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Abstract 

In this paper, the error estimate for the integrated formulation of the tau method for over  

determined ordinary differential equations is presented. In the earlier works of these authors, the 

generalized error estimation of tau approximates for the ODES for the integrated formulation for 

non-overdetermined ODES were reported. In this work emphasis is laid on the error and error 

estimate, we established the accuracy of the results using the principle of mathematical induction 

and through some numerical experiments. 
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Introduction 

The Tau method , is a method initially formulated as a tool for the approximation of special 

functions of Mathematical Physics which could be expressed in terms of simple differential 

equations. Adeniyi[1]. Error estimation   is the study of kind and quantity of error, or uncertainty 

that may be present in the solution to a problem. Its a method used to document the error that 

appear in learner language, determine whether those errors are systematic and possibly explain 

what caused them.[2&5] The first attempt on error estimation of the Tau method was developed by 

Lanczos[8] as a simple algebraic approach using the relation of chebysev polynomial to 

trigonometric functions limited to first order problem. Fox[6] later developed an approach which 

could handle higher order problems in ordinary and partial differential equations. In this vein  , 

Yisa and Adeniyi [12] developed a generalization of the error and the error estimation process of 

the Ortiz recursive formulation of the Tau method. The error estimation for ODE’s has been 

reported by many researchers including [4,12,2&9] to mention a view. Also Ojo and Adeniyi[10 

and 11] discussed the two variants namely the differential and the integrated formulations. 

Namasivayam[9] reported an error analysis of the Tau method. Moreover [5] discussed a prior 

Integration of Numerical Integration Scheme for certain IBVP in Partial Differential Equations with 

Error Estimation .However, a polynomial error approximation of the error function en(x) of the 
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Lanczos Tau method for ODE’s based on the error of Lanczos economization process was 

constructed by Adeniyi[3] dependence of the approximation error on the choice of the perturbation 

term. where he modified the approximant by perturbing some of the homogeneous conditions of 

en(x). ]. This paper is aimed at obtaining a better approximation by the integrated formulation of 

the Tau method with its error estimation for fourth order overdetermined differential equations, for 

the selected problems due to the higher order of the perturbation term in order to improve on the 

work of Erebholo[6]. 

Let us consider the m th order linear differential system. 
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1. Error Estimation of the Integrated Formulation of the Tau Method 

 

The integrated error estimation is considered here with the aim of improving the accuracy of 

the estimate of differential form of tau method. To this end, let  
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We shall carry out these steps for obtaining n̂  with various values of s  and m  remains fourth order 

and then generalise the results to obtain a recursive formula for n̂ . 

 

Derivation of Error Estimate for the Fourth Order Integrated Formulation of the Tau Method 
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Where  rk,  0,  1,  2,  3 are known real numbers 

 Which leads to the perturbed integrated error equation  
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 Substituting (20), (21), (22), (23) and (24) into (12), collecting the like terms and equating the 

corresponding coefficients of 
nnnn xxxx 101112 ,, 
, the following system of equations obtained 

below were solved to get :ˆ
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Solving the above equations by forward elimination method to get  ̂  using the relation  
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Summarily, the above results can be expressed in the general form:  
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In order to establish the validity of (32) and (33) above, we shall state the following theorem 
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 Theorem: Let kD , ekl   ( 62=l  and 125=e ) for the class 4=m  of fourth order 

differential equations with overdeterminanion 3=s  be the quotients of some products of the 
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 Let 1=v  be fixed at one in (34), that is, we assume that (34)  is true for 1=v , so that  
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 Now using induction on m  for fixed 1=v  , we shall show that formula (34)  holds for 4=m . That 

is, for 4=m , we have  
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 which is the same as 1  in equations (28). 

 Assuming that (37) is true for lm = , thus, (37) gives 
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 To show that the formula (37) holds for lm = . 

From the construction of 1  in the cases considered for 4=m  up to lm = , we have  
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 Thus, (  ) holds for 1= lm , and hence it holds positive values of m . 

Also, we assume that (  ) holds for lv = , i.e  
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 Then, we show that it holds for 1= lv , i.e  
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 By the construction of 1l , we have  
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 which leads to:  
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Thus (  ) holds for all vm,  and we follow the same procedure for the 

proof of v  in (36) 

 

3  Numerical Experiments 

Having validated the results above using mathematical induction principle, some numerical 

examples were presented to further establish the accuracy of the work reported in this paper. We 

tagged the program written to automated integrated formulation of the Tau method as mapple-tau-

program (MTP) which was used to solve all the numerical examples. 

In this section we present some numerical results to support the work of the preceding section. The 

exact error is defined as :  

 

 }|:)()({|= bxaxyxymax kknk   

where  

 0(1)100.=  for},{0.01=}{ kkxk  

 

3.0.1  Example  4.1: 
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 0.=(0)2,=(0)0,=(0)1,=(0) yyyy   

 with analytical solution  

 1.0   .cos21=)(  xxxy  

we assume a Tau approximant 7,8,9=),( nxyn  

The numerical results for this example are presented in Table 4.1 below for the error 

estimate and actual error.  

Example 4.2 
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 333 =)()()(16
4

1
)(:=)( xxyxxyxxyxLy iv   

with analytical solution  

 xxy 2sin1=)(   

 

 8=(0) 0,=(0) 2,=(0) 1,=(0)  yyyy  

See Table 4.2 for the numerical results for this example. 

 Example 4.3 

 0=)()(:=)( 3 xyxxyxLy iv   

 3=(0)0,=(0)1,=(0)1,=(0) yyyy   

 See Table 4.3 for the numerical results for this example. 

     

Table 4.1: Error and Error Estimate for Example 4.1 

 n  

Error  

  

7  

 

 8  

 

 9  

Exact  4102.58   
6109.1   

8108.67  

Estimate  5102.43   
6102.43   

8102.43   

 

Table 4.2: Error and Error Estimate for Example 4.2 

 n  

Error  

 

 7  

 

 8  

 

 9  

Exact  6103.54   
7101.81   

9109.21   

Estimate  4102.13   
5101.43   

6104.36   

 

 Table 4.3: Error and Error Estimate for Example 4.3 

n 

Error  

  

8  

 

 9  

Exact  8107.09   
9104.12   
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Estimate  11101.55   
13104.15   

 

Remarks 

1. In Table 4.1, both the exact error and error estimate get improved as the degree of 

approximation increases. The error estimate closely captures the order of the tau approximant.  

2. In Table 4.2, as the degree of approximation increases, the exact error and error estimate also 

improved, and the error estimate gradually closes up with the exact error; actually the order of 

the error is exactly captured by the estimate.  

3. In Table 4.1, the error estimate closely captures the order of the exact error and serves as 

upper bound as n  increases.  

4. In Table 4.3, we note the effectiveness of the error estimate in providing a close upper bound 

to the exact error.  

 

 

5  GENERAL CONCLUSION 

 

1  Summary 

 The study focused on the integral form of the Lanczos tau method for the numerical 

solution of ordinary differential equations. The class of problems considered is the class of fourth 

order ordinary differential equations whose solution satisfies some given initial conditions and 

which are of the second and third degree of over determination. The process of the determination of 

the tau approximation to the desired unknown solution yielded some recurrence relations for the 

class. 

This rendered the method suitable for development of a computer programme written to 

implement the technique. Furthermore, an error estimation of the integral tau method for the class 

under consideration was carried out. The estimation obtained was theoretically validated by the 

Mathematical induction principle. Both the methods and the error estimates were tested on some 

problems which were formulated. 

The resulting numerical results showed the closeness of the tau approximation to the 

analytic solution as well as the accuracy of the error estimates.  

 

2  Discussion of Results 

We also note the effectiveness of the error estimation technique reported in this thesis judging by 

the numerical evidences from Tables 4.1, 4.2 and 4.3s. The error estimate improved as the degree 

of tau approximation also increased. 
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This estimate, in fact, captures the order of the exact error as the degree of tau approximation 

increases. This conforms with the features of most numerical algorithms where the performance is 

expected to improve, as the step length, h , decreases and/or the degree of approximation increases. 

The only exception to this rule is in the case of numerical differentiation where an optimal value of 

the step length h  may have to be determined for an improved accuracy of results. 

 

3  Conclusion 

  A method for the solution of the class of fourth order differential equations with second 

and third degree over determination by the integral tau method has been presented. 

A process for estimating the associated or corresponding error has also been reported. While 

the integral tau method closely approximates the analytic solution, the error estimate closely 

captures the order of the exact error. Numerical evidences obtained from some selected problems 

show that the method is accurate and effective for use for the class of problems within the scope of 

the study.  

 

 

4  Contribution to Knowledge 

 The following contributions were made to the body of knowledge:   

    • the derivation of recurrence relations for the integral tau method;  

    • the derivation of the error estimate for the integral tau method;  

    • the validation of the error estimate by Mathematical induction; and  

    • the proposed error estimate closely captures the order of the tau approximation.  

 

5  Recommendation 

  The integral tau method is known to perform most accurately among the three variants of 

the tau method. It is therefore recommended that this variant be adopted for use in solving fourth 

order problems with second and third degree over determination. 

By virtue of the fact that the error polynomial leading to the error estimate involves a minimum 

number of unknown parameters (one, in this case), the error estimation readily recommends itself 

to users for accuracy, efficiency and effectiveness. 
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