where TRS (e.g., 𝑇𝑅𝑆𝑠𝑢𝑔𝑎𝑟_𝑡) for each product is a function of the price at the SimU 𝑖 (e.g., 

𝐺𝑎𝑡𝑒𝑃𝑟𝑖𝑐𝑒_𝑡𝑠𝑢𝑔𝑎𝑟), the chemical conversion between TRS and the product (e.g., 0.9528 for 

sugar), meaning converting one t of TRS produces 953 kg of sugar. CONSECANA (2006) also 

defines the share of the final product value that goes to cane growers, which, in the case of 

sugar, is 59.5%. The final TRS (𝑇𝑅𝑆𝑓𝑖𝑛𝑎𝑙_𝑡) depends on the production mix, which is share of 

sugar and ethanol produced at the state level (𝑢𝑓). The production mix data at state level 

comes from CONAB (2021), as an average for 2016-2018. 

Summary 

The endogenous estimation of farm-level crop price is a major advantage within the PAM ap-

proach, allowing an easy simulation of observed or projected prices. The underlying idea is to 

use the transportation cost to correct reference prices to farm-gate prices. For sugarcane, the 

overall payment system is more complex due to the mandatory processing and the different 

destinations of the final output – i.e., sugar and ethanol. Having a dedicated approach to ac-

count for these differences should help improve the model’s accuracy significantly. 

4.5.6. Profitability: estimating returns to land 

The final step within the economic module is measuring the economic performance of each 

production alternative at each SimU. Several indicators are suitable to infer the economic per-

formance of farming activities – e.g., gross margin, return to land and profit. The selection of 

the indicator depends strongly on the research question as well as the temporal scope of the 

decision process. 

                                                      
27  The current version of the PAM model for Brazil, allows the user to choose a simplified ethanol price estimation by 

using observed margins between retail and distribution prices from ANP to convert gas-station prices to the distri-
bution level. Hence, the model uses the distribution prices instead of mill-level prices. That, however, will overes-
timate prices and may cause biases due to the different levels of tax. 
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For many farmers, comparing production alternatives at the gross-margin level is sufficient 

(usually including the variable cost for labor and machinery) because this metric is relatively 

easy to measure and in the very short-term the impact of fixed costs and the opportunity cost 

of own-labor and capital may be negligible. However, for more complex and lasting decisions 

such as to moving to new crops, which may involve investing in new machinery, changing labor 

endowments or expanding the farming operating, a more detailed indicator such as return to 

land or profitability is required (Seo & Mendelsohn, 2008). 

Within the PAM framework, the goal is to assess the economic performance of different pro-

duction alternatives within the farm. That motivates the use of return to land instead of profit 

since the former excludes land costs, which should not affect cropping allocation decisions 

within the farm. Another important advantage of using return to land instead of profitability 

is avoiding the complexity of estimating land rent and value. Land values should originate pri-

marily from the expected return to land, but several other factors such as potential real-estate 

development, taxation and government programs create imbalances between the expected 

returns and the actual values (Borchers, Ifft, & Kuethe, 2014). 

Against this background, the return to land is estimated as follows: 

 

𝑅𝑒𝑡𝐿𝑎𝑛𝑑_ℎ𝑎𝑗𝑖
= 𝐺𝑟𝑜𝑠𝑠𝑅𝑒𝑣_ℎ𝑎𝑗𝑖

− 𝑇𝑜𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑗𝑖
 (27) 

where (grains): 

 

𝐺𝑟𝑜𝑠𝑠𝑅𝑒𝑣_ℎ𝑎𝑗𝑖
= 𝑌𝐿𝐷𝑗𝑖

×  𝐺𝑎𝑡𝑒𝑃𝑟𝑖𝑐𝑒𝑗𝑖
 (28) 

 𝑇𝑜𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑗𝑖
= 𝐸𝑠𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑗𝑖

+ 𝑂𝑝𝑒𝑟𝐶𝑜𝑠𝑡_ℎ𝑎𝑗𝑖 

+ 𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡_ℎ𝑎𝑗𝑖 
 

(29) 
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for sugarcane: 

 

𝐺𝑟𝑜𝑠𝑠𝑅𝑒𝑣_ℎ𝑎𝑠𝑢𝑔𝑖
= 𝑌𝐿𝐷_𝑡𝑟𝑠𝑖 × 𝑇𝑅𝑆𝑓𝑖𝑛𝑎𝑙_𝑡𝑖 (30) 

 𝑇𝑜𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑠𝑢𝑔𝑖
= 𝐸𝑠𝑡𝐶𝑜𝑠𝑡_ℎ𝑎𝑠𝑢𝑔𝑖

+ 𝑂𝑝𝑒𝑟𝐶𝑜𝑠𝑡_ℎ𝑎𝑠𝑢𝑔𝑖 
+

𝑀𝑖𝑠𝑐𝐶𝑜𝑠𝑡_ℎ𝑎𝑠𝑢𝑔𝑖 
+  𝐼𝑛𝑏𝑇_ℎ𝑎𝑠𝑢𝑔𝑖

  
(31) 

where the return to land (𝑅𝑒𝑡𝐿𝑎𝑛𝑑_ℎ𝑎) is a function of gross revenue (𝐺𝑟𝑜𝑠𝑠𝑅𝑒𝑣_ℎ𝑎) and 

total costs without land (𝑇𝑜𝑡𝐶𝑜𝑠𝑡_ℎ𝑎), all per ha for the crop 𝑗 in the SimU 𝑖. For sugarcane, 

total costs also include transport from farm to mill (𝐼𝑛𝑏𝑇_ℎ𝑎). 

The model also estimates gross margin to react to different research questions. That may be 

important for regions where the robust estimation of operating cost is challenging due to the 

lack of typical farms or unreliability of data. 

4.6. Land allocation module: highest return to land 

The land allocation module is the final step of the PAM modeling approach, acting as the de-

cision-maker in selecting the most profitable production alternative for each SimU. This mod-

ule is programmed separately from the previous modules, combining their output. The basic 

idea is to identify the production alternative with the highest return to land, accounting for 

constraints and thereby identifying the “best” option for each SimU. 

In the case of Brazil, the land allocation module is relatively straightforward since more com-

plex crop rotations are not typical for the considered crops. Farmers producing soybeans may 

decide to grow maize as a second-season crop, creating a crop sequence, but it should not be 

considered crop rotation since, at the same time each year (e.g., summer), the same crop is 

grown in all areas within the farm. That differs strongly from more complex production sys-

tems as observed in Europe, with crop rotation varying from three to many crops increasing 

the complexity of the decision process. The presence of diverse crop rotations increases the 

complexity of the estimation because the main assumption of farmers selecting the crop with 

the highest return to land may not fully depict the reality since several other factors such as 

technical restrictions (e.g., avoid the same plant protection group) or yield penalty (e.g., wheat 

after wheat), for example, are considered and affect farmer’s decision. 

For Brazil, the model allows for full specialization, where farmers may produce only sugarcane, 

a combination of soybeans and maize (no-till), or beef. These choices are common practice in 

the main production regions in Brazil. To follow the no-till principles, farmers must grow a 

second crop after soybeans or maize to provide soil cover and the biomass required to keep 

the system functioning (Moraes Sá et al., 2015). Therefore, the economic performance of 

monoculture soybeans needs to include the costs of cultivating a second crop. 
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The predominant alternative as the second crop is maize due to the possibility of generating 

at least a positive return to land compared with expenses of growing a cover crop. In the 

model, the alternative “soybeans” includes either the cost of cultivating a cover crop in winter 

or maize, depending on the economic performance of the latter. Currently, the model allows 

a maximum of 80% of maize double cropping because that is the highest observed in the typ-

ical farms and higher shares are technically challenging to achieve because of the short win-

dow for seeding maize after soybeans. 

The main steps from the land allocation module are: 

(1) Combining the results from each crop coming from the previous module into a unique 

working file. 

(2) Using information from statistics to calculate the current share of soybean acreage 

grown with maize as the second crop for each SimU (𝑆ℎ𝑎𝑟𝑒𝐷𝐶𝒊) – see appendix 5.  

(3) Calculating the final return to land for the soybean double-cropping: 

If 𝑅𝑒𝑡𝐿𝑎𝑛𝑑_ℎ𝑎𝑚𝑎𝑖𝑧𝑒𝑖
> 0 then: 

 𝑅𝑒𝑡𝐿𝑎𝑛𝑑_ℎ𝑎𝑑𝑐𝑖
= 𝑅𝑒𝑡𝐿𝑎𝑛𝑑_ℎ𝑎𝑠𝑜𝑦𝑖

+

(𝑅𝑒𝑡𝐿𝑎𝑛𝑑_ℎ𝑎𝑚𝑎𝑖𝑧𝑒𝑖
× 𝑆ℎ𝑎𝑟𝑒𝐷𝐶𝑖)  

(32) 

else: 

  

𝑅𝑒𝑡𝐿𝑎𝑛𝑑_ℎ𝑎𝑑𝑐𝑖
= 𝑅𝑒𝑡𝐿𝑎𝑛𝑑_ℎ𝑎𝑠𝑜𝑦𝑖

− 𝐶𝑜𝑠𝑡𝐶𝑜𝑣𝑒𝑟28 (33) 

(4) Selecting the production alternative with the highest return to land among all available 

alternatives for each SimU. 

The output from the module is analyzed using the GIS software, enabling the visualities of the 

regional differences in production alternatives. More importantly, GIS is used to combine the 

model results with existing information on current land use (e.g., rivers, forest, etc.), allowing 

the inclusion of geographic restrictions such as not allowing production in the forest, consid-

ering only current arable or the combination of arable and pasture. 

Finally, it is important to highlight that the PAM model does not have a demand function. The 

land allocation results should be interpreted carefully since they indicate the alternative with 

the highest return to land in each SimU using estimated farm-level prices, costs and yields. 

                                                      
28  The cost of growing a cover crop is estimated at 73 USD/ ha as an average from 2016-2018 (agri benchmark). 
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4.7. Business-as-usual (BAU) 

The focus of this dissertation is the development and evaluation of the proposed PAM mod-

eling approach. The BAU scenario therefore is of major importance because its output is used 

for the model evaluation. For this scenario, production costs from the typical farms are an 

average of 2016 to 2018, as is the fertilizer price coming from the CEPEA database as well as 

the technical parameters at the state level (e.g., the mix of production for sugarcane, TRS, 

etc.). The main exception is the information used in the regression analysis for freight costs, 

which are from 2017. However, this should not cause major problems because the relation-

ship between the coefficients is expected to remain stable. In the plant module, the baseline 

technology for EPIC is used, selecting the production schedule and input use similar to current 

non-irrigated levels observed in Brazil. 

The most important variable for the BAU scenario is crop price. Figure 20 shows the price 

development for maize, soybeans, sugar, and ethanol in Brazil as well as the price assumption 

for the BAU scenario in USD/t or m³. 

Figure 20:  Historical and BAU average of FOB prices for soybeans, maize, sugar, and eth-

anol (in USD) 

 

Source:  CEPEA (2020) – created by the author. 
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Prices in 2016 were considerably higher than the long-term average, with strong variations 

throughout the year. Hence, for the BAU scenario, the average price for 2017 to 2019 is con-

sidered as a reference price for the estimation of farm-gate prices. These prices are 344 USD/t 

for soybeans, 167 USD/t for maize, and 362 USD/t for sugar. The reference ethanol price in 

São Paulo is 506 USD/m³, which is converted to SimU levels using a different approach (see 

section 4.5.5.2). Finally, I simulate the BAU scenario with actual inbound transport costs to 

represent the status quo.



Chapter 5          Results of the business-as-usual scenario 67 

 

5. Results of the business-as-usual scenario 

This chapter presents the results of the PAM model for the Brazilian case study. The focus is 

on the results from the BAU scenario while benchmarking results against observed production 

costs data and available spatial information on the current land allocation of soybeans, maize 

and sugarcane in Brazil. To explore the variability of the model, the results often include the 

current grassland, but the main focus is on current arable land. The inclusion of grassland using 

the same calibration for the BAU provides an interesting discussion on the competitiveness of 

crops displacing grassland. The BAU results do not include areas currently classified as native 

vegetation due to the complexity of assuming conversion costs and the lack of typical farms.  

Since yield is a major driver of the economic performance of the production alternative, the 

following section focuses on interpreting the plant module results; production cost results are 

then presented; and, finally, the output from the land allocation model is shown. It is im-

portant to highlight that the production cost results shown in the maps do not indicate that 

sugarcane or grains currently are grown in these areas. The model estimates production costs 

for each individual SimU that has arable (and grass) land for the whole country. 

5.1. Yield simulations 

Crop yields are the major source of model variation and understanding the plant module’s 

behavior is key to ensuring that the economic module can be interpreted correctly. Yield ratios 

are an important part of the on-farm competitiveness of crops and therefore achieving a good 

model fit for yields is ideal. 

Soybeans 

Figure 21 compares the yields from soybeans estimated by the plant module (EPIC) on a state-

level average compared with the official statistics from IBGE (avg. 2013 to 2015)29 as well as 

the total harvested area for each state in 2015. 

                                                      
29  The most recent information available from IBGE that has been allocated to the SimU level. 
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Figure 21:  EPIC and IBGE soybean yields on a state-level average (in t/ha) and the har-

vested area in 2015 from IBGE (in million ha) 

 

Source:  results from EPIC and IBGE official statistics (2015) – created by the author. 

The standard EPIC calibration for Brazil tends to overestimate soybean yield when compared 

with official statistics. That effect is consistent across all the states in Brazil, including the main 

producing regions such as Mato Grosso (MT) and Paraná (PR). EPIC performs better in the 

state of Bahia (BA), with yields very close to the observed statistics. The reason behind this 

trend could be the lack of more regional calibrations in Brazil for the crop growth parameters 

(field trials) as well as for the different management systems. Also, the absence of yield pen-

alty in EPIC due to pests and diseases may be a strong driver of this estimation behavior. In 

tropical and in intensive production systems such as those in Brazil, the pressure from pests 

and diseases is expected to be significant. 

Fresh cane yields 

Figure 22 shows the comparison between fresh cane yields estimated using the standard IIASA 

calibration in EPIC and the official statistics allocated to SimU level from IBGE (avg. 2013 to 

2015). 
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Figure 22: EPIC and IBGE fresh cane yields on a state-level average (in t/ha) and the har-

vested area in 2015 from IBGE (in million ha) 

 

Source:  results from EPIC and IBGE official statistics (2015) – created by the author. 

For sugarcane, the performance of the yield estimation using the standard calibration in EPIC 

varies strongly among states. In the four main producing states – namely São Paulo (SP), Minas 

Gerais (MG), Goiás (Go), and Mato Grosso do Sul (MS), EPIC underestimates sugarcane yields. 

The biggest difference is in the Goiás states (GO) with EPIC estimating 54 t/ha whereas the 

official statistic is 77 t/ha. In the Northeast region (AL, PB, PE), EPIC significantly overestimates 

fresh cane yields. That is an interesting finding given that this region is much drier than the CS 

region, which can be partly seen by the yield information from statistics. Here it is important 

to note that no irrigation is allowed in the EPIC simulation used in the BAU scenario.  

Second-season maize 

Figure 23 shows the comparison between the yields estimated using the standard IIASA cali-

bration for EPIC and the statistics from IBGE (average 2013 to 2015). 
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Figure 23: EPIC and IBGE maize second-crop yields on a state-level average (in t/ha) and 

the harvested area in 2015 from IBGE (in million ha) 

 

Source:  results from EPIC and IBGE official statistics (2015) – created by the author. 

The EPIC estimation for Mato Grosso (MT), the largest producing state is satisfactory, with 

EPIC estimating 5.6 t/ha and the official statistics at 5.3 t/ha. Since this state alone produces 

roughly 50% of the total second-season maize output in Brazil, it is possible to argue that EPIC 

is well suited for the maize yield estimation in the main producing areas. The strong differ-

ences found in the states of Maranhão (MA), Rondônia (RO) and Tocantins (TO) should not be 

overinterpreted. Because these states have a relatively small acreage of maize as a second 

crop, the statistical data may not fully represent what could be achieved in the state if more 

areas were in production.  

The overall error from EPIC while estimating the yield of maize as a second crop is only 3% if 

a weighted average (based on harvested area) is used for the comparison, supporting the view 

that EPIC is well-calibrated for the main producing regions in Brazil. That is likely to be the 

result of intensive calibration and adjustments within EPIC carried out by IIASA since this cul-

tivar was mainly implemented to depict the double-cropping systems in South America. 

Yield adjustments for the Brazilian case study 

Considering that standard IIASA calibration of EPIC currently overestimates soybean yields 

while underestimating sugarcane (for the main producing regions), it is challenging to use the 

original output from EPIC for the case study. It is expected to create unrealistic yield ratios and 

therefore affects the competitiveness of the farming alternatives. Improving the EPIC 
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estimations directly demands time and funding beyond the scope of this project. To enable 

the simulation for this case study, the PAM model uses the available data from IBGE to adjust 

the EPIC yields, generating a more realistic picture of the current yield levels in Brazil. If IBGE 

data are available, PAM uses the yield data from IBGE instead of EPIC for the specific SimU30. 

Such correction is possible only because more than 90% of the SimUs (arable and grassland) 

in Brazil have crop yield data from IBGE. That is important because for SimUs without IBGE 

data, the yield information relies on EPIC. Figure 24 shows the yield data availability from IBGE 

for the area currently classified as arable and grassland. 

Figure 24: Area with available IBGE yield data for pasture and arable land in Brazil 

 

Source:  IBGE (2015) – created by the author. 

It is important to highlight that this yield correction for Brazil should represent a future version 

of the PAM model with a more accurate yield estimation either based on EPIC or on any exist-

ing crop growth model. The adjusted EPIC yields are used as the base of the BAU scenario, 

validation and scenario analysis. 

                                                      
30  For 1,119 SimUs, the sugarcane yield information from IBGE is lower than 30 t/ha, which is extremely low. For these 

SimUs, the model assumes a yield of 30 t/ha of fresh cane. These SimUs together produced only 0.07% of the total 
sugarcane output in 2015, which helps explaining why the IBGE data may not be reliable (based on a small area 
and volume).  
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BAU yields 

Table 3 shows the results from the plant module (adjusted yields) for the main producing 

states in Brazil sorted by the total planted area in 2019. On average, sugarcane yields around 

74 t/ha, whereas soybeans yield around 2.9 t/ha and maize as a second crop, 5.5 t/ha. It is 

interesting to observe the yield ratio differences among states. Focusing on the largest soy-

bean producing state (MT) and the largest sugarcane producing state (SP), they have similar 

soybean yields around the national average. However, on average, São Paulo has 7 t/ha higher 

sugarcane yields. This is a first indication of the natural conditions favoring sugarcane produc-

tion over soybeans in São Paulo. 

Table 3:  Yields from PAM model and planted area per state (2015) 

States 
Sugarcane Soybeans 

Maize 
(2nd) 

Planted area* 

t/ha '000 ha 

Mato Grosso (MT) 70 3.0 5.7 1,661 

Paraná (PR) 75 3.2 5.4 1,057 

Rio Grande do Sul (RS) 45 2.8 - 911 

São Paulo (SP) 77 2.9 5.0 817 

Goiás (GO) 77 2.8 6.2 652 

Mato Grosso do Sul (MS) 72 3.0 5.2 579 

Minas Gerais (MG) 79 2.7 5.3 560 

Bahia (BA) 59 2.6 7.4 407 

Maranhão (MA) 69 2.8 4.3 171 

Piauí (PI) 53 2.2 4.8 163 

Santa Catarina (SC) 50 3.1 4.9 144 

Tocantins (TO) 79 2.9 3.3 143 

Pará (PA) 78 2.9 3.0 142 

Average (weighted) 74 2.9 5.5  

* Includes all arable crops in 2019 (IBGE)  

Source: own calculations and IBGE (2015, 2019)     

The yields shown in Table 3 are the weighted average of the state but a significant variation 

within the simulation units is observed. This variation is of key importance for the overall anal-

ysis since it represents the information gain of downscaling from administrative (e.g., state or 

county) level to the local level. Figure 25 shows the yield estimates from PAM at the SimU 

level, highlighting the yield variation for the most important states producing soybeans (Mato 

Grosso) or sugarcane (São Paulo). 
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Figure 25:  PAM yields on sugarcane in São Paulo (left) and on soybeans in Mato Grosso 

(right) for arable and grassland (in t/ha) 

 

Source:  PAM model estimation – created by the author. 

It is interesting to observe that for sugarcane, yield in the state of São Paulo varies from less 

than 55 to more than 100 t/ha, building the weighted average of 77 t/ha. This significant var-

iation illustrates the importance of regional estimation to avoid the oversimplification caused 

by low-resolution information. A similar picture can be drawn for soybeans in Mato Grosso 

(MT), with yields varying significantly around the weighted average of 3 t/ha. 

Summary 

Yield estimation using EPIC alone is currently challenging for the overall modeling approach 

because the overestimation of soybean yields as well as the error on sugarcane estimation 

may lead to biased results by artificially changing the yield ratios in some regions. It is im-

portant to consider that, if the crop growth model had the same overall error, it may not be a 

significant issue since yield ratios could be correct. Therefore, for the overall analysis, the EPIC 

yield estimates are adjusted using the available information from IBGE allocated to SimU. 

The weighted average yield for sugarcane is 74 t/ha; for soybeans, 2.9 t/ha; and maize as the 

second-season crop, at 5.5 t/ha. The disaggregated yield results already show a strong spatial 

variability within the states and SimUs, highlighting the importance of spatial disaggregation 

when modeling farmers’ supply response. 
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5.2. Production costs 

The major contribution of the PAM approach is the estimation of production cost at the farm 

(SimU) level. The results from the BAU scenario, with adjusted yields, are presented in the 

following subsection. The structure follows the methodology of the production cost compo-

nents. First, I present the results from crop-establishment costs estimation, focusing mainly 

on fertilizer and crop protection costs. Next, results from the operating cost estimation are 

shown, highlighting the diversity of systems and costs observed in the main producing regions. 

Finally, the results from the sugarcane inbound transport cost, the total costs without land 

and the most important indicator of the return to land are presented. 

The results are obtained for all 11,000 SimU, which makes visualization in graphical (chart) 

form challenging. Therefore, most of the results are shown in the form of maps, highlighting 

the variation among the regions as well as a state-level average for the 10 biggest producing 

states in Brazil. 

5.2.1. Crop-establishment costs 

In the PAM economic module, crop-establishment costs are the combination of seed, fertilizer 

and plant protection. Fertilizer costs play a major role in overall production costs and there-

fore are the first cost component presented. 

Fertilizer costs 

Figure 26 shows the fertilizer cost estimated for the BAU scenario for soybeans in Mato Grosso 

(MT) and sugarcane in São Paulo (SP). 

The average fertilizer cost (i.e., N, P, K) is 268 USD/ha31 for sugarcane in São Paulo, with a 

variation from ca. 250 to 400 USD/ha depending on the production intensity and yields of the 

SimU. As expected, the regions in the state with higher yields have also higher fertilizer costs, 

which can be explained by the following factors: 

− The application mode used in EPIC reacts to the need of the plants so that higher yields 

mean more demand for nutrients. 

− Since K application rates are directly linked to output (based on the crop uptake), the 

higher the yields the higher the costs per ha. 

                                                      
31  All weighted, based on harvested area for 2015 from IBGE allocated at SimU level by INPE – Câmara et al. (2015). 
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Figure 26:  Fertilizer costs for sugarcane in São Paulo (left) and soybeans in Mato Grosso 

(right) for the BAU scenario (in USD/ha) 

  

Source:  PAM model – created by the author. 

For soybeans, fertilizer costs range between 100 and 160 USD/ha in the state of Mato Grosso, 

with a weighted average of 123 USD/ha. The main cost component is P accounting for 58% of 

these costs. The importance of P as the main nutrient cost in soybeans also is observed in the 

typical farm data from agri benchmark (65%). That is interesting considering that the infor-

mation from the typical farms is not used in fertilizer cost estimating within the PAM ap-

proach. In comparison to sugarcane, soybeans have significantly lower fertilizer costs, mainly 

due to the absence of N costs for soybeans due to their biological nitrogen fixation, compared 

with ca. 100 USD/ha spent for this nutrient in sugarcane production. 

Even though the total fertilizer cost is an important indicator of the overall economic perfor-

mance of a crop, it is important to identify the different drivers of total fertilizer costs – i.e., 

the price of nutrients vs their input use in kg/ha. Figure 27 shows the estimated pure nutrient 

input in kg/ha as a weighted average (based on harvested area) for the main soybean and 

sugarcane producing states in Brazil. 
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Figure 27: Estimated pure nutrient input (in kg/ha) for the main soybeans and sugarcane 

producing states as a weighted average (based on harvested area). The error 

bars show the standard deviation 

  

Source:  PAM results (2020) – created by the author. 

The input use information highlights that sugarcane has a much higher fertilizer use per ha, 

which is in line with the expectation due to the higher biomass production. Focusing on the 

average, N input for sugarcane in São Paulo is estimated at 97 kg/ha and K at 116 kg/ha, 

roughly double the K input required for soybeans. P input in sugarcane is ca. 35% higher than 

the average for soybeans. The strong standard deviation (SD) in N and P input use for sugar-

cane is largely due to the high variation in yields since these nutrients are closely linked to the 

crop output – which increases the SD on a per ha basis. 

Even though the yields in the BAU scenario are correct using the IBGE data, the final fertilizer 

input use per t of output is similar between the observed typical farms’ data and the output 

from the PAM model. For soybeans, the P input from the PAM (BAU) model averages 11.6 kg/t 

of soybeans; whereas in the typical farms, this value varies between 8.5 and 11.4 kg/t. Nitro-

gen input in sugarcane averages 1.3 kg/t of fresh cane in the CS region, whereas the typical 

farm data varies between 1.2 and 1.4 kg/t of sugarcane (BR220ST and BR460RV, respectively). 

The strongest variation between PAM results and the typical farm data comes from P input in 

sugarcane, with the former having 0.66 kg/t whereas the latter 0.18 kg/t. That is an unex-

pected outcome because the yield correction for sugarcane is an increase in yields, which de-

creases the input per t of output. Hence, EPIC seems to overestimate the application of P. 

Finally, the yield correction should not influence the K input because it is calculated in the 

PAM model using the update based on crop yields (not from EPIC). 
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Since the PAM model explicitly estimates input use as well as farm-gate nutrient prices, it is 

possible to run scenarios, for example, looking at the impact of fertilizer prices on farming 

costs and land allocation decisions. According to ANDA (2020), 81% of the total fertilizer used 

in Brazil in 2020 was imported, indicating the high dependency on the world market. Fluctua-

tion in the currency, for example, is expected to impact fertilizer prices strongly and relatively 

more in sugarcane production due to the higher input usage per ha. The ability to isolate the 

impact of nutrient price in the overall fertilizer costs is a major advantage of the PAM eco-

nomic module. 

Plant protection costs 

Another important component of the crop-establishment cost is plant protection expenses. 

Following the methodology proposed, two different plant protection systems are proposed 

depending on the intensity of production. Most of the areas in São Paulo (SP) and Mato Grosso 

(MT) have relatively high yields and therefore face similar plant protection costs within the 

state. For sugarcane, plant protection costs for São Paulo average 190 USD/ha, mainly driven 

by insecticides and herbicides. The plant protection cost average for Mato Grosso for soy-

beans is 193 USD/ha, with insecticides representing roughly 50% of the plant protection costs. 

Comparing the two states, crop protection costs are very similar between the two crops. 

Seed costs 

The third component of establishment costs is seed expenditures. Due to the methodological 

limitations on seed input as well as seed price, the results from PAM strongly follow the yield 

distribution and the difference in the production system of the SimU. For soybeans, the aver-

age seed cost for Mato Grosso is 73 USD/ha whereas the average for sugarcane over the whole 

production cycle is 70 USD/ha. Even though these costs are similar, the perceptions of farmers 

are very different. For sugarcane, seed costs are a one-time expenditure at the establishment 

phase. Since most farmers use their cane as seedcane, they commonly underestimate or do 

not even account for this cost component in their budgeting. The individual decision of farm-

ers further complicates the interpretation of seed costs for sugarcane, since they can change 

the duration of the sugarcane cycle (i.e., 5 or 6 years) by leaving the crop to ratoon another 

year. This ability to influence seed costs is more restricted for soybean farmers, whose main 

option is to use cheaper seeds (e.g., non-GMO), which, in turn, may generate higher plant 

protection costs or decrease yields, making this option usually uneconomical to farmers. 

Total crop-establishment costs  

Figure 28 shows the estimation results of the total crop-establishment cost for sugarcane and 

soybeans, considering all areas that are currently classified as arable and grassland in Brazil, 

in USD/ha. 
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Figure 28:  Crop-establishment costs for sugarcane (left) and soybeans (right) for the BAU 

scenario (in USD/ha) 

 

Source:  PAM results (2020) – created by the author. 

The weighted average of crop-establishment costs for sugarcane in Brazil is 530 USD/ha, with 

a strong variation from 223 to 731 USD/ha. In the case of soybeans, the average is 373 USD/ha 

with a spread between 220 to 440 USD/ha. This finding indicates that sugarcane is a more 

cost-intensive crop at least while looking at crop-establishment costs. It is important to note 

that establishment expenditures are expected to play an important role in farmers’ risk per-

ception since higher cash requirements also lead to great exposure if the crop fails. Figure 29 

shows the disaggregation of crop establishment into its main components as a share of total 

crop-establishment costs. 
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Figure 29: Composition of estimated crop-establishment costs for soybeans and sugar-

cane in the five main states producing each crop (in %)  

 

Source:  PAM results (2020) – created by the author. 

Looking at the main components of the establishment costs, it is interesting that the largest 

cost component for sugarcane is fertilizer, at 52%, whereas for soybeans it is plant protection, 

at 49% of the establishment costs. This illustrates the importance of biological N fixation in 

soybeans, giving this crop a performance edge over sugarcane. The cost component with the 

lowest share is seed for both crops, representing 13% and 19% for sugarcane and soybeans, 

respectively. 

Even though the focus of the establishment cost section is on the main crops – namely soy-

beans and sugarcane, it is important to look at some results for maize as a second crop as well 

because it impacts the overall performance of double cropping. The weighted average for the 

total crop-establishment cost for maize as the second crop is 342 USD/ha, with a variation 

between 159 and 563 USD/ha. In contrast to the other crops, seed cost is as important as 

fertilizer, at 38% of the establishment costs for each, and the remaining 24% as plant protec-

tion costs. 

To compare the actual cropping alternatives, Figure 30 shows the comparison of estimated 

crop-establishment costs between sugarcane and a double-cropping system, assuming a 60% 

share of the soybean area grown with maize as the second crop. The information is on a 

weighted average (based on harvested area) for the 10 states with the largest share of arable 

area in Brazil. 
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Figure 30: Crop-establishment costs for sugarcane and double-crop (soybeans + maize) 

with maize grown on 60% of the soybean area (in USD/ha) 

 

Source:  PAM results (2020) – created by the author. 

Considering a typical double-cropping system (60%), the total establishment cost as a 

weighted average for Brazil is 579 USD/ha, with the largest share of cost coming from seeds 

(45%), fertilizer (35%), and plant protection (20%). As shown in Figure 30, there is a significant 

variation among the states, with the overwhelming majority having a higher crop-establish-

ment cost for the double-crop compared with sugarcane. The only exception is Tocantins (TO), 

where double cropping is slightly less expensive than sugarcane. 

Summary 

In most producing states, double cropping of soybeans and maize has higher crop-establish-

ment costs than monoculture sugarcane: averages of 579 and 530 USD/ha, respectively. 

Breaking down the cost items, fertilizer is the main cost driver for sugarcane, whereas plant 

protection and seed costs (maize) are the main drivers for grain production. The ability to 

explicitly estimate nutrient input as well as fertilizer price at the SimU level is a major ad-

vantage of the PAM modeling approach allowing the simulation of a variety of scenarios and 

how they impact farm-level economics. 
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5.2.2. Operating costs 

Apart from the establishment costs, the economic module of the PAM model estimates oper-

ating costs at the SimU level. The main components of the operating costs are machinery, 

diesel, contractors, and labor. In contrast to crop-establishment costs, the interpretation of 

the individual components for operating costs is not straightforward. Some production sys-

tems rely more on labor, others on machinery, so a cross-comparison of machinery costs is 

not meaningful. Therefore, the focus in the following is to look at the total operating costs for 

sugarcane and soybeans for areas classified as arable and grassland in Brazil. Figure 31 shows 

the operating costs estimated by the PAM model for the BAU scenario in USD/ha. 

Figure 31:  Operating costs for sugarcane (left) and soybeans (right) for the BAU scenario 

(in USD/ha) 

 

Source:  PAM results (2020) – created by the author. 

Operating costs for soybeans 

In the BAU scenario, considering all regions in the country, the weighted average of operating 

costs for soybeans is 241 USD/ha, with a variation from 156 to 366 USD/ha, depending on the 

regional conditions – i.e., expansion or traditional. As clearly observed in Figure 31, the main 

driver for differences in operating costs for soybean is the region as defined in the model (see 

methodology). The results in this dissertation indicate that the expansion region has low op-

erating costs per ha compared with the traditional region, which could suggest that the re-

gional characteristics such as suitable field size and topography may be affecting the operating 

costs.  



82 Chapter 5          Results of the business-as-usual scenario 

 

Machinery plus diesel costs account for 67% of the total operating costs, with labor being the 

second most important cost component at 25% of the total operating costs. The remaining 

8% are contractor costs. This composition also varies among regions, with farmers in the tra-

ditional region having proportionally higher machinery and labor costs per ha since the fixed 

component of these costs is allocated to fewer hectares. 

Sugarcane 

The operating costs for sugarcane, as shown in Figure 31, are significantly higher than soy-

beans, with a weighted average of 995 USD/ha. It also is interesting to observe the variation 

among regions, from 677 to 1,504 USD/ha, which is mainly the result of the correlation be-

tween yields and operating costs. Since most of the operations such as harvesting, loading and 

transportation are contractor fees based on fresh cane yield, high-yielding regions such as SP 

and PR have higher operating costs per ha. The key components of the operating costs are 

contractors, accounting for 41%, labor 33% and machinery plus diesel for the remaining 26%.  

It is important to highlight that, unlike establishment costs, for which the largest portion of 

costs are cash expenditures that are highly visible to farmers, operating costs have a significant 

share of “hidden costs” such as depreciation and opportunity costs. That is more predominant 

for soybean farmers since the largest cost positions, such as machinery and labor, have a large 

share of these non-cash costs such as depreciation, opportunity cost of family labor and own 

capital. This difference may play an important role in farmers' cost perception as these hidden 

costs frequently are not accounted for during budgeting and the land allocation decision pro-

cess. Conversely, sugarcane has the largest cost component as “contractors,” meaning that 

operating costs are visible to farmers and most likely affect their resource allocation decisions.  

Double Cropping 

It is important to also consider the double-cropping alternative while analyzing operating 

costs. For establishment costs, it is possible to analyze second-season maize and soybeans 

separately, which is not entirely correct for operating costs. The desire to grow maize after 

soybeans motivates farmers to invest relatively more into machinery to ensure that soybean 

harvest followed by maize seeding maize are able to be performed in the necessary short win-

dow of time. Therefore, the BAU soybean scenario is likely to slightly overestimate the ma-

chinery setup required to only soybeans. This should not render major problems, however, 

since the double-crop combination is attractive in most regions. 

While looking at the combination of summer soybeans and second-season maize on 60% of 

soybean area, the total operating costs are 363 USD/ha, with maize adding 122 USD/ha to the 

soybean operating costs. Even in the double-cropping scenario, the operating cost gap be-

tween sugarcane and grains is still significant. 
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Summary 

Operating costs for sugarcane, on average, are 995 USD/ha, whereas double cropping (60%) 

has a total operating cost of 363 USD/ha. Aside from the absolute cost difference, sugarcane 

has a relatively higher share of cash expenses within operating costs (contractor fees), which 

is more visible to farmers than hidden costs (e.g., depreciation), which form most of the op-

erating cost for grains. The double effect of higher and more visible costs is expected to play 

an important role in farmers’ resource allocation decisions. 

5.2.3. Inbound transport cost for sugarcane 

The last building block of total costs is the inbound transport cost for sugarcane. Different 

from soybean and maize, sugarcane must be transported from the farm to the factory for 

processing. Figure 32 shows the transport cost from farm to mill in USD/ha, comparing the 

“actual distance” from the SimU to an operating mill against the “current average”32. 

Figure 32:  Sugarcane transport from farm to mill (in USD/ha). The actual distance to an 

operating mill (left) or the average of 30 km of transport distance (right) 

 

Source:  PAM results (2020) – created by the author. 

                                                      
32  The average is the result of converting the average transport cost to a distance in km, using the cost curve from 

Françoso et al. (2017). The resulting cost of 2.76 USD/t of fresh cane applies only to SimU with distances greater 
than 30 km, avoiding artificially increasing the cost for SimU that already are close to an operating mill. 
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Figure 32 highlights the importance of carefully considering sugarcane transport from farm to 

mill. If the “actual distance” to an operating mill is considered to estimate the cost of inbound 

transport, the model results show an arithmetic average cost is ca. 700 USD/ha, highlighting 

the importance of this cost component in the total cost – i.e., 132% of the total establishment 

costs. The estimated inbound transport costs vary strongly from under 100 USD/ha for some 

areas in the state of São Paulo, where most of the mills are located, to regions with a cost 

close to 2,000 USD/ha, mainly in the north and south of Brazil. Hence, using the actual distance 

to an operating mill significantly penalizes sugarcane production in the regions far from São 

Paulo (SP) so the model is expected to allocate most of the remote areas to soybeans and 

maize. This, indeed, captures the short-term supply capabilities of certain regions because the 

absence of mills practically nullifies the alternative of growing sugarcane. 

When calculating a weighted average based on current production, the inbound transport 

costs are 162 USD/ha, reflecting the current situation in which more than 95% of the produc-

tion takes place within a 50-km radius from an existing mill. Even though the actual distance 

scenario depicts the current and short-term situation, it also is important to consider future 

development in milling capacity – i.e., construction of new factories. Therefore, the “average 

scenario” for inbound transport also is simulated. 

The idea with the average scenario is to simulate future situations in which the transport cost 

from farm to the mill is based on the current average observed – i.e., maximum of 2.76 USD/t 

of fresh cane, which means a travel distance of 30 km from field to mill. The results from the 

“average scenario” are shown in Figure 32 (right), where the maximum observed cost is 

around 450 USD/ha, mainly driven by high yields. 

Due to the strong impact of the inbound transport cost in the competitiveness of sugarcane, 

the BAU scenario uses the actual distance to an operating mill to reproduce the current situ-

ation. To illustrate the potential of sugarcane production in remote regions, a scenario is in-

cluded using the current average transport costs while keeping everything else constant. The 

latter should illustrate the competitiveness of sugarcane if the constraint of having a nearby 

mill is not considered. 

5.2.4. Total production costs 

Total production cost comprises establishment, operating, inbound transport for sugarcane 

and miscellaneous costs. As previously explained, due to the research question, land cost is 

not included in the total cost analysis as it should not influence the on-farm competitiveness 

of cropping alternatives. 

Figure 33 shows the total cost for sugarcane and soybeans in USD/ha for the BAU scenario. 

There is a strong difference in total costs between these crops, with sugarcane being signifi-

cantly more cost-intensive than soybeans. The extreme values of around 4,000 USD/ha 
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observed in Figure 33 are the result of the inbound transport cost in the dark blue area, where 

sugarcane would have to be transported more than 600 km to the nearest mill. 

Figure 33:  Total costs for sugarcane (left) and soybeans (right) for the BAU scenario (in 

USD/ha) 

 

Source:  PAM results (2020) – created by the author. 

The total costs for soybeans have a strong correlation with the growing areas as defined in the 

model – expansion vs traditional – as that factor plays an important role in defining the oper-

ating cost component. The variation among the SimUs for soybeans is not as strong as for 

sugarcane, with the lowest values around 500 USD/ha and the highest 900 USD/ha, since in-

bound transport cost for soybeans is not required. 

The national average total cost for growing sugarcane is 1,765 USD/ha with a variation from 

1,480 USD/ha to 2,400 USD/ha. Compared with soybean and maize, sugarcane's total cost is 

almost three times higher on a per ha basis. However, it is important to keep in mind that in 

the most important producing regions, double cropping is common and adding the costs for 

soybean and maize provides a more realistic picture. Figure 34 presents the total production 

cost for sugarcane and double cropping with 60% of maize after soybeans in USD/ha on a 

weighted average for the 10 most important producing states. 
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Figure 34: Total production costs for sugarcane and double cropping (soybeans + maize) 

for the BAU scenario (in USD/ha) 

 

Source:  PAM results (2020) – created by the author. 

Compared with 60% double cropping (Figure 34), the total cost for sugarcane, on average, is 

82% higher per ha. From a pure cost perspective, it is clear that some states (e.g., MT and GO) 

have a larger gap between the two alternatives than average, indicating cost competitiveness 

for double cropping over sugarcane. 

Comparing the main soybean (MT) and sugarcane (SP) producing states, it is interesting that 

sugarcane total costs are relatively similar: SP’s cost is only ca. 5% higher than MT’s, whereas 

double cropping is 30% more expensive. That indicates cost competitiveness for sugarcane in 

SP compared with double cropping, with all other factors constant. 

Table 4 presents the total production cost results for the BAU scenario as a national weighted 

average based on the harvested area for all crops and the double-cropping system, breaking 

the total cost into its main cost components. 

0

200

400

600

800

1.000

1.200

1.400

1.600

1.800

2.000

2.200

MT SP RS PR GO MG MS BA TO MA

Sugarcane Maize Soybeans



Chapter 5          Results of the business-as-usual scenario 87 

 

Table 4:  BAU results from the PAM model as weighted average on the harvested area 

Cost position¹ 
Sugarcane Soybeans Maize (2nd) Double Cropping² 

USD/ha % USD/ha % USD/ha % USD/ha % 

Establishment costs 530 30 373 59 342 62 579 60 

Operating costs 995 56 241 38 203 36 363 37 

Inbound transport costs 162 9 - - - - - - 

Miscellaneous costs 79 4 19 3 11 2 26 3 

Total costs: average 1,765 100 634 100 556 100 968 100 

¹ Weighted averages based on the harvested area from IBGE (2019)       

² 60% maize after soybeans        

Source: PAM results (2020) – created by the author.     

Besides the total cost analysis, it is important to consider the breakdown of the cost compo-

nents to better understanding how changes in input items (e.g., nutrient, diesel, etc.) affect 

the cropping alternatives. While the most important cost component for sugarcane is operat-

ing costs, at 56%, the main driver of the total cost for double cropping of soybeans and maize 

is establishment costs, summing up to ca. 60%. Such analyses help us understand how changes 

in different cost components affect the on-farm competitiveness of the cropping alternatives. 

For example, changes in exchange rate directly affecting imported farm inputs such as ferti-

lizer and plant protection products are expected to have a relatively stronger impact on soy-

beans and maize than on sugarcane since it directly affects their main cost component – i.e., 

establishment costs. Conversely, changes in capital and labor costs are likely to have a greater 

impact on the economic performance of sugarcane. 

Summary 

The results from production cost estimation within the BAU scenario can be summarized as 

follows: 

− Production costs vary strongly among the observed regions, which highlights the im-

portance of micro-level economic modeling. 

− For sugarcane, the main cost component is operating costs accounting for 56% of the 

total costs, which are closely correlated to yields. 

− For soybeans, establishment costs are the main cost component and account for 60% 

of total costs (similar to double cropping). 

− Total costs for sugarcane are ca. 82% higher than a typical double-cropping system 

(60% of area grown with maize). 

− Accounting for the inbound transport costs for sugarcane from farm to mill is key to 

realistically represent short- and medium-term land-use changes since the lack of mills 

practically nullifies sugarcane as an option to farmers in some regions. 
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− The ability to identify the driver of each cost item – i.e., price vs quantity - allows a 

better understanding of specific changes affecting cropping alternatives (e.g., ex-

change rate changes).  

5.3. Farm-gate prices 

In addition to yields and production costs, a major component of crop economic performance 

is the price at the farm gate. Robust estimation of the price at microregional levels is important 

for a meaningful supply response tool since factors such as the distance to the port play a 

major role in the revenue formation at the regional level. In the PAM approach, the transport 

cost is modeled endogenously, accounting for the difference in the freight of each crop to be 

transported as well as the availability of roads to reach the ports. This powerful combination 

allows the estimation of farm-gate prices based on reference FOB prices for the analyzed 

crops. Figure 35 shows the producer prices for sugar (USD/t) and ethanol (USD/m³) at the 

SimU level.  

Figure 35:  Producer prices for sugar (left) and ethanol (right) – in USD 

 

Source:  PAM results (2020) and ANP (2020) – created by the author. 

Sugar prices, shown in Figure 35 (left), illustrate the direct impact of transport cost on farm-

gate prices, where producers in the state of MT face a discount of ca. 77 USD/t or 22% of the 

FOB price due to the travel distance of roughly 2,000 km to reach the port. 
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For ethanol, the price formation is different, with most of the production used domestically. 

Production regions farther from the port therefore can increase their mix of production to-

ward more ethanol because, due to the higher cost of transporting ethanol to these regions, 

regional prices are attractive, as shown in Figure 35. This effect highlights the complexity of 

modeling farm-gate prices for sugarcane since the regional prices for sugar and ethanol, as 

well as the mix of production (share to ethanol and sugar), play significant roles in formulating 

the TRS price. Changes in framework conditions such as increasing oil prices affect sugarcane 

prices in different directions by increasing ethanol prices while reducing the price of sugar 

(i.e., increase in transport costs). This effect can be amplified by millers adjusting their pro-

duction mix to more ethanol, resulting in greater sugarcane price variation across the country 

– e.g., price reduction for sugar-producing regions and price increase for remote ethanol-pro-

ducing regions. 

Figure 36 presents the estimated farm-gate prices on a state-level average as well as the ref-

erence price (e.g., FOB) for sugarcane (TRS basis), soybeans, and maize. 

Figure 36: Estimated farm gate prices on a state average and reference prices (BAU) for 

sugarcane (TRS basis), soybeans, and maize (in USD/t) 

 
Note: TRS reference price (TRS_ref) is based on a production mix of 45% sugar and 55% ethanol. MT: Mato Grosso; 

SP: São Paulo; RS: Rio Grande do Sul; PR: Paraná; GO: Goiás; MG: Minas Gerais; MS: Mato Grosso do Sul; BA: 
Bahia; TO: Tocantins; and MA: Maranhão.  

Source:  PAM results (2020) – created by the author. 

A closer look at the farm-gate prices reveals the importance of the transport cost and how 

much it affects the profitability of farmers. For soybeans, the national weighted average is 

296 USD/t, meaning an average transport cost of 48 USD/t. However, states such as MT have 
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an average of 269 USD/ha, indicating an extra 30 USD/t discount compared with the national 

average. If compared with states like SP, the price gap is 50 USD/t, showing the spatial ad-

vantage of producers in SP. Conversely, the price for sugarcane based on the TRS value is al-

most identical between these two states, largely due to the domestic price of ethanol. That 

shows ethanol’s importance in supporting farm-gate prices even in regions far from the ports. 

Maize has the highest disadvantage from longer transport distance due to the relatively low 

product price in relation to the freight costs. For example, on average, producers in the state 

of MT face a discount of 75 USD/t due to transport costs, representing a discount of 45% from 

the FOB price for maize compared with only 21% for soybeans. The result is maize farm-gate 

prices below 100 USD/t. 

Summary 

It is known that transport costs have an impact on the overall competitiveness of the Brazilian 

agriculture sector. The findings in this dissertation add a different perspective regarding 

transport costs also affecting the on-farm competitiveness among crops. Remote regions face 

much lower farm-gate prices for grains, with discounts of more than 70 USD/t, which impact 

maize comparatively stronger since the absolute crop price is much lower than that of soy-

beans, resulting in a discount of 45% of the maize price. Due to the domestic demand for 

ethanol, on the other hand, remote regions have sugarcane prices similar to less remote areas, 

at least as long as the regional demand is sufficient to absorb the regional supply. Although 

sugarcane prices are similar in most states for the BAU scenario, changes in one of the output 

products alone – e.g., increased oil prices – are expected to affect regions differently since 

sugarcane millers can adjust their output mix accordingly. 

5.4. Return to land 

The results from the yields, production costs, and farm-gate prices estimations form the basis 

to evaluate the competitiveness of cropping alternatives by generating an estimate for the 

return to land. This is a single profitability indicator, balancing out all factors such as environ-

mental conditions (i.e., yields), location (i.e., transport costs and prices) and the production 

costs. Return to land for soybeans and maize grown as the second crop in the BAU scenario 

are presented in Figure 37, for the combined current arable and grassland. 
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Figure 37:  Return to land for soybeans (left) and maize grown as a second crop (right) 

for the BAU scenario (in USD/ha)  

 

Source:  PAM results (2020) – created by the author. 

For soybeans, most SimUs have a positive return to land, with values as high as 600 USD/ha. 

Focusing on the main grain-producing states (e.g., MT), the variability of returns to land for 

soybeans is much lower, ranging from 117 to 438 USD/ha, with a weighted average of 

261 USD/ha. Conversely, the returns to land from maize as a second crop have very different 

behavior. In addition to high regional variability, a share of SimUs in the important producing 

states such as MT have negative returns to land. That may be contrary to the expectation since 

MT alone produces roughly 50% of the total output of maize grown as a second crop (CONAB, 

2021). 

The decision to grow maize as a second crop is more complex than the simple evaluation of 

the economic performance. Farmers must produce a second crop to guarantee the efficiency 

of the no-till system – e.g., soil coverage. Therefore, farmers who cannot or opt not to grow 

maize as a second crop spend ca. 73 USD/ha33 growing a cover crop instead. Besides the eco-

nomic perspective, the option of growing maize as a second crop comes with important ad-

vantages such as usage of farm assets and labor as well as improving cash flows. The latter is 

                                                      
33  Based on the average of all agri benchmark typical farms in the state of MT. These are the cost of seeding and 

supporting operations to grow a cover crop after soybeans. 
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of key importance for farmers to reduce their use of credit, which is expensive in Brazil, and 

to finance ongoing expenses such as permanent farm staff. 

Finally, it is important to consider that the agri benchmark methodology allocates fixed costs 

proportionally to all crops grown on the farm; hence maize also receives a significant share of 

family labor, capital costs, etc. However, since the alternative to maize is a cover crop with 

zero revenue, the fixed cost could be allocated entirely to soybeans. That does not change the 

aggregated picture seen in Figure 38 but is expected to change the pure return to land analysis 

for second-crop maize. To account for this complexity and to show the actual crop alternative 

for grain-producing farmers, returns to land for double cropping (soybeans as the main crop) 

as well as returns for sugarcane are presented in Figure 38. 

Figure 38:  Return to land of sugarcane (left) and for double cropping (right) in the BAU 

scenario (in USD/ha) 

 

Source: PAM results (2020) – created by the author. 

The returns to land the double cropping are mostly positive, with regions having returns higher 

than 1,000 USD/ha. The national weighted average is 248 USD/ha, indicating double cropping 

with maize increases the return to land for farmers, on average, by 14 USD/ha. Adding this 

small gain to the forgone cost of growing a cover crop results in an average net gain of 

87 USD/ha, which partly explains why farmers choose to grow maize as a second crop if envi-

ronmental conditions allow. 
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Even though the national weighted average of returns to land for sugarcane is 188 USD/ha, 

most SimU have a negative return to land in the BAU scenario (see Figure 38 – left). An im-

portant driver of the negative return is the inbound transport (i.e., farm to mill), which in-

creases production costs of sugarcane far away from current mills. The SimUs with negative 

returns to land for sugarcane have an average estimated inbound transport cost to the nearest 

mill of 850 USD/ha, compared with only 250 USD/ha for the SimUs with positive returns to 

land. That illustrates how strongly the presence of a mill affects the short-term competitive-

ness of sugarcane and farmers' willingness to switch to this crop. That also reinforces the need 

to include such constraints in the supply response model to produce meaningful and realistic 

results. 

The focus of this dissertation is the on-farm competitiveness driving supply responses from 

farmers and Figure 39 distills the average return to land for sugarcane and double cropping 

estimated in the BAU scenario, in USD/ha. 

Figure 39: Return to land for sugarcane and double cropping (soybeans + maize) as a 

state-level average for the BAU scenario (in USD/ha) 

 

Note:  * The return to land for sugarcane is -1,095 USD/ha due to its inbound transport costs. The data are not shown 
to facilitate the reading of the graphic. 

Source:  PAM results (2020) – created by the author. 

The first interesting finding from the state-level analysis is that 8 of the 10 states with the 

largest share of acreage, on average, have a higher return to land from double cropping than 

from sugarcane. The exceptions are SP and MG. That, however, is in line with expectations 
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given since these two states alone produce more than 70% of the total sugarcane output in 

Brazil (CONAB, 2021). Secondly, maize contributes to an important share of the return to land 

for double cropping in the states of GO, MS and BA, while avoiding reductions in returns in 

the other states if compared with the alternative of a cover crop. Finally, it is interesting to 

observe that double cropping is the alternative with the highest returns in the states with the 

greatest expansion in crop production in the recent year (MAPITOBA), which is partly ex-

plained by the lack of mills in these regions. 

Summary 

Considering the national weighted averages, double cropping has 248 USD/ha and sugarcane 

has 188 USD/ha as return to land. Regionally, this picture is more diverse, with most states 

still having a higher return to land for double cropping than for sugarcane in the BAU scenario 

simulations. São Paulo (SP) and Minas Gerais (MG) are the exceptions, with sugarcane leading 

the economic performance. Maize grown as a second crop contributes an important share of 

the overall returns while also avoiding additional costs vs the alternative of growing a cover 

crop. Finally, it is important to highlight that the state-level average should not be overinter-

preted because intraregional differences are observed. 

5.5. Land use  

The final output from the PAM model is land allocation based on the cropping alternative with 

the highest return to land while considering regional constraints. Combining the information 

from all cropping alternatives and the land-use classification by IBGE (2018), the model out-

puts the best performing alternative at each SimU. It allows the theoretical estimation of land 

use based on the assumption that producers aim to maximize their return to land. Changes in 

the framework will impact factors such as yields, prices and costs, leading farmers to change 

their land allocation to other crops and inducing land-use change. That is the key idea behind 

regional supply response analysis, focusing not only on the overall crop output change but on 

possible resource reallocations and resulting land-use change. 

As described in the return to land analysis, the transport of sugarcane from farm to mill is a 

key driver of negative economic results in regions where no processing infrastructure cur-

rently exists. To illustrate the importance of this constraint, land-use results are presented 

first for the BAU scenario and second, keeping all remaining assumptions constant and using 

the current average inbound transport cost for sugarcane (see methodology), illustrating its 

impact on the overall land-use results within the model. 

5.5.1. Business as usual (BAU) 

The land allocation results from the BAU scenario for current arable land as well as the com-

bination of arable and grassland are presented in Figure 40. It is important to note that besides 

double cropping (soybean and maize) and sugarcane, beef production is also included as a 
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possible alternative. In addition, keep in mind that other important supply chains such as or-

anges, coffee, cotton and rice are not considered in this version of the PAM model. 

Figure 40:  PAM land-use simulations based on the highest return to land for the selected 

farming alternatives, for arable plus grassland (left) and only arable land 

(right) 

 

Source:  PAM results (2020) and IBGE (2016) – created by the author. 

The overall picture is interesting, showing a strong regionalization or clustering of production 

for the analyzed cropping alternatives. The main cluster producing sugarcane is centered in 

the state of SP, while the remaining area is predominately allocated to soybean and maize 

production (i.e., double cropping). This strong regionalization is an indication that a combina-

tion of factors such as yields, distance to ports, presence of milling infrastructure, and regional 

characteristics appear to motivate farmers to specialize in one production system within each 

region. To a certain extent, the methodology prevents a single SimU from having more than 

one best-performing crop but the lack of a strong mix of results within a certain region indi-

cates that regional factors are impacting the economic performance of a certain crop and in-

ducing strong regional specialization. 

If the model is allowed to expand into the current grassland areas, the regional clustering does 

not change significantly, with most of the grassland allocated to double cropping in the 
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Center-west states such as MS, MT, GO and the MAPITO34 region. Sugarcane would expand 

mainly to areas in MG and PR states that are neighboring the main cluster in SP. 

This result does not necessarily mean that the potential for sugarcane is limited in all current 

grassland. A possible explanation is the lack of mills currently operating in these regions, sig-

nificantly increasing the cost to produce sugarcane if it needs to be delivered to a factory in 

operation. This constrain is likely to be the most restrictive in this case, but it fits the idea of 

reproducing the current BAU scenario for land use. It is expected that if such an extensive 

expansion takes place, companies may be willing to invest in new processing facilities, but it 

is not feasible to assume such developments in the very short term (see section 4.4.2). 

The allocation to beef production to only a few areas in the far south (Rio Grande do Sul - RS) 

and far west (Rondônia - RO) indicates that the observed returns to land for beef are not at-

tractive for the main share of the grassland surrounding the clusters producing grains and 

sugarcane. That is an interesting finding, indicating that, at least based solely on economic 

performance, expanding arable production into grassland seems to be profitable. However, 

several factors may limit or reduce the attractiveness of such an expansion in the medium-

term, for example: 

− several grasslands are protected by natural parks and the forest code legislation, 

− the model does not include the conversion cost and initial investment to convert grass-

land to arable land, 

− there is expected to be a lack of infrastructure such as service providers, traders and 

roads to allow grain production, which is not included in the model, 

− a large-scale expansion needs to be accompanied by a strong increase in international 

demand; otherwise, the price would sharply decline, and the estimated economic per-

formance could not be achieved. 

In the long-term, such limitations may not significantly restrict the expansion into grassland. 

Hence, strong shocks in demand may induce the expansion of arable land into grassland in the 

medium- to long-term, which has been observed in recent years (Barona et al., 2010; Macedo 

et al., 2012). 

Without adjusting the yield derived by EPIC, the PAM model allocates most of the arable and 

grassland in Brazil to double cropping of soybeans due to the EPIC behavior of overestimating 

soybean yields while underestimating those of sugarcane (see appendix 7). 

Finally, beef production performs better than soybean double cropping and sugarcane in the 

state of RS, even on the current arable land. That indicates that the model may not consider 

                                                      
34  Refers to the states of Maranhão (MA), Piaui (PI), and Tocantins (TO). 
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regional factors such as local demand for grains based on livestock production, which creates 

a different pricing structure of the output, or other crops such as wheat and rice that may play 

an important role in this region. The evaluation of the model’s performance in the allocation 

of land to different cropping alternatives is described in chapter 6. 

5.5.2. BAU with additional cane mills 

The impact of the current mill infrastructure on the sugarcane returns to land is expected to 

be significant. To test this hypothesis, the BAU scenario is calculated considering the current 

average of inbound transport of sugarcane to mills. Results from the PAM land-use simulations 

with “additional cane mills” are presented in Figure 41. 

Figure 41:  PAM land-use results for the BAU with additional cane mills (left) and differ-

ence from BAU for sugarcane (right), current arable and grassland 

 

Source:  PAM results (2020) – created by the author. 

Removing the constraint of having to deliver cane to an existing mill (BAU) increases the return 

to land for sugarcane in 90% of the SimUs. That leads to an overall change on 7% of total 

acreage including arable and pasture – i.e., ca. 11.5 out of 175.5 million ha. The major grain-

producing states such as MT, MS and Santa Catarina (SC) still have a higher return to land for 

double cropping, resulting in a similar outcome between the two scenarios for the CS region. 

This finding supports the idea that this region has a competitive framework for grain-produc-

ing due to a combination of yield ratios, farming cost structure and crop output prices. 
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Surprising is that 65% of the land allocation change to sugarcane is found in the states of Pará 

(PA), Maranhão (MA), and Bahia (BA), which jointly account only 2% of the national production 

(CONAB, 2021), which in turn indicates that, at least on the farm level, sugarcane appears to 

be competitive against beef and double cropping of soybeans and maize. The lack of sugar-

cane production in these areas may be driven by: 

− lack of investments: there is minimum acreage required to justify setting up new mills, 

− risk perception or other constraints to enter the market, such as lack of expertise, or  

− the presence of more profitable agricultural alternatives not considered in the PAM 

model. 

Summary 

The land allocation results from the PAM model for the BAU scenario show a strong regional-

ization of production, with sugarcane having the highest returns around the state of SP, while 

double cropping is the dominant alternative elsewhere. Allowing the expansion into the cur-

rent grassland does not change the picture dramatically, highlighting the hypothesis of re-

gional characteristics affecting the profitability of each cropping alternative. Removing the 

constraint of having to deliver to an existing mill leads to an overall change in 7% of the total 

arable and grassland with 65% of the total changes occurring in the Northern region. That is 

an interesting finding that indicates a competitive edge for sugarcane in these areas. 
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6. Model evaluation 

The main goal of this dissertation is to develop a modeling concept to estimate farmers’ supply 

responses and land allocation for countries with low data availability. A key step within this 

development is the evaluation of the model results to better understand its accuracy, possible 

skewness and the main areas for further development. In this chapter, I focus on the evalua-

tion of the PAM modeling approach to answer questions on farmers’ supply responses and 

the consequent land-use change, thereby informing decision-makers. According to Gardner 

and Urban (2003), the substantial increase in efforts to develop new models has not been met 

by the same investment in defining methods for model evaluation, even though it is as im-

portant as model development itself. 

In the following subsections, the focus is on model evaluation as defined by Richter, Atzberger, 

Hank, and Mauser (2012), in which model performance is benchmarked against realistic and 

independent data. After the evaluation design is explained, the results from the evaluation of 

the yield and production costs estimations are presented. The final step within the evaluation 

is to compare the land allocation to individual cropping alternatives (i.e., land-use maps) to 

observed data from an independent source, illustrating the performance of the PAM model in 

depicting current land use. 

It is important to keep in mind that the entire approach is based on a minimum data (MD) 

requirement and that an error margin is expected due to the complexity involved in estimating 

farm-level production costs and economic behavior. Any model is a simplification of reality 

and several factors affecting farmers’ behavior, such as risk perception, management capabil-

ity and know-how, are not included in the model (Gardner & Urban, 2003). 

6.1. Evaluation design 

The evaluation process aims to determine the robustness of the concept and modeling ap-

proach, focusing mainly on validating the main innovation within the PAM approach – the 

estimation of production costs and returns to land. Nonetheless, the evaluation process con-

siders the results of the final land allocation module as well as the performance of EPIC in 

providing reliable yield estimations. 

The selection of the statistical measure used in the model evaluation is of key importance as 

discussed by Pontius and Schneider (2001). The idea of visually comparing the results from the 

land allocation module to observed land-use seems a straightforward approach for evaluation. 

However, basing the evaluation entirely on the graphical comparison may be misleading since 

results that “look good” may not depict the dynamics that the model intends to represent 

(Gardner & Urban, 2003). Therefore, a combination of statistical measures (quantitative) and 

graphical comparison (qualitative) is used for the model evaluation process. 
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6.1.1. Statistical measures 

The following three main statistical measures are used to evaluate the results of the several 

building blocks of the PAM model, following an approach similar to that proposed by Balkovič 

et al. (2013) and Nendel et al. (2011):  

Mean Error (ME) =  
1

𝑛
 ∑ 𝑦𝑖

𝑛
𝑖=1 − 𝑥𝑖 (34) 

Mean Absolute Error (MAE) =    
1

𝑛
 ∑|𝑦𝑖 −  𝑥𝑖|

𝑛

𝑖=1

 (35) 

Root Mean Square Error (RMSE) =  √
1

𝑛
 ∑(𝑦𝑖 −  𝑥𝑖)2

𝑛

𝑖=1

 (36) 

where 𝑦𝑖 is the predicted value by the model and 𝑥𝑖  is the observed value for 𝑖 = 1, 2, …, 𝑛 

SimUs or regions depending on the dataset35. The statistic measures also are presented in a 

normalized manner by dividing the measure by the mean of the observations. These relative 

measures are denoted by 𝑟 as in 𝑟MAE. Even though ME is not a robust error measurement 

since errors with different signs cancel each other, it may be useful to identify systematic er-

ror’ patterns of the estimation; for example, if the model systematically over- or underesti-

mates yields of a certain crop. 

When it comes to assessing the average model performance, researchers have argued about 

the benefits and drawbacks of using the two most common indicators – namely RMSE and 

MAE (Chai & Draxler, 2014). While the MAE gives each error the same weight, RMSE penalizes 

strongly larger absolute errors. Another important characteristic of RMSE is the difficulty to 

compare values coming from different sample sizes since it affects the magnitude of the RMSE 

(Willmott & Matsuura, 2005). Given the calibration of the main PAM modules – i.e., plant and 

economic, is based mainly on the most important production regions in the country, it is ex-

pected that marginal areas will have a higher estimation error. Due to the RMSE characteristic 

to overpenalize these “outliers” as well as due to the different sample sizes for each crop for 

the validation of production costs, the main statistical measure used in the evaluation of the 

PAM results is the MAE. Nonetheless, the RMSE and standard deviation (SD) also are pre-

sented. 

                                                      
35  𝑛 is SimUs for the yield validation; for production cost it is the regions from CEPEA/PECEGE; and for land allocation 

it is the pixels in the land use maps. 
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6.1.2. Yield and production cost evaluation design 

Yield validation design 

The yield estimation for sugarcane, soybeans and maize as the second crop is evaluated by 

comparing the EPIC results to official statistical data coming from IBGE. The official harvested 

area and production volume are allocated to each SimU following the work from Câmara et 

al. (2015), from which the crop yield for each SimU is calculated. The average yield data con-

tains the three most recent years available – 2013 to 2015. 

Production cost validation  

A similar approach using regional data for the yield validation would be ideal to evaluate the 

production cost estimations within the PAM model. Unfortunately, such detailed and spatially 

explicit information currently is not available. An alternative may be to collect primary pro-

duction cost data in several regions to benchmark the observed data to the model results. 

However, such an approach is time-consuming and cost-intensive, making it beyond the scope 

of this dissertation. Against this background, I propose the alternative of using data from two 

research institutions in Brazil – namely CEPEA36 and PECEGE37. They collect a large sample of 

typical farms’ data in the main producing regions in Brazil, following a SOP similar to that of 

agri benchmark (see section 2.6). This information is not publicly available, but it was obtained 

through a cooperation agreement for the evaluation process.  

The production cost data for each farm is used as an average from the seasons 2016 to 2018, 

originally collected in Brazilian Reais and converted to USD with the same exchange rates used 

in the PAM model. Figure 42 shows the typical farms from PECEGE in the main sugarcane 

producing regions in Brazil as well as the methodological approach in the GIS software to al-

locate municipality level information (PECEGE) to SimU levels (PAM results). In a nutshell, the 

two information layers are spatially joined and a simple average of all SimUs within the bound-

aries of each municipality is calculated and then compared with the observed data. 

                                                      
36  Centro de Estudos Avançados em Economia Aplicada (CEPEA) - www.cepea.esalq.usp.br 

37  Programa de Educação Continuada em Economia e Gestão de Empresas (PECEGE) - https://pecege.com/ 
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Figure 42:  Typical sugarcane farms for validation (left) and schema of allocation of Si-

mUs to municipality level (right) 

 

Source:  IBGE (2016) – created by the author. 

It is important to note that the sample size and distribution of typical farms from PECEGE (Fig-

ure 42) aim to represent the most important production regions in Brazil so that the majority 

of 45 farms are found in the main producing states of São Paulo (SP) and Minas Gerais (MG). 

The relatively small number of typical farms in other states is expected to decrease the vali-

dation robustness, because a single particularity coming from a focus group may cause strong 

regional deviation (e.g., duration of sugarcane ratoon, seedcane input, etc.). A similar distri-

bution of farms is observed in the data coming from CEPEA for grains. 

Although the data collection method of PECEGE and CEPEA is similar to that of agri benchmark 

used in the PAM model, differences are expected, such as the aggregation methodology from 

individual cost items, allocation of overhead, computing depreciation, etc. To minimize such 

distortions, the total costs without land is the indicator used in the evaluation of the PAM 

performance in estimating production costs. In this way, in all three methodologies, costs that 

may be allocated to different subgroups (e.g., operating vs overhead costs) are certainly in-

cluded in the total costs. 

One important uncertainty that is not ruled out by using total costs as the main indicator for 

the evaluation is the allocation of non-crop-specific costs such as overhead and family labor 

(i.e., management) to the individual crops within the farm since the allocation procedure may 

differ among the research groups. Even though this may cause divergencies in the single-crop 
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comparison, it should not have a strong impact when comparing the actual crop alternative 

(i.e., double cropping) against sugarcane since costs from soybeans and maize are combined. 

For sugarcane, the different allocation methodologies for overhead are not expected to im-

pact the evaluation significantly, because the typical sugarcane farm does not grow any other 

commercial crop. 

For the production cost evaluation, it is important to consider at which unit the costs should 

be benchmarked – per t of output or per ha. For grain farmers, the logical approach seems to 

be using cost per ha since the total costs are not closely related to crop output (see 4.5.4.2). 

However, for sugarcane, important cost items such as harvesting, loading and transportation 

are linked to yields (i.e., contractors’ fees in USD/t). That is important because the yield data 

from PECEGE come from the focus group, which is likely to represent a combination of expe-

riences from the participants of the panel, agreeing on the most typical yield observed in the 

region for the season. That is expected to be influenced by the exact location of farmers form-

ing the panel and is not necessarily representative of the environmental conditions of the re-

gion. Hence, the validation for sugarcane uses both units to better understand whether the 

differences come from yield or production cost information. 

6.1.3. Land allocation evaluation design 

The final output from the PAM model is the allocation of the cropping alternative with the 

highest return to land to each SimU. This output is a map based on the geographical location 

of each SimU and the spatial constraints (i.e., current land use). For the validation, it is desir-

able to compare the output from the PAM model to the recent real land-cover map, which 

has not been used for the calibration (Pontius & Schneider, 2001). 

Land-cover maps classifying arable and grassland are readily available (IBGE, 2018), but they 

usually lack information on which crop is grown in each pixel. Currently, such detailed land 

use maps of observed data, including the crop information per pixel, are not publicly available 

for the whole country. I propose two alternatives to create validation maps: 

− using statistical data at the municipality level from IBGE, and  

− results from the Spatial Production Allocation Model (SPAM) from IFPRI.  

The following subsections highlight how these two simplified land-use maps were developed 

for the validation of the PAM model. 

Official statistics data at municipality level (IBGE) 

Since 1974, the Brazilian Institute of Geography and Statistics (IBGE) annually collects detailed 

information for the total and harvested area, production volume, yields and production value 

of all crops grown in Brazil. This information is at the municipality level and is, to the best of 

my knowledge, the statistical data with the highest spatial resolution publicly available in 
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Brazil (IBGE, 2019). The information for more than 5,500 municipalities is used to create the 

validation map based on the IBGE data. 

Using GIS software, the information from IBGE’s survey is allocated to the total geographic 

area of each municipality. The resulting layer is spatially combined to the high resolution (pixel 

of ca. 100 ha each) land classification map from IBGE (2018) as shown in Figure 43 (right), 

which provides the information on the actual grassland and arable land within the municipal-

ity boundaries. The allocation of the results from the PAM model’s BAU scenario to the grass 

and arable land is similar. Hence, I make sure that all information used throughout the land 

allocation validation is at the same spatial resolution (ca. 100 ha pixels). 

Figure 43:  Spatial resolution of different data sources: output from PAM (left), munici-

pality level data from IBGE (middle) and the land-use map from IBGE (right) 

 

Source:  IBGE (2018 and 2019) – created by the author. 

The final validation map with IBGE information has more than one crop grown per pixel since 

several municipalities have multiple crops grown on their arable land – not necessarily by the 

same farms. Since the optimization module within the PAM model allocates the whole SimU 

to a single crop alternative – e.g., either sugarcane or double cropping – a similar adjustment 

is needed for the IBGE data to allow the validation to be performed. Therefore, the crop with 

the highest acreage (share) in each municipality receives the entire arable land in it. 

One may argue that it would be feasible to allocate the arable land within the municipality 

proportionally to the share of area for each crop from the IBGE data. That is technically 
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possible but without further information on where to allocate this crop (e.g., satellite im-

agery), it only can be allocated randomly. That creates biased precision and could be manipu-

lated to fit the PAM outcome, for example. Therefore, the rule of allocating the whole acreage 

for the most important crop is expected to create an oversimplification of production systems 

for some regions but it is likely to produce more robust results compared with a random allo-

cation. 

This limitation is expected to impact mainly the states of Goiás (GO), Mato Grosso do Sul (MS), 

and Minas Gerais (MG), which have large municipalities producing both sugarcane and grains. 

Nonetheless, the IBGE database is highly detailed and contains real observed information, 

which increases its value significantly for the model evaluation process. 

Spatial Production and Allocation Model (SPAM) 

To broaden the scope of the land allocation validation, data from SPAM developed by the 

International Food Policy Research Institute (IFPRI) is used to create a simplified land-use map. 

The SPAM model uses a variety of inputs ranging from national statistics to biophysical crop 

suitability assessments, allocating all the information to a detailed spatial grid of 10 by 10 km 

(IFPRI, 2019). 

The simplified land-use map for Brazil is based on the physical area of soybeans and sugarcane 

from the SPAM 2010 dataset (most recent available). To make the resulting map comparable 

to the output from the PAM model, the pixel information from the SPAM model in the simpli-

fied map is allocated to either sugarcane or soybeans depending on the crop with the highest 

share of acreage within the pixel (like the IBGE data). This simplification is necessary since 

PAM allows only one cropping alternative per pixel. The resulting map is spatially combined 

with the land classification map from IBGE (2018) for arable land, using the same method as 

for the information from IBGE. The resulting validation map based on the SPAM data for 2010 

is presented in Figure 44. 
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Figure 44: Simplified land-use map based on SPAM results for land allocation validation 

– the whole country (left) and main production areas (right) 

  

Source:  SPAM (2010) – created by the author. 

A map similar to shown in Figure 44 is obtained with the information from IBGE (municipality 

level). However, due to the spatial characteristics of the SPAM model, the level of detail in the 

resulting validation map is considerably higher since the drawback of using administrative-

level information can be avoided. The detailed map (Figure 44 – right) already shows the re-

gions where differences in spatial resolution may play a bigger role in designing and evaluating 

land-use models. The states of MS, MG, PR and GO are more diversified, with a regional mix 

of soybeans and sugarcane production, compared with the remaining states, so the relatively 

coarse spatial resolutions may not be able to accurately portray the variations observed in the 

land use in these regions. 

The performance indicators for the land use allocation 

Having the three maps at the same spatial resolution – i.e., PAM (BAU), IBGE and SPAM for 

the current arable land in Brazil – I propose a three-step method to assess the performance 

of the PAM model in representing the observed land use for sugarcane and the double-crop 

of soybeans and maize. This method should allow a qualitative and quantitative assessment 

of the model’s performance. 

The procedural steps can be described as follows: 
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(1) Graphical comparison (qualitative): Visually comparing the arable land that the PAM 

model allocates to each crop with the simplified land-use validation maps obtained from 

IBGE and SPAM. 

(2) Matching score (quantitative): Comparing the results from the PAM model to the ob-

served (IBGE) and estimated (SPAM) information for 640,000 pixels in the final valida-

tion map. The performance indicator is a percentage value based on the matching pixels 

between the estimation and observed – e.g., PAM allocates sugarcane to a pixel where 

the prevailing crop in the validation maps also is sugarcane. 

(3) Performance visualization (qualitative): Creating a matching map with the current ara-

ble land highlighting the pixels where the PAM model does or does not provide results 

that match the validation maps. 

The combination of qualitative and quantitative components is crucial to reduce biased results 

based solely on visual comparisons (output maps) while allowing the identification of possible 

regions where the model underperforms (matching maps). It is important to check, for exam-

ple, whether most of the non-matching pixels are in the same region due to the need to in-

clude more crops or regional-specific characteristics or are evenly distributed across the coun-

try. Such systemic error may affect substantially the interpretation of the validation results 

and therefore needs to be identified correctly. 

6.2. Evaluation results 

The PAM modeling approach should help us understand farmers’ supply responses and their 

consequence on land-use changes in regions where data availability is limited. Therefore, a 

thorough modeling evaluation scheme is required to identify possible limitations of the model 

for policy advisory. The results from the validation process are presented in this subchapter. 

To better understand the performance of the main building blocks of the PAM model, the 

following sections present the validation results for the yield estimation, production costs and 

land allocation. Hence, I am able to identify where the main sources of uncertainty originate 

and how to address them properly while interpreting the results. Finally, the validation pro-

cess helps identifying steps for the further development of the modeling approach. 

6.2.1. Yields 

The idea of combining a biophysical model and a production cost data is a main part of the 

entire PAM modeling approach since yields play a crucial role in the competitiveness of each 

cropping alternative at the farm level. Hence, the performance of the biophysical model (i.e., 

EPIC) in estimating yields has a major impact on the model output. 
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Fortunately, for Brazil, the availability of yield statistics allocated to the lowest geographic 

level (i.e., SimU) is ideal for the evaluation process, reducing the methodological problems of 

comparing spatial information to statistical information at an aggregated level such as states, 

etc. Table 5 presents the results from the yield validation for sugarcane, soybeans, and maize.  

Table 5:  Evaluation parameters for EPIC yields compared with national statistics 

Indicator 
Sugarcane Soybeans 2nd Maize 

t/ha %¹ t/ha %¹ t/ha %¹ 

Yield Mean (IBGE)² 74  2.9  5.5  
Mean Error (ME)² -8 -11 1.5 51 0.0 0 

Mean Absolute Error (MAE)² 18 24 1.5 52 1.1 20 

Standard Deviation (SD) 26 35 1.1 38 2.0 36 

Root Mean Square Error (RMSE) 29 39 1.7 60 2.3 41 

Number of SimU (n) 6,491 4,811 3,095 

¹ normalized based on the mean of the observations         

² weighted on the harvested area (2015)       
Source: own calculations based on IBGE (2019)         

The first interesting indicator is the ME showing different signs when comparing sugarcane 

and soybeans. That indicates that EPIC tends to underestimate sugarcane yields while overes-

timating soybeans and maize. Although this information may be useful to identify the first 

tendencies of the model, the more reliable error indicator is the MAE (see 6.1.1). The MAE is 

presented as the average for the whole country weighted on the harvested area of each SimU 

in 2015. The weighting reduces the importance of larger errors in areas with current low pro-

duction. 

For sugarcane, the MAE is 18 t/ha, resulting in a 𝑟MAE of 24%, while for soybeans, the MAE is 

1.5 t/ha or 52% in relative terms. The lowest 𝑟MAE observed is on second-season maize with 

20%. To further understand the performance of EPIC, Table 5 also presents the results from 

the RMSE for all crops. As previously discussed, this indicator strongly penalizes larger errors. 

The RMSE for sugarcane is 29 t/ha and 𝑟RMSE 39% of the average yield; soybeans 1.7 t/ha 

(60%). These results are in line with expectations since the model is expected to have a lower 

performance in marginal areas, where the current calibration may not apply. 

A closer look at the SimU shows that EPIC tends to underestimate sugarcane yields in high-

producing regions and overestimate in low-yielding areas. That can be partly observed by 

comparing the arithmetic mean error against the weighted. The former is 13 t/ha and the lat-

ter -8 t/ha. Balkovič et al. (2013) found similar EPIC behavior of underestimation in high-yield-

ing areas and overestimation in low-yield regions. 
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Slightly different behavior is observed for soybeans, with EPIC mostly overestimating yields 

across all areas. It indicates that constraints such as the lack of yield penalty due to pests and 

diseases may be affecting its overall performance (see 4.3.1 for more details). 

The best results are obtained with maize as the second crop. The MAE is the lowest in the 

comparison and even though the RMSE is slightly higher than for sugarcane, which is probably 

driven by lower sample size and the fact that second-season maize is mainly grown in few 

regions in Brazil so that marginal areas are likely to produce strong outliers impacting the 

RMSE. This relatively good performance may be partly explained by the intensive work from 

IIASA to adapt the crop calibration in EPIC to mimic specifically the second-season maize pro-

duction in South America. 

Considering the relatively simple calibration and the lack of regional production system infor-

mation inputted into EPIC, it is feasible to argue that the results from sugarcane and maize 

estimations are reasonable but less satisfactory for soybeans. The error behavior being differ-

ent between sugarcane and soybeans, when it comes to over- or underestimation, further 

complicates the usability of EPIC results as input for the PAM approach. If error patterns were 

in the same direction – e.g., always overestimating – it should be less problematic because the 

relationship between the crops would still fit. However, with different patterns, it becomes 

difficult to use EPIC without further calibration for the regional production systems in Brazil. 

Finally, it is important to highlight that for this case study, the results from EPIC were adjusted 

using the IBGE data (BAU scenario) to represent a situation in which a better calibration is 

achieved (see 5.1). 

6.2.2. Production cost evaluation 

The production cost estimation approach within PAM is the most important innovation. 

Therefore, a detailed evaluation process is key to highlight the benefits and drawbacks of us-

ing such a modeling approach. Unfortunately, the benchmark information to allow a validation 

process similar to that for yields is not currently available, so a different strategy is proposed 

using different data sources to allow the validation. The results from the production cost eval-

uation are presented first for sugarcane and grains – i.e., soybeans and maize as the second 

crop – on state-level averages, and later with a summary table comparing the statistical 

measures proposed in the methodology. 

6.2.2.1. Sugarcane production cost evaluation 

Following the proposed methodology, the data from the 45 typical farms for the year 2016-

2018 from PECEGE (n=125) is compared with the results from the BAU scenario from PAM. 

Figure 45 summarizes the results from this comparison in USD per t of sugarcane, using a sim-

ple average to compose the state average. It is important to keep in mind that the sample 

from PECEGE follows the current importance of each state for the national production (Figure 
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45 in brackets). Therefore, the average for the state of São Paulo (SP) comes from 28 regions, 

whereas the average for Mato Grosso do Sul (MS) represents one farm. Hence, the average 

presented should not be interpreted as representative of all areas in each state but as an av-

erage of the main production regions within the state. 

Figure 45:  Validation sugarcane cost estimates PAM (BAU) vs PECEGE in USD/t38 

 

Source:  PECEGE (2019) – created by the author. 

Considering the most important production region for sugarcane – i.e., CS – PAM estimates a 

production costs’ mean of 23 USD/t compared with 22.5 USD/t from the observed data from 

PECEGE. The result is a ME of 0.49 USD/t and a 𝑟MAE of 8.3%. It is interesting to observe that 

for the main production states of SP, MG and MS, PAM total cost estimation is almost identical 

to observed data from PECEGE, whereas, in the other states in the CS region, a relatively larger 

deviation between observed and estimated can be found, with PAM consistently overestimat-

ing production costs. 

Focusing on the relatively minor producing states in the Northeast region, the PAM model 

tends to underestimate production cost per t with a mean of 29.5 USD/t, whereas the three 

data points from PECEGE have a mean of 33 USD/t, representing a ME of -3.48 USD/t and a 

𝑟MAE of 10.5%. Such results are expected due to the relatively complex production systems 

in the Northeast states and the lack of agri benchmark typical farms to represent this region 

                                                      
38  Brackets show the number of municipalities collected by PECEGE used in the average for each state. 
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in the model. Nonetheless, it is important to note that this region currently accounts for less 

than 8% of the national output for sugarcane, reducing the impact of this relatively poor per-

formance on the overall output (CONAB, 2021). 

6.2.2.2. Soybeans and maize production cost evaluation 

The results from the production cost validation for soybeans are presented in Figure 46, divid-

ing the states according to the PAM classification into Expansion and Traditional regions. Sim-

ilar to the data from PECEGE, CEPEA typical farms’ location follows the current production 

patterns so that relatively newer production regions in the expansion region have a lower 

coverage, resulting in state averages coming from only one typical farm. 

Figure 46:  Validation soybeans cost estimates PAM (BAU) vs CEPEA in USD/ha39 

 

Source:  CEPEA/CNA (2020) – created by the author. 

The total production costs average estimated by the PAM model for soybeans is 636 USD/ha, 

compared with 605 USD/ha from the CEPEA data, considering all regions. The model simula-

tions have less than 3% deviation in the three most important producing states (i.e., MT, GO 

and MS), which together account for 58% of the current soybean acreage in Brazil (CONAB, 

2021). The performance for the remaining states in the Expansion regions is less satisfactory 

                                                      
39  Brackets show the number of municipalities collected by PECEGE used in the average for each state. 
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(standard deviation of 10%), with PAM mostly underestimating production costs. It is inter-

esting to observe that due to the low number of typical farms in these regions, the state av-

erages have a much stronger variation than in the more consolidated states. 

The strongest deviation between estimated and observed production cost for soybeans comes 

from the Traditional region, where PAM consistently overestimates production costs in all 

states. An important characteristic that may partly explain the relatively poor performance of 

the PAM model in the region is that only one typical farm was used as input for the whole 

region. Therefore, features of this single typical farm – e.g., small acreage, excessive machin-

ery or assumptions on family labor (wages) are expected to significantly impact the overall 

performance of the PAM model in this region. 

Maize as second-season crop 

Figure 47 presents the comparison between the estimated total production costs from the 

PAM model to the observed data from CEPEA for maize as a second-season crop. PAM esti-

mates a mean of total costs of 533 USD/ha compared with 487 USD/ha from the CEPEA typical 

farms, including all regions. As for soybeans, PAM performs relatively well in important states 

such as GO, MS and PA while overestimating production costs in most of the remaining states. 

The strongest deviation is again found in the traditional region – namely in the state of PR – 

an error pattern similar to that observed for soybeans. 
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Figure 47:  Validation maize 2nd season cost estimates PAM (BAU) vs CEPEA in USD/ha40 

 

Source:  CEPEA/CNA (2020) – created by the author. 

Although this visual comparison of the absolute production costs estimates vs observed costs 

is helpful to identify possible model skewness as well as patterns, it is important to better 

quantify the PAM performance based on the statistical measures proposed in the methodology. 

6.2.3. Summary of the production cost evaluation 

To better quantify and understand the behavior of the PAM economic module in estimating 

total production costs, Table 6 summarizes the main indicators used to evaluate the model’s 

performance for all crops analyzed, considering all SimU in Brazil. 

                                                      
40  Brackets show the number of municipalities collected by PECEGE used in the average for each state. 
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Table 6:  Model evaluation – benchmark indicators comparing PAM (BAU) total costs 

in USD/ha results to observed data 

Indicator 
Sugarcane Soybeans 2nd Maize 

USD/ha %¹ USD/ha %¹ USD/ha %¹ 

Total Costs Mean² 1,766  605  487  
Mean Error (ME) 25 1.4 31 5.1 47 9.6 

Mean Absolute Error (MAE) 153 8.7 78 12.9 68 14.0 

Standard Deviation (SD) 183 10.4 97 16.0 74 15.3 

Root Mean Square Error (RMSE) 183 10.4 100 16.5 86 17.7 

Number of municipalities (n) 45 31 19 

Data source PECEGE CEPEA/CNA CEPEA/CNA 

¹ normalized based on the mean of observations           

² mean of the validation typical farm data (observed) 

Source: own calculations based on PECEGE (2020) and CEPEA/CNA (2020)    

Starting with sugarcane, the average total production cost per ha estimated by the PAM model 

is 1,790 USD while the observed data from PECEGE average 1,766 USD/ha. The resulting MAE 

for sugarcane is 153 USD/ha, representing a 𝑟MAE of 8.7%. If compared with the 8.5% 𝑟MAE 

obtained with the validation using USD/t as an indicator, it is safe to assume that yields ob-

served from PECEGE and those used in the PAM estimations are similar and not causing major 

biases. This is an important finding showing that the magnitude and direction of error using 

the different indicators (per t or ha) are similar, with the PAM model slightly overestimating 

total production costs on average. 

For soybeans, the average total production cost (Table 6) estimated in the BAU scenario is 

636 USD/ha compared with observed at 605 USD/ha, resulting in an MAE of 78 USD/ha and 

𝑟MAE 12.9% of total costs. The 𝑟RMSE of 16.5% further highlights the relative robustness of 

the production costs estimate for soybeans within the PAM modeling approach. 

The MAE for maize as the second crop is 68 USD/ha and 𝑟MAE 14% from a total average cost 

of 487 USD/ha – results comparable to the performance of the model for soybeans. It is im-

portant to note that, in all crops, PAM on average overestimates production costs at a com-

parable scale, indicating that the relationship between the cropping alternatives should be 

close to the reality, even if the model estimates higher absolute values. 

Considering (a) the focus on accurate production costs estimation while relying mainly on cur-

rently available data, (b) the limited number of typical farms, (c) the possible divergences in 

costing methodology (e.g., cost allocation, depreciation, etc.) and (d) the overall challenge of 

estimating production costs, the 𝑟MAE of 8.7% for sugarcane, 12.9% for soybeans, and 14% 

for maize can be considered satisfactory for micro-regional economic analyses. Balkovič et al. 
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(2013) argue that, for studies of such scale, relative errors of less than 30% can be considered 

reliable. 

Finally, it is interesting that while the overall performance is satisfactory, the traditional region 

for grains as well as the Northeast region for sugarcane may be considered for further devel-

opment, perhaps based on establishing new farms or refining the current agri benchmark typ-

ical farms in these regions. 

6.2.4. Land allocation and land-use evaluation 

The final output of the PAM modeling approach is the spatial allocation of the crops with the 

highest return to land to each SimU, creating a simplified land-use map. This subchapter fo-

cuses on the validation process of this output following the proposed methodology. 

Graphical comparison 

The first step of the three proposed for the evaluation of the PAM land allocation module is a 

graphical comparison between estimated and observed land-use maps. Figure 48 shows the 

final allocation map from the PAM model for the BAU scenario (left) compared with the sim-

plified land-use map based on IBGE information at the municipality level (right). 

Figure 48:  Graphical evaluation of the land use estimation: PAM land-use map (left) 

compared with official statistics from IBGE (right) 

 

Source: PAM results (2020) and IBGE (2019) – created by the author. 
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The first important finding is that the overall allocation pattern from PAM is similar to the 

observed data from IBGE, with the main cluster of sugarcane production centered in the state 

of SP, expanding into parts of MG, GO and MS. Most of the remaining areas are allocated to 

double cropping of soybeans and maize. Visually, the main divergences between the model 

output and the observed data are found in MS and MG. PAM allocates the entire arable land 

in MS to double cropping whereas the northeastern area of the state has sugarcane as its main 

crop based on the map from IBGE. For the MG, the situation is the opposite, with PAM allo-

cating most of the western part of the state to sugarcane, whereas IBGE shows soybeans dom-

inating this area. 

The overall land allocation pattern from the PAM model can be considered satisfactory since 

there is a strong visual overlap between the land-use estimation in the BAU scenario and the 

simplified land-use map from IBGE (and SPAM). Nonetheless, it is important to quantify this 

performance with statistical measures since it is challenging to evaluate the model based on 

visual evidence alone. 

Matching score 

To better quantify the overall performance of the PAM model in reproducing the simplified 

land-use maps from IBGE and SPAM 2010, the matching score illustrates the number of pixels 

in these maps with matching results – i.e., same crop alternative. Table 7 shows the results 

from the comparison as a percentage of matching pixels in each state in Brazil. The table also 

shows the importance of each state in the national production of sugarcane and soybeans as 

well as their share of total national acreage (i.e., including all crops). 
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Table 7:  Matching score results measuring PAM performance compared with IBGE 

(2019) and SPAM/IFPRI (2019) 

State 

Share of the crop in state 
arable land (%) ¹ 

National 
acreage 

PAM performance 

IBGE SPAM 

Sugarcane Soybeans % % 

Mato Grosso (MT) 2 60 18.0 95 94 
São Paulo (SP) 70 13 15.9 88 91 
Rio Grande do Sul (RS) 0 64 14.8 100 98 
Paraná (PR) 6 51 11.3 83 83 
Goiás (GO) 15 52 10.2 81 79 
Minas Gerais (MG) 21 36 7.8 63 59 
Mato Grosso do Sul (MS) 13 50 6.9 89 90 
Bahia (BA) 2 50 4.6 94 91 
Tocantins (TO) 3 66 1.9 98 92 
Maranhão (MA) 3 52 1.7 98 93 
Piauí (PI) 1 46 1.7 96 94 
Santa Catarina (SC) 0 46 1.2 95 81 
Pará (PA) 1 46 0.9 77 72 
Alagoas (AL) 69 0 0.7 58 58 
Rondônia (RO) 0 51 0.5 99 87 
Others - - 1.8 23 21 

Total (Brazil) 14 47 100 87* 86* 

¹ average from 2017-2019 (IBGE)          
² CE, PE, RN, ES, SE, PB, DF, RJ, RR, AP, AM, and AC      
* based on the total matching pixels regardless of the state (same results if using weighted average)   
Source: own calculations based on IBGE (2019) and IPFRI (2019)      

The overall performance of the PAM allocation module varies significantly among the states. 

On one hand, states such as MG and GO have the lowest matching score – between 60% and 

80% – considering the main producing states in Brazil. To a certain extent, that is expected 

since these states have an important share of soybeans (and maize) as well as sugarcane. 

Therefore, limitations such as the ability to allocate only one crop to each SimU oversimplify 

the actual structure of current land use. Other uncertainties come from the validation method 

to create the benchmark maps by allocating the whole area of a pixel to the crop with the 

largest share of acreage. That is expected to create larger biases in states with more mixed 

combinations of crops. Relatively poor performance also observed in the less important states 

such as AL and “others.” That is likely to be a combination of different production systems, 

the importance of other crops and the lack of typical farms to better calibrate the PAM model. 

On the other hand, the PAM land allocation module performs well in the most important pro-

ducing states such as MT, SP, RS and PR, which together account for more than 60% of the 

total acreage in Brazil. The overall performance of PAM in allocating crops that match with 

the observed data is 86% or 87% depending on the source used as the benchmark. It also is 

important to highlight that no major differences are observed between the validation using 
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the IBGE data and the SPAM 2010 data. That is an additional indication of the robustness of 

the PAM model in reproducing the current land use for these crop alternatives. 

This finding supports the observations from the graphical comparison results, showing that 

the land allocation from the PAM model has an overall good performance, matching more 

than 86% of the pixels when compared with the benchmark land-use maps. Nonetheless, it is 

important to understand the model behavior in areas with more complex and mixed produc-

tion systems, in which the model performs less satisfactorily (mainly MG). For these states, 

higher resolution modeling should improve the land-use estimation performance. 

Performance visualization 

The last step in the land allocation validation process is to combine the matching information 

from the previous section with the graphical visualization. Figure 49 shows the performance 

visualization maps comparing the results from the PAM (BAU scenario) against the simplified 

land-use map from IBGE. 

Figure 49:  Validation BAU (PAM) against IBGE simplified land use data 

 

Source:  IBGE (2019) – created by the author. 

Supporting the previous results, Figure 49 highlights the overall good match between the re-

sults from the PAM model and IBGE data. The results using the SPAM as the benchmark map 

are very similar (see appendix 8). The pixels with non-matching results are mainly found in the 

MG, GO, and PR. This visualization helps us understand the limitations of the land allocation 

module within the PAM model.  
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Summary 

The three-step evaluation process for the land allocation module provides interesting insights 

into how the model behaves. The overall land allocation performance of 86% is satisfactory 

considering the scope and complexity of estimating land-use based solely on economic prof-

itability. The evaluation process also indicates where the model has its strongest problems 

(e.g., MG state) due to the diversity of the region and the limitations on spatial resolutions. A 

thorough evaluation process is imperative to inform users of the limitations and strengths of 

the model and to highlight areas for further development. 
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7. Climate change and the competitiveness of Brazilian crops 

Climate change is expected to have the greatest impact on the agricultural sector and espe-

cially so in developing countries due to relatively stronger expected atmospheric variation as 

well as relatively higher dependence of the economy of these regions on the agricultural sec-

tor (Mendelsohn, 2008). A common approach to model the impact of climate change on the 

agricultural sector is to simulate the change in crop yield. That should help forecast future 

land-use changes in important producing countries due to the reallocation of land to different 

crops. Several approaches have been used to quantify the impacts of changes in the atmos-

phere on crop cycles, water availability and, finally, yields (Knox, Hess, Daccache, & Wheeler, 

2012). An interesting outcome of such models is the expected changes in yields, depending 

on the emission patterns in the future. It seems, however, that these atmospheric changes 

may not affect all crops and regions equally. That brings an important question regarding the 

possible cropping choices for farmers in the future, depending on how climate change affects 

the economic performance of each crop at the farm level in different regions. 

From this perspective, the PAM modeling approach seems to be an interesting tool to analyze 

the impact of yield change due to climate change on the economic performance of the major 

cropping systems in Brazil – namely double cropping (soybean-maize) or sugarcane – and, ul-

timately, on the land-use structure. Such scenario analyses are important to observe the PAM 

model behavior with changes in inputs (i.e., crop yields), to identify possible limitations and, 

more importantly, to illustrate how this new modeling approach can be used empirically. The 

following subchapters review the literature on the expected impact of climate change in dif-

ferent crops and regions in Brazil, followed by the scenarios implementation strategies, and 

finally present the results of the scenario simulations. 

7.1. Background: climate change impact on Brazilian cropping pattern 

The general understanding is that climate change is expected to impact tropical and subtrop-

ical regions more strongly than temperate zones. Narrowing down to Brazil, the prevailing 

expectation is that crops in the southeastern regions will benefit whereas northeastern and 

the Amazon regions will most likely suffer from climate change (Mendelsohn, 2008). The main 

changes are expected to be an increase in average temperature (stronger in the central re-

gions), changes in total and distribution of precipitation and the number of days with temper-

ature above 34°C, among others (Zilli et al., 2020). 

Arvor, Dubreuil, Ronchail, Simões, and Funatsu (2014) argue that for the main producing re-

gions in the Cerrado (e.g., MT), a lengthening of the dry period, as well as changes in spatial 

and temporal rainfall distribution, is expected. Besides global climate changes, deforestation 

on the Amazon basin may cause further local climate changes in neighboring regions, poten-

tially reducing rainfall in extreme cases by up to 25% (Nobre, Sellers, & Shukla, 1991). Con-

versely, in the South of Brazil, the level of deforestation is minimal which combined with a 

relatively small change in precipitation, indicates a positive development of soybean yields 
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mainly due to higher levels of CO₂ (Pires et al., 2016). Against this regional background, it is 

important to understand how the different crops may react to such climatic changes. 

Sugarcane 

First, it is important to highlight that only a few studies have been carried out to quantify the 

impact of climate changes on sugarcane yields, even though it is a major crop in tropical re-

gions (Knox et al., 2012). Fortunately, most of the studies are in Brazil and point in the same 

direction (Linnenluecke, Nucifora, & Thompson, 2018). For the main producing region (e.g., 

SP), most results indicate an increase in yields attributed mainly to increasing CO₂ concentra-

tion and temperature being able to compensate for possible losses due to a reduction in pre-

cipitation (Marin et al., 2013; Singels, Jones, Marin, Ruane, & Thorburn, 2014). The magnitude 

of the climate change impact on sugarcane yields in the southern region in Brazil varies 

strongly among the authors, with values as high as 20% to 58% by 2030 and 59 to 82% by 2090 

in the state of SP (dos Santos & Sentelhas, 2014). 

When looking at different climate zones in Brazil, the availability of results is very limited. One 

paper from Carvalho et al. (2015) suggests that sugarcane yields are expected to decrease in 

the Northeast region (Pernambuco) due to higher temperatures and lower water availability. 

This effect of yield losses as a result of the strong increase in temperature that cannot be 

compensated by higher CO₂ availability also is described by Berg, Noblet-Ducoudré, Sultan, 

Lengaigne, and Guimberteau (2013) for arid regions. 

For the tropical region in Brazil, few studies focus on the impact of climate change in sugarcane 

(not the main producing region). The exception is the work from Marin et al. (2013), in which 

they compare two regions in the state of SP, including areas with climate regions classified as 

Aw and As (tropical) based on the Köppen classification (Alvares, Stape, Sentelhas, Gonçalves, 

& Sparovek, 2013). Most regions in the Cerrado biome belong to the same climate category. 

In their study, all areas (tropical and subtropical) had a positive overall response to climate 

change, with sugarcane being able to profit from higher water use efficiency and higher CO₂ 

availability. 

Recently, Flack-Prain et al. (2021) contested the majority of sugarcane yield projections under 

climate change scenarios, arguing the mechanism of the main models used (i.e., DSSAT and 

APSIM) may be misrepresenting the complex interactions between sugarcane ecophysiology 

and other climate indicators. That highlights the fact that any projections are dependent on 

model specifications, climate scenarios and calibration. 

Soybeans and Maize 

For soybeans and maize, it is crucial to focus on the “two” main climate zones in Brazil when 

describing possible changes in yield due to climate change. Moreover, it also is important to 

consider the combination of crops (i.e., double-crop) instead of a single crop since it is the 

prevailing system in Brazil. Double-cropping is responsible for the expansion of Brazilian maize 

and soybeans, allowing farmers to grow two crops in one season. That, however, strongly 
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depends on the climatic conditions, with the most important indicator of the presence of dou-

ble cropping being the duration of the wet season (Arvor et al., 2014). 

Pires et al. (2016) argue that in most double-cropping regions, the wet season lasts between 

six and seven months, allowing growers to seed early soybeans right after the ending of the 

sanitary break41 and having enough time to harvest soybeans and cultivate second-season 

maize afterward. Arvor et al. (2014) show a close link between the early onset of the wet 

season and total precipitation with the total double-cropping area in MT. Therefore, while 

focusing on the double-cropping system in the Cerrado region (tropical zones), the expected 

effect of climate change is delayed onset of the wet season, which is expected to delay soy-

bean seeding and thereby reduce farmers’ ability to grow second-season maize (Pires et al., 

2016). 

The system is further complicated by the expected reactions of maize to climate change in 

tropical regions. Models using the thermal time to compute cycle length indicate that in-

creases in temperature shorten the crop cycle by speeding up phenological phases, reducing 

biomass growth and yields (Berg et al., 2013). Moreover, the increasing temperature is ex-

pected to increase cereal (e.g., maize, wheat, etc.) respiration rates, thereby decreasing yields 

(Wang, Vanga, Saxena, Orsat, & Raghavan, 2018). Therefore, maize grown after soybeans is 

expected to have a yield decrease up to 28%, if no technical changes are implemented (Hampf 

et al., 2020). 

For the Southern (sub-tropical) region, an increase in soybean yields is expected, even for 

short-cycle varieties usually used in the double-cropping systems. The reasons are an ex-

pected higher CO₂ concentration and relatively modest changes in precipitation (Pires et al., 

2016). For maize, a modest yield reduction is expected in the near future with relatively high 

yield penalties projected between 2071 and 2100 (Camilo et al., 2018). 

7.2. Scenario implementation in the PAM model 

7.2.1. Description of the scenarios 

Climatic zones 

The PAM approach is based on regional information and, therefore, it is important for a robust 

implementation of the scenarios to divide the production regions according to their climate 

zone classification. This dissertation uses the climate classification from Alvares et al. (2013), 

in which Brazil is classified according to the Köppen zones, based mainly on the total and dis-

tribution of rainfall and temperature. The detailed results from this classification in GIS format 

                                                      
41  The sanitary break is adopted by Paraguay and Brazil between June and September when soybean production is 

not allowed, to reduce the pressure from Asian soybean rust - Pires et al. (2016). 



Chapter 7          Climate change and the competitiveness of Brazilian crops 123 

 

is used to divide the country into three major climate zones (i.e., simple classification), assign-

ing each SimU to the prevailing climate type based on its geographic location. The resulting 

classification, as well as the original map, are shown in Figure 50.  

Figure 50:  Köppen climate classification for Brazil (left) and simplified version (right) 

 

Source:  Alvares et al. (2013) – created by the author. 

Since no significant crop production takes place in the dry zone (right, B), the most important 

regions for the scenario implementation are the tropical (A) and the humid subtropical (C) 

zones. The tropical zone (A) covers most (81.4%) of the Brazilian territory and has a total rain-

fall variation between 1,000 mm (As, left map) to ca. 3,000 mm (Af). Most of the crop produc-

tion in the tropical zones takes place in the climatic zone Aw, which receives more than 

1,300 mm and has a distinct seasonality – wet summer and dry winter – and mean tempera-

ture around 24 °C. The humid subtropical zone (C) covers 13.7% of the total territory, with the 

Cfa classification covering most of the crop production within this zone. Its total rainfall is 

similar to the Aw region but with more rainfall in winter and considerably lower temperatures 

(Alvares et al., 2013). 

Yield impact due to climate change 

The most important impact of climate change considered in this work is on yields. Therefore, 

most of the adaptation of the PAM model is to implement yield changes based on available 

projections with a time horizon until 2050. For sugarcane, this dissertation follows the work 

from Marin et al. (2013), assuming for SP an average 22% yield increase for climate region C 
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(humid tropical) and 15% for climate region A (subtropical) since this region has higher mean 

temperatures. The latter is an adaptation based on the uncertainty regarding the role of in-

creasing temperature and its effect on yields for this region, considering the strong negative 

impact found in the work from Carvalho (2015). These regional yield increases are kept con-

stant for all soybean-maize scenarios. 

For the double-cropping system, I propose two scenarios based mainly on the work from Pires 

et al. (2016) and Hampf et al. (2020).  

No Double Cropping in Tropical Zone (NoDC): 

This scenario is mainly based on the work from Pires et al. (2016), which uses a realistic climate 

change scenario including atmospheric change due to global greenhouse gas (GHG) emissions 

combined with regional climatic changes due to deforestation in the Cerrado and Amazon (i.e., 

LUCID+PC13). They estimate a negative yield impact on short-cycle (i.e., 100 days) soybeans, 

which primarily are used in the combination of second-season maize. Following the argument 

that short-cycle soybeans in the central-northern (tropical) region of Brazil will suffer signifi-

cantly from climate change (yield losses from 12% to 50%), it is assumed that farmers in this 

region most will likely forgo the returns from maize as the second crop and instead grow 

longer-cycle (i.e., 130 days) soybeans. According to Pires et al. (2016), the expected yield in-

crease for longer-cycle soybeans varies between 2.2% in MT and 3.9% in MATOPIBA. Due to 

the relative importance of MT, the soybean yield increase assumed in this scenario is 2.2% for 

the SimUs in the tropical zones. 

Conversely, farmers in the humid-subtropical zones are assumed to continue to pursue double 

cropping with a yield increase of optimum cultivar of soybeans of 15.7% based on Pires et al. 

(2016). Maize yields in this subtropical zone are assumed to decline by 8.7% following the 

work from Camilo et al. (2018). Hence, it is feasible to assume that farmers in the humid-

subtropical region may continue to practice double-cropping. 

Double Cropping with Yield Penalty (DCYp): 

This scenario includes a possible adaptation by farmers to changes in the onset of the wet 

season in the tropical zones caused by climate change. Following the work of Hampf et al. 

(2020), farmers may react by postponing soybean seeding and therefore delaying the sowing 

of second-season maize. Even though delaying soybean sowing causes minor changes in 

yields, the impact on second-season maize yields is notable. Due to the expected changes in 

rainfall and temperature, the average maize yield penalty without technical adaptation is 28%. 

Besides the yield penalty, it is important to consider that delaying soybean sowing increases 

the risk of not being able to grow a second season crop due to the time required for soybeans 

to mature and the short time window for harvesting soybeans and sowing maize.  

Since this effect is projected only for the tropical zones (A) in Brazil, the SimUs in the humid-

subtropical zones (C) area are assumed to keep double cropping with a soybean yield increase 

of 15.6% based on Pires et al. (2016) and a yield penalty for maize similar to the NoDC scenario.  
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Table 8 summarizes the relative yield changes compared with the BAU scenario for all climate 

change adaptation scenarios, for the two main climate zones in Brazil. It is important to note 

that for sugarcane, the yield variation is based on the fresh stalk yield. The sugar content (TRS) 

per t of fresh cane is the same as for the BAU scenario. 

Table 8:  Assumed yield changes in the climate change scenarios vs the BAU (in %) 

Climate Zones 
NoDC DCYp All Scenarios 

Soybeans¹ Maize² Soybeans¹ Maize² Sugarcane⁴ 

Tropical Zone (A) 2.2 - -11.8 -28.0³ 15.0 

Humid Subtropical (B) 15.7 -8.7 15.6 -8.7 22.0 

¹ Based on Pires et al. (2016)           
² Based on Camilo et al. (2018) 
³ Based on Hampf et al. (2020)    
⁴ Based on Marin et al. (2013)           

7.2.2. Changes in the PAM modules 

To run the climate change adaptation scenarios, the following changes are required to ensure 

consistent results that can be benchmarked against the BAU scenario.  

Yield changes 

The proposed climate change scenarios directly impact the plant module due to the changes 

in crop yield. Therefore, the yields of the BAU scenario are modified using the proposed 

changes presented in Table 8. 

Transportation module 

The basic transportation module is kept unchanged from that in the BAU scenario because 

external changes in infrastructure or transportation costs (i.e., diesel) are expected to affect 

all cropping alternatives similarly. The only important difference between the BAU and the 

scenarios is the assumption on the inbound transport costs for sugarcane from field to mill. 

For the climate change scenarios, I assume the current average inbound transport costs (see 

section 4.4.2 for more details) from farm to mill based on the idea that for future scenarios, 

the constraint of having to deliver cane to a current mill is not realistic so the model assumes 

that farmers need to cover only the current average transport cost (based on a 30-km dis-

tance). 

Changes in production costs – economic module 

An important topic is the related changes in production costs triggered by the yield changes. 

For sugarcane, the model is already reacting to changes in yields since there is a direct rela-

tionship between yield and the main costs items. Therefore, the expected yield increase di-

rectly translates into higher operating costs, the main cost component. This feature holds true 
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for K costs as well, which are already modeled considering nutrient uptake. The main uncer-

tainty is N since the current model setup uses the output from EPIC on nutrient requirements 

to calculate costs. Hence, a linear adjustment is implemented using increasing nutrient use 

based on expected yield increase. 

For grains, the production costs are kept the same as for the BAU. Due to the limited relation-

ship between operating costs and yields, it is unfeasible to assume that yield increases will 

automatically translate into higher operating costs. For establishment costs, the required ad-

justment in K is already implemented in the model – i.e., based on crop uptake. Since soybeans 

do not currently receive any N fertilizer, this cost component should not change the outcome 

of the scenarios. The reasoning behind keeping the production costs similar for second-crop 

maize is based on the already minimal applications of N and similar constraints in relating its 

operating costs to yields. The remaining uncertainty is the change in P application that may 

be triggered by the expected yield decrease. 

Crop prices at FOB and farm-gate levels are kept unchanged from the BAU scenario. The idea 

is to isolate the effect of expected changes in yield (ratios) caused by climate change from 

possible movements in commodity prices. Nonetheless, it is expected that such strong yield 

developments in a major producer of all three crops are likely to affect international prices. 

However, since PAM currently is only a regional supply model, it is out of the scope of this 

case study to try to estimate such movements. A model consortium with a global equilibrium 

model could be a way forward to tackle such developments more holistically. 

Finally, the scenarios are calculated considering the current arable and grassland in Brazil 

(IBGE, 2018). The idea is to allow for possible land conversion from grassland to cropland as 

well as understanding which crops may prevail regionally following such yield change. 
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7.3. Results from the climate change adaptation scenarios 

7.3.1. Changes in return to land for grains 

Figure 51 presents the estimated returns to land for grains in the different climate zones and 

states, comparing the climate change adaptation scenarios to the BAU, in USD/ha. 

Figure 51: Returns to land for grains for the climate change adaptation scenarios and the 

BAU scenario (in USD/ha) 

 

Source:  PAM results (2020) – created by the author. 

The overall picture is a strong decline in the returns to land in the tropical region (A), from a 

six-state simple average of 312 USD/ha in the BAU to 191 USD/ha (-39%) in the DCYp scenario 

and 231 USD/ha (-26%) in the NoDC scenario. The state with the highest reduction on return 

to the land is BA in both scenarios. Mato Grosso (MT) faces a decrease of 49% in the DCYp 

scenario but only 23% in the NoDC scenario, already indicating that if farmers face such cli-

mate change, they are likely to skip maize as a second crop and move toward longer-cycle 

soybeans. Conversely, the states in the subtropical region (B) face a significant increase in re-

turn to land for grains: on average, 56% for the DCYp scenario and 67% for the NoDC scenario. 

7.3.2. Changes in land use 

The more interesting analysis is on the changes in relative profitability at the farm-level, which 

motivate farmers to reallocate their land, affecting the current land use. Figure 52 shows the 
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resulting land allocation based on the return to land from each cropping alternative for the 

DCYp scenario (left) and the observed changes compared with BAU (right). 

Figure 52: Land allocation results from the scenario double-cropping with yield penalty 

(left) and the changes compared with BAU (right) 

 

Source:  PAM results (2020) – created by the author. 

On a national level, most changes occurred in two main regions in Brazil – i.e., North (MA, PA, 

TO) and Center-west (MT, MS, GO). Both regions experience a strong change from the current 

double-cropping system of soybean and maize to sugarcane. The important difference be-

tween these two regions is that the Center-west region is key for the current grain production 

in Brazil whereas the northern regions are still largely dominated by grasslands. That indicates 

that if future crop yields are affected in line with the current expectation, sugarcane should 

move into current grain-producing areas which, in turn, may result in further expansion into 

grassland if demand stays relatively stable. It is interesting to further understand whether the 

changes are only from grains to sugarcane or also the reverse, considering the strong yield 

increase projected for grains in the humid subtropical regions. 

Figure 53 shows the simulated land-use maps for the BAU scenario as the benchmark and the 

results from the NoDC scenario in region A scenario, focusing on the main producing states. 
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Figure 53: Simulated land-use maps for the BAU scenario (left) and no double cropping 

in region A scenario (right) – zoom in the main producing states 

 

Source:  PAM results (2020) – created by the author. 

For NoDC in region A scenario, the major land-use change in the tropical region is indeed the 

expansion of sugarcane in the neighboring areas of the state of SP, while no major changes 

are seen visually in the state of MT. That is an interesting finding showing that, based on prof-

itability, soybeans still are more profitable than sugarcane even without the contribution from 

maize. In the subtropical region (C), even the higher increases in returns to land for grains 

(67%) are not able to compete with the increased returns to land from sugarcane, resulting in 

the expansion of the latter into parts of PR. The state of SP faces a 61 USD/ha (+32%) increase 

in return to land for grains in the NoDC scenario while the returns from sugarcane increase by 

231 USD/ha (+86%), moving all the arable land to sugarcane. Similar results at the local level 

are found for the DCYp scenario, with sugarcane having higher returns in SP and the neigh-

boring regions compared with grain production (see appendix 9). 

Measuring the overall land-use change 

Even though the visual interpretation of results is important to understand spatial changes in 

the landscape, it is also crucial to try to quantify such developments. Table 9 presents the 

relative change from the scenarios compared with the BAU at the national level as well as the 

individual contributions of each state to the overall change. It is important to note that, since 

the current setup of the model represents only these three main crops, all available land (i.e., 

arable and grassland) is allocated to one of the cropping options. Therefore, the percent 
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changes may not reflect the actual distribution of these crops for each region but show the 

crop with the highest returns in each region. 

Table 9:  Total simulated land-use change in Brazil for the climate change adaptation 

scenarios compared with BAU scenario (in %) 

State (UF)¹ 

Total change and the contributions from each state (%) 

Arable Land Arable + Grassland 

NoDC DCYp NoDC DCYp 

Goiás (GO) 32.8 29.1 22.6 21.5 

Paraná (PR) 14.7 13.2 6.5 5.7 

Mato Grosso (MT) 10.3 17.3 8.1 12.0 

Minas Gerais (MG) 9.8 8.8 10.0 9.1 

Bahia (BA) 7.2 6.3 8.2 6.9 

Mato Grosso do Sul (MS) 7.2 7.5 8.5 10.1 

São Paulo (SP) 5.7 5.1 3.0 2.6 

Distrito Federal (DF) 2.7 2.5 1.2 1.0 

Maranhão (MA) 2.7 3.3 7.9 7.3 

Alagoas (AL) 1.7 1.8 1.1 1.0 

Tocantins (TO) 1.4 1.6 3.0 3.8 

Pará (PA) 1.4 1.3 18.3 16.6 

Pernambuco (PB) 0.9 0.9 0.5 0.5 

Piauí (PI) 0.5 0.5 0.2 0.2 

Total (Brazil)² 24.0 26.8 22.5 25.7 

¹ Sorted based on the change in arable land       

² Total changes compared with business as usual (BAU) 
   

Source: own calculations (2021)       

Focusing firstly on current arable land, the overall simulated change in Brazil is estimated at 

24% for the no double crop (NoDC) scenario and 26.8% for the double cropping with yield 

penalty (DCYp) scenario. Confirming the expectations, the yield reduction in the short-cycle 

soybeans is stronger resulting in worse economic performance than moving to a single crop 

system, growing only long-cycle soybeans. That partly explains why the NoDC scenario has 

lower land-use changes than the DCYp scenario. 

Breaking down the national results to individual states, the main changes in land use are ob-

served in the states in the tropical zone – i.e., GO, MT and MG, as well as PR in the subtropical 

zone. The state of GO alone contributes more than 30% to the overall change in arable land, 

indicating this state has the highest responsiveness to such yield development. That indicates 

a relatively close economic performance between the two cropping alternatives in the current 

scenario so that changes in framework conditions would lead to a strong supply reaction. 
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The inclusion of the current grassland does not significantly change the overall simulated land-

use change, with levels of 22.5% for the NoDC scenario and 25.7% for the DCYp scenario. An 

important difference is the relative contribution of each state. States from the northern region 

(tropical) – mainly PA and MA – contribute substantially more when grassland is included than 

in the arable land-only comparison. That can be explained by the relatively low share of arable 

land in these states currently. However, the findings indicate that these regions under climate 

change may have a large share of area, where sugarcane has an economic advantage over 

double cropping of soybeans and maize. 

7.3.3. Summary and conclusion from the scenario analysis 

The PAM model is adjusted to simulate the impact of climate change in the returns to land for 

the individual cropping alternatives, for specific climatic regions in Brazil. Based on that, the 

resulting land-use change for two scenarios is calculated: DCYp and NoDC (in region A). The 

results can be summarized as: 

− The return to land for grains decreases by 39% (DCYp) and 26% (NoDC) in the tropical 

region (A). Conversely, returns to land increase significantly – by more than 50% – for 

the subtropical region. 

− On the resulting land use, both scenarios have relatively similar results showing an 

overall increase in sugarcane mainly in the tropical region due to better economic per-

formance. 

− The state of GO has the strongest simulated land-use changes in both scenarios. Ap-

proximately 30% of the total change in arable land and more than 20% of the change 

in combined arable and grassland happens in this state. That would be a significant 

move from grains to sugarcane production. 

− In the humid subtropical-climate zones (i.e., CS region) the return to land from sugar-

cane increases more strongly than grains, which is mainly visible in PR. That is interest-

ing since the expected climate change portends yield increases for both cropping al-

ternatives in this zone. 

− Under the climate change adaptation scenarios, the northern region is expected to 

have a large share of the area with sugarcane economically outperforming double- 

cropping. 

− Climate change is expected to decrease the availability of maize as a second crop since 

most farmers are likely to switch to a single crop system with longer-cycle soybeans in 

the Center-west (Cerrado) region. 

Technically, the scenario analysis illustrates the flexibility of the PAM model in estimating 

changes in overall framework conditions that are not simple crop price movements. The en-

dogenous estimation of production costs allows the introduction of changes such as the max-

imum amount of fertilizer allowed, yield penalties and changes in transport costs, with the 

model estimating the overall impact on farming profitability and the resulting allocation of 

land.
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8. Discussion and conclusions 

This dissertation aims to answer the question whether a combined biophysical and farm-level 

economic data model can satisfactorily estimate the profitability and land allocation strategies 

of farmers in countries with low data availability. This chapter discusses the development of 

the PAM model, the main finding for the case study on Brazilian land-use change and the re-

sults from the climate change scenarios. The idea is to compare the PAM modeling approach 

to existing models, mainly focusing on production cost estimation, as well as outlining the 

model’s limitations. That should help the interpretation of the results and identify areas where 

further research is required to improve model performance. 

The discussion chapter is structured as follows: The first subchapters focus on the main build-

ing blocks of the PAM approach, namely the biophysical and economic modules. Thereafter, 

the main results and the model evaluation are discussed, comparing the PAM results to the 

literature. Finally, I focus on the simulations of the impact of climate change on the Brazilian 

supply of grains and sugar as well as the possible areas where the PAM model should help 

inform decision-makers. 

8.1. The biophysical model 

The basis of the PAM modeling approach is the combination of a biophysical model with eco-

nomic farm-level data. The former estimates primarily yield and input use while the latter is 

the basis for the production costs and profitability estimations. Besides the evident function 

of the biophysical model to simulate yields for each cropping alternative, this model also is 

responsible for the spatial variability component. The PAM spatial resolution is primarily de-

termined by the biophysical model since the other components, such as the farm-level data, 

comes with a much lower spatial resolution. The current version of the PAM model uses the 

EPIC model calibrated by the IIASA institute (Balkovič et al., 2014; Skalský et al., 2008). 

8.1.1. Accuracy of the yield estimation 

The performance of EPIC in estimating yields at the SimU level is a key determinant of overall 

PAM simulation accuracy. Yields not only are important for the profitability calculation (reve-

nues) but also are used for the extrapolation of the known farm-level economic data to regions 

without typical farms. For the case study, I use the standard model calibration from EPIC-IIASA 

for sugarcane, soybeans and second-crop maize. 

Grains 

The yield estimation results indicate that EPIC overestimates soybean yields in all regions in 

Brazil compared with national statistics, allocated to the SimU level (Câmara et al., 2015). At 

the national level, the mean absolute error (MAE) is 1.5 t/ha while the root mean square error 

(RMSE) is 1.7 t/ha. That represents a relative mean absolute error (𝑟MAE) 52% when com-

pared with the weighted average yield of 2.9 t/ha (IBGE, 2015). This error is significantly higher 
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than other crop-growth models calibrated for the specific conditions of soybean production 

in Brazil. Battisti, Sentelhas, and Boote (2017) compared five different crop growth models for 

soybeans in Brazil, showing a significant increase in model accuracy when calibrated with local 

parameters. These locally calibrated models had an RMSE lower than 650 kg/ha, which is less 

than half of the error using the current version of the EPIC-IIASA model.  

Conversely, the EPIC-IIASA model performs significantly better in the estimation of yields for 

second-season maize,  with an MAE of 1.1 t/ha, which represents a 𝑟MAE of 20% if compared 

with the national weighted average of 5.5 t/ha. Duarte and Sentelhas (2020) experimented 

with three crop growth models in Brazil, namely AEZ-FAO, DSSAT-CERES-Maize, and APSIM-

Maize, starting with default values and gradually increasing the locally calibrated parameters 

based on 79 experimental sites in Brazil. They found that the default calibration produced 

MAE as high as 6.5 t/ha but with extensive calibration, the MAE was reduced, reaching an 

average between 727 kg/ha and 1.37 t/ha. That highlights that EPIC-IIASA has a well-cali-

brated cultivar parameters for second-season maize, with an MAE in the range of values found 

in locally calibrated models. 

Sugarcane 

In Brazil, the EPIC-IIASA model underestimates sugarcane yields in highly productive regions 

and overestimates it in low-yielding areas. Similar behavior is found by Marin et al. (2011) 

using the DSSAT/CANEGRO calibrated for Brazil. The current EPIC-IIASA has an MAE of 18 t/ha 

for fresh stalks, which is the same as found by Marin et al. (2015), as an average of the locally 

calibrated DSSAT/CANEAGRO and APSIM-Sugar results. The sugarcane results from EPIC also 

are satisfactory if compared with MAE results of ca. 15 t/ha from dos Santos Vianna and 

Sentelhas (2016) and > 29 t/ha from Dias and Sentelhas (2017).  

An important shortcoming of the EPIC-IIASA is the lack of specific functions to estimate sugar 

content, which is crucial for the evaluation of the economic performance of sugarcane be-

cause the payment systems are based mainly on sugar yield instead of fresh-stalk yield. Other 

models such as DSSAT/CANEAGRO and APSIM-Sugar already have such features (Marin et al., 

2015).  

Overall performance 

Although the EPIC-IIASA model performs well for the yield estimation of second-season maize 

and sugarcane, the main concern is that the estimation error pattern differs strongly between 

the crops. If the crop growth model would overestimate (or underestimate) all crops in the 

study, the yield relationship between them would still be realistic. However, since EPIC-IIASA 

overestimates soybean yields while underestimating sugarcane’s, there is expected to be a 

shift in the relative profitability of the cropping alternatives, artificially introduced by the crop 

growth model estimation. That needs to be addressed carefully when using the EPIC-IIASA as 

the biophysical model for studies of on-farm competitiveness with the PAM model. 
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Due to this error behavior, yields were corrected for this dissertation using available statistics 

from IBGE in Brazil (see 5.1 for more details). The yield correction should help illustrate the 

potential of the PAM economic module if a well-calibrated crop growth model is available. A 

key step for the further development of the PAM modelling approach is improving the bio-

physical component, at least for Brazil.  

8.1.2. Improving the biophysical model estimation 

The main challenge of calibrating a biophysical model (e.g., EPIC-IIASA) is that it requires a 

large number of parameters such as crop management, operating calendar, etc., that ideally 

should come from local trials with independent data. Such databases, however, are not avail-

able on a global scale in a suitable resolution to allow the field-scale calibration of EPIC (Flach 

et al., 2020). Hence, IIASA has focused on the methodology developed by Balkovič et al. 

(2013), which allows a meaningful calibration based on the default values from EPIC adjusted 

to the studied cultivars and sensitivity analysis.  

Conversely, local research groups can fine-tune the biophysical model including specific pa-

rameters of local cultivars as well as typical farming operational schemes. For soybeans in 

Brazil, adapting the crop growth model for different seeding times as well as specific cultivar 

phenological characteristics improves the yield estimation considerably (Battisti et al., 2017). 

Battisti, Bender, and Sentelhas (2019) discuss the importance of representing the three main 

maturity groups for soybeans in Brazil, resulting in a crop cycle that varies between 110 and 

130 days. The lack of such detailed local calibration may explain the poor performance of the 

EPIC-IIASA model for the estimation of soybean yields in Brazil. That is important to consider 

because the EPIC-IIASA may perform considerably better for soybeans in other countries, 

where the standard calibration fits the cultivar characteristics and practices used.  

There is expected to be a trade-off between global scale versus local adaptability of the crop-

growth models. The idea is that most models should perform reasonably if well calibrated to 

local conditions and practices. However, if the overall goal is to simulate yields at the SimU 

level covering the entire world, it is not feasible to calibrate the model to all characteristics of 

every single region and cultivar. Hence, depending on the scale of the research project and 

the question to be answered, different calibration strategies are required. 

In the PAM modeling approach, the selection of the biophysical model depends on the scope 

of the project and the overall research question. The ability to use the SimU’s structure from 

IIASA (GLOBIOM) is a major benefit of using the EPIC-IIASA model, ensuring that spatial reso-

lution between the existing IIASA models and PAM is consistent. However, depending on the 

crop in question and the spatial coverage, it is possible to switch from the EPIC-IIASA model 

to more locally calibrated models. For this case study, using the EPIC-IIASA model was im-

portant due to:  
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− the high spatial resolution and the coverage of all areas in Brazil, 

− the ability to use the data from GLOBIOM-Brazil regarding transport costs, 

− the ability to allocate national statistics to the SimU level, 

− using EPIC’s nutrient estimations for the cost calculations, 

− the overall goal of using the PAM model in other countries. 

The PAM modeling approach was developed to be easily adapted to carry out analysis on 

profitability in different countries and that is likely the main reason why the EPIC-IIASA model 

is used – global coverage. An important future development to improve the overall PAM mod-

eling approach is to use the existing agri benchmark typical farms as the basis for the calibra-

tion of crop calendar and operations schemes in EPIC, working together with local partners to 

improve the calibration of phenological parameters as well. Such development, however, is 

time-consuming and cost-intensive which may motivate the use of alternative models for spe-

cific research questions as long as such joint development is under construction. The goal of 

this dissertation was primarily the development of the economic, transport and land-alloca-

tion modules based on the existing simulation from the EPIC-IIASA model. Further develop-

ment of the PAM model should include improving the interaction between these modules and 

the plant module as well as fine-tuning the cultivar calibration of the crop growth model. 

Finally, for sugarcane, the EPIC-IIASA model needs further development to move from a pure 

estimation of forage yield into the specific partition of above-ground biomass into stalk and 

leaves as well as the direct estimation of sugar content. Since cultivars differ in their ripening 

process and sugar concentration due to weather conditions (Cardozo & Sentelhas, 2013), it is 

important to refine the crop growth model to simulate the sugar yield, which is the main driver 

of revenues in sugarcane production. 

8.2. Farm-level profitability analysis 

The main innovation within the PAM modeling approach is the estimation of production cost 

and farm profitability at a microregional level. Using existing typical farm information from 

the agri benchmark network as well as regionally available statistics, the economic module 

calculates the profitability of each cropping alternative at the SimU level. In this case study, 

profitability is measured using the return to land. In addition to production costs, the PAM 

approach has an endogenous mechanism to estimate farm-level input and output prices, 

which is a main advantage for countries with limited data availability. Since the economic 

module relies on important assumptions regarding production systems and regional charac-

teristics, it is useful to focus on the impact of these assumptions in the model’s performance 

as well as to discuss alternatives. 
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8.2.1. Estimation of production costs 

Detailed production cost estimation often is not the focus of the main large-scale agro-eco-

nomic models largely due to the complexity of estimating operating costs (labor, machinery, 

etc.) as well as due to the lack of regional data on a global scale. Besides European and North 

American models, which profit from large datasets on production costs (e.g., FADN), most of 

the models used in countries with poor data availability have to rely on assumptions, fixed 

cost structures, or some form of cost approximation (Heckelei & Britz, 2005). The exception 

appears to be the IIASA-ACM model developed to estimate production costs in a spatially ex-

plicit manner, in regions with low data availability (Deppermann et al., 2018). Hence, it is im-

portant to compare the assumptions and discuss the different techniques used by the IIASA-

ACM and PAM models. 

Extrapolation mechanisms 

The basis for explicit modeling of production costs in high-resolution spatial models is likely to 

involve an extrapolation technique, starting from known costing information and estimating 

the main cost variables to each SimU. The IIASA-ACM and the PAM models use the same 

model structure (IIASA-EPIC) for yields and nutrient (N and P) use estimations, so these costs 

are already estimated in the desired spatial resolution (SimU). The main difference comes 

from the overall extrapolation mechanisms for the costs that are not based on EPIC’s output. 

The IIASA-ACM model uses an intensification factor (IF) that is calculated according to the 

difference between the current simulated yield and fertilization levels and the optimum level 

simulated by EPIC. The IF varies between 0 and 1 and is used to extrapolate plant protection, 

financing, machinery and building costs from the KBTL information to the SimUs. The remain-

ing costs are kept constant for each management option (Deppermann et al., 2018). The PAM 

model uses a different strategy, mainly focusing on the regional characteristics of the farms 

and the crops grown.  

Using operating costs as an example, for sugarcane most operations are carried out by con-

tractors based on fresh-cane yields while grain farmers carry out most operations themselves, 

with their own machinery. That feature, combined with the structural differences – e.g., to-

pography and field size – is expected to strongly impact the operating cost components in the 

different regions in Brazil. That highlights the importance of developing mechanisms that al-

low a tailored extrapolation of costs considering regional differences in production systems. 

While the ACM’s IF has its benefits, such as being able to rely on the KTBL information and 

extrapolate this information to all regions, it is challenging when considering costs such as 

plant protection. The IF for an extensive system (low input and yield ratios) would lead to 

lower spraying costs for the crop. One may argue that the technical application costs should 

be similar regardless of farming intensity, with the main variations in plant protection costs 

coming from the number of applications and product used. However, it is likely that extensive 

systems in regions with challenging environmental conditions still face high pressure of pest 



Chapter 8          Discussion and conclusions 137 

 

and diseases, resulting in a high frequency of applications to be able to yield any output. Such 

structural differences become more evident if the model extrapolates European costs (KBTL) 

to tropical or subtropical regions, where the pressure from pests and diseases is structurally 

different from the basis data. In such cases, the use of the IF as the extrapolation mechanism 

may be more questionable. 

The PAM model uses local information from the agri benchmark typical farms, considering 

characteristics of the most common production systems. That should reduce the constraints 

of basing the simulations on one specific (European) data source. However, it is still challeng-

ing to extrapolate the data to all SimU within a region. This local knowledge helps to cluster 

SimUs with similar farming conditions and to create a theoretical scheme in which costs are 

related to the known parameters such as yields and farm size or are considered fixed within 

the region. While this approach is expected to create a tailored extrapolation mechanism, it 

requires in-depth understanding of the regional characteristics and how they affect produc-

tion costs. The main limitation of the PAM extrapolation approach is that creating extrapola-

tion schemes for each region is time-consuming, which may limit its use for global-scale pro-

duction-cost modeling. 

Regardless of the model, a better understand of the drivers of the production costs – i.e., the 

connection to known parameters – is extremely important to improve the extrapolation 

mechanism and estimation performance. That is especially the case for costs such as plant 

protection, seeds, operating and management, which are not expected to have a linear rela-

tionship to yields or farm size. Further development in this area will certainly improve the 

performance of the PAM model in estimating production costs in high spatial resolution. 

Using typical farms 

Since the PAM model relies strongly on the production cost information from regional typical 

farms, it is important to consider the benefits and limitations of basing the cost estimation on 

them. One of the important advantages of the typical farms from the agri benchmark network 

is the ability to represent actual production systems in the main production regions in the 

country, covering the most important crops grown in each region. This local knowledge is cru-

cial to allow the introduction of complex production systems (e.g., double cropping) in the 

model, avoiding farmers’ options unrealistically depicted in the model – i.e., choosing be-

tween soybeans or maize instead of double-cropping.  

Furthermore, the detailed data, including physical (e.g., N input) and monetary (e.g., N price) 

allows the disentangling of the usually available information in the format of crop budgets 

(e.g., $/ha) to each specific cost component – input quantity and price. That is especially im-

portant in the PAM approach since the nutrient input, for example, is separately simulated by 

the biophysical model, allowing PAM to use only the nutrient price from the typical farm. 

Another important advantage of using typical farms from the agri benchmark network is the 

ability to exchange information with local experts, helping adapt the model to realistic 
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practices at the farm level as well as develop mechanisms for the cost extrapolation. In the 

case study, for example, the local expert in Brazil helped create the two plant protection 

schemes to depict extensive and intensive systems in Brazil. Moreover, the cost data is up-

dated annually, making it possible to update the PAM simulations on an ongoing basis. Finally, 

since all typical farms are technically processed in the same way (i.e., questionnaire, calcula-

tions), it is easy to adapt the PAM economic module to different countries. 

One important consideration when using typical farm data for the PAM model is the ability to 

represent the main producing regions in the country. That requires a minimum number of 

typical farms to be able to create the costing spatial variability, ensuring that at least one typ-

ical farm is available for each region with specific characteristics. The number of typical farms 

can be a problem depending on the country and the complexity of production systems. For 

Brazil, the current coverage of the agri benchmark network allows the representation of two 

main producing regions for grains (South and Center-west) as well as the sugarcane regions 

(Traditional, Expansion and Northeast). That can partly explain the relatively good perfor-

mance of the model in depicting current production costs.  

Conversely, for other countries, the availability of typical farms may be a constraint. Establish-

ing typical farms is a time-consuming and cost-intensive activity, so each additional data point 

represents a high workload for national partners and therefore is limited to a reasonable 

amount. A limited number of typical farms also may be a problem since any strong variation 

in one typical farm may influence the whole cost estimation for that specific region, especially 

when only one typical farm is available. That may partly explain the relatively poor perfor-

mance of the PAM model in estimating production costs in the South region in Brazil, where 

only one typical farm exists. It also is important to mention that having only one typical farm 

in a certain region limits the ability of the model to consider variations within the region for 

cost positions that are based strictly on the typical farm data (e.g., plant protection, seeds). 

The larger and more diverse the region, the larger the expected estimation error should be.  

Finally, one important limitation of the typical farms approach is the ability to simulate pro-

duction cost for crops that are not currently grown in the region. That is expected to be chal-

lenging for studies looking into possible changes in crop rotations due to the inclusion of new 

crops that may become more profitable because of changes in the framework conditions – 

e.g., governmental programs. One short-term solution is to adapt the production costs for this 

new crop to the study region using data coming from other regions (and even countries), 

based on local expertise and on the input use from the crop growth model. For more long-

term research projects, it is feasible to use focus groups to create a hypothetical costing struc-

ture for the “new” crop or practice in question. 

In a nutshell, the possibility of using typical farm production cost data is an important ad-

vantage of the PAM model, allowing the inclusion of detailed regional characteristics into the 

model and the ability to use the local expertise of the national partners to adapt the model to 

different countries. A minimum number of typical farms, however, is required to depict the 
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diversity of the regions and to minimize errors coming from specific features of a single typical 

farm. The expansion of the network to more countries, regions, and crops will certainly in-

crease the estimation performance and applicability of the PAM model.  

Crop-specific cost elements 

Another important feature of the PAM model is the built-in function to estimate inbound 

transport costs – i.e., from farm to mill – for sugarcane. That is a good example of required 

adaptations in the production cost estimation to correctly include all cost items that influence 

farmers’ profitability and supply decisions. Depending on the research area and the prevailing 

cropping systems, it is important to adapt the economic module of the PAM model to include 

additional costs that have a different structure and cannot be directly derived from the typical-

farm data. Following the example of inbound transport cost for sugarcane, the information 

from the typical farm is only a static monetary expense but, in reality, each SimU has a specific 

distance to an operating mill. The ability to use GIS software to measure the travel distance as 

well as having local information on transport costs, allows the PAM model to depict this cost 

component more realistically.  

When such additional costs are dependent on infrastructure (e.g., presence of a mill), it is 

desirable to adapt the PAM model for different scenarios depending on the time horizon of 

the analysis. For short-term supply analysis of sugarcane in Brazil, the presence of a nearby 

mill is decisive for the profitability at the farm level. However, in the long run, the establish-

ment of new mills should alleviate this constraint so the ability to switch on and off such cost 

components is key to simulate changes in different time horizons. 

Production cost changes over time 

An important consideration when analyzing long-term development in farm profitability and 

supply responses is expected changes in production costs. The PAM model has a static pro-

duction cost estimation based on the current information of the typical farms as well as local 

statistics. For future scenarios – for example, on changes in the crop mix (e.g., single soybeans 

production instead of double-cropping) – the model is not able to account for the operational 

changes at the farm setup. That is mainly due to the difficulties in predicting such changes for 

future scenarios without relying on strong assumptions based on expert knowledge. Such in-

formation also is not available at a high spatial resolution without extensive investments in 

questionnaires and/or focus groups. These investments are not compatible with the idea of 

the minimum data approach, which is the basis for the development of the PAM model. 

One also may argue that in the long-term (+20 years), input costs and farm endowments may 

change, affecting the results of basing the analysis on the current production cost information. 

In the PAM model, it is feasible to adjust such developments if they are known – for example 

adding a linear cost increase of diesel – but such adjustments are challenging because machin-

ery also may develop in the period (e.g., improving the fuel use) which then would also need 

to be accounted for. Since the main idea is to understand how production costs and farm 

profitability drive the land allocation decision within the farm, one may argue that as long as 
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the cost changes are symmetrical among the crops, the overall competitiveness of the crop-

ping alternatives may still be valid. It is clear, however, that if any cost item changes dramati-

cally, affecting one crop more than another, the PAM model is not currently able to capture 

such distortions without further parametrization. 

Finally, it is important to consider that if the research question is to understand how specific 

input use or price affects the on-farm competitiveness and resulting land use, it is feasible to 

combine focus group discussions within the agri benchmark network to gather the expected 

farm-level adjustments and introduce such changes in the PAM economic module. That is a 

clear benefit of estimating all cost components separately, allowing such adaptation for sce-

nario analysis.   

8.2.2. Profitability analysis 

The ultimate goal of the economic module is to estimate crop level profitability at SimU. Build-

ing on the production cost calculations, the PAM model also estimates the farm-gate prices of 

each commodity based on the transport module (see 4.5.5). Farm-gate prices are crucial for 

the revenue calculation so getting the correct parameterization of the model is essential. Rev-

enues and production costs are finally used to calculate returns to land, which is the main 

profitability indicator in the PAM modeling approach. Since farm-gate prices are decisive for 

crop profitability, it is key to try to estimate them as realistically as possible.  

Relevance of transport cost estimations 

The PAM model attempts to improve the estimation of transport costs when compared with 

the GLOBIOM-Brazil model (Câmara et al., 2015) by: (a) empirically estimating the parameters 

of the transport cost functions based on local data; and (b) splitting the freight cost into its 

fixed and variable components. The former helps capture technical requirements of each crop, 

which may create transport cost differences that are not based on the travel distance. The 

latter should represent the reality of freight economics, in which SimUs with relatively short 

travel distances face a higher transportation cost per km due to the proportional importance 

of the fixed-cost components. 

This improvement is possible only due to the access of exclusive data from crop-specific freight 

coming from more than 14,000 observations from ESALQ-LOG. In other countries, such de-

tailed databases likely are not available so a more deterministic approach based on technical 

parameters may be an alternative. A possible path to further improve the transport cost esti-

mation is to break down the freight components into individual costs (fuel, labor and equip-

ment). In this way, it should be possible to simulate scenarios with increasing oil prices, for 

example, positively affecting sugarcane prices while increasing transportation costs (i.e., fuel). 

Such a level of detail, however, requires a thorough understanding of the local transport in-

dustry conditions and access to large local databases, which may not be feasible for most re-

gions. 
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Additionally, it should be possible to include the GLOBIOM-Brazil information on the quality 

of roads to further improve the transport cost estimation. That is expected to be important 

for remote regions where road infrastructure is poor (e.g., Amazon basin), changing the over-

all transport cost function. Such a combined approach needs careful implementation, which 

could be achieved by estimating several cost parameters (see section 4.4.1) according to the 

specific route (origin and destination) and differentiating the cost parameters depending on 

the geographical location of the SimU. 

Besides the freight cost estimations, the model also needs to estimate the travel distance be-

tween the SimU and the destination (e.g., port or domestic market). It is a major benefit of 

the PAM model for Brazil to rely on the estimation approach from Aguiar et al. (2003), which 

uses the actual road network to simulate the travel distances for each SimU. For countries 

such as Brazil, the availability of roads differs strongly among regions so a pure straight-line 

(Euclidean) distance estimate may lead to underestimation of actual travel distance in more 

remote regions.  

Most geographic studies use the straight-line distance due to the relatively easy calculation. 

If the PAM model should be implemented in a country with lower availability of the road net-

work, one could follow the work from Boscoe, Henry, and Zdeb (2012), which uses a detour 

index of 1.417 to convert the straight-line distance estimation (GIS software) to an approxi-

mated travel distance. The authors were able to find a R² of 0.94 when comparing corrected 

straight-line to actual travel distances42. One important caveat of this approach is that outliers 

(e.g., Alaska, Amazon Forest) increase the error of such estimation techniques considerably. 

In summary, improving transport cost estimation is essential for a robust estimation of farm 

profitability (i.e., revenues) for export-driven countries. Including crop-specific freight-cost pa-

rameters and splitting the cost component into variable and fixed costs should increase the 

model’s performance. When it comes to estimating the travel distance, if actual travel dis-

tances can be directly estimated, it is certainly preferable. In other cases, using the easy-to-

estimate straight-line (Euclidean) distance with a detour index may generate satisfactory re-

sults, at least for areas with relatively normal road infrastructure.   

The complexity of sugarcane and other processed crops 

Using the transportation cost module to convert crop reference price to farm gate is a useful 

and flexible approach that is expected to be suitable for most of the agri-commodities. How-

ever, for some specific crops such as sugarcane, a more complex farm-gate price estimation 

process is needed since the farm output (i.e., fresh sugarcane) must be processed before com-

mercialization. That means that the farm-gate price of the final products (i.e., ethanol and 

sugar) are the determinants of the sugarcane revenue. Increasing the complexity is the fact 

                                                      
42  Data from 66,011 routes for the fifty states of the United States, District of Columbia, and Puerto Rico -  Boscoe et 

al. (2012). 
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that, at least in Brazil, almost the entire ethanol production is consumed domestically 

whereas, for sugar, the majority of the output is exported.  

The PAM model for Brazil has a built-in structure to estimate mill-level sugar and ethanol 

prices as well as using regional statistics to infer the mix of production for each region (see 

4.5.5.2). This feature is important since the competitiveness of ethanol and sugar varies re-

gionally due to logistics costs and tax incentives, allowing the model to assess the realistic 

resulting sugarcane price for each region. This detailed breakdown of the components of sug-

arcane prices makes the model suitable to analyze scenarios in which only one of the outputs 

changes – e.g., a governmental program to foster biofuels, that is expected to affect regions 

differently depending on the competitiveness between sugar and ethanol.  

The example of sugarcane is only one among the crops that may need more complex farm-

gate price estimation systems, depending on the characteristics of the value chain in which 

they are produced. Adapting the model to such specific features is time-consuming and re-

quires in-depth local expertise, which may not be possible for global-scale models. Against this 

background, the ability to use the agri benchmark network of local experts is a key advantage 

of the PAM model, allowing a local adaptation of the model to the specific conditions of these 

special crops worldwide. 

8.2.3. Land allocation strategy 

Based on the profitability of each farming alternative at the SimU level, the PAM land alloca-

tion module selects the alternative with the highest return to land. This module accounts for 

the most common production systems or combinations of crops to avoid results that contra-

dict the reality of regional farms. For example, in Brazil, soybeans and maize do not compete 

for land in most regions since farmers can produce both in a double-cropping system (Pires et 

al., 2016). 

One important limitation of the current version of the PAM model is the allocation of the en-

tire SimU to only one cropping alternative. That is not a major constraint in Brazil because 

farms are specialized, but for more diverse production systems (i.e., complex crop rotations) 

an adaptation of the land allocation module is necessary. Operational constraints such as peak 

working hours, preceding crop value and the maximum share of a single crop in the rotation 

are a few examples of technical restrictions that need to be implemented in the PAM model 

for regions with more complex cropping systems. Another development could be considering 

multi-year rotations (e.g., wheat-sugar beets-wheat-rapeseed) as cropping alternatives in-

stead of single crops. That is expected to be more in line with producing patterns from farmers 

elsewhere in the world since the allocation of the area to a single crop is usually restricted by 

rotational constraints as well as avoiding overspecialization in supply responses (Chen & Önal, 

2012). 
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Another limitation of the land allocation module is the lack of explicit modeling of the conver-

sion costs incurred by switching between alternatives (Zhao, Calvin, & Wise, 2020). In the cur-

rent version of the PAM, any economic advantage leads to the allocation of the SimU to the 

specific cropping alternative. However, the reality is that farmers are likely to consider the 

costs involved in changing between alternatives such as the investment in new equipment, 

the depreciation of idle machinery, expenses into learning the “new” crop, etc. Hence, the 

land allocation module should evolve to account for current land use and use a technical pa-

rameterization to try to mimic the expenses incurred to farmers if they wish to switch between 

crops. Such conversion costs are even more important if the model is used to analyze the 

potential conversion of non-agricultural land to cropland. Costs of converting pasture to ara-

ble land are expected to be more significant than the conversion between sugarcane and 

grains, for example. In Brazil, other important constraints that may be included in the land 

allocation are the forest code and soy moratorium, which limit the extent of conversion of 

forest to arable land (Soterroni et al., 2018; Soterroni et al., 2019). 

Besides the technical conversion costs, it is important to highlight that short-term price move-

ments (1 to 2 years), for example, may not cause the land-use changes that the PAM model 

would estimate. The model does not account for other factors such as the farmers’ risk per-

ception and their knowledge that commodity prices usually fluctuate. For a significant regional 

land-use change, it is expected that structural changes in framework conditions are required, 

which are reasonable to estimate using PAM for a time horizon between 5 to 20 years. That 

time period may change depending on the characteristics of the crops (annual vs perennial) 

and the conceptual analysis on how much the current production system (typical farm data) 

could change in the future. 

The current version of the PAM model has the advantage of using regional statistics to deter-

mine the share of second-season maize, which is an interesting example of how to include 

additional country or region-specific information to improve the performance of the model in 

representing current land use. Moreover, by using GIS software, several constraints are in-

cluded such as limiting results to current arable land only or grassland, depending on the re-

search question to be addressed. 

A future development of the PAM model may be connecting the results from the economic 

module (i.e., returns to land for each cropping alternative) to a more developed land alloca-

tion and optimization model such as the GLOBIOM. The integration should be feasible since 

both models use the same spatial resolution (SimU). An additional advantage would be prof-

iting from the extensive parameterization work carried out by IIASA to adapt the GLOBIOM 

for the Brazilian agricultural sector, by including other activities such as forestry and animal 

husbandry, for example (Zilli et al., 2020). Connecting the two models also should help im-

prove the overall performance of the land-use simulation for future scenarios since the PAM 

model does not have an internal demand function to balance out how land expansion caused 

by improved profitability may trigger changes in price ratios, which needs to be accounted for. 

If, however, the goal of the research is to simulate current land use based on the assumption 
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that farmers optimize their returns to land, the current version of the PAM land allocation 

module is expected to provide meaningful results. 

8.3. Case study Brazil: Land-use change 

Empirically, the newly developed PAM model is tested for Brazil, aiming to understand current 

and future land uses. The focus of this work is on the main crops – i.e., sugarcane, soybeans 

and maize, which together account for ca. 84% of the total seeded area in Brazil (IBGE, 2019). 

The production cost results from the PAM model are compared with an exclusive database of 

typical farms coming from CEPEA and PECEGE in Brazil while the land allocation (land-use) 

results are validated against municipality level data from IBGE (2019) and the results from the 

SPAM model (IFPRI, 2019). In the next subsections, I discuss the results from the case study in 

Brazil, focusing not only on the current profitability and land use but also on expected changes 

coming from the impact of climate change on yields in the different climatic regions. 

8.3.1. Profitability of crops 

The basis for the land-use analysis of the case study in Brazil is the idea that farmers allocate 

their resources (i.e., land) to optimize their economic returns. Within the PAM model, profit-

ability is measured based on the return to land, accounting for all production costs except 

land.  

Yields of grain and sugarcane in Brazil 

A key driver of a crop’s economic performance is yield. The results show a weighted average43 

of sugarcane yields in Brazil of 74 t/ha of fresh cane, while soybeans and second-season maize 

have an average of 2.9 t/ha and 5.5 t/ha, respectively. Regionally, the yield variation is signif-

icant, with state-level averages varying from 45 t/ha up to 79 t/ha for sugarcane, for example. 

One interesting proxy for the competitiveness of crops within a region is the yield ratios. It 

indicates the relative advantage of the crop over the competing alternatives and, for an on-

farm analysis, it is more important than the absolute difference among the regions (Egli, 2018). 

The largest sugarcane-producing state (São Paulo) and the largest soybean-producing state 

(Mato Grosso) have yield ratios from sugarcane/soybeans of 27 t/ha and 23 t/ha, respectively. 

The higher the ratio, the higher is the competitiveness of sugarcane over soybeans since by 

producing one ton of soybeans in São Paulo, growers forgo the return of producing 27 t/ha 

sugarcane instead. The same ratio is 14% lower in Mato Grosso, showing that based solely on 

yields, São Paulo has a higher competitive advantage in producing sugarcane instead of 

                                                      
43  All averages discussed in this section are weighted average based on the harvested area of the crop in the SimU in 

relation to the total harvested area in 2015. Harvested area data are from IBGE (2015) and are allocated to the 
SimU based on the methodology from Câmara et al. (2015). 
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soybeans. A closer look at the state of Rio Grande do Sul (RS) shows a sugarcane-to-soybeans 

ratio of 16 t/ha, which partly explains why this state has negligible sugarcane production44 

while it is the second-largest producing state of soybeans in Brazil (CONAB, 2021). It is im-

portant to highlight that the yield ratios differ much more when looking at the SimU level, 

which is an indication of the necessity of running on-farm competitiveness analysis at micro-

regional levels. 

Against this background, it is expected that changes in the yield ratios caused by technical 

progress (i.e., breeding), new pests and disease, or long-term changes in climatic conditions 

(e.g., climate change) will affect the intraregional competitiveness of sugarcane and grains 

and may lead to changes in land use. 

Production costs and their impact on farm-level competitiveness 

Even though yield ratios are a good indication of the on-farm competitiveness of crops, un-

derstanding differences in production costs is crucial due to their significant impact on the 

economic performance of the cropping alternatives. The results show that sugarcane has 45% 

higher production costs than the double-cropping of soybeans and maize. More interestingly 

is that, for sugarcane, operating costs represent 56% of the average total costs, while for 

grains, the main component is establishment costs, accounting for ca. 60% of the total costs. 

This result highlights the importance of understanding the building blocks of the total costs 

because changes in framework conditions such as exchange rate and ban of plant protection 

products are expected to affect the production cost of each crop differently. 

Another important consideration is how certain cost components may affect farmers’ percep-

tion of costs. Operating costs are a good example when comparing sugarcane to double-crop-

ping in Brazil. While more than 40% of the operating cost for sugarcane is represented by 

contractors, in which the fees are seen as direct cash expenses, grains have roughly 70% of 

operating costs as machinery and diesel, which have a much higher share of “hidden” cost 

such as depreciation, capital, etc. This difference in cost perception is expected to influence 

farmers’ supply responses since they may not consider depreciation and their own capital 

costs during acreage planning. Such cost perceptions are not included in the PAM model, but 

they are important to understand why farmers may behave differently than the model esti-

mations suggest.  

One key determinant of the cost competitiveness of sugarcane is the inbound transport costs. 

The PAM model estimates a weighted average of 162 USD/ha, which represents ca. 9% of the 

total costs. Considering average yields, these costs can be converted to an average travel dis-

tance to the mill of 20 km. This distance is higher than observed in the literature of 25 km (agri 

benchmark, 2020; Françoso et al., 2017). This difference is expected to be the result of: 

                                                      
44  According to CONAB (2021), Rio Grande do Sul produced 31,000 t of sugarcane in 2019/20, which represents 

0.005% of the national output. 
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− Difficulty of estimating actual travel distance from straight-line (Euclidean) distance as 

already discussed, which should be even more challenging for off-road transportation. 

− The assumption that the SimU delivers sugarcane to the nearest mill, which may not 

be the case for all regions. Farmers in reality, may deliver cane to different mills de-

pending on their supply contracts as well as the total processing capacity of the mills.  

In a nutshell, I argue that it is important to understand the building blocks of the production 

costs since changes in the framework conditions such as exchange rate may affect cost com-

ponents of the cropping alternatives differently. Another important consideration is the effect 

of cost perceptions affecting supply decisions depending on how farmers perceive costs as 

direct cash expenses or hidden costs. 

Model performance in estimating production costs 

The model validation shows that the PAM model has satisfactory accuracy to estimate pro-

duction costs, with 𝑟MAE lower than 14% for all crops (see section 6.2.3). Regionally, the 

model performs better in the Center-south region for sugarcane and in the Expansion region 

for grains. One likely explanation for this error pattern is the lack of typical farms in the North-

east region for sugarcane and in the Traditional region for grains. Due to the methodology, if 

only one typical farm is available in a region, any particularities of this farm affect the produc-

tion cost estimation significantly. Hence, efforts to improve the local coverage (e.g., including 

more typical farms) in these regions should improve the model’s performance. 

Validating the production cost estimation is a key step in improving model performance and 

having the database from CEPEA and PECEGE for Brazil was crucial for the PAM validation. 

However, the regional distribution of the validation typical farms raises the following concerns 

for the interpretation of the results: 

− Some regions and states have only one typical farm, which may limit the robustness of 

the validation results. 

− It is not possible to assess the accuracy of the model in areas where there are no typical 

farms to benchmark results. 

Considering the idea of minimum data, the scarcity of data and the challenges of estimating 

production costs (Antle & Valdivia, 2006), the validation results suggest that the PAM model 

is accurate for the estimation of production costs in the main production regions in Brazil.  

Improvements in regional adaptations of the model through the establishment of new typical 

farms are expected to further improve the model. Such adaptation requires ongoing resources 

for the establishment and updating of typical farms and therefore it is important to consider 

whether the additional model accuracy justifies such investments.  
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8.3.2. Estimating Brazilian land use 

By spatially modeling the land allocation of these crops at the microregional level, the PAM 

model attempts to partially explain the current land use in Brazil. The overall performance of 

the land allocation module (based on the matching score approach) is ca. 86%. That means 

that the PAM output matches (i.e., same cropping alternative) in 86% of total arable land 

(640,000 pixels), when compared with simplified land-use maps from IBGE and the SPAM 

model. For important production states, the accuracy is above 88%, reaching as high as 95% 

in Mato Grosso.  

Such a high level of agreement between current land use and the output from the PAM model, 

in part, is unexpected considering that the model bases the land allocation decision entirely 

on the crops’ profitability. The results suggest that Brazilian farms are indeed optimizing their 

economic returns and that underlying features of a region such as yields, costs and price ratios 

appear to favor a cropping alternative over others. The land-use results reinforce the leading 

assumption of the economic-based LUC models that the local agent’s decisions are based on 

profit maximation (Dang & Kawasaki, 2016). 

An interesting pattern of land use in Brazil is the concentration of sugarcane around the main 

producing state (São Paulo), creating a production cluster. One may argue that the concentra-

tion of sugarcane around São Paulo in the PAM results is due to the inbound transport costs 

(from farm to mill), which increases the returns to sugarcane with high mill infrastructure. This 

argument is valid to a certain extent but even when this constraint is removed (i.e., consider-

ing average inbound transport costs), the clustering effect around São Paulo still prevails (see 

section 5.5.2). That is an important indication that other features such as output prices and 

yield ratios tend to favor sugarcane in this region. One surprising finding from removing the 

constraints of having a mill nearby is the allocation of sugarcane to several areas in the North 

of Brazil (MAPITOBA region), indicating that at least from the economic returns’ perspective, 

sugarcane is competitive, if milling infrastructure is available.  

The land allocation module performs relatively poorly in states with a more diverse production 

patterns, located on the boundaries of the sugarcane clusters. An example is the state of Mi-

nas Gerais, which has 21% of the state in sugarcane and 36% in soybeans, whereas PAM 

matched only ca. 60% of the pixels. PAM allocates most of the cropping area of the state to 

sugarcane while the simplified land-use maps show a balance between sugarcane and soy-

beans. In these regions, with high competition between sugarcane and soybeans, it is chal-

lenging to precisely estimate land allocation strategies, because farmers that have been pro-

ducing grains, for example, could be reluctant to switch to sugarcane due to the lack of expe-

rience, perception of risk and the current farm setup (Chen & Önal, 2012). 

One technical challenge of the land-use validation process for more diverse regions is the spa-

tial resolution differences between the output from PAM and the data used to create the val-

idation maps – i.e., IBGE and SPAM. The IBGE data, for example, is on a municipality level, and 
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in these diverse regions, several municipalities grow sugarcane and soybeans. In creating the 

simplified land-use maps, I allocated all the municipality area to the crop with the highest 

share of acreage to avoid biased allocation (see section 6.1.3). Therefore, it is likely that know-

ing more precisely the actual production location (spatially) instead of relying on the adminis-

trative boundaries would allow a more detailed validation of the PAM results. Such infor-

mation is not available, however, with most models (e.g., SPAM) allocating the administrative 

information to match pre-defined constraints when satellite imagery, for example, is not avail-

able (IFPRI, 2019). 

Besides technically improving the land allocation module as discussed in section 8.2.3, adding 

crops that have a regional importance such as rice, beans and cotton is expected to increase 

the performance of the model in reproducing regions with more diverse land use. The com-

mon bottleneck for the introduction of new crops is the ability to estimate production costs. 

EPIC already is calibrated for all these crops but, due to their limited importance, they cur-

rently are not covered within agri benchmark typical farms. Besides increasing the cropping 

portfolio, it is desirable to include other sectors, such as forestry and livestock, to be able to 

represent the agricultural sector more holistically. Such development fits with the suggested 

approach of combining the PAM model with GLOBIOM, for example, which already covers 18 

crops, 5 forestry and 6 livestock products in Brazil (Câmara et al., 2015). 

In summary, the findings show an 86% match between the land-use map from PAM and inde-

pendent land-use validation maps. Sugarcane is allocated mainly to a cluster around the São 

Paulo state, indicating the relative economic competitiveness of this crop in the region. States 

with more diverse land use show a lower agreement between PAM model results and valida-

tion maps, which may be explained by the close competitiveness of both cropping alternatives 

and by technical challenges arising from the validation methodology.  

8.3.3. Climate change impact on land use in Brazil 

The climate change adaptation scenarios proposed in this dissertation are based on the ex-

pected yield changes caused by modifications in the rainfall distribution, temperature and CO₂ 

concentration, affecting the competitiveness of the cropping alternatives. The two proposed 

scenarios cover changes in the current production systems for grains: (a) moving to single 

soybean cultivation (i.e., NoDC), or (b) continuing with the double-cropping system but ac-

cepting a yield penalty for second-season maize (DCYp). Conversely, sugarcane yields are as-

sumed to increase due to higher CO₂ concentration and temperature, compensating for the 

reduction in precipitation. The expected yield changes are derived from the literature based 

on models calibrated for Brazil (Camilo et al., 2018; Hampf et al., 2020; Marin et al., 2013; 

Pires et al., 2016). 
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Empirical discussion of the climate change scenarios 

The scenario results show a 39% reduction of returns to land for grain production in the DCYp 

scenario and a 26% reduction in the NoDC scenario in the SimUs located in the tropical region. 

That suggests a strong impact on the current double-cropping systems in the tropical region 

in Brazil, where farmers are expected to forgo the maize economic returns to focus on long-

cycle soybeans. This effect should lead to a significant reduction in maize supply from Brazil 

due to climate change, considering that the majority of current production is under a double-

cropping system. 

The resulting land-use change is significant, with more than 24% of current arable land moving 

from grain to sugarcane production in both adaptation scenarios. These results are in line with 

the work from Zilli et al. (2020), showing a reduction in soybean production between 6.3% and 

36.5% and maize, 12.9% and 29.4%, depending on the climate change scenario. The authors 

estimate that in the eastern Cerrado and MAPITOBA regions, livestock is replacing grains and 

in the Southern regions, sugarcane. That is a similar spatial land-use change observed in my 

results, with the most significant difference being that the PAM model sees an expansion of 

sugarcane instead of livestock in the MAPITOBA region. This effect may be explained by the 

assumption that milling infrastructure is not a constraint in the climate change adaptation 

scenarios, which may not be the case in the work of Zilli et al. (2020). 

Technically, however, it is possible that farmers may react to such drastic yield reductions by 

changing sowing dates and using maize cultivars that are more adapted to a drier climate. The 

latter is likely to be fostered by breeding companies reacting to changes in climatic conditions. 

To a certain extent, such technical changes should alleviate the impact of climate change on 

maize yields, as discussed by Hampf et al. (2020), but it is uncertain whether such a yield gap 

can be closed entirely by technical innovations.  

Considering that the most important constraint to the second-season maize yield in the cli-

mate change scenario is the availability of water, one alternative may be investing in more 

irrigation systems that could alleviate this effect. Although ANA (2020) estimates that Brazil 

could reach 12.4 million ha of irrigation area in 2040, it is uncertain whether it is economically 

viable to irrigate maize in the Brazilian tropical region, considering that other high-value crops 

may be more interesting45. Future scenario analysis may include the yield changes considering 

the implementation of irrigation systems. For that, however, the PAM economic module 

needs to be adapted to simulate irrigation costs, which currently are not a common practice 

depicted by typical farms. 

                                                      
45  Currently, 44.5% of the irrigated area is cultivated with sugarcane (3.65 Mha), 15.9% with rice (1.3 Mha) and 5.5% 

with coffee (0.45 Mha), showing that 66% of the current irrigated area is used for high-value crops – ANA (2020). 
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A conceptual discussion of the scenario analysis 

The climate change scenario shows the flexibility of the PAM model, allowing simulation of 

farmers’ supply responses incurred due to technical changes such as yield development and 

the more common shocks due to price movements. In addition, the model allows the adaption 

of the costing structures to capture possible farming practice changes such as a ban on plant 

protection products. However, it is important to consider the following: 

(1) The lack of demand function limits the ability of the PAM model to capture the new 

market equilibrium. Such drastic yield changes, for example, are likely to impact overall 

commodity prices, changing the baseline equilibrium (prices). A possible way forward 

may be integrating the PAM model with more complex general or partial equilibrium 

models to be able to capture market changes endogenously. 

(2) Implementing the expected climate changes directly into the biophysical model should 

generate more reliable results than changing yields ex-post, based on assumptions. Due 

to the limited accuracy of the current version of IIASA-EPIC in Brazil, intense calibration 

work and adaptations are necessary for such implementation, which is out of the scope 

of this dissertation. 

(3) For land-use analysis, it is desirable to include more sectors and crops in the model to 

be able to mimic complex framework changes. The significant change in yields may lead 

to farmers moving to different crops that currently are not included in the model. The 

lack of crops and sectors reduces the ability of the model to capture all possible dynam-

ics. 

(4) An interesting approach to model farmers’ reaction to scenario analysis is to run focus 

group discussions with regional farmers and advisors. By confronting the participants 

with the theoretical outcomes of the model, it should be possible to obtain a more ro-

bust set of adaptation options that then could be implemented in the model. Such multi-

stage analysis requires on-the-ground research, which was not possible during the work 

on this dissertation46. 

Conclusions 

Climate change is expected to affect the current cropping systems in the Brazilian tropical 

region mainly by shortening or delaying the onset of the wet season. That reduces the ability 

of farmers to use the common double-cropping system with soybeans and maize. The results 

indicate that farmers are likely to forgo maize returns and move to a single soybean cultivation 

(with cover crop). In addition, the model estimates that 24% of the current grain area would 

move to sugarcane, based solely on the returns to land. Internationally, such developments 

are important since ca. 77% of the total maize output from Brazil comes from the second-

                                                      
46  Focus group discussions to validate the scenario outputs and possible adaptations of farmers were planned for 

2020 and 2021 in Brazil. However due to the COVID-19 pandemic, on-the-ground research was not possible within 
this timeframe. See WHO (2021) for more information. 
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season crop (CONAB, 2021), which should lead to an important supply shock globally. Tech-

nical adaptation is likely to occur, with farmers changing sowing dates, using more suitable 

cultivars and investment in irrigation, if economically viable. These adaptations are expected 

to alleviate the impact of climate change and reduce the magnitude of estimated land-use 

changes.  

The PAM model is a flexible tool allowing the supply response simulations incurred due to 

technical changes (e.g., yields, inputs) as well as external price movements due to its internal 

estimation of farm-gate prices. However, the model has important limitations when it comes 

to balancing the supply changes with demand reaction as well as missing some important agri-

sectors such as livestock and forestry. Further model parametrization, as well as its combina-

tion with existing macro-level models should improve the model’s performance and reduce 

the uncertainty of results. 

8.4. The PAM model applications 

The main idea behind the development of the PAM model is using a combination of a biophys-

ical model and farm-level economic data to estimate profitability and to simulate land alloca-

tion strategies of farmers. An important goal of the model is also to be able to rely on existing 

data, following the idea of a minimum data approach, which should provide timely and rele-

vant information to decision-makers with satisfactory accuracy (Antle & Valdivia, 2006).  

Based on the results from the case study in Brazil, I argue that the PAM modeling approach 

can provide reliable information on farming profitability and land allocation strategies in coun-

tries with limited data availability, thereby answering the research question. The performance 

and applicability of the PAM model, however, depend on the following requirements (not a 

comprehensive list): 

− Availability of a well-calibrated biophysical model for the yield and nutrient use esti-

mations (e.g., EPIC, DSSAT, APSIM). 

− The presence of at least one typical farm with production cost information on the main 

crops in the region (e.g., agri benchmark database). Having more typical farms is ex-

pected to improve model accuracy and reduce uncertainties. 

− Information on transport costs as well as travel distance between the SimU and the 

crop destinations. The former is more challenging to obtain while the latter could be 

approximated by using straight-line distances and a detour factor (Boscoe et al., 2012).  

− Local expertise on the actual cropping alternatives and systems of farmers in the dif-

ferent regions (e.g., agri benchmark national partners). That is essential to avoid unre-

alistic parametrization of the model and to ensure that all costs are considered in the 

profitability analysis. 
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Considering the global coverage of the agri benchmark network, with information not only on 

crop farmers but also on livestock (Chibanda et al., 2020), as well as the broad crop coverage 

of the IIASA-EPIC (Balkovič et al., 2013), the PAM model has a strong potential to simulate 

micro-level profitability and land allocation strategies based on on-farm competitiveness. It 

should be an interesting addition to the already existing macro-economic model groups such 

as the Thünen Modelling Network47, benefiting from the complex interactions at the macro-

level already simulated by the existing models while adding the micro-level profitability com-

ponent for regions where data availability is limited (i.e., outside of Europe).  

Due to its bottom-up approach, the PAM model can capture a variety of technical, policy and 

market changes such as the ban of agricultural inputs, increase in global commodity prices the 

introduction of biofuel policies. These changes affect one or all components (i.e., yields, costs, 

prices) of farm profitability, which can be simulated by the PAM model at high spatial resolu-

tion. The model flexibility is an important feature that should help adapt the model to answer 

a variety of research questions in a timely manner and provide reliable information to deci-

sion-makers. Nonetheless, the model has important limitations such as the lack of a demand 

function and an internal mechanism to cope with complex crop rotations. These issues need 

to be carefully considered for utilization of the model as well as for further development of 

the modeling approach. 

 

                                                      
47  https://www.thuenen.de/en/infrastructure/the-thuenen-modelling-network/ 
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Appendix 1: Historical sugarcane production in the main regions in Brazil (in million t) 

 

Source: CONAB (2021) – created by the author. 
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Appendix 2: Historical soybean production in the main regions in Brazil (in million t) 

 

Source: CONAB (2021) – created by the author. 

Appendix 3: Nitrogen and Potash prices (in R$/t) of pure nutrient on average 2016-2018 

 

Source: CEPEA (2019) – created by the author. 
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Appendix 4: Municipalities with ANP data (left) and allocation of available data to other 

municipalities (right) 

 

Source: ANP (2020) – created by the author. 

Appendix 5: Share of second-crop maize in the double-cropping system 

 

Source: IBGE (2015) – created by the author. 



A4 Appendices 

 

Appendix 6: Diesel prices in Brazil (in R$/l) deflated using the Extended National Consumer 

Price Index (IPCA) 

 

Source:  own calculations based on ANP (2020). 

Appendix 7: BAU land use with (left) and without (right) yield correction 

 

Source: PAM results (2020) – created by the author. 
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Appendices A5 

 

Appendix 8: Comparison validation match PAM (BAU) vs IBGE (left) and SPAM (right) 

 

Source: PAM results (2020), IBGE (2019) and IFPRI (2019) – created by the author. 



A6 Appendices 

 

Appendix 9: Simulated land-use maps for the BAU scenario (left) and double cropping with 

yield penalty (right) – zoom in the main producing states 

 

Source: PAM results (2020) – created by the author. 

Appendix 10: Schematic representation of the agri benchmark costing model  

 

Source: created by the author (2014). 
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Appendix 11: Assignment of the agri benchmark typical farms’ data to each state in Brazil 

for grains (left) and sugarcane (right) 

 

Source: created by the author. 
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