A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Ojo, Victoria O.; Adeyefa, Emmanuel O.; Faniyi, Ezekiel O.; Folaranmi, Rotimi O.

Research Report

Error estimation of the integral tau method for fourth

order overdetermined ODES

Suggested Citation: Ojo, Victoria O.; Adeyefa, Emmanuel O.; Faniyi, Ezekiel O.; Folaranmi, Rotimi O.
(2023) : Error estimation of the integral tau method for fourth order overdetermined ODES, ZBW -
Leibniz Information Centre for Economics, Kiel, Hamburg

This Version is available at:
https://hdl.handle.net/10419/273319

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/273319
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

ERROR ESTIMATION OF THE INTEGRAL TAU METHOD FOR

FOURTH ORDER OVERDETERMINED ODES
V. 0. Ojo*, E. O. Adeyefa?, E. O. Faniyi®, R. O. Folaranmi*

! Department of Statistics, Oyo State College of Agriculture and Technology, Igboora, Oyo State,
Nigeria.? Department of Mathematics, Federal University, Oye-Ekiti, Ekiti State, Nigeria. *
Department of Mathematics, Anchor University, Lagos State, Nigeria. * Department of

Mathematics, Thomas Adewumi University,Oko Kwara State, Nigeria.
Abstract

In this paper, the error estimate for the integrated formulation of the tau method for over
determined ordinary differential equations is presented. In the earlier works of these authors, the
generalized error estimation of tau approximates for the ODES for the integrated formulation for
non-overdetermined ODES were reported. In this work emphasis is laid on the error and error
estimate, we established the accuracy of the results using the principle of mathematical induction

and through some numerical experiments.
Keywords: Ordinary Differential equation, Variance, Formulation and Error Estimation
Introduction

The Tau method , is a method initially formulated as a tool for the approximation of special
functions of Mathematical Physics which could be expressed in terms of simple differential
equations. Adeniyi[1]. Error estimation is the study of kind and quantity of error, or uncertainty
that may be present in the solution to a problem. Its a method used to document the error that
appear in learner language, determine whether those errors are systematic and possibly explain
what caused them.[2&5] The first attempt on error estimation of the Tau method was developed by
Lanczos[8] as a simple algebraic approach using the relation of chebysev polynomial to
trigonometric functions limited to first order problem. Fox[6] later developed an approach which
could handle higher order problems in ordinary and partial differential equations. In this vein
Yisa and Adeniyi [12] developed a generalization of the error and the error estimation process of
the Ortiz recursive formulation of the Tau method. The error estimation for ODE’s has been
reported by many researchers including [4,12,2&9] to mention a view. Also Ojo and Adeniyi[10
and 11] discussed the two variants namely the differential and the integrated formulations.
Namasivayam[9] reported an error analysis of the Tau method. Moreover [5] discussed a prior
Integration of Numerical Integration Scheme for certain IBVP in Partial Differential Equations with

Error Estimation .However, a polynomial error approximation of the error function en(x) of the
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Lanczos Tau method for ODE’s based on the error of Lanczos economization process was
constructed by Adeniyi[3] dependence of the approximation error on the choice of the perturbation
term. where he modified the approximant by perturbing some of the homogeneous conditions of
en(x). ]. This paper is aimed at obtaining a better approximation by the integrated formulation of
the Tau method with its error estimation for fourth order overdetermined differential equations, for
the selected problems due to the higher order of the perturbation term in order to improve on the
work of Erebholo[6].

Let us consider the m th order linear differential system.

m f
Ly(x) = xr (x)y™(x) = frx",a <x <b (1a)
2 2
m-—1
IXy0GK): = Z Grky® (xn) = coklk = 0(1)(m — 1) (1b)
r=0

With smooth solution y(x), a<x <b, |a] <+ oo |b| < + o

1. Error Estimation of the Integrated Formulation of the Tau Method

The integrated error estimation is considered here with the aim of improving the accuracy of
the estimate of differential form of tau method. To this end, let

”'nj'.[l‘(')dx (1c)
The integral form of the error equation

Le,(x) =—H,(¥) (1ds)
is therefore

1 (&, () =~ [ [H, (0dx+C,p, () @

We consider the perturbed form of (2) i.e, perturbed error equation

1 & () == [+ [Ha 008X+ C,y L (00, 0 ()

which is equivalent to

:_”.“.‘.I(

m+s-1

z-m+s—rTn—m+r+l (X)de + Cm—l (X)

r=0



m+s-1

+ 37 T (X) (3)

M+S—F " N—M+r+s
r=0

and which is satisfied by

b x™ X
(6,00, = X Toema () @)
Cn—m+1
and where
|:| n+m+l(X) = z-Al-l_m—mﬁ-l(x) + Z-’\Z-I-m-m+s (X) T+t Zcm+sTn+s (5)

We insert (5) into (6) and equate the coefficients of powers of x™™*"™ x™™* ...x™™ for the

determination of the parameter ¢3n of (e,(x)),,, .- We then have

* | ¢n | (6)

& = 22n—2m+1

as an estimate of ¢.
We shall carry out these steps for obtaining ¢3n with various values of s and m remains fourth order

and then generalise the results to obtain a recursive formula for 4, .

Derivation of Error Estimate for the Fourth Order Integrated Formulation of the Tau Method
In this section, we consider the error estimation of the integrated formation of Lanczos Tau

method for varying degrees for the class of problems:

Ly(x):=zm:ar(x)y(”(x)=ZF:frxr,a£x£b (7)
LY00) = 28,y ™ (%) = e k = 0(1)(M-1) ®)

We shall consider case m=4,s =3 . From (7) and (8) above we have the problem
Ly(x):= (a40 F O X+ 00, X2+ 0 X+, X o X+ o X8+ a47x7)y”(x)
2 3 4 5 6\,
+(a30 + 0 X4 Oy X+ OlggX” 4 03y X 4 Qe X 4 Oty X )y (x)
2 3 4 5 "
+(a20 + Oy X+ Uy X+ Qo X” + oy X + Qe X )y (X)

+ (0510 + oy X+ ag, X +ag X + o, X )y'(x)

.

+(a00 + g X+ A, X’ +a03x3)y(x) =Y fx" 0<x<1 (10)

¥(0) = po,¥'(0) = p1,¥"(0) =p,, y"'"(0) =p5 (11)
3



Where ooy, po, p1, p2, p3 are known real numbers

Which leads to the perturbed integrated error equation

and where

Now,

X pU et oS ) . A :
.[o .[o jo Io [(0(40 TPV TV TV + 0,V sV

+a Ve + oV Xe,ﬂv (v)) (o Vg,V +

h
a33V3 + 0534V4 + a35V5 + a36V6 Xen”' (v) )n+l + (azo +a,V

+ 0V + OV + AV + eV Xen” (V))n+l + (alo +oy,V
alzvz + alsvg + 0514\/4 Xen’ (V) )n+l

+(argp + oV + V2 + gV )&, (V) [dvdsditdu

n+1

- _J'OXJ':J';J':H (v)dvdsdtdu+H_, (V)

H, (X) = 7,5 (X) + 76T, o (X) + 75T, 5 (X) +7,T, (X)

+ T3Tn+1 (X) + z-2Tn+2 (X) + TlTn+3 (X)

Ho o () = 2T (00 +2,T, () +2,T, .6 (X)

+ f4Tn+5 (X) + z-’\5Tn+4 (X) + z-’\6Tn+3 (X) + z-’\7Tn+2 (X)

X*T
(6, (X)), = 22 o
or
7 4
T
(€,00), = 25 (9

(en (X))n+1 = ﬁ[plxrwl + pzxn + p3Xn_1 i p4Xn +]
p
1

(12)

(13)

(14)

(15)

(16)

(17)

(18)



where
p=Crp,=Cl3 p,=Crp,=C?,
Ps = Cr?:73’ Ps = Cr?:ss’ p; = C:ig’ e (19)

Thus from(12) we have

n+5

A Py
NG ”*1dVdetdu__{(n+2)(n+3)(n+4)(n+5)

n+4 n+3

P, X PsX
(n +1)(n+2)(n +3)(n+4) (M(+1)(n+2)(n+3)

p,X" 4 PsX"
(n D(M)(n+1(n+2) (n—2)(n-1)(n)(n+1)

X’
T(h-3)0-20- 1)<n>} (20)

n+4

4, P,
NANCRD ”*1dVdetdu__{(n+2)(n+3)(n+4)

p,Xx" n poX" N p,x"
(n+1)(n+2)(n+3) (MM+1)(n+2) (n-1)(n)(n+1)

p5 p6 :| (21)
T (-0 (-3)(-2)(-1)

| px”
[T j NGO Mdvdsdtdu——{m

N p2Xn+2 N panJrl . pAXn
(n+1)(n+2) (M)(n+1) (n-1)(n)

p5 p6 (22)
T(-2)0-1) (1-3)(-2)




n+2

DL ), tvesaan= ) 22

n+1 n n-1 N2 3
L PX L PXT L PX T PeX L PeX )
(n+1) (M) (n-1) (n-2) (n-3)
XU ptes/ o 7
,[0 ,[0 J-o...o (erl1v (V))mldVdetdu: % [perHl
1
+ pZXn + psxn_l + p4Xn—2 + p5X"_3 + DGXH (24)

Substituting (20), (21), (22), (23) and (24) into (12), collecting the like terms and equating the

n+12 n+l1l ,,n+10 .

corresponding coefficients of X", X", X x", the following system of equations obtained

below were solved to get ¢,

£C0 = ¢, {3! ey 2t

n+8 T ~(n-3) o3 (n=2)(n l) %o (n-1)(n)
Cn—3 7! (n)(n+1) 6 ! (n+1)(n+2)

i oocr® 1 cPke 4 ci?

5l Oy (n)(n+1) +Z,aoo (n+1)(n+2) +8| 14 (n—2)(n-1)
- (n+2)(n+3) - (n+3)(n+4) . (n)

+

L3 cr? 21 cr? u o cp
: n n
7| g (n—l)(n) 6'a12 (n)(n+1) 5|a11 (n+1)(n+2)
(n+1) (n+2) (n+3)
11 C(n 3) 5| Crgn73) 4| C(n 3)

+ R L e — PR L S—
A% 70T 0™ (1-90-1) 8™ (-1

3| Cr(1n53) 2| Cr(]n43) 1| Cr(1n33)
TR (n)(n+ 1) 6172 (n+1)(n+2) 51 21(n+2)(n+3)

L o/ L S o e B 7 Py
"ol 35( n-1) 8" * (n) 7! ¥ (n+1)

21 ci¥ 71 . 6! o
I 2% (n+ 32)"'11' 47Crg 73)+1_0|a46cr(1—63)

51 Cci¥ 4l g 3! o
+ & A5 ﬁ + 5 0!44Cn( 43) + ﬁ a43CrE—33)} (25)

Solving the above equations by forward elimination method to get ¢,, using the relation
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1
cp= 22210V = ~ncP = —n2?m?

2

Thus; solving the resulting equations above for ¢3n gives

~ mq m; " ms
Pn = m, (m+s+r) [, (m+s+r) [, (+s+r)
_ m, n M _ Me
m m m
[Tn+s+r) Jn+s+r) [](n+s+r)
r=1 r=1 r=1
n My,s Py _ Mmy,,
m R m
[[(n+s+r-6)| ™ | [[(n+s+r-5)
r=1 r=1
2
n M5 P, _ P 7.
m m
[[(n+s+r-6) R [J(n+s+r-6)R,...s
r=1 r=1
where
M (D) (149) (n+8)(~ ()
—_ Cnn Cni; Cﬂ-r:-; Cn?—; Cnn

m, = C(n+2)C(n+7)C(n+8) J

n+2 n+7 n+8

(n+6)~ (n+8) ~ (n)
n

— n+2 n+6

m3 C(n+6)C(n+8)C(n+2) !

n+6 n+8 n+2

(n+6)~ (n+8)~ (n+3)
M.. = Cn+5 Cn+6 Cn
59 C(n+5)c(n+6)c(n+8)

n+5 n+6 n+8

4

m2 = C (n+8)C (n+2)

n+8 n+2

C (n+6)C(n+7)C (n+8)C (n)
n

n+2 n+6 n+7

C (n+6)C (n+7)C (n+8)C (n+2)

n+6 n+2 n+8 n+2

Where expression for R, is obtained recursively as follows

(n+8)
- - 7
Ri=r Ry =7,- C?LS)

n+8

Coil
Ry Ry=7;- (n+7) R, - (n+8) /1
Cn+7 Cn+8

(26)



C(n+6) C(n+7) C(n+8)

n+5 n+5 n+5 . _ _____

Ry=7,— Ry - - e
(n+6) 3 (n+7) 2 (n+8) /11
Cn+6 Cn+7 Cn+8
R - y Cr(]n+1) ; Crgn+2) CrSn+3) Crgm-l) ;
97 /97 A(nl) (8 ~(n+2) T ~(ne3) |6 ~(ntd) B
Cn+1 Cn+2 Cn+3 Cn+4
C(n+5) C(n+6) C(n+7) C(n+8)
n n (27)

_ _ _~n R, —2n
(n+5) 4 (n+6) 3 (n+7) 2 (n+8) "
C C C ct

n+6 n+6 n+7

and

3! 41 51 6! i) )
(7' o+ (N +l)aa14 +(n)(n +1)&0‘25 T, rOI(n +1)(n)(n-1) +En)(2n)4(r1) Y 1]_!0547)'35

e (n—2)(n—-1)n(n+1)

21 3! (n+2) 41 (n)(n+1) o! (n-1)(n) 6!
(6' A, +(N+ Z)ﬁ Q3 T (ni) g1%2 T (n+2) 91% F(n+1)(n+2) 101%4 P,

(n=n(n+1)(n+2)

+

1! 2' (n+2) 3' (n+1)(n+2) 45! (n)(n+1) ol
(5! Qg +(N+ 3)&“12 *(ns3) ﬂazs (n+3) aam (n+2)(n+3) & Qs |P
+
(MM+1)(Nn+2)(n+3)
1' 1' (n+3) 2' (n+2)(n+2) 3' (n+1)(n+2) 4'
(4! Qg +(N +4)aan *(n+4) Eazz *(n+4) ﬂass (n+3)(n+4) aazm P,
+
(n+1)(n+2)(n+3)(n+4)
1! 1! nig) 21 ni2)(neg) 3
(4| oy +(N+ 4)6“21 +§n+i§ aaaz +En+121;( K 7|0‘43JP1
+ - - - 28)...
(n+2)(n+3)(n+4) (28)
1!
Vo = (ﬁ a4ojpe (29)

Thus, from (6) we have the following expressions for & :



. m, m, m,

¢ = m T + m
[T(h+s+r) J]n+s+r) JJ(n+s+r)
r=1 r=1 r=1
m4 m5 m6
T + m T
[T(h+s+r) JJn+s+r) [J(n+s+r)
r=1 r=1 e
m T PT
+ — 125 R_G -— 1 m+s (30)
[T(n+s+r—6)| ™ J](n+s+r-6)R,...,
r=1 r=1
Where:
(n+m+s) ~ (n+m+s+1) ~ (n) (n+m+s+1) ~ (n)
m = Cn+m+s—5Cn+m+s Cn m. = Cn+m+s—5 Cn
1 C (n+m+s)C(n+m+s+l)C (n+m+s-5) ? 2 C(n+m+s+l)C (n+m+s-5)
n+m+s n+m+s+1 n+m+s-5 n+m+s+1 n+m+s-5

C (n+m+s—1)C (n+m+s+1)
m. = n+m+s-5 n+m+s-1 (31)
3 (n+m+s-1) ~ (N+m+s+1) ~ (n+m+s-5)
C C C
n+m+s-1 n+m+s+1 n+m+s-5 - .- - -

(n+m+s+1) ~ (N+m+s+1) ~ (n+m+s—4)
- Cn+m+s—2 Cn+m+s—1 Cn
C(n+m+s—2)C(n+m+s—1)C(n+m+s+1)

n+m+s-2 n+m+s-1 n+m+s+1

M, etc.

Summarily, the above results can be expressed in the general form:

Studying the above very well, we arrived at the general expression for RV as:

v—1 C(n+m+s+2)

R, =7, = M2y R y=12.-m+S (32)

(n+m+s+2—-i)
i=1 Cn+m+s+2

where y, is given as

v m
s—v+i+j! § n+2—i
Z{Z(aj,s—v+i+j Xm+s+j! X j )}

7, = i=1 ijr:i?v P ... (33)
[](h—s—-m+3+v+r)
r=1

In order to establish the validity of (32) and (33) above, we shall state the following theorem
9



Theorem: Let D,, I<k<e (I=62 and e=125) for the class m=4 of fourth order
differential equations with overdeterminanion S =3 be the quotients of some products of the

coefficients C{”, n<p, g <n+m+s+1, of Chebyshev polynomials. The factor R, of the error
estimate ¢” in equation (21) is given recursively by
v—1 C(n+m+s+2)

Rv:yv_ZC(r::rrr?wissizz:\:) Ri’ V:1,2,--~m+S (34)

i=1l ~nim+s+2

where ¥, Is given as

\" m
s—v+i+j! § n+2—i
Z{Z(aj,s—v+i+ij+s+j! X j )}

v = = mj;i?v I:’m+s—r’
[](h—s—m+3+v+r)
r=1
r=23--(m+s-1), r=123---m+s+1 (35)

Proof:

We shall employ the principle of mathematical induction over the summation variables M

and V to establish the validity of (35) above. This is done by varying one of the variables at a time
while the other is fixed.

\ m
s—v+i+j! | n+2—i
Z{Z(ajs—wiﬂ'xmﬂﬂl X j )}

= = mj;r:i?v Pm+s—r (36)
[](h—s—m+3+v+r)
r=1

Let v=1 be fixed at one in (34), that is, we assume that (34) is true for v=1, so that

m .' + _.
{Z(;(aj,SJrjXrS\:s#j!anz I)}
71 = J_m Pm+s—r’
[J(n-s—-m+4+r)
r=1

r=23--(m+s-1),i=v=1 (37)

Now using induction on m for fixed v =1, we shall show that formula (34) holds for m=4. That
is, for m=4, we have

I I I
Ho s — T (N+1)ay (5 (s+1)° +E:)+1) O3 (s+2) (5+2) e Eﬁlg(nfz) 4,(s+4) (5+4)
| 7 (m+5s)! T (m+s+1)! T (M+s+2) T (m+s+4)!
n= 4 P,
| | (n=s+r)
r=1

10



G 1) e (s+1)! n-1)(n (s+3)!
A (s-1) +(n+ )0‘15 +En+12)) A (s41) e L LR En+3§n)+2) Op(s3) 7 = ova
N (m+s-1)! (m+5s)! (m+s+1) (m+s+3)! P
4 4
[T(n—(s-1)+r)
r=1
(s—2)! (s-1!' i (5)! (n)(n+1) (s+2)!
N o (s— 2)m +(n+3) 1,(s-1) (M+s— 1)|+(n+3) 2730 (M+s) bt = F(n+2)(n+3) a4(s+2)(mT+2)l
4 3
[T(h—(s-1)+1)
r=1
(S 2)' (n+s) a (S 1)' I (n+s-2)(n+s-1) a (S+1)I
v a, (5_3)| +(n+s+1) 1(s 2) (m+S 2)| (n+s+1) 7*2,(s-1) (m+S 1)| (n+s)(n+s+1) 4,(s+1) (m+5+1)!
,(s-3) 4
(m+s-3)! [(n-(s-3)+7)
r=1
az( 2 (S 2) +En+s)1) 5(5.0) (S 1) En+s)—(1) N 4 SI
_ S—. | n+S+. S— I Nn+s)(N+S+. S '
ey (s )3 +(n+s+1) (m+s-2)! (m+s-1)! (m+s)! P
(m+s-3)! H(n—(s—4)+r)
r=1
(38)

which is the same as y, in equations (28).

Assuming that (37) is true for m =1, thus, (37) gives

I . .
Z(aj,sﬂ )(rﬁwijsﬂ X?+2_J )
7, = 120 | P (39)
[[(n-s+4+r)
r=1

To show that the formula (37) holds for m=1.

From the construction of y, in the cases considered for m=4 upto m=1, we have

{'z<amx::;pxﬂ,fzi)}P

=0

7= r=23--(m+s-1)+

m+s—r?

ll_[(n—s—l+4+r)

11



{(06.+1,s+|+1)[(fnﬂﬁ:mxlnff_i )]} P (2,3, . .(m +5S _1)

1+1 m+s—r

[J(n—s—1+4+r)

|
Z(a Xs+j! Xn+2—i )

Psei Ames+it A [(s+|+1! )sz—i)
j=0 al+1,s+|+1 m-+s+1+1! JNI+1

1+1

[[(n—s—1+4+r)

(n—-s—1+4+r)

1+1 ; o
{Z(aj,s+jern++J§+j!X j2 )}
= J:I0+1 F)m+s—r'r = 2,3"'(m+5—1)
[[(n—s—-1+4+r)
r=1

Thus, (32) holds for m=1+1, and hence it holds positive values of m.

Also, we assume that (32) holds for v=1, i.e
L i+j! Y n+2—i
Z{Z(aj,s—hriﬂx:l;j!].x j2 )}
y, =210 P ..., F=23-(m+s-1)
[J(hn—s—m+3+I+r)
r=1

Then, we show that it holds for v=1+1, i.e

I+1 m

PXOICTINING twnrl) Wead
Vi = I::n+:;—:j<—l Pm+s—r1r = 2'3...(m+s_1)
[T (h-s—m+3+1+r)
r=1

By the construction of y,,,, we have

Z{i(aj,s—mﬂ Xiﬂlsﬁvjlxnrh )}

Ve = = mj;igl Pm+s—q'q = 213"'(m+s—1)
[T(h-s-m+3+1+r)
r=1
{Z(a,-.s_,-+1)(§;'§i§f!X“}Z‘i )}
=0 B

m+i 1+i

[J(n—s—m+3+1+r)
r=1

which leads to:

12
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(51)
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I+1 m

s=I+i+j! Y n+2-i
Z{Z(aj,s—l+i+ij+s+j! X j )}
=L j=0

Vi — m+i-1 Pm+sfq ,q= 2!3 "(m +S _l) (54)
[T(h-s—m+3+1+r)

r=1

Thus (32) holds for all m,v and we follow the same procedure for the

proof of 7, in (36)

3 Numerical Experiments

Having validated the results above using mathematical induction principle, some numerical
examples were presented to further establish the accuracy of the work reported in this paper. We
tagged the program written to automated integrated formulation of the Tau method as mapple-tau-
program (MTP) which was used to solve all the numerical examples.

In this section we present some numerical results to support the work of the preceding section. The
exact error is defined as :

& =max{] y(x,) - Y, (%) - a<x, <b}
where

{x.}={0.01k}, for k = 0(1)100.

3.0.1 Example 4.1:

: ¥ x° 4 4
Ly(x) = y" +| x——+—— [y"(X) = =1+ 2X—— x> +—X°
y(x)=y ( 5 120}3/ (%) 35

y(0)=-1,y'(0)=0,y"(0)=2,y"(0) = 0.
with analytical solution
y(x) =1-2cosx. 0<x<1.
we assume a Tau approximant y,(x),n=7,8,9

The numerical results for this example are presented in Table 4.1 below for the error
estimate and actual error.

Example 4.2
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Ly(x):= y"(x) +%(16+ )y (X) +x°y(x) = x°

with analytical solution

Example 4.3

Ly(x):=y"(x) +x°y(x) =0

y(x) =1+sin2x

y(0)=1,y'(0)=2,y"(0)=0,y"(0)=-8

See Table 4.2 for the numerical results for this example.

y(0)=1,y'(0)=1,y"(0)=0,y"(0)=3

See Table 4.3 for the numerical results for this example.

Table 4.1: Error and Error Estimate for Example 4.1

n

Error 7 8 9

Exact 2.58x10™ 9.1x10°® 8.67x10°
Estimate 2.43x107° 2.43%x10° 2.43%x10°

Table 4.2: Error and Error Estimate for Example 4.2

n

m 7 8 0
Exact 3.54x10° 1.81x1077 9.21x10°°
Estimate 2.13x10™ 1.43x10°° 4.36x10°°

Table 4.3: Error and Error Estimate for Example 4.3

n

Error

8

9

Exact

7.09x107°

4.12x10°°
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Estimate 1.55x107% 4.15x107"

Remarks

1. In Table 4.1, both the exact error and error estimate get improved as the degree of
approximation increases. The error estimate closely captures the order of the tau approximant.

2. In Table 4.2, as the degree of approximation increases, the exact error and error estimate also
improved, and the error estimate gradually closes up with the exact error; actually the order of
the error is exactly captured by the estimate.

3. In Table 4.1, the error estimate closely captures the order of the exact error and serves as
upper bound as n increases.

4. In Table 4.3, we note the effectiveness of the error estimate in providing a close upper bound
to the exact error.

5 GENERAL CONCLUSION

1 Summary

The study focused on the integral form of the Lanczos tau method for the numerical
solution of ordinary differential equations. The class of problems considered is the class of fourth
order ordinary differential equations whose solution satisfies some given initial conditions and
which are of the second and third degree of over determination. The process of the determination of
the tau approximation to the desired unknown solution yielded some recurrence relations for the
class.

This rendered the method suitable for development of a computer programme written to
implement the technique. Furthermore, an error estimation of the integral tau method for the class
under consideration was carried out. The estimation obtained was theoretically validated by the
Mathematical induction principle. Both the methods and the error estimates were tested on some
problems which were formulated.

The resulting numerical results showed the closeness of the tau approximation to the
analytic solution as well as the accuracy of the error estimates.

2 Discussion of Results

We also note the effectiveness of the error estimation technique reported in this thesis judging by
the numerical evidences from Tables 4.1, 4.2 and 4.3s. The error estimate improved as the degree

of tau approximation also increased.
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This estimate, in fact, captures the order of the exact error as the degree of tau approximation
increases. This conforms with the features of most numerical algorithms where the performance is
expected to improve, as the step length, h, decreases and/or the degree of approximation increases.
The only exception to this rule is in the case of numerical differentiation where an optimal value of
the step length h may have to be determined for an improved accuracy of results.

3 Conclusion

A method for the solution of the class of fourth order differential equations with second
and third degree over determination by the integral tau method has been presented.

A process for estimating the associated or corresponding error has also been reported. While
the integral tau method closely approximates the analytic solution, the error estimate closely
captures the order of the exact error. Numerical evidences obtained from some selected problems
show that the method is accurate and effective for use for the class of problems within the scope of
the study.

4 Contribution to Knowledge

The following contributions were made to the body of knowledge:
« the derivation of recurrence relations for the integral tau method;
« the derivation of the error estimate for the integral tau method;
» the validation of the error estimate by Mathematical induction; and

« the proposed error estimate closely captures the order of the tau approximation.

5 Recommendation

The integral tau method is known to perform most accurately among the three variants of
the tau method. It is therefore recommended that this variant be adopted for use in solving fourth
order problems with second and third degree over determination.

By virtue of the fact that the error polynomial leading to the error estimate involves a minimum
number of unknown parameters (one, in this case), the error estimation readily recommends itself
to users for accuracy, efficiency and effectiveness.
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