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Purpose and approach: We examine theoretically and experimentally how unequal
abilities to contribute affect incentives and efficiency when players compete for membership
in stratified groups based on the contributions they make. Players have either a low or a
high endowment. Once assigned to a group based upon the contribution they have made,
players share equally in their group’s collective output. Depending upon the parameters,
the mechanism has several distinct equilibria that differ in efficiency.

Findings: Our theoretical analysis indicates that as long as certain assumptions are
satisfied, efficiency should increase rather than decrease the more abilities to contribute
differ. The analysis also suggests various follow-up experiments about equilibrium se-
lection, tacit coordination, and the effect of unequal abilities in systems with endogenous
grouping. We conduct an experiment that shows that subjects tacitly coordinate the mech-
anism’s asymmetric payoff-dominant equilibrium with precision; this precision is robust
to a change in the structure and complexity of the game.

Implications: The results suggest that people respond to merit-based grouping in a
natural way, and that competitive contribution-based grouping encourages social contri-
butions even when abilities to contribute differ, which is the case in all communities and
societies.
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1 Introduction

Can competitive grouping based upon individuals’ group contributions increase coop-
eration and efficiency? Recent behavioral research has answered this question with a
clear “yes”:1 Experimental findings about the effects of endogenous group formation on
provision levels indicate that the degree of excludability of public goods or team goods
(Buchanan, 1965) is not the only factor that matters. The method by which players are
assigned to their cooperative units might be equally important.

Worldwide, trends toward globalization and toward contribution-based rather than
privilege-based grouping appear to go hand in hand, facilitated by equal-rights move-
ments, scholarship programs, and increasingly global -and hence more intense, competition
in business and education. The entry and promotion systems of business and nonprofit or-
ganizations are increasingly based on contribution rather than on superficial criteria such
as race, class or gender.2 With the resulting increase in competitiveness, social units that
still group based on criteria unrelated to output are likely less competitive,3 and might
either change or disappear.4

However, before one can suggest that competitive grouping is indeed an effective tool
to raise social contributions, the important issue of unequal ability to contribute must be
addressed. Unequal abilities are a reality in all communities or societies, be it due to differ-
ences in health, education, cognitive abilities, and so on. In this chapter we theoretically
analyze and experimentally test a formal mechanism of competitive, contribution-based
endogenous grouping, called “Group-based Meritocracy Mechanism” (GBM) (see
Gunnthorsdottir, Vragov, Seifert & McCabe, 2009, henceforth GVSM, for an introduc-
tory analysis) and make the ability to contribute unequal between players, effectively
creating two types of citizens: those who are able to contribute more, and those who can
only contribute less.

Applying the principle of payoff dominance (Harsanyi & Selten, 1988), one can make
a precise prediction about the aggregate behavior of GBM participants even if their abil-
ities to contribute are unequal: Inequality notwithstanding, the mechanism should lead
to high social contributions and efficiency in most instances. GVSM analyzed and exper-

1See, e.g. Ahn, Isaac & Salmon, 2008; Charness & Yang, 2009; Croson, Fatas & Neugebauer 2007;
Güth, Levati, Sutter & van der Heijden, 2007; Cabrera, Fatas, Lacomba & Neugebauer, 2007; Page,
Putterman & Unel, 2006; Gächter & Thöni, 2005; Cinyabuguma, Page & Putterman, 2005; see Maier-
Rigaud, Martinsson & Staffiero, 2005 for an overview of endogenous group formation games where the
rules of the game are common knowledge. Endogenous grouping also has an impact if players do not even
know that they are being grouped (e.g., Ones & Putterman, 2004; Gunnthorsdottir, Houser & McCabe,
2007).

2For example, in order to increase intellectual competitiveness, over the 20th century Ivy League schools
reduced or eliminated non-performance related intake criteria such as legacy preferences, gender, or eth-
nicity (Karabel, 2005).

3For example Singapore, among the most successful Asian countries by most standards, seceded from
Malaysia in 1965 because it rejected ethnic quotas in the assignment of social and professional roles in
favor of contribution-based hiring.

413th century Mongol general Genghis Khan, who successfully conquered large regions of Asia, broke
with tradition by placing warriors in his military hierarchy based on loyalty and ability only, rather than
class or origin.
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imentally tested a basic version of the GBM with equal endowments, and found that the
GBM’s payoff-dominant, asymmetric “near-efficient equilibrium” (henceforth NEE)
was reliably and precisely coordinated in the laboratory, even though it is unlikely that
experimental subjects can consciously understand its structure.

The current study builds upon GVSM’s introductory work; the three main contribu-
tions here are as follows: (1) we show that GVSM’s findings of precise tacit coordination
of the payoff dominant asymmetric equilibrium are robust to an increase in the complexity
of the game, (2) we increase the realism of GVSM’s original model by introducing unequal
abilities to contribute, and (3) we provide a general theoretical analysis which suggests
an array of future experimental tests, as well as extensions of the current model.

(1) GVSM’s subjects all had the same endowment and thus equal ability to make a
contribution. We increase complexity by introducing two different endowment levels while
keeping everything else (including the median/mean endowment) the same as in GVSM’s
experiments. Under two endowment levels, the asymmetric NEE is more elaborate; it
consists of three different strategies while in GVSM’s setup it consisted of only two. We
have discovered only one reliable method of finding the game’s equilibria involving posi-
tive contributions: the gradual elimination of possible strategy combinations by searching
for incentives to deviate, a lengthy and somewhat involved process (see Section 3 and
Appendix A). However, our experimental results show that GVSM’s initial findings about
the “magical” (Kahneman, 1988, p. 12) coordination of the asymmetric payoff-dominant
equilibrium are robust to the change we implemented.

(2) As mentioned above, unequal ability to contribute is a reality in communities and
societies, and should be incorporated in any design intended to increase cooperation. Our
experimental results indicate that even when abilities to contribute are unequal, compet-
itive, contribution-based team formation remains an effective and precise mechanism to
raise social contributions, at least in the controlled environment of the laboratory.

(3) The general theoretical analysis of a GBM mechanism with two endowment levels
(henceforth 2-Type GBM) suggests that under contribution-based grouping, the effect
of unequal abilities to contribute is not straightforward: Group size, the overall propor-
tions of players with high endowments and low endowments, and the degree of inequality
all impact efficiency. Interestingly, we find that efficiency increases when the difference in
abilities to contribute increases. Our analysis suggests an array of further experimental
tests of competitive endogenous grouping when abilities to contribute differ. By chang-
ing the game’s parameters experimenters can create many different cases, which allow
the examination of (a) theories of equilibrium selection, in particular payoff dominance
(Harsanyi & Selten, 1988), (b) tacit coordination of various types of asymmetric equilib-
ria which are non-obvious to subjects and which, depending upon the parameters, have
different properties, and (c) the impact of different degrees of inequality with regard to
players’ ability to contribute on equilibrium structure and subject behavior.

Overview

Section 2 describes the GBM mechanism, and compares it to the Voluntary Contribution
Mechanism (VCM) (Isaac, McCue & Plott, 1985). We suggest that the VCM and the
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GBM can serve as rough models of privilege-based and merit-based social stratification,
respectively. Section 2 also contains a brief overview of the equilibrium structure of the
basic GBM and its extension under study here, the 2-Type GBM. Section 3 formally
analyzes the 2-Type GBM. The examples in Section 3, with parameters commonly used
in experiments, suggest an array of further experimental tests.

Section 4 describes a GBM experiment, where subjects have two different endowment
levels. Section 5 contains the results and shows that the payoff dominant Nash equilib-
rium organizes aggregate behavior very well. In Section 6 we detail possible follow-up
studies based on our theoretical analysis, discuss sociological and policy implications of
our findings, and address shortcomings and potential criticisms.

2 The Group-based Meritocracy mechanism (GBM) with
two different endowment levels

A Group-based Meritocracy (GBM) is a society in which participants are assigned to
groups based on their contributions to a group account. The game shares features with the
Voluntary Contribution Mechanism (VCM), the standard experimental model to examine
free-riding, but with competitive contribution-based grouping added. We first briefly
describe the VCM before addressing how the GBM differs.

The VCM

In a VCM n participants are randomly assigned to G groups of fixed size φ. After group-
ing, players each decide simultaneously and anonymously how much of their individual
endowment wi to keep for themselves, and how much to contribute to a group account.
Contributions to the group account are multiplied by a factor g representing the gains from
cooperation before being equally divided among all φ group members. In the remainder of
this paper, we denote the rate g/φ by m. m is the Marginal Per Capita Return (MPCR)
to each group member from an investment in the group account. As long as 1/φ < m < 1,
this game is a social dilemma: efficiency is maximized if all participants contribute fully
to their group, but each individual’s dominant strategy is to contribute nothing. In ex-
perimental tests of the VCM, mean group contributions start at about half of the total
endowments, and fall toward the dominant-strategy equilibrium of non-contribution by all
within about ten repetitions (for overviews see, e.g., Ledyard, 1995; Davis & Holt, 1993).

The basic GBM mechanism with homogeneous endowments wi

The GBM’s equilibrium structure differs from the VCM’s because in the GBM group
membership is competitively based on individual contributions. As in the VCM, pay-
off functions, group size, and other parameters are fixed. However, a GBM player has
considerable control over her group placement, through her public contribution decisions.

Participants first make their contribution decisions, then get ranked according to their
contributions to the group account. Based on this ranking, participants are partitioned
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into equal-sized groups. Individual earnings are computed taking into account the group
a player has been assigned to. For the game’s equilibrium analysis it is important to
note that any ties for group membership (due to equal group contributions) are broken at
random. All this is common knowledge.5

The GBM also differs from the VCM in how the entire society is modeled. In the VCM
each arbitrarily composed group exists in isolation. Since team assignment is random,
there is no social mobility either. The GBM, in contrast, is not just about a single isolated
group, but about a society consisting of multiple groups, where socially mobile players are
linked via a cooperative-competitive mechanism. Through their contribution decisions
they compete for membership in units with potentially different collective output and
payoffs. The GBM’s equilibrium analysis must therefore extend over the multiple groups
that make up an organizationally stratified society.

The VCM and the GBM as models of social grouping and stratification

In the VCM, the choices a participant makes do not affect her placement in the experimen-
tal mini-society: each VCM player must accept what has been handed to her in the random
grouping process. As Rawls (1971) points out, each individual must accept the “Lottery
of Birth” with regard to factors that are fixed at the beginning of life and over which
the individual has no control, such as race or gender. In privilege-based societies however
the Lottery of Birth remains disproportionally important throughout a person’s life, since
these unalterable characteristics determine her organizational membership and place in
society, and through it, her payoffs. This is why the VCM, where grouping is random, can
be viewed as a model of an ascriptive (Linton, 1936), privilege-based society where the
Lottery of Birth looms large. The GBM in contrast, with its competitive contribution-
based grouping, can serve as a model of meritocratic social organization where people
are grouped and stratified based on their choices; high-contributors join more produc-
tive cooperative units where payoffs are higher. The GBM’s incentive structure generates
competition and increases efficiency. This is reflected in its equilibrium structure.

The equilibria of the GBM with homogeneous endowments

In contrast to the VCM with its dominant strategy equilibrium of non-contribution by all,
GVSM show that in the relatively simple case when endowments, and hence abilities to
contribute, are equal, the GBM has two pure-strategy equilibria6 which differ in efficiency.

5Gunnthorsdottir, Houser & McCabe (see also Gunnthorsdottir, 2001) use a related game where like-
contributors are grouped together. With the goal of identifying player types who vary in reciprocity,
Gunnthorsdottir et al. created a purposefully vague and brief version of a VCM with contribution based
grouping, so that subjects, ignorant about the grouping method, can project their personality (cooperator
or free rider) into this ambiguous situation. Thus, their design and its purpose differ from ours. The current
study tests a specific equilibrium prediction based on a precise game-theoretic model. In established
communities and societies the grouping method is usually known, as is the case in the current study.
Gunnthorsdottir (2009) found that behavior is quite different when subjects know the grouping method
compared to situations where they don’t.

6Additionally and depending on the parameters, there exist mixed-strategy equilibria. Their existence
is briefly discussed by GVSM. Mixed strategies are beyond the scope of the current paper since (1) the
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An equilibrium of non-contribution by all remains omnipresent, reflecting the fact that
the GBM retains some social dilemma properties. However, with competitive grouping
the social dilemma features are much attenuated, and the equilibrium of non-contribution
changes from a dominant-strategy equilibrium to a best-response equilibrium. The GBM
with equal endowments always has a second, payoff-dominant and highly efficient, asym-
metric equilibrium. In this equilibrium, as long as the within-group interaction has social
dilemma properties (or 1/φ < m < 1), all players contribute fully with the exception of
cR < φ players7 who contribute nothing. GVSM call this payoff dominant equilibrium
a “near-efficient equilibrium” (NEE) because it asymptotically approaches full effi-
ciency as the number of players becomes large. The GBM’s payoff-dominant equilibrium
becomes more complex when unequal endowments are added.

A GBM with two different endowment levels (2-Type GBM)

We now change the basic GBM so that there are two different endowment levels.8 Some
players have high endowments, others low endowments. This is common knowledge. We
henceforth denote the high endowment wi as H and the low wi as L.

Incentives under two different endowment levels. Recall that as long as the within-
group interaction has social dilemma properties, the mechanism always has a best-response
equilibrium of non-contribution by all. With the unequal distribution of endowments
common knowledge, players with endowment wi = L (henceforth “Lows”) might not
feel motivated to contribute. This in turn would affect the expected payoffs of players
with endowment wi = H, (“Highs”), and could drive the system toward the inefficient
equilibrium rather than the NEE. However, this is not the case in our experiment: Even
though Lows can never aspire to the level of earnings that Highs can achieve, the 2-Type
GBM elicits high social contributions from Highs and Lows alike, and the NEE is reliably
realized.

Increased NEE complexity under two different endowment levels. One might expect
that the 2-Type GBM’s NEE might be hard to coordinate because of its complexity.

pure strategy equilibrium predicts very well here. (2) mixed strategies are intuitively implausible when
there is no stringent need to play unpredictably, and pure equilibrium strategies are available to players
(see, e.g., Kreps, 1990, pp. 407-410; Aumann, 1985, p. 19). (3) Even in games with a unique equilibrium
in mixed strategies, proper mixing (both the right proportions of choices and their serial independence)
is usually beyond regular subjects’ abilities (see, e.g., Palacios-Huerta & Volij, 2008; Walker & Wooders,
2001; Brown & Rosenthal, 1990; Erev & Roth, 1998). (4) GVSM report that their subjects do not play
mixed strategies.

7GVSM denote cR by z.
8By introducing unequal endowments, we make players’ world less fair even though it is not exactly an

ascriptive (Linton, 1936) system. Note though that Rawls (1971) explicitly included differing abilities in
the Lottery of Birth. Unequal abilities to contribute still allow players some control over their grouping,
but within constraints which are again Lottery of Birth based (exactly what a meritocracy often claims to
overcome). In a meritocracy with differential abilities to contribute, ability thus constitutes a ceiling to
what an individual can aspire to, even though within these constraints, she determines her contribution
levels and through them, her social position. Fair or not, ability to contribute is a significant determinant
of social position in contemporary societies. For example, IQ is the strongest single predictor of socio-
economic status (see, e.g., Grusec, Lockhart & Walters, 1990; Herrnstein & Murray, 1996, Ch. 3.)
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High demands are put on subjects’ ability to tacitly coordinate. In the game tested
experimentally in Sections 4 and 5, the NEE consists of three corner strategies. Subjects
thus must (1) somehow grasp that they should not play strategies drawn from the interior
of their strategy spaces, {0, 1, ..., 80} for Lows, and {0, 1, ..., 120} for Highs, respectively,
and (2) tacitly coordinate the three equilibrium strategies, 0, 80, and 120 in the correct
proportions. This is complicated by the fact that (3) this NEE is not obvious, as reflected
by the length of the analytical derivation of the conditions for its existence (Section 3). As
mentioned, we ourselves have discovered only one reliable method of finding this NEE—
the gradual elimination of strategy combinations by searching for incentives to deviate
focusing first on the necessary conditions for an equilibrium with positive contributions,
then on the sufficient conditions. 4) The 2-Type GBM’s NEE can be ephemeral in that
its exact structure, even its existence, is often parameter dependent (see Examples 2 and
5 in Sections 3.2 and 3.3, respectively; see also Section 3.5). We show here below that
different equilibrium predictions can be generated by slightly modifying the experimental
parameters. Since both GVSM and the authors of this paper find that subjects coordinate
the GBM equilibria quite precisely, such parameter changes should lead to discernibly
different aggregate behavior.

3 Theory

Before formally describing the equilibria of the game and their properties, we provide (1)
an intuitive account of the equilibria of the 2-Type GBM, and (2) a brief overview of
the formal steps by which the equilibria are derived, highlighting some of the theoretical
findings and the examples that suggest future experimental tests.

We first introduce three terms, formally defined in Section 3.1. A group is the
cooperative unit whose members equally share the earnings from their public account.
Ranking all players by their contributions from highest to lowest with ties broken at
random and then grouping them into G groups, one can define three general kinds of
groups: the first group, Group 1, contains the top φ contributors, the last group, Group
G, contains the bottom φ contributors, and any group in between is designated as an
“intermediate group”. A player’s type is defined by her endowment, so that a player is
either a “High” or a “Low”. A class is a subset of players whose public contributions
are identical. The first class C1 is the subset whose members contribute the most, C2 the
next class whose members contribute less, and so on; the last class CR is the subset who
contribute least.

An intuitive account of the 2-Type GBM’s equilibria

We focus first on the simpler (GVSM’s) version of the mechanism where all endowments wi

are equal, then extend the same reasoning to the 2-type case.9 Firstly, non-contribution by

9For illustration purposes we describe a case with three or more groups. The case with two groups only
is easily inferred in a similar fashion.
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all is clearly an equilibrium—no single individual has an incentive to increase her contribu-
tion if everyone else contributes nothing. Are there equilibria with positive contributions?
It can be verified that in an equilibrium with positive contributions, a group cannot con-
tain players from three classes, since each player in the middle class could decrease her
contribution by a small ε and remain in the same group. Therefore, if an equilibrium with
positive contributions exists, each group must contain either one or two classes of players.

We next examine the three different kinds of groups separately: Group 1 can only
contain one class, C1: if it had two classes, any member of C1 would have an incentive to
decrease her contribution by a small ε and remain in Group 1 nonetheless, enjoying the
top earnings associated with such a position. For the same reason the number of players
in C1 must be greater than the group size φ and not divisible by φ. It is also easy to show
that members of C1 must contribute their full endowments: If they do not contribute
fully, each C1 member has an incentive to increase her contribution and thus her earnings,
because her expected earnings are higher if she is with certainty in Group 1 than if she is
grouped with some positive probability with lower classes in a lower group.

We now examine whether the first intermediate group, Group 2, could possibly contain
individuals from the next class, C2. We already know from the previous paragraph that
Group 2 must already contain at least one full contributor. Since groups can contain either
one or two classes, there are two cases to consider with regard to the composition of the
other players in Group 2. (1) All other members of Group 2 also contribute fully, or (2)
all its other members belong to the next class, C2, whose members contribute less. We
next examine case (2) and show that it is impossible if endowments are equal: Following
similar logic as laid out with regard to Group 1 membership, if there were C2 players in
Group 2, C2 must extend into the next intermediate group (Group 3) else there cannot
be an equilibrium: if C2 did not extend into Group 3, any C2 player could decrease her
contribution and stay in Group 2. Assume now C2 does extend to Group 3: in such
a case any C2 player will increase her contribution so that she can be in Group 2 with
certainty, and can free ride off the full contributor(s) already in Group 2. This shows that
in an equilibrium with positive contributions members of any intermediate group must
contribute fully.

What about Group G? It is clear that Group G cannot contain one class only, because
from above it follows that it already has at least one full contributor. If all members of
Group G are full contributors, then everyone has an incentive to free ride and contribute
nothing. Hence, Group G must contain two classes. Also, the individuals in its lower class
CR contribute nothing, else any one of them has an incentive to lower her contribution,
since she would remain in Group G nonetheless.

In order to find a stable point where the system is in equilibrium and no player has an
incentive to unilaterally deviate, one needs to determine how many zero-contributors are
needed in Group G. GVSM derived the conditions for the existence of such an equilibrium
for the case with homogeneous endowments, and called it a “near-efficient equilibrium”
(NEE).

Does a similar equilibrium exist when there are two endowment levels? Following the
same logic as above, one can verify that non-contribution by all is still an equilibrium; in
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an equilibrium with positive contributions each group still must have either one or two
classes; Group 1 can still only have one class of full contributors; the number of C1 players
must still be greater than the group size φ and not divisible by φ. However, differences
arise in the first intermediate group, Group 2, which might contain players which are in
C2 by necessity, because of their lower endowment. Group 2 can thus have either (1)
one class or (2) two classes, if some Group 2 members are Lows who would want to, but
cannot, contribute as much as the Highs do. It follows that one intermediate group with
two classes must exist in an equilibrium with positive contributions if there are more than
φ Lows and more than φ Highs in the system. By the same logic as above it follows that
in this case C2, consisting of fully contributing Lows, must extend to the intermediate
groups below this mixed group, and that all intermediate groups below the mixed group
can have only one class.

What about Group G,the last group? Since we showed that a group can never contain
more than two classes, we know that Group G has either (1) one or (2) two classes. By
the logic laid out above for the case with homogeneous endowments, in case (2) the lower-
class players must contribute zero in equilibrium. We will show formally here below that
both (1) and (2) can be equilibria depending on the parameters. We call (1), the configu-
ration where Group G consists of full contributors only, a “fully efficient equilibrium”
(FEE). (2) corresponds to the “’near-efficient equilbrium” (NEE) originally defined
by GVSM. We now provide a brief overview of our formal analysis and highlight its most
important findings about the impact of unequal endowments.

The game defined

In Assumption 1 (Section 3.1) we formally restrict the endowment wi to two levels, H
or L. Without loss of generality we let L = 1 and H = (1 + ∆w) where ∆w > 0. We
will examine the effect of change in ∆w in depth.10 In Assumption 2 (Section 3.1) we
restrict the distribution of player types, Highs and Lows, in the following manner: type
count is not fully divisible by group size, and for each type its count, nH or nL, must
exceed the group size φ.

The reason for these restrictions is as follows: (1) The current section and Appendix A
make it clear that even with these assumptions in place the process of finding the equilibria
of the 2-Type GBM is lengthy and cumbersome. Relaxing Assumptions 1 and 2 would
mean that there would be numerous additional cases to consider, each of which requires the
same detailed examination of all possible strategy combinations as contained in Section
3.11 (2) Cases that satisfy Assumption 2 are the most interesting since a distribution
of types as stipulated by Assumption 2 encourages competition for group membership.
Recall that, in any GBM, ties for group membership are broken at random, and that
equilibrium payoffs are expected payoffs, computed before the random resolution of ties
puts players in specific groups. For an equilibrium with positive contributions in the cases

10In the experimental test in Sections 4 and 5 L = 80 tokens and H = 120 tokens so that ∆w = 0.5.
11Some simple examples of cases where Assumption 2 is relaxed: nH and nL are divisible by φ; nH or

nL equals φ; nH < φ; nL < φ, etc.. Relaxing Assumption 1, too, creates a large array of different cases.
Many of these cases are interesting, and are being developed in separate papers.
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of the GBM studied so far (GVSM’s and ours) there must be competition between players
for group membership.

The equilibrium of non-contribution by all

In Section 3.2 we first show the omnipresence of an equilibrium of non-contribution by
all. This is the only equilibrium of the game where all players use the same strategy. This
equilibrium is always present as long as the MPCR m is within the bounds that make the
within-team interaction a social dilemma (Lemma 1).

Equilibria with positive contributions

We focus first on the necessary conditions for equilibria with positive contributions, see
Section 3.2. Theorem 1 states that there are only two equilibrium configurations with
positive contributions possible; both are asymmetric and consist of corner strategies: (1)
a FEE where both types contribute fully, (2) a NEE where all players contribute fully
with the exception of cR < φ players12 who contribute zero. The two equilibria are
depicted in Figure 3.1. Appendix A contains the proof of Theorem 1; it involves the usual
process of gradual elimination, including the step-by step elimination of initial “equilibrium
candidate” E’ by searching for incentives by individual players to deviate.

In Section 3.2 we also apply Theorem 1 to three examples relevant to experimental
testing or previous literature: In Example 1 we derive the equilibrium with positive
contributions of the version of the 2-Type GBM experimentally tested in Sections 4 and 5,
and show that it must be a NEE. Example 2 illustrates that not all 2-Type GBMs have
an equilibrium with positive contributions: We slightly modify the type composition of
the experimental game in Example 1 so that only the equilibrium of non-contribution by
all remains. In Example 3 we connect our general analysis to GVSM’s original analysis
of a GBM when endowments are all equal. We show that if endowments are equal a FEE
cannot exist, only a NEE is possible.

When is a fully efficient equilibrium (FEE) possible?

In Sections 3.3 and 3.4 we explore the conditions for the existence of FEE and NEE
respectively, by examining all players’ incentives to deviate. In this process we always
start with the lowest class. While lengthy and cumbersome, the process is rather straight-
forward. We draw attention to Theorem 2 in Section 3.3, which states (subject to the
constraints specified in Remarks 2 and 3 in Section 3.3) that the existence of a FEE
depends on a combination of parameters including the group size φ, the count of Highs
and Lows in the system (nH and nL, respectively), and the MPCR m. A FEE’s existence
also depends on ∆w, the difference between the high and the low endowment. Theorem
2 implies that if this difference increases, efficiency increases rather than decreases until a
fully efficient equilibrium (FEE), rather than a NEE, is possible.

12As originally shown by GVSM, cR ,which they denote as z, is MPCR-dependent.
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Theorem 2 has practical implications: it allows building a mechanism that is fully
efficient by intervening upon the parameters. In the field, ∆w may be fixed at least in
the short run; same for nH and nL, the distribution of the two types in a community or
society. However, the gains from cooperation m and with it, M , could for example be
changed through managerial tools that increase team productivity. It might however be
easiest to intervene through the team size φ, which in turn determines h = nH mod φ
and ` = nL mod φ.

Three remarks in Section 3.3 elaborate further on Theorem 2: if the MPCR m ap-
proaches 1 from below, full contribution by all becomes an equilibrium (Remark 1). (Of
course, if m > 1, it is a dominant strategy to contribute fully as it is in the VCM). Re-
marks 2 and 3 focus on the effect of ∆w, the difference in ability to contribute: If ∆w is
small, a FEE is impossible (Remark 2, compare to Example 3 in Section 3.2). However,
while a large ∆w is a necessary condition for a FEE, it is not sufficient. Cases can be
found where ∆w is large yet no FEE exists (Remark 3). Example 4 illustrates how a
FEE can be found combining Theorem 2 with a graphical approach. In Example 5 we
apply Theorem 2 to our experimentally tested version of the mechanism, where L = 80
and H = 120, and find that if H were raised to 200(2.5 × L), a FEE would replace the
current NEE.

Existence of a near-efficient equilibrium (NEE)

The exact type composition of a NEE is parameter dependent with regard to the last
class of cR < φ non-contributors: In our experimental game with three groups of four
players each, the last class CR consists of Lows. However, as the bottom right of Figure
3.1 shows, if the group size or the number of groups increases, CR might also contain
Highs. However, cR < φ does not change with this, so that the NEE’s efficiency is not
affected much. To the best of our knowledge, a NEE can be discovered only through a
gradual elimination process of strategy configurations. The length and complexity of the
analysis can be seen in Theorem 3 in Section 3.4. We also use specific examples to
show that a NEE exists, and to illustrate as best we can the conditions under which this
happens (see Examples 1, 2, 5).

Can NEE and FEE coexist?

Section 3.5 demonstrates that it is possible to construct a case where FEE and NEE
co-exist. Example 5 already illustrated that if H ≥ 2.5, our experimental game would have
a FEE rather than a NEE. Section 3.5 shows that at the exact point where H = 2.5,
a weak NEE and a weak FEE coexist: one L-player is indifferent between contributing
and not contributing.

3.1 Model

The set of players is N ≡ {1, . . . , n}. Each player i ∈ N has an endowment wi > 0. The
distribution of endowments is common knowledge. Each player i ∈ N makes a contribution
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si ∈ [0, wi] to a public account, and keeps the remainder (wi − si) in her private account.
The return from the private account is without loss of generality set to 1, the return from
the public account is the Marginal per Capita Return (MRCP) m ∈

(
1/φ, 1

)
. So far, this

game is a standard VCM.

� Players compete for group membership

Our model however differs from the VCM in the following way: After their investment
decisions, all players are ranked according to their public contributions and divided into
G groups of equal size φ, so G = n/φ. Ties for group membership are broken at random.
The φ players with the highest contributions are put into Group 1; then φ players with
the next highest contributions are put into Group 2, and so on. Payoffs are computed
after players have been grouped. Each player’s payoff consists of the amount kept in her
private account, plus the total public contribution of all players in the group she has been
assigned to multiplied by the MPCR m.

Given the other players’ contributions (s1, . . . , si−1, si+1, . . . , sn) ≡ s−i, let Ui (si, s−i)
be player i’s expected payoff from contributing si. Let Pr

(
k | si, s−i

)
be i’s probability

of entering group k when the contribution profile is (si, s−i) ≡ s, where k = 1, . . . , G;
for simplicity we henceforth denote this probability by Pr

(
k | si

)
. Let Sk

−i be the total
contribution in group k except for player i. Therefore, player i’s expected payoff Ui (si, s−i)
from a contribution combination s = (si, s−i) can be expressed as follows:

Ui (si, s−i) = (wi − si) +
G∑

k=1

Pr
(
k | si, s−i

)
·
[
m ·

(
Sk
−i + si

)]
. (1)

� Formally defining the game

We can now transform this into a normal form game. The set of players is N ; each player
i’s strategy is her contribution si. Her strategy space is the interval [0, wi] ⊆ R; finally,
player i’s payoff function is defined by (1) for all i ∈ N . The Nash equilibrium is defined
as follows:

Definition 1 (Nash equilibrium). A contribution profile s = (s1, . . . , sn) is a Nash
equilibrium if and only if

Ui (s) ≥ Ui

(
s′i, s−i

)
,

for all s′i 6= si and all i ∈ N .

So far this game is a standard GBM as originally defined by GVSM, where wi is
the same for all players. We now increase the game’s complexity with the following two
assumptions:

Assumption 1 (Two different endowment levels). Each player’s endowment is either
wi = H or wi = L < H.

12



For what follows, we apply the following simplification without loss of generality: we
normalize L = 1, and let ∆w ≡ H−1 > 0 be the gap between the high endowment H and
low endowment L = 1. We call a player with endowment H a “High”, and a player with
endowment 1 a “Low”. NH is the set of Highs. NL is the set of Lows. Their respective
counts are nH ≡ |NH | and nL ≡ |NL|. It follows that NH ∪ NL = N , or equivalently,
nH + nL = n. Further, one can find some nonnegative integers A, B, h < φ, and ` < φ,
such that the counts of Highs and Lows can be expressed as:

nH = Aφ+ h, and nL = Bφ+ `.

Assumption 2 (Distribution of player types whose endowments differ). The
count of each type, High and Low, is more than, and not a multiple of, the group size φ,
that is,

• A ≥ 1, B ≥ 1, and A+B = G− 1;

• h ≥ 1, ` ≥ 1, and h+ ` = φ.

We need to define one more basic concept, which will be crucial when we identify all
the game’s equilibria, namely a “class”:

� The concept of “class”

Definition 2 (Class). Let Cr ⊆ N . We call Cr a class if each player i ∈ Cr contributes
the same, that is, i, j ∈ Cr if and only if si = sj. We call a player i ∈ Cr a Cr-player.

Given a contribution profile s, the players can be divided into R (s) ≤ n classes; we
henceforth omit the argument s. Let C be the family of all classes, i.e., C ≡ {C1, . . . , CR}.
Both C and {NH , NL} partition N , that is,

⋃R
r=1Cr = NH ∪NL = N . In a class Cr ∈ C ,

there are cr players; the contribution of each player in Cr is sr, that is, |Cr| ≡ cr, and
si = sr for all i ∈ Cr. We index the classes such that sr+1 < sr, where r + 1 ≤ R; hence,
C1 is the class consisting of the highest contributors, and CR is the class consisting of the
lowest contributors. For each class Cr, we can find nonnegative integers Dr and c̃r < φ
such that the count of Cr-players can be expressed as

cr ≡|Cr| = Dr · φ+ c̃r. (2)

3.2 Formal description of the 2-Type GBM‘s three equilibria

� The equilibrium of non-cooperation by all Is always present

Lemma 1 (Equilibrium of non-contribution by all). si = 0 for all players i ∈ N is
a Nash equilibrium. This is the only equilibrium satisfying |C | = 1.

Proof. Let sj = 0 for all players j 6= i. Player i obtains (wi − si) +msi = wi − (1−m) si
if she contributes si. Her best response is therefore si = 0.
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To verify that si = 0 for all players i ∈ N when |C | = 1, let s1 > 0. Consider any
player i ∈ N . She gets

(
wi − s1

)
+ mφs1 if she contributes s1, but if she deviates and

contributes 0, she enters the last group G, and gets

wi +m (φ− 1) s1 =
(
wi −ms1

)
+mφs1 >

(
wi − s1

)
+mφs1

since m < 1. Hence, si = 0 for each player i ∈ N in an equilibrium with only one class.

The equilibrium with si = 0 for all i ∈ N always exists as long as the MPCR m < 1.
It is however not a dominant response equilibrium. Theorem 1 here below defines the
necessary conditions for equilibria with positive contributions. Since si = 0 for all i ∈ N
if |C | = 1 by Lemma 1, in any equilibrium with positive contributions it must be that
|C | ≥ 2.

� The two equilibria involving positive contributions

This section will show that there are two equilibria involving positive contributions: (1) a
fully efficient equilibrium (FEE), and (2) a near-efficient equilibrium (NEE):

FEE : There are two classes: C1 is identical to NH , and C2 is identical to NL. All players
contribute fully, that is:

• Classes: |C | = 2, where C1 = NH and C2 = NL.

• Strategies: si =

{
H, if i ∈ C1

1, if i ∈ C2.
.

NEE : There are three classes: C1 consists of Highs, C2 consists of Lows, and C3 consists
of the players who are not in C1 or C2. Both C1 and C2-players contribute fully,
but C3-players contribute nothing. The sum of C2 and C3-players together is greater
than, and not a multiple of, group size; the count of C3-players is less than the group
size, that is:

• Classes: |C | = 3, where


C1 ⊆ NH , c1 > φ and c̃1 > 0

C2 ⊆ NL, c2 + c3 > φ, and c̃2 + c̃3 6= φ

C3 = N \ (C1 ∪ C2) and c3 < φ.

• Strategies: si =


H, if i ∈ C1

1, if i ∈ C2

0, if i ∈ C3.

In both equilibria with positive contributions, strategies only take one of three forms:
full contribution of the high endowment (H), full contribution of the low endowment
(L=1), or zero contribution. Figure 3.1 illustrates FEE and NEE. The dark gray
sections in the horizontal bars represent Highs, the light gray sections represent Lows.
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The players’ strategies si are shown above the horizontal bars, the corresponding class is
shown below. The segments in the bars represent groups. For illustration purposes and
without loss of generality, only four groups are shown.

FEE:

C1 C2

s1 = H s2 = 1

Group (A+ 1) Group G

NEE:

C1 C2 C3

s1 = H s2 = 1 s3 = 0

Group (D1 + 1) Group G

Figure 3.1: The two equilibrium configurations with positive contributions (light grey sections
are Lows, dark grey sections are Highs)

Theorem 1. If there is an equilibrium with positive contributions, then it is a FEE or
NEE.

Proof. Appendix A.

� Applications of Theorem 1

In Example 1 we derive the equilibrium of the game tested experimentally in Sections 4 and
5. Example 2 shows that a specific version of the 2-Type GBM does not have an equilibrium
with positive contributions. In Example 3 we apply Theorem 1 to a situation where all
endowments are equal, and show that the only equilibrium with positive contributions
possible in such a situation is a NEE.

Example 1 (Deriving the experimental NEE). Let n = 12, nH = nL = 6, φ = 4,
L = 1 and H = 1.5 (in our experimental test, L = 80 tokens and H = 1.5L = 120 tokens).
According to Theorem 1 we only need to consider FEE and NEE:

There is no FEE here since any player i ∈ C2 has an incentive to reduce her contri-
bution: If i contributes 1, she enters the second group with probability 2/6, and the third

group with probability 4/6, so the expected payoff is 0.5 ×
(

2
6 × 5 + 4

6 × 4
)

= 13/6, but

if she contributes 0, she enters the third group with certainty and obtains 1 + 0.5 × 3 =
5/2 > 13/6.

Hence, if there exists an equilibrium with positive contributions, it must be a NEE.
As the following table shows, the unique equilibrium with positive contributions is(

〈1.5, 1.5, 1.5, 1.5〉 , 〈1.5, 1.5, 1, 1〉 , 〈1, 1, 0, 0〉
)
.13

13This corresponds to
(
〈120, 120, 120, 120〉 , 〈120, 120, 80, 80〉 , 〈80, 80, 0, 0〉

)
in experimental tokens.
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c1 c2 c3 NEE? Deviator
Deviation(
si → s′i

)
5 6 1 No i ∈ C2 ⊆ NL 1→ 0
5 5 2 No i ∈ C3 ∩NH 0→ 1 + ε
5 4 3 No i ∈ C3 ∩NH 0→ 1 + ε
6 5 1 No i ∈ C2 ⊆ NL 1→ 0
6 4 2 Yes ∅
6 3 3 No i ∈ C3 ∩NL 0→ 1

Example 2 (No equilibrium with positive contributions exists). In a game with
parameters as in Example 1, now let nH = 7 instead of previously 6. It can be verified
that there is no FEE. By Theorem 1, it suffices to show that there is no NEE either.
There are eight cases to consider:

c1 c2 c3 NEE? Deviator
Deviation(
si → s′i

)
5 5 2 No i ∈ C3 ∩NH 0→ 1 + ε
5 4 3 No i ∈ C3 ∩NH 0→ 1 + ε
6 5 1 No i ∈ C2 ⊆ NL 1→ 0
6 4 2 No i ∈ C3 ∩NH 0→ 1 + ε
6 3 3 No i ∈ C3 ∩NH 0→ 1 + ε
7 4 1 No i ∈ C2 ⊆ NL 1→ 0
7 3 2 No i ∈ C1 = NH H → 1 + ε
7 2 3 No i ∈ C1 = NH H → 1 + ε

Example 3 (If endowments are all equal, the only equilibrium with positive
contributions possible is a NEE). This example relies on some results in Appendix
A. The general method developed so far can be used to reprove GVSM’s Observation 2.
GVSM’s parameter z corresponds to cR = |CR|, the number of players in the last class.
If H = L = 1 and if there exists an equilibrium with positive contributions, it can be
characterized as follows:

|C | = 2, s1 = 1, s2 = 0, and c2 < φ.

Proof. By Lemma A.1(a) (in Appendix A), in any equilibrium with positive contributions
c1 > 0, c̃1 > φ, and s1 = 1. Now consider the last class CR:

1. If cR > φ and c̃R > 0 in equilibrium, then sR = 1 by Claim 1 (Appendix A). However,
this means that |C | = 1 and c̃1 = 0, a contradiction to Lemma A.1(a).

2. Assume c̃R = 0 in equilibrium. Then s2 = 0 by Lemma A.1(e). By the same logic
as in Lemma A.1(c), there cannot exist a class Cr satisfying 0 < sr < 1; hence,
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|C | = 2. According to Lemma A.1(a) c̃1 > 0. If c̃2 were zero, it would contradict our
initial assumption at the beginning of Section 3.1 that the total number of players
n = G · φ.

3. Thus, it must be that cR < φ. It follows that sR = 0 by Lemma A.1(e). An argument
analogous to Lemma A.1(c) shows that |C | = 2.

3.3 Existence of a fully efficient equilibrium (FEE)

A FEE exists if and only if

• Player i ∈ C2 has no incentive to reduce her contribution from 1 to 0, and

• Player i ∈ C1 has no incentive to reduce her contribution from H to 1 + ε, 1, or 0,
where ε is a small positive real number;

We first consider C2, then C1. We use Uwi
si (Cr) to denote player i’s expected payoff when

her endowment is wi ∈ {H, 1}, she contributes si ∈ [0, wi], and is in class Cr. We develop
our analysis with the help of Figure 3.2.

s1 = H s2 = 1

c1 = nH = Aφ+ h c2 = nL = Bφ+ `

h ` φ

Group (A+ 1) Group G

Figure 3.2: The distribution of players in a FEE

Theorem 2. Let M ≡ 1−m
m . A FEE exists if and only if

M · nL
∆w · ` ≤ h ≤ min

{[
(φ− 1) ∆w −MH

]
· nH

∆w · ` ,
(`−M) · nH

`

}
. (3)

In the remainder of this section we account for Theorem 2 by examining players’
incentives to deviate.

� Incentives to deviate for C2-players in a FEE

Fix the contribution profile s−i ≡ (s1, . . . , si−1, si+1, . . . , sn) satisfying sj = wj for all
j ∈ N \ {i}. For any player i ∈ C2 = NL, if she contributes 1, she enters the following
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groups with positive probabilities: A+ 1, A+ 2, . . . , G (see Figure 3.2). The probabilities
are:

Pr
(
k | 1

)
=

{
`/nL, if k = A+ 1

φ/nL, if k = A+ 2, . . . , G.

Since
∑G

k=A+1 Pr
(
k | 1

)
= 1, we have

∑G
k=A+2 Pr

(
k | 1

)
= 1 − Pr

(
A+ 1 | 1

)
= 1 − `

nL
.

For ease of expression, let
SA+1 ≡ hH + `,

that is, SA+1 is the sum of contributions in Group (A+ 1) from the full contribution
profile s = (si = 1, s−i). By (1), player i’s expected payoff from contributing si = 1 is

UL
1 (C2) = (wi − si) +m

Pr
(
A+ 1 | 1

)
· SA+1 +

G∑
k=A+2

[
Pr
(
k | 1

)
· φ
]

= (1− 1) +m

Pr
(
A+ 1 | 1

)
· SA+1 +

 G∑
k=A+2

Pr
(
k | 1

) · φ


= m

[
`

nL
SA+1 +

(
1− `

nL

)
φ

]
〈1〉
= m

(
φ+

h`∆w

nL

)
,

where equality 〈1〉 holds since SA+1 − φ = (hH + `)− (h+ `) = h (H − 1) = h∆w.
If player i ∈ C2 deviates and contributes si < 1, she enters group G, and her payoff is

(1− si) +m
[
(φ− 1) + si

]
= 1 +m (φ− 1)− (1−m) si;

hence, the optimal deviation is si = 0 since 1 − m > 0 with payoff is UL
0 (C2) = 1 +

m (φ− 1).
It follows that player i ∈ C2 has no incentive to reduce her contribution from 1 to 0 if

and only if UL
1 (C2) ≥ UL

0 (C2), that is,

h ≥ (1−m)nL
m` ·∆w ≡ M · nL

` ·∆w , (4)

where M ≡ (1−m) /m. Because m ∈
(
1/φ, 1

)
, we know that M ∈ (0, φ− 1).

� Incentives to deviate for C1-players in a FEE

Since we now consider a player i ∈ C1 = NH , we rewrite the full contribution profile as
s = (si = H, s−i), where sj = wj for any j ∈ N \ {i}. If player i ∈ C1 contributes si = H,
she enters Group 1, 2, . . . , A,A+ 1 with positive probabilities, which are

Pr
(
k | H

)
=

{
φ/nH , if k = 1, . . . , A

h/nH , if k = A+ 1.
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Hence, i’s expected payoff from contributing si = H is

UH
H (C1) = (H −H) +m


 A∑
k=1

Pr
(
k | H

) · φH + Pr
(
A+ 1 | H

)
· SA+1


〈1〉
= m

[(
1− h

nH

)
φH +

h

nH
SA+1

]
〈2〉
= m

(
φH − h`∆w

nH

)
,

where 〈1〉 holds because
∑A

k=1 Pr
(
k | H

)
= 1−Pr

(
A+ 1 | H

)
= 1− h/nH , and 〈2〉 holds

because φH − SA+1 = φH − (hH + `) = `H − ` = `∆w.
If player i ∈ C1 contributes si ∈ (1, H), she enters group (A+ 1) with certainty and

obtains

UH
si (C1) = (H − si) +m

[
(h− 1)H + `+ si

]
= H +m

[
(h− 1)H + `

]
− (1−m) si.

(5)

From (5) we know that the optimal deviation is si = (1 + ε) → 1 if player i ∈ C1 wants
to contribute si ∈ (1, H). Thus,

lim
ε→0

UH
1+ε (C1) = lim

ε→0

{
H +m

[
(h− 1)H + `

]
− (1−m) (1 + ε)

}
= H +m

(
SA+1 −H

)
− (1−m)

= mSA+1 + (1−m) ∆w.

Hence, player i ∈ C1 has no incentive to reduce her contribution from H to 1 + ε if
and only if UH

H (C1) ≥ limε↓0 U
H
1+ε (C1), that is

h ≤ nH
(

1− M

`

)
. (6)

Note that (6) is independent of H or ∆w: it is fully determined by the distribution of
player types and the MPCR m.

Lemma 2 here below indicates that we do not need to consider whether i ∈ C1 has an
incentive to contribute 1 if she has no incentive to contribute 1 + ε.

Lemma 2. If a player i ∈ C1 has no incentive to reduce her contribution from H to 1+ε,
she also has no incentive to reduce her contribution from H to 1.

Proof. If player i ∈ C1 contributes 1, she enters Groups A+ 1, A+ 2, . . . , G with positive
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probabilities. Therefore, her expected payoff from contributing 1 is

UH
1 (C1) = (H − 1) +m

Pr
(
A+ 1 | 1

)
·
[
(h− 1)H + `+ 1

]
+

G∑
k=A+2

[
Pr
(
k | 1

)
· φ
]

= ∆w +m

Pr
(
A+ 1 | 1

)
·
(
SA+1 −∆w

)
+

 G∑
k=A+2

Pr
(
k | 1

) · φ


〈1〉
≤ ∆w +m

{
Pr
(
A+ 1 | 1

)
·
(
SA+1 −∆w

)
+
[
1− Pr

(
A+ 1 | 1

)]
·
(
SA+1 −∆w

)}
= mSA+1 + (1−m) ∆w

= lim
ε→0

UH
1+ε (C1) ,

where 〈1〉 holds because SA+1 −∆w = (hH + `)− (H − 1) =
[
hH + (φ− h)

]
−H + 1 ≥

(H + φ− 1)−H+1 = φ. Therefore, UH
H (C1) ≥ UH

1 (C1) when UH
H (C1) ≥ limε→0 U

H
1+ε (C1).

Finally, if player i ∈ C1 wants to contribute si < 1, she should contribute si = 0, so
that her payoff is UH

0 (C1) = H + m (φ− 1). Hence, she has no incentive to contribute 0
if and only if UH

H (C1) ≥ UH
0 (C1), that is,

h ≤
[
(φ− 1) ∆w −MH

]
· nH

∆w · ` . (7)

Combining (4), (6) and (7), one obtains Theorem 2.

� Comparative statics of the FEE and two examples

Remark 1. It can be seen from (3) that when m is large enough, the FEE is an equi-
librium for all possible parameters of the game. To illustrate, consider the extreme case:

Let m→ 1, then limm→1M = limm→1

(
1−m
m

)
= 0. Then the left-hand side (LHS) of (3)

approaches 0, the right-hand side (RHS) of (3) becomes

min

{
(φ− 1)nH

`
, nH

}
= nH ,

and 0 ≤ h ≤ nH always holds. This result is intuitive: m→ 1 means that if a player puts
one dollar into the public account, her strategic risk becomes negligible.

Remark 2. In a FEE, the gap between Highs and Lows, ∆w, cannot be very small.
This result might strike the reader as counterintuitive since it implies that equality (in wi)
prevents a fully efficient solution. Consider once again the extreme case. Fixed all other
parameters and let ∆w → 0, then

lim
∆w→0

M · nL
∆w · ` = +∞ > h
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so that (3) is violated. This result corresponds to GVSM (2009): when all players have
the same endowment, it is not an equilibrium that all contribute fully.

Remark 3. Although a large enough ∆w is a necessary condition for the existence of a
FEE, it is not sufficient. To see this, let H → +∞, so that ∆w → +∞, too; then (3)
becomes

0 ≤ h ≤ min

{
(φ− 1−M)nH

`
,
(`−M)nH

`

}
=

(`−M)nH
`

. (3′)

We can see that there exist ` and M such that (3′) fails. In particular, if M → (φ− 1)
or equivalently, m→ 1/φ, then there is clearly no FEE no matter how high H is and no
matter what the distribution of types is, since ` ≤ (φ− 1).

Example 4 (Numerical application of Theorem 2). Let m = 0.5 [so M ≡ 1−m
m = 1],

φ = 4, n = 24, H = 3. We refer to Figure 3.3. In the figure, each point nH on the
horizontal axis determines a particular ` according to the equation nL = n−nH = Bφ+ `,
and such an ` determines: (a) the h by the equation h = φ − ` [the black dashed line],
(b) the (3)-LHS [the blue curve], and (c) the (3)-RHS [the orange curve]. Thus, if there
is a h determined by a nH that lies between the blue and orange curve, then there exists
a FEE by Theorem 2.

{ = 2

h = 2

(3)-RHS

(3)-LHS

6 8 10 12 14 16 18 20
nH

2

4

6

8

10

12

Figure 3.3: FEE

Figure 3.3 indicates that there is a FEE if and only if nH = 18. Note that nH = 4A+h
yields h = ` = 2 [the red point in the figure]; furthermore, nL = n−nH = 6, (3)-LHS = 1.5,
and

(3)-RHS = min

{
(3× 2− 3)× 18

2× 2
,
(2− 1)× 18

2

}
= 9;

thus, 1.5 < h = 2 < 9, that is, (3) holds. We now show it is indeed an equilibrium:

In equilibrium, i ∈ C2 gets 0.5×
(

2
6 × 8 + 4

6 × 4
)

= 2.7. If she contributes 0, she gets

1 + 0.5× 3 = 2.5 < 2.7. Hence, i ∈ C2 has no incentive to deviate.
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In equilibrium, i ∈ C1 gets 0.5 ×
(

16
18 × 12 + 2

18 × 8
)

= 5.8; If she contributes 1 + ε,

she gets no more than 0.5 × 8 + (1 − 0.5) × 2 = 5, which is less than 5.8; finally, if she
contributes 0, she gets 3 + 0.5 × 3 = 4.5 < 5.8. Hence, i ∈ C1 also has no incentive to
deviate.

Example 5 (Finding the experimental FEE). In a game with parameters as in
Example 1, now let H be unspecified. We want to find an H such that there exists a
FEE. According to (3), H has to satisfy h = 2 ≥ 6

2(H−1) , which solves for H ≥ 2.5.

Because (3)-RHS holds when H ≥ 2.5, this concludes the calculation. In light of this, in
our experimental setup where Lows have an endowment of 80 tokens each, and Highs 120
tokens, the endowment of the Highs would need to be raised from 120 tokens to at least
200 tokens for a FEE rather than a NEE to emerge.

3.4 Existence of a near-efficient equilibrium (NEE)

The NEE exists if and only if

• player i ∈ C3 ∩NL has no incentive to increase her contribution from 0 to 1,

• player i ∈ C3 ∩NH has no incentive to increase her contribution from 0 to 1 + ε or
H,

• player i ∈ C2 ∩NL has no incentive to reduce her contribution from 1 to 0,

• Player i ∈ C1∩NH has no incentive to reduce her contribution from H to 1 + ε or 0.

Since Example 1 (Deriving the Experimental NEE (Section 3.2) already showed that this
equilibrium is possible in some cases, there is no real existence problem. However we
provide here a general overview of the conditions under which it exists.

Let cH3 be the count of Highs in C3, and cL3 be the count of Lows in C3. Then
c3 = cH3 + cL3 < φ and cH3 6= h, otherwise c̃1 = 0, which contradicts Lemma A.1(a). We
have

c1 = nH − cH3

=

Aφ+ h− cH3 if cH3 < h

(A− 1)φ+ h+
(
φ− cH3

)
if cH3 > h,

(8)

and

c2 = nL − cL3

=

Bφ+ `− cL3 if cL3 ≤ `
(B − 1)φ+ `+

(
n− cL3

)
if cL3 > `.

(9)

It is obviously impossible that cH3 > h and cL3 > ` hold simultaneously since h+ ` = φ.
It also can be seen from (8) and (9) that there are three situations to consider: (1) cH3 < h
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and cL3 ≤ `, (2) cH3 < h and cL3 > `, and (3) cH3 > h and cL3 ≤ `. In this paper we only
analyze the simplest case, in category (1):

cH3 < h, cL3 < `, and cH3 + cL3 < φ.

The other cases can be analyzed in the same manner. We develop our analysis with the
help of Figure 3.4, which illustrates the distribution of players in a NEE.

s1 = H s2 = 1 s3 = 0

c1 = nH − cH3 c2 = nL − cL3 c3

h− cH3 `+ cH3 φ− c3 cH3 cL3

Group (A+ 1)

Figure 3.4: The distribution of players in a NEE

� Incentives to deviate for C3-players in a NEE

Firstly, for player i ∈ C3 ∩NL, her payoff from contributing 0 is

UL
0 (C3) = 1 +m (φ− c3) . (10)

If she contributes 1, then there are c2 + 1 players contributing 1 and player i enters Group
A+ 1, . . . , G with positive probabilities, which are

Pr
(
k | 1

)
=


(
`+ cH3

)
/(c2 + 1), if k = A+ 1

φ/(c2 + 1), if k = A+ 2, . . . , G− 1

(φ− c3 + 1) /(c2 + 1), if k = G.

Let S ≡
(
h− cH3

)
H +

(
`+ cH3

)
. Thus, player i’s expected payoff from contributing 1 is

UL
1 (C3) = m

Pr
(
A+ 1 | 1

)
· S +

 G−1∑
k=A+2

Pr
(
k | 1

) · φ+ Pr
(
G | 1

)
· (φ− c3 + 1)


〈1〉
=

m

c2 + 1

[(
`+ cH3

)
S + (nL − φ− `)φ+ (φ− c3 + 1)2

]
,

(11)

where 〈1〉 holds because

G−1∑
k=A+1

Pr
(
k | 1

)
= 1− `+ cH3

c2 + 1
− φ− c3 + 1

c2 + 1
=

(
c2 + cL3

)
− φ− `

c2 + 1
=
nL − φ− `
c2 + 1

.
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Hence, player i ∈ C3 ∩NL has no incentive to deviate from contributing 0 to contributing
1 if and only if UL

0 (C3) ≥ UL
1 (C3).

Secondly, for i ∈ C3 ∩NH , her payoff from contributing si = H is

UH
0 (C3) = H +m (φ− c3) . (12)

If player i contributes 1 + ε, she enters group (A+ 1) and obtains

lim
ε→0

UH
1+ε (C3) = lim

ε→0

{
(H − 1− ε) +m

[(
h− cH3

)
H +

(
`+ cH3 − 1

)
+ (1 + ε)

]}
= ∆w +mS.

(13)

If player i contributes H, then there are c1 + 1 players contributing H; player i enters
Group 1, . . . , A+ 1 with positive probabilities, which are

Pr
(
k | H

)
=

φ/ (c1 + 1) , if k = 1, . . . , A(
h− cH3 + 1

)
/ (c1 + 1) , if k = A+ 1.

Thus, player i’s expected payoff is

UH
H (C3) = m


A∑

k=1

[
Pr
(
k | H

)
φH
]

+ Pr
(
A+ 1 | H

) [(
h− cH3 + 1

)
H +

(
`+ cH3 − 1

)]
= m

(1− h− cH3 + 1

c1 + 1

)
φH +

h− cH3 + 1

c1 + 1
(S + ∆w)


=

(
m

c1 + 1

)[
(nH − h)φH +

(
h− cH3 + 1

)
(S + ∆w)

]
.

(14)

Hence, player i ∈ C3 has no incentive to deviate if and only if the following conditions
are satisfied:

(10) ≥ (11) : i ∈ C3 ∩NL has no incentive to deviate from 0 to 1

(12) ≥ (13) : i ∈ C3 ∩NH has no incentive to deviate from 0 to 1 + ε

(12) ≥ (14) : i ∈ C3 ∩NH has no incentive to deviate from 0 to H.

(IC3)

� Incentives to deviate for C2-players in a NEE

Recall that C2 consists of Lows. If i ∈ C2 ⊆ NL contributes 1, she gets

UL
1 (C2) =

m

c2

[(
`+ cH3

)
S +

(
c2 − `− cH3 − φ+ c3

)
φ+ (φ− c3)2

]
; (15)
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if she contributes 0, she gets

UL
0 (C2) = 1 +m (φ− c3 − 1) . (16)

Thus, i ∈ C2 ∩NL has no incentive to deviate if and only if

(15) ≥ (16) : i ∈ C2 ⊆ NL has no incentive to deviate from 1 to 0. (IC2)

� Incentives to deviate for C1-players in a NEE

C1 consists of Highs. For i ∈ C1 ⊆ NH , if she contributes H, her expected payoff is

UH
H (C1) = m

(1− h− cH3
c1

)
φH +

h− cH3
c1

S

 . (17)

If she contributes 1 + ε, she obtains

lim
ε→0

UH
1+ε (C1) = lim

ε→0

{
(H − 1− ε) +m

[(
h− cH3 − 1

)
H +

(
`+ cH3

)
+ (1 + ε)

]}
= mS + (1−m) ∆w.

(18)

A similar argument as in Lemma 2 shows that we need not consider whether i ∈ C1∩NH

has any incentive to contribute 1 if she has no incentive to contribute 1+ε. We can therefore
immediately consider the last possible deviation. If player i contributes 0, she obtains

UH
0 (C1) = H +m (φ− c3 − 1) . (19)

Thus, i ∈ C1 ⊆ NH has no incentive to deviate if and only if{
(17) ≥ (18) : i ∈ C1 ⊆ NH has no incentive to deviate from H to 1 + ε

(17) ≥ (19) : i ∈ C1 ⊆ NH has no incentive to deviate from H to 0.
(IC1)

Theorem 3 summarizes this section’s findings:

Theorem 3. The NEE exists if and only if (IC3), (IC2), and (IC1) are all satisfied.

3.5 Coexistence of NEE and FEE?

So far we know that in ths game, an equilibrium with positive contributions is a FEE
or a NEE. Can these two equilibria with positive contributions ever coexist? We will
now show with an example that this is possible. Our analysis focuses on the version of
the 2-Type GBM tested experimentally in this paper. Example 1 demonstrated that this
game has a NEE. Example 5 showed that the game has a FEE if and only if H ≥ 2.5.
We now show that if H = 2.5 there exists, in addition to the FEE, the following NEE:(

〈H,H,H,H〉 , 〈H,H, 1, 1〉 , 〈1, 1, 1, 0〉
)
.
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• For player i ∈ C3 ⊆ NL, her equilibrium payoff is UL
0 (C3) = 1 + 3/2 = 5/2; if she

contributes 1, the expected payoff is UL
1 (C3) = 1

2 ×
(

2
6S + 4

6 × 4
)

= 5
2 = UL

0 (C3).

• For player i ∈ C2 ⊆ NL, her equilibrium payoff is UL
1 (C2) = 1

2 ×
(

2
5 × 7 + 3

5 × 3
)

=

2.3; if she contributes 0, the payoff is UL
0 (C2) = 1 + 1

2 × 2 = 2 < UL
1 (C2).

• Finally, for player i ∈ C1 = NH , she gets UH
H (C1) = 1

2 ×
(

4
6 × 4H + 2

6S
)

= 4.5

in equilibrium; if she contributes 1 + ε, the payoff is limε→0 U
H
1+ε (C1) = S/2 +

(H − 1) /2 = 4.25 < UH
H (C1); if she contributes 0, the payoff is UH

0 (C1) = H+2/2 =
3.5 < UH

H (C1).

Note however that the unique equilibrium with positive contributions is the FEE if
H > 2.5: Since it is required that c1 > 4 and c̃1 > 0 in any equilibrium with positive
contributions, cH3 can only take two possible values: either cH3 = 1 or cH3 = 0. However,
cH3 = 1 is impossible. This is because if a High has no incentives to contribute 0 in the
FEE, she also has no incentive to contribute 0 when there is at least one Low in Group
G contributing 0. Hence, we only need to consider the case of cH3 = 0. By (10),

UL
0 (C3) = 1 +

4− c3

2
=

6− c3

2
. (10′)

By (11),

UL
1 (C3) =

4H + 4 + (5− c3)2

14− 2c3
, (11′)

where c3 = 1, 2, 3. Then

(11′)− (10′) =
3c3 + 4H − 13

14− 2c3

>
3 (c3 − 1)

14− 2c3

> 0,

for any c3 = 1, 2, 3, which means that UL
0 (C3) < UL

1 (C3), that is, any C3-player will
deviate no matter how many players contribute 0 in Group G. We thus proved that no
player will contribute 0 if H > 2.5, in other words, the FEE is the unique equilibrium
with positive contributions if H > 2.5.

4 Method

Experimental game parameters and experimental NEE

The 2-Type GBM was examined under MPCR m = 0.5. The number of participants per
session was twelve, group size was four. Six participants were randomly selected as Lows
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and received L = 80 tokens, the remaining six Highs received H = 120 tokens per round.
Once assigned, a subject’s type did not change over the experiment’s 80 rounds. Most
parameters here are the same as in GVSM including the mean endowment over twelve
subjects. The only difference is that in GVSM’s study endowments are uniform.

Our experimental parameter configuration does not allow a FEE since H is less than
2.5 times L (by Theorem 2; see also Example 5, both in Section 3.3). However, there
exists the following NEE: {120, 120, 120, 120, 120, 120, 80, 80, 80, 80, 0, 0}. This NEE is
calculated in Example 1 (Section 3.2). As usual in a GBM, there also exists a risk-dominant
equilibrium of non-contribution by all (by Lemma 1).

Design and participants

Participants were undergraduates at City University of New York, recruited from the
general student population for a two-hour experiment with payoffs contingent upon the
decisions they and other participants made during the experiment. Subjects were seated in
front of computer terminals separated by blinders. There were four experimental sessions
with twelve participants each, 48 subjects in total. Each session lasted two hours. The
show-up fee was $10. The exchange rate was 700 tokens for a dollar or conversely, 0.143
cents per token. In addition to the show-up fee, mean earnings of Highs were $25; mean
earnings of Lows were $16.

Procedure

Investment decision. At the beginning of each round, each subject received the type-
appropriate amount of integer tokens, to be divided between a public account and a
private account. For every token invested the private account, the account returned one
token to the investor alone. For every token invested in the public account, the return was
0.5 tokens to everyone in the investor’s group including herself. Appendix B contains the
experimental instructions.

Group assignment. In each round, after all subjects had made their investment de-
cisions, they were partitioned in three groups of four. The four highest investors to the
public account were placed into one group, the fifth through the eighth highest investor
into a second group, and the four lowest investors into a third group. Ties were broken at
random. After grouping, subjects’ earnings were calculated based on the group to which
they had been assigned. Note that group assignment depended only on the subjects’ cur-
rent contributions in that round, not on contributions in previous rounds. Subjects were
re-grouped according to these criteria in each decision round (See Appendix B).

End-of-round feedback. After each round, a subject’s computer screen displayed her
private and public investment in that round, the total investment made by the group
she had been assigned to, and her total earnings. The screen also displayed an ordered
series of the current round’s group account contributions by all twelve participants, with
a subject’s own contribution highlighted so that she could see her relative standing. This
ordered series was visually split into three groups of four, which further underscored that
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the participants in the experiment had been grouped according to their contributions and
that ties had been broken at random.

5 Results and discussion

The main purpose of this analysis is to establish whether the 2-Type GBM is an effective
mechanism when abilities to contribute differ, and whether GVSM’s results about the
precise coordination of the payoff dominant equilibrium are robust to such inequality.

Result 1 (Observed mean contributions correspond to the NEE mean con-
tributions). The broken lines in Figure 5.1 represent the NEE mean contributions per
round (86.67 tokens). The solid lines are the observed mean contributions. Mean contri-
butions over all four sessions (solid lines) closely trace their predicted value, and trace it
particularly closely after Round 20. This pattern also emerges in the single sessions shown
in the lower part of Figure 5.1.

Adjustment in initial rounds. There is some adjustment in the initial rounds. In
GVSM’s experiments with homogeneous endowments, subjects coordinated the payoff-
dominant Nash equilibrium as well, but did it more quickly: GVSM’s subjects reached
NEE means by Round 2. Here however, a comparable level of consistent precision is only
achieved after Round 20, even though sporadic mean precision is seen as early as Round 6.
Since GVSM’s experiments and the present experiment were run at different universities,
it is not possible to attribute the slower convergence here to the fact that the NEE of the
2-Type GBM has a more complex structure (three strategies) than the NEE in GVSM’s
homogeneous-endowment game (two strategies).

Result 2 (Strategies that are part of the NEE are predominantly selected,
and selected with precision; there is slightly more precision after about Round
20). The experiment’s NEE consists of the two corner strategies from among a set of
81 choices {0, 1, . . . , 80} for Lows, and only one of 121 available choices {0, 1, . . . , 120}
for Highs. Figure 5.2 shows the strategy space on the horizontal axis and the observed
percentages of choices over four sessions on the vertical axis. Red bars show the NEE
proportions. The top graph shows choice frequencies for Rounds 1-80. The middle graph
shows the same for Rounds 21-80 only, and once again highlights that the equilibrium
strategies are executed with more precision after Round 20. We include a comparable
graph from GVSM as the bottom graph in Figure 5.2. A comparison of the top two
graphs with the bottom graph shows that in both series of experiments the NEE strategy
proportions were coordinated quite precisely.

Coding the data. In Figure 5.2 and in all subsequent analysis, we classify choices ≥ 77
as 80, choices ≥ 117 as 120, and choices ≤ 3 as zero contribution. We recode the raw data
this way since GVSM did the same, so that the two studies can be properly compared.
Note however that GVSM report that this minor recoding, while grounded in behavioral
theory about prominence Selten (1997) and neighboring strategies Erev & Roth (1998),
barely changed their results. The same applies to our data. Table 5.1 displays the raw
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Figure 5.1: Mean contributions per round over four sessions and for each session

29



�

�

�Choice proportions Rounds 1–80, four sessions

0 20 40 60 80 100 120

0

10

20

30

40

50

%

�

�

�Choice proportions Rounds 21–80, four sessions

0 20 40 60 80 100 120

0

10

20

30

40

50

%

�

�GVSM choice proportions Rounds 1-80

0 20 40 60 80 100

0

20

40

60

80

%

Figure 5.2: Observed proportion of choices in the current study (top two graphs) and in GVSM’s
experiment (Strategy space on the horizontal axis; NEE choice proportions as red
blocks)
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frequencies of the exact NEE strategies and of their neighboring strategies, separately
for Rounds 1-80, Rounds 21-80, and Rounds 1-21. The precision with which the NEE
was realized becomes once again clear, as well as the increased precision after Round 20.
What is this increased precision in later rounds due to? For this purpose, we next examine
choice strategies by type (High or Low).

Table 5.1: Raw frequencies of NEE strategies and their neighboring strategies

A: Raw frequencies of choices before recoding (Rounds 1-80)

Strategy Raw % Strategy Raw % Strategy Raw %

0 8.0 80 32.8 120 31.3
1 1.2 79 0.5 119 0.9
2 0.2 78 0.2 118 0.5
3 0 77 0.0 117 0.1

Totals 9.6 33.6 32.8

B: Raw frequencies before recoding (Rounds 21-80)

Strategy Raw % Strategy Raw % Strategy Raw %

0 8.8 80 34.1 120 38.4
1 1.5 79 0.4 119 0.8
2 0.2 78 0.1 118 0.4
3 0 77 0 117 0.2

Totals 10.5 34.7 39.9

C: Raw frequencies of choices before recoding (Rounds 1-21)

Strategy Raw % Strategy Raw % Strategy Raw %

0 5.9 80 28.8 120 10.0
1 0.7 79 0.8 119 0.9
2 0.1 78 0.3 118 0.3
3 0.1 77 0.2 117 0.1

Totals 6.9 30.1 11.6

Result 3 (The aggregate frequencies with which equilibrium strategies were
selected by the two different types are close to the NEE). In the experimental
game’s NEE, all Highs contribute fully; four out of six Lows also contribute fully while
the other two Lows contribute nothing. Thus, Lows have a choice between two strategies
but Highs must play one specific strategy. Figure 5.3 displays, separately for Highs and
Lows, the frequency with which equilibrium strategies were chosen in each round over four
sessions. Broken (red) lines show the frequencies of a given strategy as predicted by the
NEE over four sessions (For example, for Highs the NEE-based prediction is 4 x 6 = 24
observations of full contribution per round).
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It can be seen that the number of fully contributing Lows is quite close to the NEE
prediction by Round 20. Many Highs on the other hand only gradually appear to discover
that, since the game is converging to the NEE rather than the alternative equilibrium of
non-contribution by all, their optimal strategy is full contribution.

Choice frequencies: Full contributions by Highs (4 Sessions)
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Choice frequencies: Zero contributions by Lows (4 Sessions)
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Figure 5.3: Frequencies of full contributions by Highs, full contributions by Lows, and zero con-
tributions by Lows, over four sessions

Appendix C displays the individual choice path of each subject over 80 rounds. Column
headings on top of each page indicate the session. Numbers on the left hand side alongside
each page identify the subject. Within each session, Subjects 1-6 are Highs, Subjects 7-12
are Lows. We henceforth refer to subjects by these two numbers, so that for example
Subject 4-3 is Subject 4 (a High) in Session 3. The straight horizontal line in each chart
shows the endowment; in each graph, the lower (red) line represents the subject’s group
contribution; the upper (green) line tracks the associated earnings. An initial glance over
all graphs shows support for the NEE: The contribution paths of Highs, who in the
NEE must contribute fully, are flat in particular in later rounds, and often on or close to
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the straight endowment line. Lows often oscillate between their two NEE strategies of
full contribution and non-contribution.14 Appendix C again underscores that a noticeable
proportion of Highs experimented in early rounds before settling on their sole optimal
strategy. Notice the slow learning of Highs 1-1, 2-3, 4-1, 4-3 and particularly 2-6, and
the consistent “confusion” (Andreoni, 1995) of Highs 2-4, 2-6, 3-6 and particularly 3-2.
Among Lows, 4-9 is a slow learner. Notice consistently confused Lows 3-12 and 4-12.
Finally, the charts show that no Low is a permanent non-contributor. GVSM similarly
found no steady free-riders in their study where the proportion of non-contributors in the
NEE is the same as here.

Result 4 (Deviations from the NEE strategies are penalized by lowered earn-
ings). NEE earnings are 227 tokens for Highs, 140 tokens for contributing Lows, and 160
tokens for non-contributing Lows. A subject’s mean earnings over 80 rounds are written
on the right edge of her chart, either in the upper or lower corner. Overall, individual
mean earnings over 80 rounds are close to NEE earnings. The mean earnings of subjects
who do not select their NEE corner strategies are lower than the earnings of subjects who
do. A similar pattern can be detected by examining the top (green) lines in the Appendix
C charts, which show a subject’s earnings per round.

See for example confused High 3-2 who consistently does not quite contribute fully
and whose mean earnings over 80 rounds are only 197 tokens; see also the lowered mean
earnings of Highs 2-4 and 2-6. The reason for their lowered mean earning is that, as long
as most other players choose NEE strategies, Highs who contribute > 80 and < 120 can
never enter the High-only top group, and are instead put into the mixed middle group
consisting of Highs and Lows, where Lows can free-ride off them.

Lows who consistently select strategies from the interior of their strategy space such
as Lows 3-12 and 4-12, also make less than they otherwise would, had they selected their
NEE strategies. Since the NEE is quite consistently played by most participants, Lows
who contribute between 0 and 80 are usually placed in the lowest group with certainty,
get no chance to free-ride off Highs in the middle group, and get free-ridden by the zero-
contributors in the bottom group.

6 Conclusion

Unequal abilities to contribute are an important feature of real-world societies. We use a
formal mechanism to examine the impact of endogenous group formation in the context
of mechanism design and rational choice, and study the impact of unequal ability to

14The focus here is on the 2-Type GBM’s payoff-dominant equilibrium rather than on individual strate-
gies. We note however that Lows’ oscillations between their two equilibrium strategies (1) are similar
to what GVSM’s subjects with homogeneous endowments, who thus all had a choice between two NEE
strategies, did. (GVSM compute the game’s complete mixed-strategy equilibrium and report that neither
the individual choice proportions over 80 rounds nor the sequence of choices is consistent with mixing.)
(2) are similar to what is found in Market Entry Games where individual strategies over rounds oscillate
unpredictably but aggregate choice proportions are close to the asymmetric equilibrium (for overviews,
see, e.g., Ochs, 1999; Camerer & Fehr, 2006).
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contribute on contribution behavior and efficiency. In our game, some players (“Lows”)
are naturally disadvantaged due to low endowments. They can never aspire to membership
in the most productive and rewarding teams, nor can their earnings ever match those of
players with high endowments (“Highs”). Our theoretical and experimental results show
that despite of this, competitive contribution-based grouping is an effective and precise
tool to raise social contributions by the advantaged and disadvantaged alike. Not only
do our behavioral results show that unequal abilities to contribute are not deleterious to
efficiency, but our theoretical analysis shows that when the difference between the high and
low endowments increases, efficiency can increase until full Pareto optimality is achieved.

The predictive power of the Nash equilibrium. In our experiment, subjects’ strategy sets
are quite large; the payoff-dominant “near-efficient” equilibrium (NEE) is asymmetric,
and consists of three different strategies. Discovering the NEE analytically is a long,
involved process (as reflected in the length of Section 3 and Appendix A) that requires the
step-by-step elimination of configurations involving positive contributions. It is therefore
unlikely that a subject can compute or understand this equilibrium. Yet subjects reliably
tacitly coordinate it in a “magical” (Kahneman, 1988, p. 12) way. It further underscores
the predictive power of the Nash equilibrium that (1) aggregate behavior conforms to
the NEE even though many Lows, who, in a NEE have a choice between two different
corner strategies, oscillate erratically between their strategies over rounds, and (2) the
experimentally tested version of the 2-Type GBM does not lead to full efficiency since the
latter is not an equilibrium.

In a study of a simpler form of the mechanism with homogeneous endowments, GVSM,
using a different subject pool, also found that subjects coordinated the NEE with preci-
sion. This indicates that the precise coordination of the GBM’s asymmetric equilibrium
is likely robust. Since this payoff-dominant equilibrium predicts so well, we do not apply
explanatory concepts such as reciprocity, competitiveness and the like, which only allow
for a directional prediction rather than a point prediction.

Policy relevance. Our results suggest efficiency gains if a system is organized according
to meritocratic rather than ascriptive principles. Since the nature of the GBM’s group-
based output is broadly defined, our theoretical and experimental findings could apply
to a wide variety of settings such as teams, firms, or academic departments.15 The em-
pirical confirmation that the GBM’s payoff-dominant equilibrium, however complex, is
easily coordinated in the laboratory even if abilities to contribute vary and an alternative
equilibrium of non-cooperation by all is still present, might add to our understanding of
how societies and organizations have become increasingly meritocratic, as evidenced for
example by the gradual abolition of monarchies, the trend away from family firms and
toward professional management, and the reduced relevance of gender, race or class in
many industrialized or developing countries. We note however that we have found cases of
the mechanism where only an equilibrium of non-contribution by all exists (Example 2).

15Usually, a system is considered a meritocracy when each member is rewarded individually according
to his output. In a modern organization-based economy however a significant proportion of rewards are
shared, for example: overall firm salary levels, profit sharing payments, health care coverage, leave policy,
and intangibles such as firm reputation, location, premises, or work atmosphere.
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This raises the question whether and how the efficiency-enhancing effects of meritocratic
organization are dependent upon social structure.

Criticisms

Do lags need to be built into the model? Our model is one of instantaneous, perfect mobility
based on current performance, with no lags between performance and grouping, or between
grouping and reward: Players decide, get grouped and rewarded, all in the same round.
Lags would represent system imperfections in the form of delays, e.g., if information needs
to be collected over periods that are longer than the reward cycles. In an ideal Group-
based Meritocracy there should be no lags since positions and associated rewards should be
instantaneously adjusted based upon performance. Individuals’ occasional mistakes would
thus be immediately reflected in group membership and associated rewards; on the other
hand, a slacker could instantaneously redeem herself if she increases her contribution.
A trend to shorten employment contracts or to increase the frequency of performance
reviews, could be interpreted as a move toward such a model. However, it is clear that
our current model remains extreme in this regard since in the real world, grouping and
reward is based on past behavior and reputation. Note however that introducing lags into
the model would make this game dynamic. The game’s equilibrium structure is already
quite complex in the current static version, and introducing reputation, more complex
institutional rules, and other complications would make the model very difficult, perhaps
even impossible, to solve analytically.

We acknowledge that in the current version of the model, and in its experimental test,
boundedly rational players are not overloaded with information and additional compli-
cations that exist in the field such as reputation and lags. We also do not incorporate
possible effects of homogeneity of class, race or gender on in-group cohesion and thus, co-
operation. Our model thus provides a favorable environment for a payoff-dominant Nash
equilibrium to be realized. The impact of lags and other complications therefore merits
systematic exploration, but this does not detract from the finding that performance-based
group mobility makes provision levels of collective goods efficient even if players’ abili-
ties to contribute are not equal. The current paper is part of a research program that
studies the rational-aspects of endogenous group formation. While lags and other compli-
cating aspects should at some point be built into the mechanism, we consider the following
extensions more pressing.

Extensions

The main purpose of this paper’s experiment was to test whether GVSM’s finding that the
GBM Mechanism’s NEE is precisely coordinated in the lab is robust to inequality and
the added complexity that goes with it. The general theoretical analysis of the 2-Type
GBM in Section 3 however can form the base for numerous other experimental tests. The
sensitivity of the mechanism’s equilibrium structure to a change in parameters, as illus-
trated in the examples in Section 3, together with the precision with which subjects have

35



so far coordinated the mechanism’s payoff-dominant equilibrium, should yield distinctive
experimental results that closely reflect the underlying equilibrium structure.

Full efficiency with sufficient inequality? The theoretical finding that if the difference
between the advantaged and disadvantaged types is large enough, the disadvantaged, far
from getting discouraged, might increase their social contributions even more so that a
fully efficient, rather than merely a near-efficient solution results (Theorem 2) invites
testing. Payoff dominance (Harsanyi & Selten, 1988) suggests that full efficiency should
occur in this case. However, payoff dominance and other theories of equilibrium selection
are not entirely uncontested (see, e.g., Binmore, 1989; Aumann, 1988; Crawford & Haller,
1990; Harsanyi, 1995; van Damme, 2002). A useful method to distinguish among a game’s
multiple equilibria is therefore to test with experiments which of the equilibria subjects
actually pick.

From a policy viewpoint, could one increase inequality in order to raise efficiency?
It would all depend upon how it is done: Lowering the ability of the Lows to the point
where they all contribute fully (leading to a FEE) might be counterproductive: In our
experiment for example it would require lowering the low endowment L to only 40% of
the high endowment H, from 80 tokens to 48 tokens. This however does not increase
overall social contributions or earnings: Subjects’ total earnings per round in the NEE
experimentally tested in this paper are 2240 tokens, but would only be 2016 in the FEE
that would result if L were reduced to 48 tokens only. Increasing H however could achieve
the dual goal of higher overall earnings and of full efficiency. However, we do not know
whether at some point Lows revolt and gravitate toward the alternative equilibrium of
non-contribution by all. An experiment could provide indications.

Type counts as critical elements. Type count can be manipulated so that both NEE
and FEE disappear (See Example 2). In such a case, will experimental subjects indeed
converge to the only remaining equilibrium of non-contribution by all?

Full heterogeneity. Our current model allows for inequality only in the form of a 2-type
society. An obvious further theoretical extension of the current model is to increase the
number of types, eventually up to the number of players.

Concluding remarks

If social stratification and grouping based on contributions is to be a credible policy tool
for raising cooperation levels, the question of diversity in the form of unequal abilities must
be addressed. Our findings based on a two-type model indicate that when grouping and
stratification are competitively based upon contributions, unequal abilities to contribute
are not detrimental to efficiency.

Our mechanism of contribution-based grouping applies to the extent that the impact
of superficial grouping criteria unrelated to output, such as race, class or gender, are elim-
inated. Our results suggest that if grouping is based on superficial prejudice rather than
contributions, the only stable state is non-contribution by all. A thought experiment,
which could also be empirically tested, might offer some insight into the effect and me-
chanics of prejudice on contribution levels: Psychological research on “’minimal groups”
indicates that similarity along even the most superficial of grouping criteria can cause
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selective favoritism because people tend to prefer others who resemble them.16 Imagine
now a dynamic, lagged version of our model where a randomly selected subset of players
faces prejudice: their past free-riding is discounted less over time and their past contri-
butions are discounted more, so that they need to prove themselves more before they
get a chance to enter a high-performing group with high payoffs. It is a theoretical and
empirical question whether and at which point the victims of prejudice stop contribut-
ing, and become a burden to the remaining contributors. The latter can react in one of
two ways: (1)Unwilling to support the non-contributors through charitable contributions
without reciprocity, they in turn also contribute nothing, and the system reaches a state
of non-contribution by all. (2)They segregate into their own cooperative communities,
which would turn out homogeneous in whatever is assumed to have caused the differential
weighing in the first place, and the system reaches a state where a superficial attribute
is indeed a signal of willingness to contribute, even though it was not so at the start.
Originally unfounded prejudice would thus gain seeming empirical support.

The findings from the static, instant-reward two-type model of contribution-based
grouping analyzed in this chapter together with the above thought experiment suggest
that if community members know that their contributions are speedily translated into
rewards that reflect their contribution, then most - including the less capable, contribute
as much as they can. If there exist multiple societies with different stratification rules and
mobile players, a near- efficient society that rewards contribution relatively quickly and
applies the same unprejudiced metric to the output of all members no matter how diverse
their superficial characteristics, should therefore attract migrants willing to contribute,
and whose contributions are better recognized in the new location.
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16See Tajfel (1982) for seminal experiments, and Bourhis & Gagnon (2001) for an overview of the
”minimal group paradigm”. At first sight, these finding appear to run counter to our assertion that
superficially-based grouping is deleterious to group contributions. Based on the minimal-group paradigm,
one might instead argue that it would be helpful to group players based on superficial characteristics since
they tend to cooperate with each other more this way. Two points need to be made in response to such
an argument: (1)The cooperation-enhancing effect due to superficial in-group favoritism appears to be
much weaker than the impact of common-knowledge contribution-based grouping; the relevant psychology
experiments show statistically significant but not substantial differences in cooperation levels. It is also
impossible to predict the impact or duration of the ”minimal group” effect since this is a purely empirically
based effect. Without a theoretical foundation in self-interest, its contribution-enhancing effect may still
dissipate over time. (2)The effect is also selective and only applies to players who share a superficial
characteristic. The effect can be strengthened if superficially constructed groups face real conflict of
interest (see, e.g., Sherif, 1966), but intergroup conflict, which in turn might reduce the efficiency of the
system overall, is not part of our current model.
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Appendix

A Proof of Theorem 1

The proof of Theorem 1 relies upon the five auxiliary results summarized in Lemma A.1:

Lemma A.1. If an equilibrium with positive contributions exists, it has the following
properties:

(a) The count of C1-players is larger than and not a multiple of group size φ, and each
C1-player contributes fully. Formally, c1 > φ, c̃1 > 0, and si = wi if i ∈ C1.

(b) C1 consists of Highs only, that is, C1 ⊆ NH .

(c) There is no class Cr satisfying 1 < sr < H.

(d) If the equilibrium consists of only two classes, it is a FEE.

(e) If the count of CR-players is less than or a multiple of the group size, then each
CR-player contributes nothing. Formally, if cR < φ or c̃R = 0, then sR = 0.

Proof. (a) If c̃1 = 0, then c1 ≡|C1| = D1 ·φ by (2). Consider any player i ∈ C1. If si = s1,
she is always grouped with (φ− 1) players contributing s1 and gets

(
wi − s1 +mφs1

)
; if

she contributes s′i = s1− ε > s2 where ε ∈ R, she is in Group D1 but is still grouped with
(φ− 1) players contributing s1, and gets(

wi − s1 + ε
)

+m
[
(φ− 1) s1 + s1 − ε

]
=
(
wi − s1

)
+mφs1 + (1−m) ε

> wi − s1 +mφs1

since m < 1. Thus i has an incentive to deviate. It follows that c̃1 > 0 as claimed.
To see that c1 > φ, note that if c1 < φ, player i ∈ C1 is in the first group where the total

contribution except for player i is S1
−i. If she reduces her contribution from s1 to s1−ε > s2,

she remains in the first group, but her payoff increases from

[
wi − s1 +m

(
S1
−i + si

)]
to

wi − s1 +m
(
S1
−i + si

)
+ (1−m) ε.

Thus i has an incentive to deviate. This proves that c1 > φ.
To verify that each C1-player contributes fully, note that we now have c1 = D1 ·φ+ c̃1,

where D1 ≥ 1 and c̃1 > 0; hence, every C1-player has a strictly positive probability of
entering Group (D1 + 1), that is, Pr

(
D1 + 1

∣∣ s1
)

= c̃1/c1 > 0. Given a contribution
profile s satisfying si = s1 < wi for some i ∈ C1, let S = φs1 be the total contribution
in Group 1, . . . , D1, and let S′ ≤ c̃1s

1 + (φ− c̃1) s2 be the total contribution in Group
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(D1 + 1).17 Then S > S′ since s1 > s2. Hence, if a C1-player contributes si = s1 < wi,
her payoff is

(wi − si) +m


 D1∑
k=1

Pr
(
k
∣∣∣ s1

) · S + Pr
(
D1 + 1 | s1

)
· S′


=
(
wi − s1

)
+m

{[
1− Pr

(
D1 + 1

∣∣∣ s1
)]
· S + Pr

(
D1 + 1

∣∣∣ s1
)
· S′
}

<
(
wi − s1

)
+mS.

However, if she increases her contribution from s1 to s1 +ε < wi, she enters the first group
with certainty and obtains:(

wi − s1 − ε
)

+m (S + ε) =

[(
wi − s1

)
+mS

]
− (1−m) ε.

This deviation is profitable as long as ε is small enough. We thus proved that s1 = wi if
player i is in the first class.

(b) We first show that there is at least one High in C1. Suppose this is not true, that
is, suppose that C1 ⊆ NL. Then s1 = 1 since each C1-player contributes fully. We can
show that in such a situation any C2-player has an incentive to deviate. There are three
cases to consider:

i). c̃1 + c2 ≤ φ; see Figure A.1(i). Since we assume that C1 ⊆ NL, there are more
than nH > φ players outside of C1, so that |C | ≥ 3 and s2 > 0. In such a case, each C2-
player can reduce her contribution from s2 to s2 − ε > s3 and remain in Group (D1 + 1).
By the same reasoning as in Lemma A.1(a), this is a profitable deviation.

ii). c̃1 + c2 > φ and c̃1 + c̃2 = φ; see Figure A.1(ii). Consider any player i ∈ C2.
If si = s2 < 1, her payoff is(

wi − s2
)

+m

{
Pr
(
D1 + 1

∣∣∣ s2
)
·
[
c̃1 + (φ− c̃1) s2

]
+

[
1− Pr

(
D1 + 1

∣∣∣ s2
)]
· φs2

}
<
(
wi − s2

)
+m

[
c̃1 + (φ− c̃1) s2

]
because c̃1 + (φ− c̃1) s2 > φs2. However, if she contributes s2 + ε < s1, she enters Group
(D1 + 1) with certainty and obtains(
wi − s2 − ε

)
+m

[
c̃1 + (φ− c̃1) s2 + ε

]
=
(
wi − s2

)
+m

[
c̃1 + (φ− c̃1) s2

]
− (1−m) ε,

which is greater than her original payoff when ε is small enough. Thus, player i ∈ C2 has
an incentive to increase her contribution.

17We use a weak inequality here because it is not clear at this stage if there are players from classes after
C2 in group (D1 + 1).

39



C1 C2

Group 1 Group 2 Group 3(i)

C1 C2

iGroup (D1 + 1)

By contributing s2 + ε

(ii)

C1 C2
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Figure A.1: There is at least one High in C1

iii). c̃1 + c2 > φ and c̃1 + c̃2 6= φ; see Figure A.1(iii). This cannot be an equi-
librium since any player i ∈ C2 will increase her contribution for the same reason as in
ii).

Hence, there is at least one High i in C1. Together with Lemma A.1(a) this implies
that si = H. We thus conclude that s1 = H and C1 ⊆ NH .

(c) Suppose there exists a class Cr satisfying 1 < sr < H. Since sr < H = s1, class C1

is ranked above class Cr; since sr > 1, there is at least one class after Cr and Cr ⊆ NH . A
similar argument as in Lemma A.1(b) shows that (1) C1 is the immediate predecessor class
of Cr, and (2) any Cr-player has an incentive to deviate. This proves the nonexistence of
a class Cr where 1 < sr < H.

(d) Let C = {C1, C2}. Then s2 ≤ 1 because of the existence of Lows, and NL ⊆ C2

since C1 ⊆ NH by Lemma A.1(a). Hence, c2 ≥ nL > φ, c̃1 + c2 > φ and c̃1 + c̃2 = φ, which
is exactly Case ii) in Lemma A.1(b); therefore, s2 = 1 and NH ⊆ C1. This conclusion
together with the fact that C1 ⊆ NH implies that C1 = NH , and consequently C2 = NL.

(e) Let cR < φ and sR > 0. Then class CR is in Group G, and each CR-player gets(
wi − sR

)
+m ·SG, where SG is the total contribution in Group G. If i ∈ CR reduces her

contribution from sR to 0, her payoff becomes wi +m ·
(
SG − sR

)
>
(
wi − sR

)
+m ·SG.

Therefore, sR = 0 in equilibrium when cR < φ.
Let c̃R = 0 and sR > 0. Consider any CR-player. If she reduces her contribution from

sR to 0, she enters the Group G, but is still grouped with (φ− 1) players contributing sR,
so that her payoff increases by deviating this way.
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Proof of Theorem 1:

By Lemma 1, |C | ≥ 2 in any equilibrium with positive contributions. Since |C | ≤ n in
any equilibrium, we can characterise the last class CR, which can only take one of the
following three forms:

(a). cR = DR · φ+ c̃R, where DR ≥ 1, and c̃R > 0;

(b). cR < φ; or

(c). cR = DR · φ, where DR ≥ 1.

Also note that sR ≤ 1 in any equilibrium because of the existence of Lows. The proof will
be given by the following four claims:

Claim 1. If (a) holds, then the equilibrium candidate is a FEE.

Let cR = DR · φ + c̃R > φ with c̃R > 0, and suppose that sR < 1. Since c̃R > 0 and
n = Gφ, we have cR 6= n. So there exists at least one class CR−1 before CR satisfying
sR−1 > sR. In this case, each CR-player has an incentive to increase her contribution so
that she can be grouped with the CR−1-players with certainty. In equilibrium it must be
that each CR-player cannot increase her contribution further, i.e., sR = 1 and CR ∩NH =
∅. Therefore, C1 is the immediate predecessor class of CR by Lemma A.1(c), i.e., |C | = 2.
Lemma A.1(d) implies that this is a FEE.

Claim 2. If (b) holds, then the equilibrium candidate is a NEE.

Suppose that cR < φ in equilibrium. In this case |C | ≥ 3 since |C | = 2 implies that
cR = nL > φ by Lemma A.1(d). Also note that sR = 0 by Lemma A.1(e). Consider class
CR−1. There are three cases to consider:

i). cR−1 + cR ≤ φ; see Figure A.2(i). This is impossible since CR−1 is in the last
group and any CR−1-player has an incentive to reduce her contribution for the same reason
as in Lemma A.1(e).

ii). cR−1 + cR > φ and c̃R−1 + c̃R = φ; see Figure A.2(ii). With the following two
steps we show that in this case sR−1 = 1:

Step 1. Suppose that sR−1 > 1. Then Lows cannot be in CR−1 or the classes, if any,
before CR−1 since s1 > · · · > sR−1 > 1, which means that nL ≤ cR < φ. This contradicts
Assumption 2 that nL > φ.

Step 2. Suppose that sR−1 < 1 and consider any player i ∈ CR−1. If player i contributes
si = sR−1 < 1, her expected payoff is

wi − sR−1 +m

[[
1− Pr

(
G
∣∣∣ sR−1

)]
φsR−1 + Pr

(
G
∣∣∣ sR−1

)
c̃R−1s

R−1

]
< wi − sR−1 +mφsR−1

because c̃R−1 < φ. But if she increases her contribution from sR−1 to sR−1 + ε <

min
{

1, sR−2
}

, she enters the first group in class CR−1, and gets(
wi − sR−1 − ε

)
+m

(
φsR−1 + ε

)
=
(
wi − sR−1

)
+mφsR−1 − (1−m) ε,
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Figure A.2: The last class CR

which is greater than her original payoff as long as ε is small enough.
The above two steps proved that sR−1 = 1 when cR−1 + cR > φ and c̃R−1 + c̃R = φ. It

follows from Lemma A.1(c) that C1 is the immediate predecessor class of CR−1, that is,
|C | = 3. The fact that

⋃3
r=1Cr = N implies:

n = c1 + c2 + c3

= (D1 +D2 +D3)φ+ (c̃1 + c̃2 + c̃3)

〈1〉
= (D1 +D2 +D3)φ+ (c̃1 + φ)

= (D1 +D2 +D3 + 1)φ+ c̃1,

where 〈1〉 holds because c̃2 + c̃3 = φ. The above equation implies that n is not a multiple of
the group size φ because 0 < c̃1 < φ from Lemma A.1(a). This contradicts the assumption
at the beginning of Section 3.1 that n = Gφ, where G ∈ N.

iii). cR−1 + cR > φ and c̃R−1 + c̃R 6= φ; see Figure A.2(iii). In this case, sR−1 = 1
and CR−1 ⊆ NL, otherwise any CR−1-player will increase her contribution so that she can
be grouped with CR−2-players and avoid entering the last group. Lemma A.1(c) implies
that C1 is the immediate predecessor class of CR−1, i.e., |C | = 3. We know the composition
of the first two classes in terms of their members’ endowments but we do not know for sure
the composition of the third class, thus cannot exclude the possibility that NH ∩ C3 6= ∅
or that NL ∩ C3 6= ∅, so that C1 ⊆ NH and C3 ⊆ NH ∪NL.

Claim 3. If (c) holds, then there is an equilibrium candidate, called E′, which is not an
equilibrium.

Suppose that cR = DR · φ. We first verify that |C | 6= 2: if |C | = 2, then c1 = n− c2 =
(G−D2)φ, which implies that c̃1 = 0, and contradicts Lemma A.1(a).

We next show that|C | = 3 if cR = DR ·φ. Note that|C | ≥ 3 and sR = 0 [Lemma A.1(e)]
imply c̃R−1 > 0 and cR−1 > φ, else any CR−1-player has an incentive to reduce her
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contribution, which further implies that sR−1 = 1 and CR−1 ⊆ NL since each CR−1-player
wants to be grouped with CR−3-players. Once again, Lemma A.1(c) implies that C1 is the
immediate predecessor class of CR−1; thus, the equilibrium structure is as in Figure A.3.

C3C2C1

Figure A.3: c̃R = 0

We will prove in Claim 4 that E′ is not an equilibrium, but for now, we content ourselves
with proving that C3 ⊆ NL: Suppose there exists a player i such that i ∈ C3 ∩ NH . It
follows that her payoff is H. But if she deviates and contributes 1 + ε, she enters group
(D1 + 1), and since there exists at least one player contributing H in Group (D1 + 1) by
Lemma A.1(a), player i can guarantee

(H − 1− ε) +m
[
H + (φ− 2) + (1 + ε)

]
> H + (mφ− 1)− (1−m) ε > H,

when ε < (mφ− 1) / (1−m), where the first strict inequality holds because H > 1,
and the second one can hold because mφ > 1. This proves that C3 ⊆ NL. Because⋃3

r=1Cr = NH ∪ NL = N , C2 ⊂ NL, and C3 ⊂ NL, we thus have C1 = NH and
C2 ∪ C3 = NL.18

Claim 4. E′ is not an equilibrium.

E′ is an equilibrium if and only if:

• Player i ∈ C3 ⊆ NL has no incentive to increase her contribution from 0 to 1;

• Player i ∈ C2 ⊆ NL has no incentive to reduce her contribution from 1 to 0; and

• Player i ∈ C1 = NH has no incentive to reduce her contribution from H to 1 + ε, 1,
or 0, where ε→ 0.

Here below we examine the incentives of all players starting with the last class, and will
show that there exists no equilibrium satisfying all these constraints.

Recall from Claim 3 that if E′ is an equilibrium, we must have (a). c3 = D3 · φ, and
(b). c2 + c3 = nL since C2 ∪ C3 = NL. Let b ≡ (B −D3)φ. This allows us to write c2 as
follows:

c2 = nL − c3 = (Bφ+ `)−D3 · φ = b+ `.

18More precisely, i ∈ NH =⇒ i /∈ NL =⇒ i /∈ C2 ∪ C3 =⇒ i ∈ C1, so that NH ⊆ C1. Combining this
conclusion with the fact that C1 ⊆ NH in Lemma A.1(b) results in C1 = NH .
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� Incentives to deviate for C3-players in E′

Consider any player i ∈ C3 ⊆ NL. Her payoff from contributing 0 is UL
0 (C3) = 1. If

i wants to deviate, she should contribute si = 1; then there would be (c2 + 1) players
contributing 1, and i would enter Group A+ 1, . . . , A+D2 + 2 with positive probabilities,
which are:

Pr
(
k | 1

)
=


`/ (c2 + 1) , if k = A+ 1

φ/ (c2 + 1) , if k = A+ 2, . . . , A+D2 + 1

1/ (c2 + 1) , if k = A+D2 + 2.

Because
∑A+D3+2

k=A+1 Pr
(
k | 1

)
= 1, we have

A+D3+1∑
k=A+2

Pr
(
k | 1

)
= 1− Pr

(
A+ 1 | 1

)
− Pr

(
A+D3 + 2 | 1

)
=
c2 − `
c2 + 1

=
b

b+ `+ 1
.

Recall that SA+1 ≡ hH + `, so that player i’s expected payoff from contributing 1 is

UL
1 (C3) = (1− 1) +m

Pr
(
A+ 1 | 1

)
· SA+1 +

A+D3+1∑
k=A+2

Pr
(
k | 1

) · φ+ Pr
(
A+D3 + 2 | 1

)
= m

(
`

c2 + 1
SA+1 +

c2 − `
c2 + 1

φ+
1

c2 + 1

)
=

(
m

b+ `+ 1

)(
`SA+1 + bφ+ 1

)
.

Therefore, player i ∈ C3 has no incentive to deviate if and only if UL
0 (C3) ≥ UL

1 (C3), that
is

b ≤ `+ 1−m`SA+1 −m
mφ− 1

. (A.1)

The above equation shows that there cannot be too many players in class C2 (recall that
c2 = b+ `), else some players in class C3 will have an incentive to try to go to C2.

� Incentives to deviate for C2-players in E′

Consider any player i ∈ C2 ⊆ NL. If i contributes 1, she enters Group A+1, . . . , A+D2+1
with positive probabilities, which are:

Pr
(
k | 1

)
=

{
`/c2, if k = A+ 1

φ/c2, if k = A+ 2, . . . , A+D2 + 1.
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Her expected payoff is

UL
1 (C2) = m

(
`

c2
SA+1 +

c2 − `
c2

φ

)
=

(
m

b+ `

)(
`SA+1 + bφ

)
.

If i ∈ C2 wants to deviate, she will contribute ε → 0 in order to stay in Group
(A+D2 + 1), and her expected payoff is

lim
ε→0

UL
ε (C2) = lim

ε→0

[
1 +m (φ− 1)− (1−m) ε

]
= 1 +m (φ− 1) .

Therefore, i ∈ C2 has no incentive to deviate if and only if UL
1 (C2) ≥ limε↓0 U

L
ε (C2), that

is,

b ≤ m`SA+1 − (1 +mφ−m) `

1−m . (A.2)

The reason why b cannot be very large is as follows: Consider i ∈ C2. If b is large, her
probability of entering Group (A+ 1) is small, and her expected payoff from contributing
1 is small, so that her incentive to deviate is large.

Note that by Claim 3, we also require b ≥ φ, otherwise i ∈ C2 will reduce her contri-
bution. Combining this requirement, (A.1), and (A.2), we observe that m has to satisfy
the following conditions:

φ+ `

`SA+1 − `φ+ φ+ `
≤ m ≤ φ+ `+ 1

`SA+1 + φ2 + 1
. (A.3)

The intuition behind (A.3) is as follows: m is the return from the group investment,
so it cannot be very small because if it is very small C2-players will have no incentive to
contribute. At the same time, m cannot be very large because this would give C3-players
an incentive to contribute. These two constraints determine the bounds of m in (A.3).

For ease of expression, define

φ+ `

`SA+1 − `φ+ φ+ `
≡ m, and

φ+ `+ 1

`SA+1 + φ2 + 1
≡ m.

(A.3) implies that m ≤ m; thus given all other parameters, SA+1 must satisfy

SA+1 ≥ −`
2 − `φ+ `2φ− φ2 + 2`φ2 + φ3

`
.

Substituting SA+1 in the above inequality making use of the definition of m, one obtains

m ≤ 1 + `+ φ

1− `2 − `φ+ `2φ+ 2`φ2 + φ3
. (A.4)
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� Incentives to deviate for C1-players in E′

C1 = NH in E′. We have shown in Section 3.3 that a C1-player has no incentive to reduce
her contribution from H to 1 + ε if and only if:

h ≤ nH
(

1− M

`

)
. (6)

It can be seen that if (6) holds, then 1−M/` > 0, which means that

m >
1

`+ 1
. (A.5)

E′ is not an equilibrium because (A.4) and (A.5) are incompatible: If E′ is an equilib-
rium, m must satisfy 1/ (`+ 1) < m ≤ m, so we must have 1/ (`+ 1) < m; however,

m− 1

`+ 1
≤ −` (φ− 2)−

(
φ2 − φ

)
(1 + `)

[
1 + `(φ− 1) + φ2 − φ

] < 0,

which is a contradiction.
Conclusion: Equilibrium candidate E′ is not a equilibrium.

B Experimental Instructions

This is an experiment in the economics of group decision-making. You have already earned
$10.00 for showing up at the appointed time. If you follow the instructions closely and
make decisions carefully, you will make a substantial amount of money in addition to your
show-up fee.

Number of periods and endowments

There will be many decision-making periods. In each period, you are given an endowment
of experimental tokens. You receive the same endowment in each round of the experiment.
By a random process, half of the participants receive 80 tokens per round, and half receive
120 tokens per round.

The decision task

In each period, you need to decide how to divide your tokens between two accounts:
a private account and a group (public) account. The latter account is joint among all
members of the group that you are assigned to in that period. See below for the group
assignment process and for how earnings from your accounts are calculated.
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How earnings from your two different accounts are calculated in each
period

• Each token you place in the private account stays there for you to keep.

• All tokens that group members invest in the group (public) account are added to-
gether to form the so-called “group investment”. The group investment gets doubled
before it is equally divided among all group members. Your group has 4 members
(this includes yourself).

A numerical example of the earnings calculation in any given period

Assume that your endowment per period is 80 tokens. In a given period, you decide to
put 30 tokens into your private account and 50 tokens into the group (public) account.
The other three members of your group together contribute an additional 300 tokens to
the group (public) account. This makes the total group investment 350 tokens, which
gets doubled to 700 tokens (350× 2 = 700). The 700 tokens are then split equally among
all four group members. Therefore, each group member earns 175 tokens from the group
investment (700/4 = 175). In addition to the earnings from the group (public) account,
each group member earns 1 token for every token invested in his/her private account.
Since you put 30 tokens into your private account, your total profit in this period is
175 + 30 = 205 tokens.

How each decision-making period unfolds and how you are assigned to a
new group in each of the periods

First, you make your investment decision. Decide on the number of tokens to place in
the private and in the group (public) account, respectively. To make a private account
investment, use the mouse to move your cursor to the box labeled “Private Account”.
Click on the box and enter the number of tokens you wish to allocate to this account. Do
likewise for the box labeled “Public Account” Entries in the two boxes must sum up to
your endowment. To submit your investment click on the “Submit” button. Then wait
until everyone else has submitted his/her investment decision.

Second, you are assigned to the group that you will be a member of in this period.
Once every participant has submitted his or her investment decision, you will be assigned
to a group with 4 members (including yourself). The group assignment proceeds in the
following manner: All participants’ contributions to the group (public) account are ordered
from the highest contribution to the lowest contribution. Participants are then grouped
based on this ranking:

• The four highest contributors are grouped together( for example, if four of the par-
ticipants all contributed 120 tokens they are all put together into one group).

• Participants whose contributions rank from 5-8 form the second group.

• The four lowest contributors form the third group.
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As said, you will be grouped based on your public account investment. If there are
ties for group membership because contributions are equal, a random draw decides which
of these equal-contributors are put together into one group and who goes into the next
group below. For example, if 5 participants each contributed 120 tokens, a random draw
determines which four participants form a group of like-contributors and who is the one
participant who goes into the next group below.

Recall that group membership is determined anew in each period based on your public
contribution in that period. group membership does not carry over between periods!

After the group assignment, your earnings for the round are computed. Experimental
earnings from a given round are computed after you have been assigned to your group.
See the numerical example above for details of how earnings are computed after you have
been assigned to a group.

End-of period message. At the end of each period you will receive a message with your
total experimental earnings for the period (total earnings = the earnings from the group
(public) and from your private account added together). This information also appears
in your Record Sheet at the bottom of the screen. The Record Sheet will also show the
group (public) account contributions of all participants in the experiment in a given round
in ascending order. Your contribution will be highlighted.

A new period begins after everyone has acknowledged his or her earnings message.
At the end of the experiment your total token earnings will be converted

into US$ at a rate of 700 tokens for 1 US$.

C Individual Graphs with Earnings
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