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1 Introduction

There is by now broad consensus on the need to drastically reduce emissions of green-

house gases worldwide if we are to limit the temperature increase to 1.5-2◦C relative to

pre-industrial levels and thus prevent the major damages from climate change. Awareness

of these risks has stimulated a process of radical change of energy systems and of decarbon-

isation of economies more generally.

The global energy transition (ET) is now well under way and has recently focused on

the goal of reaching net zero emissions (NZE) by mid-century. The alternative pathways

to NZE that several institutions have analysed share a common trait: the complexity of

the transition. Decarbonisation entails increasing penetration of renewable energy technolo-

gies especially in power generation, electrification of entire sectors of the economy such as

transport, diffusion of more energy efficient devices, instruments, appliances, and consumer

goods, increasing use of hydrogen.

Besides the clear environmental benefits, it has been claimed that the ET will also

create jobs and stimulate economic growth. The downside is that a host of critical minerals

and metals are required for green energy technologies. For example, solar photovoltaic

panels use silicon, tellurium, gallium, and indium; fuel cells use elements from the platinum

group; batteries for electric vehicles and energy storage use lithium and cobalt; wind turbines

and electric vehicles use dysprosium, terbium, europium, neodymium, and yttrium. Lists

of CRMs are compiled and regularly updated by many governmental agencies (European

Commission, 2020b; Nakano, 2021; U.S. Department of the Interior, 2022). On 16 March 2023

the European Commission presented a Proposal for a Regulation establishing a framework

for ensuring a secure and sustainable supply of critical raw materials known as “European

Critical Raw Materials Act”.1

Critical raw materials (CRMs) are increasingly relevant in several technological domains

and having access to them might soon become as essential as having access to reliable energy

supplies. While phasing out fossils fuels, countries engaged in the ET have to phase in critical

materials. Broadly speaking, CRMs are economically and strategically important inputs

1See https://ec.europa.eu/commission/presscorner/detail/en/ip_23_1661.

1

https://ec.europa.eu/commission/presscorner/detail/en/ip_23_1661


characterised by a low degree of substitutability and a high-supply risk. As an advanced

country that is ahead in the race toward NZE, the EU is largely “materials-dependent”. This

follows from the fact that the ET is materials-intensive and the supply of CRMs is largely

controlled by a limited number of countries. Scarcity of these CRMs might hamper the large-

scale deployment of technologies in strategic sectors such as renewable energy, e-mobility,

defence and aerospace (European Commission, 2020a).

In this paper we focus on a subset of raw materials, which we call Energy Transition

Metals (ETMs), that are input in the production of clean energy technologies such as solar,

wind, batteries and fuel cells. Borrowing from the burgeoning literature on energy security,

we can conceptualize ETMs security focusing on four dimensions: availability, affordability,

efficiency, and environmental stewardship (Metcalf, 2014; Sovacool and Brown, 2010). While

ETMs exhibit criticalities related to all of such dimensions, we mainly focus on the interplay

between availability and affordability.2

In terms of availability, defined as the ability to procure a sufficient, safe and diversified

supply of ETMs, the production of most of the metals considered in this study is highly

concentrated geographically, often in poor or developing countries. This makes materials-

dependent countries prone to supply shocks, just like oil-dependent economies. As a matter

of fact, in the words of the European Commission President Ursula von der Leyen “lithium

and rare earths will soon be more important than oil and gas”.3

Affordability relates, among other things, to the provision of ETMs at stable prices

(Yergin, 2006). As shown in Figure 1, the prices of ETMs are highly volatile. Since the mid-

70s the energy economic literature has devoted renewed attention to the impact of oil shocks

on energy-dependent economies (Bastianin et al., 2017; Hamilton, 2009; Kilian, 2008, 2009;

Peersman and Van Robays, 2012) as well as on oil-rich economies (Ahmadi and Manera,

2021; Berument et al., 2010; Esfahani et al., 2014). The methodologies and results of that

literature contain important insights for the affordability of ETMs.

Availability and affordability factors are intertwined and both help explain a large por-

tion of the volatility observed in the prices of ETMs. In fact, the combination of low

2See Lèbre et al. (2020); Owen et al. (2022); Zhang et al. (2022) for a broader perspective.

3See: https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_22_5523.
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substitutability, low price elasticity of supply and demand and a high concentration of pro-

duction in few countries implies that even small shocks arising on either side of the markets

for ETMs can trigger large price responses (Boer et al., 2021; Fally and Sayre, 2018; Graedel

et al., 2015a,b).

The existence of liquid futures markets – performing their functions of price discovery

and risk mitigation – for ETMs could in principle contribute to ETM security by improving

their affordability for different classes of stakeholders, including firms along the supply chain

of technologies necessary for the ET. However, while for some of the ETMs in our sample

derivative markets are liquid and have a long history (e.g. many base and precious metals),

most of the metals that are in high demand for clean energy technologies, such as cobalt or

rare earth elements, do not have well developed futures markets.

The oil and gas dependence that characterises several countries presents many analogies

with the potential materials dependence those countries might soon experience. There are

also important differences, one of which is the fact that while there is only “one” oil –

and only “one” gas – there are many ETMs and they are largely intertwined as subsets of

them are mined together, they are jointly processed and are often complementary, or low

substitutable, inputs. As a consequence, ETMs have to be considered in a “connected” way.

In this paper we assess the degree of spillovers or connectedness among 16 ETMs that

are critical for the production of clean energy technologies and are the constituents of the

Energy Transition Metals (ETMs) price index maintained by the International Monetary

Fund (IMF). By calculating both static and dynamic measures of connectedness for com-

modity returns and volatilities, we can gain insight into the patterns of shock transmission

within the ETMs. In this paper we follow the methodology put forth by Diebold and Yil-

maz (2009, 2012, 2014) and rely on a Generalised Forecast Error Variance Decomposition

(GFEVD) from Vector Autoregressive (VAR) models to construct measures of directional

spillovers among ETMs.

Alternatives ways to measure connectedness have been proposed in the literature. These

include principal components analysis and Granger-causality (Billio et al., 2012) and the ap-

proach based on network analysis techniques for time-series (Barigozzi and Brownlees, 2019;

Barigozzi et al., 2022). Moreover, other methods focus on the asymmetry of connectedness

3



at different frequencies or quantiles of the distribution (Baruńık and Kley, 2019; Baruńık

and Křehĺık, 2018; Zhu et al., 2019).

GFEVD-based connectedness is probably the most widely used approach and has the

advantage of measuring spillover from each commodity to others without identification as-

sumptions or imposing a particular ordering of the endogenous variables in the VAR (Koop

et al., 1996; Pesaran and Shin, 1998). Moreover, Diebold and Yilmaz (2014) highlight the

close relationship between connectedness measures based on GFEVD and key statistics used

in the field of network analysis. Estimating network effects is crucial because it is well recog-

nised that sectoral microeconomic shocks can propagate and eventually result in aggregate

fluctuations (Acemoglu et al., 2012) and contagion from a large number of entities or markets

may result in systemic crises (Bandt et al., 2012). Additionally, ETM price shocks, like any

other commodity price shock, are important in that they can affect commodity supply, may

weaken the financial sector and price stability and eventually result in a deterioration of the

terms of trade for commodity exporter economies (Garcia and González, 2013; Kilian, 2009;

Kinda et al., 2018; Sekine and Tsuruga, 2018).

An application of the GFEVD-based methodology to commodity connectedness, focusing

on volatility spillovers, is provided by Diebold et al. (2018). Recent surveys of the literature

dealing with this methodology are provided by Balcilar et al. (2022); Diebold and Yilmaz

(2023). As far as we know this paper is the first to focus on the connectedness of a large set

of ETMs. Measuring ETM connectdness is central for risk measurement and management

both from the perspective of private sector investment (e.g. for producers of clean energy

technologies) and for the formulation of public policies (e.g. connectedness tends to increase

during commodity-market crises).

The rest of the paper is organized as follows. Section 2 describes data and economet-

rics methods underlying our analysis; Section 3 presents our main results while Section 4

concludes. An Appendix with further details and results completes the paper.
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2 Data and methods

2.1 Data

We analyse 16 ETMs, comprised of 7 base metals (aluminum, cobalt, copper, lead, molyb-

denum, nickel, zinc), 3 precious metals (palladium, platinum, silver) and 6 minor metals

(chromium, lithium, manganese, rare earth elements, silicon, vanadium) that we will define

generically as “other ETMs”. These metals are the constituents of the IMF’s ETMs price

index.4 This index and the prices of its constituents are available at monthly sampling

frequency and therefore are not suitable for our analysis that requires returns and realised

volatility (RV) measures. To build such measures, we recover daily prices of the constituents

of the IMF’s ETMs price index from Refinitiv Eikon.

Table 1 shows the list of commodities and the clean energy technologies for which they

are used. This table also reports the weight of each commodity in IMF’s ETMs price index

that is based on the share of imports of each metal in total world commodity imports. As

we can see, traditional base metals – such as aluminium and copper – with a wide range of

industrial uses get most of the weight in the IMF index. On the contrary, cobalt, rare earth

elements (REE), lithium and other minor metals – chiefly used in clean energy technologies –

represent a small share of global imports.5 Table 1 also reveals that the production of most

minor metals is highly geographically concentrated. For instance, over 60% of the world

production of REE, silicon and vanadium is concentrated in China, while the Democratic

Republic of Congo is the leader producer of cobalt.

Some base and precious metals in our sample have been traded in future exchanges for

many years, while other minerals – notably those labelled as “other ETMs” in the second

column of Table 1 – have a much shorter price history. The low liquidity of markets for these

ETMs implies that their prices change infrequently and hence working with daily or weekly

4The ETM price index is described in the “Technical Documentation” that accompanies the data
avaiable on the IMF Primary Commodity Prices portal. See: https://www.imf.org/en/Research/

commodity-prices and Table A1 in Appendix A.

5Some of these metals – such as cobalt, copper, nickel, lithium and manganese – are often referred to as
battery metals.
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Table 1: Energy Transition Metals: classification, sources and uses

Metal Group IMF weight Top Producer Main Uses

% (% world)

Aluminum Base 15.9 Australia (28) All sectors

Cobalt Base 0.6 Congo (DRC) (71) Li-ion batteries. Fuel Cells

Copper Base 34.3 Chile (26) All sectors

Lead Base 3.8 China (47) Wind. PV

Molybdenum Base 5.3 China (43) Wind. PV

Nickel Base 6.7 Indonesia (37) Li-ion batteries. Fuel Cells. PV. Wind

Zinc Base 6.1 China (32) PV

Palladium Precious 3.1 South Africa (40) Fuel Cells

Platinum Precious 4.4 South Africa (72) Fuel Cells

Silver Precious 7.0 Mexico (23) Fuel Cells. PV

Chromium Other 3.2 South Africa (44) Fuel cells. Wind

Lithium Other 0.3 Australia (55) Li-ion batteries

Manganese Other 3.7 South Africa (37) Wind. Li-ion batteries

REE Other 0.5 China (60) Wind. EV

Silicon Other 5.1 China (71) Li-ion batteries

Vanadium Other 0.2 China (66) Fuel Cells

Notes: data on the leading producing countries and the relative production as a share of world total are
provided by the USGS in the Mineral Commodity Summaries 2022 report. The main uses for each mineral
are taken from the Critical Raw Materials for Strategic Technologies and Sectors in the EU report by the
European Commission and refer to the use within the European Union. IMF weights represent the share
of imports of metal m in total global commodity import and are available at https://www.imf.org/en/

Research/commodity-prices. PV stands for photovoltaic, EV for electric vehicles.

data is unfeasible.6

Daily data are then aggregated to construct monthly returns and realised volatilities that

span a sample running from June 2012 to December 2022, for a total of 127 observations.

Denoting daily real prices for metal m as Pm,td and daily log-returns as rm,td = 100 ×

log(Pm,td/Pm,td−1), we compute monthly RV as follows:7

RVm,t =
1

Dt

Dt∑
td=1

r2m,td
,

where Dt is the number of days in month t. In subsequent analyses we rely on monthly

real returns rm,t = (1/Dt)
∑Dt

td=1 rm,td and log
√

RVm,t. We consider log of realised standard

deviations in that RVt is extremely skewed, while log
√

RVm,t is approximately Gaussian

6We report the percentage of zero monthly returns as a measure of illiquidity of different markets: cobalt
(3.97%), molybdenum (7.95%), manganese (7.14%), silicon (38.10%), vanadium (37.30%).

7Daily prices are deflated using the interpolated Consumer Price Index for the US.
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for most commodities (see Andersen et al., 2001; French et al., 1987, for a discussion in

the context of stock market volatilities). For simplicity, from now on we keep on using the

shorthand notation RV, even though we rely on log
√

RVm,t in the analyses.

Figure 1: Price of Energy Transition Metals: June 2012 - December 2022
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m where

P̄ 2016
m is the average price of m for 2016. Metal groups are defined in Table 1.

Figure 1 shows the real prices of ETMs in our sample. The prices of base metals,

reported in first two rows of the figure, exhibit some cycles and tend to be higher at the

end of the sample. Among precious metals – shown on the third row of Figure 1 – silver

displays the largest surge during the second part of the sample. Finally, other ETMs prices

are in general characterised by less variability, and for the majority of them there is evidence

for a price increase after the COVID-19 pandemic. The only exception is vanadium price,

exhibiting a remarkable spike between 2017 and 2020. Such a spectacular rise is due to a set

of events affecting both the supply and demand-side of the Chinese market. First, in 2017

China enforced stricter environmental rules; as a consequence, inspections led to temporary

or even permanent closing of some vanadium producers. Moreover, in 2018, China released

a new standard for high-strength reinforcing bars. These were required to have a higher
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percentage of vanadium and hence increased overall domestic consumption of this metal.

Further graphs and details about the data are reported in Appendix A.

2.2 VAR estimation

To obtain connectedness measures based on the GFEVD, the first step is to estimate VAR

models for monthly returns and RVs. While we do include a constant in our specification,

for ease of notation we now consider a zero-mean VAR process:

yt =

p∑
ℓ=1

Aℓyt−ℓ + ut, (1)

where yt is an M × 1 vector with M = 16 and the m-th element corresponding either to rmt

or log
√
RVm,t, ut ∼ (0,Σ) and Aℓ is an M ×M matrix of coefficients. The choice of the

lag order, p, is critical in that the number of coefficients to be estimated is M +M2p and

hence grows quadratically with p.8

We handle dimensionality issues by estimating VAR models with an adaptive elastic-net

penalty (Zou and Zhang, 2009) which involves both shrinkage and selection. The penalised

estimation approach induces sparsity in the coefficient matrices Aℓ. As noted in Nicholson

et al. (2017), taking into account the sparsity patterns allows to address over-parametrisation

in VAR models without having to select a low lag order p. In low-dimensional settings, the

VAR model in Equation (1) is estimated via Ordinary Least Squares. However, as M and p

increase, reducing the parameter space of the VAR becomes essential. The adaptive elastic-

net consists of adding an appropriate penalty term to Equation (1). Specifically, fitting a

sparse VAR involves solving the following penalised estimation problem:

min
A

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣yt −

p∑
ℓ=1

Aℓyt−ℓ

∣∣∣∣∣
∣∣∣∣∣
2

F

+ λPy(A) for λ ≥ 0, (2)

where || · ||F denotes the Frobenius norm and Py(A) represents the penalty structure applied

to the coefficient matrices A = [A1, . . . ,Ap].
9 The adaptive elastic-net VAR estimator

8For instance, with M = 16, VAR(3) and VAR(4) models respectively involve estimating 784 and 1040
coefficients.

9The Frobenius norm of an (Z ×K) matrix B is defined as ||B||F =
√∑Z

z=1

∑K
k=1 |bzk|2. The 1-norm
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Figure 2: VAR model for returns: sparsity

Â1 Â2 Â3 Â4

Notes: colored shades indicate active coefficients, with darker shades referring to parameters that are larger
in magnitude. White areas denotes coefficients that have been set to zero.

imposes the following penalty to Equation (2):

Py(A) = α||A||1 + (1− α)||A||22, for 0 ≤ α ≤ 1. (3)

The parameter α measures the trade-off between LASSO and ridge penalties in Equation (3).

When α = 1, the penalty function yields the LASSO estimator (Tibshirani, 1996). On the

other hand, as α → 0, the LASSO penalty shrinks toward 0, the elastic-net becomes closer

to ridge regression (Hoerl and Kennard, 1988). The optimal penalty parameters λ and α

can be determined using cross-validation, allowing for a completely data-driven approach.10

Figure 2 shows the sparsity pattern for the estimated matrices of coefficients in the case

of a VAR(4) for returns. As we can see, elements along the main diagonal of Â1 have darker

shades, while off-diagonal elements are often shrunk toward zero. It is worth noting that

within this framework, VAR(p) denotes a VAR with a lag order at most equal to p, and the

effective lag order is determined equation by equation by the penalty function (see Nicholson

et al., 2017, for further details).

is ||B||1 = max
1≤k≤K

∑Z
z=1 |bzk| and the 2-norm can be written as ||B||2 =

√
λmaxB∗B, where λmax is the

maximum eigenvalue of B∗B and B∗ is the conjugate transpose of B.

10We set α equal to (1 +M)−1 ≈ 0.059. Then, the optimal λ̂ is selected from a grid of values λ1, . . . λn

via a rolling procedure, between times T1 = T/3 and T2 = 2T/3. The final λ̂ is the value that minimises

the Mean Squared Forecast Error. The grid of values for the choice of λ̂ is specified by selecting the grid
depth and the number of grid values. We set for the returns analysis the grid depth at 50 and the number
of values to 10, whereas for RV we opt for an increased grid depth of 500.
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2.3 Measuring connectedness

Our connectedness analysis relies on the GFEVD of the VAR as proposed in a series of papers

by Diebold and Yilmaz (2009, 2012, 2014). The GFEVD does not require orthogonalising

shocks and is invariant to the ordering of the variables in the VAR:

θij(H) =
σ−1jj

∑H−1
h=0 (e′iΦhΣej)

2∑H−1
h=0 (e′iΦhΣΦ′hei)

H = 1, 2, . . . and i, j = 1, ...,M

where Σ is the covariance matrix of the σjj the standard deviation of the disturbance of

the j-th equation, ej is a selection vector with one as j-th element and zero otherwise and

the matrices Φk are derived from the moving average representation of the VAR model in

Equation (1).11 Since the variance shares do not sum to one (i.e.
∑M

j=1 θij(H) ̸= 1), we

consider the following normalization:

CH
i←j ≡ θ̃ij(H) = 100× θij(H)∑M

j=1 θij(H)
. (4)

The generic element CH
i←j ≡ θ̃ij(H) is a measure of Gross-Pairwise directional connectedness

from j to i; it measures the percentage contribution of mineral j to mineral’s i generalised

forecast error variance at horizonH. Note that in general CH
i←j ̸= CH

j←i. Armed with pairwise

directional connectdness measures, we can compute the following statistics (from now on we

drop the H superscript for ease of notation):

Net-Pairwise: Cij = Cj←i − Ci←j (5)

From: Ci←• =
1

M

M∑
j=1
i ̸=j

θ̃ij(H) (6)

To: C•←j =
1

M

M∑
i=1
i ̸=j

θ̃ij(H) (7)

Net : Ci = C•←i − Ci←• (8)

11A stable VAR process can be rewritten in moving average form as follows: yt =
∑∞

k=0 Φkut−k, where

Φ0 = IM and Φk =
∑k

ℓ=1 Φk−ℓAℓ for k = 1, 2, . . . and Aℓ = 0 for k > p.
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Total : C =
1

M

M∑
i=1

M∑
j=1
i ̸=j

θ̃ij(H) (9)

Notice that Net-Pairwise connectedness in Equation (5) differs from Gross-Pairwise di-

rectional connectedness in Equation (4). First, while there are (M2 − M)/2 net-pairwise

connectedness measures, there are M2 gross-pairwise connectedness measures. In our frame-

work, gross-pairwise directional connectedness represents a measure of bilateral spillovers,

whereas its “net” counterpart allows to divide minerals into net-receivers and net-transmitters

of shocks. Measures in Equation (6) and (7) are often labelled respectively as From and To

connectedness, since they define the transmitted and the received spillover for the i-th min-

eral, and correspond to the off-diagonal row and column sums of the connectedness table

(CT). A sketch of the CT for our analysis is shown in Figure 3.

Total or system-wide connectedness. Connectedness simply corresponds to the sum of From

– or To, equivalently – directional connectedness. Note that
∑M

j=1C•←j =
∑M

i=1Ci←• =

C. The connectedness table is a (M + 1) × (M + 1) matrix with Ci←j in the first M

rows and columns. The M + 1-th column (row) reports From (To) connectedness, while

system-wide connectedness appears in the lower right corner. Diebold and Yilmaz (2014)

show that the GFEVD represents the adjacency matrix of a directed weighted network.12

Specifically, the GFEVD delivers a matrix whose entries capture the strength and direction of

spillovers between commodities. Moreover, it can be shown that From, To and system-wide

connectedness are equivalent to key statistics used in the network literature (e.g. in-degrees,

out-degrees and mean degree).

Connectedness within and across groups. In order to capture the differential impact of

different groups of commodities, the CT is aggregated into blocks that correspond to base,

precious, and other metals, respectively. See Figure 3. To this end, we define a group index

vector G of size (M × 1) that assigns each of the M commodities to a group g = 1, 2, 3.13

12Note that, in general, a graph or adjacency matrix A has elements aij that indicate edges from i to j.
On the contrary, in our approach each entries of the CT measures a spillover from j to i.

13In our setting, the commodities are ordered according to the group they belong to, with the first 7 entries
of G identifying base metals and being equal to one, entries 8-10 identifying precious metals and being equal
to two, and the remaining 6 entries identifying other metals and being equal to three.
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To compute the within-group connectedness of each group, we sum all the elements in the

CT that pertain to that group, net of the contribution of own shocks to GFEVD:

Cg←g =
1

M

M∑
i=1

M∑
j=1
j ̸=i

Ci←j · I(Gi = g) · I(Gj = g) g = 1, 2, 3, (10)

where I(Gi = g) is an indicator function that is equal to 1 if Gi = g and 0 otherwise.

Summing over g we get the system-wise within-group connectedness : Cwithin =
∑3

g=1Cg←g.

Connectedness across groups can be defined as follows:

Ck←z =
1

M

M∑
i=1

M∑
j=1

Ci←j · I(Gi = k) · I(Gj = z) k, z = 1, 2, 3 with k ̸= z. (11)

Notice that with three groups there are 6 different cross-group connectedness measures.

System-wide cross-group connectedness is equal to Cbetween =
∑3

k=1

∑3
z=1
k ̸=z

Ck←z. It follows

that: C = Cwithin + Cbetween. The distinction between connectedness within and across

groups is illustrated in Figure 3.

Figure 3: Connectedntess within and between groups
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To and From group-connectedness. To connectedness for group g is simply the sum of to

connectedness for metals in group g:

C•←g =
M∑
j=1

C•←j · I(Gj = g). (12)

Similarly, From connectedness for groups is:

Cg←• =
M∑
i=1

Ci←• · I(Gi = g) (13)

It follows that C =
∑3

g=1 C•←g =
∑3

g=1Cg←•.

3 Results

The VAR lag order, p, is equal to 4 in the case of returns, whereas we set p = 3 for RV. We

report results based on the GFEVD atH = 3 months horizon.14 Since returns and volatilities

measure different economic concepts, so does connectedness among them. Connectedness

for returns relates to changes in expectations, whereas connectedness for volatilities captures

the fear and uncertainty of investors.

While we highlight the differences between results when appropriate, we mainly focus

on connectedness for volatilities, for two reasons. Firstly, when examining groups as well as

individual ETMs, the static analysis of connectedness for volatilities and returns produces

comparable results. Secondly, understanding volatility connectedness is critical for real-time

crisis monitoring. In fact, volatilities tend to move together only during times of crises

and are often more responsive than returns which, on the contrary, move together in both

downturns and upswings. The full set of results is available in Appendix B.

14We have increased p up to 12, but this leads to a very low fraction of active coefficients, resulting in a
highly sparse VAR. We conclude that 4 lags capture an adequate amount of autocorrelation in the case of
returns, while for RV, exhibiting larger sparsity, 3 lags are sufficient. As a robustness check, we have also
computed system-wide connectedness considering different horizons. Specifically, we set H = 4, 6, 12, and
conclude that connectedness of both returns and RV is not particularly sensitive to the choice of H. These
results are available from the authors upon request.
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3.1 Full sample connecteness

Starting from the CT, we compute the From, To and Net connectedness for RV as defined

in Equations (6), (7) and (8) respectively and display them in Figure 4 where base, precious

and other ETMs are clustered and represented with different colors.

Figure 4: To, From and Net connectedntess – volatilities
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Base and precious metals exhibit greater From and To connectedness, whereas the other

ETMs transmit and receive less volatility spillovers. Connectedness is thus stronger for the

first two groups, while other ETMs are to some extent less sensitive to base and precious

metal market dynamics. Moreover, other ETMs also exhibit a degree of From connectedness

that is generally higher than the degree of To connectedness, suggesting that they are net

receivers of shocks.

As a matter of fact, metals in the “other ETMs” group – with the exception of silicon –

have a negative Net directional connectedness, and hence they are net receivers of volatility

spillovers. On the contrary, two precious metals out of three - namely, silver and palladium

- are net transmitters of shocks. Results for base minerals are mixed, with four out of seven

metals being classified as net transmitters of shocks. It is worth noting that copper and zinc

have the highest degree of From and To connectedness among base metals. When analysing

spillovers for returns, copper is confirmed to be the most connected metal, thus it seems to

be the principal driver of markets dynamics for ETMs.

We summarise the full-sample connectedness analysis for volatilities in Figure 5. The

heatmap in Figure 5a represents the volatility CT for groups of ETMs. Within-group con-

14



Figure 5: Full sample group connectedness measures for volatility
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(b) To, From and Net connectedness
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Notes: panel (a) shows within group connectedness along the main diagonal, while off-diagonal elements
are cross group connectedness measures. Panel (b) shows the To, From and Net connectedness statistics
for groups of metals. Colored areas refer to the off-diagonal statistics, whereas the white areas denote the
statistics comprehending the diagonal elements.

nectedness (net of own connectedness for each metal) can be read along the main diago-

nal, while off-diagonal elements of the heatmap capture volatility spillovers across groups.

Within-group spillovers are largest for base metals, while those for precious and other ETMs

are much smaller and comparable in magnitude; this suggests that these two markets receive

a large share of volatility spillovers from the base metal group. Figure 5b reports the To,

From and Net group-connectedness, confirming the results obtained with individual com-

modities. Base and precious metals are overall net transmitters, while other ETMs are net

receivers of shocks.

Some interesting facts also emerge from the CT for returns and RV, reported in Appendix

B. Diagonal elements are in general lower for base and precious metals, and higher for

minerals classified as “other ETMs”. This means that other ETMs variability is more self-

explained with respect to the other two metal categories. The only exception is molybdenum

that, notwithstanding being classified as base metal, has a degree of self-explained volatility

as high as other ETMs. Off-diagonal elements range from the very high levels of pairwise
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directional connectedness measured from zinc to lead and from palladium to platinum (more

than 20%) to the marginal and often negligible connectedness arising from other ETM to

base and precious metals (e.g. silicon and vanadium transmit around 1% of the RV to zinc

and silver). Crucially, the opposite is not true, as the connectedness from any of the base

and precious metals to other ETM is on average larger, denoting a remarkable asymmetry.

Since the visualization of the pairwise connectedness measures is easier when represented

via network graphs, the remainder of this discussion is delayed to Section 3.2.

Lastly, we focus on full-sample total or system-wide connectedness, as defined in Equa-

tion (9), which is equal to 44.93% for returns, and to 43.53% for RV. These results are in

line with those of Diebold et al. (2018), estimating a total connectedness among commodity

prices at 40%. This implies that almost half of metals variability uncertainty originates by

“non-own” shocks. We can further disentangle total RV connectedness measuring within

and between connectedness: 23.02% of the connectedness arises within the same group of

ETMs, whereas the 20.51% of system-wide connectedness originates across groups.

3.2 Network visualisation

To better display the results, we consider the network representation of the CT in Figure 6.15

To improve the network visualisation, we rely on Net-Pairwise statistics Cij to determine

the arrow direction that points towards net receivers of shocks. We use the ForceAtlas2

algorithm (Jacomy et al., 2014) that finds an equilibrium in which repelling and attractive

forces among nodes are balanced. The nodes naturally repulse each other, whereas links

attract nodes with different forces, proportional to Net-Pairwise connectedness.

It is interesting to note that, even though we provide three ex-ante defined clusters, the

completely data-driven algorithm groups together the base, precious and other ETM metals,

both in the case of returns and RV analyses. The only exceptions are given by molybdenum

and cobalt, considered as base metals by the IMF but part of the other ETMs according to

the connectedness features both in the case of RV and returns.

As for RV connectedness, shown in Figure 6b, chromium, REE and lithium are closer

15To produce network graphs, we use the Gephi open-access software available at https://gephi.org/.
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Figure 6: Network visualisation for ETMs returns and RV connectedness – June 2012 -
December 2022
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(b) Volatilities
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Notes: size of the nodes is determined by To connectedness. Arrows and edges refer to the Net-Pairwise
connectedness above the median. Node colour reflects the grouping of metals into base (blue), precious
(orange), and others (green).

to base and precious metals, whereas when analysing connectedness in returns, they are

grouped among the other ETMs. Base and precious metals have more weight in the network

and are more connected than other ETMs. This can be appreciated by focusing on the size

of the nodes and the number of arrows originating from each node, respectively.

3.3 Dynamic rolling sample connectedness

Static connectedness provides useful tools to measure the average degree of connectedness

over the sample; however previous analyses show that such measures are usually time-

varying. Figure 7 reports system-wide returns and volatility connectedness obtained by

estimating VAR models over a rolling window.16 The figure also reports vertical lines in

correspondence of key events that are expected to affect connectedness.

Return connectedness from mid-2017 is always above the static full-sample average of

44.93%, suggesting that connectedness among the ETMs was lower in the beginning of the

sample (i.e. 2012 – mid-2017) and has recently increased. Before the Covid-19 pandemic,

return connectedness seems on a slightly decreasing path, while after reaching a minimum

16We set, as for the static full-sample analysis, a VAR(4) in the case of returns and a VAR(3) for RV,
using a rolling window of 60 observations. Finally, we consider H = 3, 4, 6, 12, but report only results for
H = 3 given the marginal and negligible differences in the estimated connectedness.
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at the end of 2019, there is again a surge in total connectedness among ETMs. Volatility

connectedness follows a similar patterns but displays more variability. It is downward sloped

until the end of 2020. Thereafter, system-wide connectedness of ETMs RV is on an increasing

trend. Surprisingly, we do not find evidence for an increase in RV connectedness during the

only recession within our sample. This may be due to the particular features of the 2020/21

slowdown, characterised by high levels of uncertainty but also by an umprecedent economic

freezing (i.e. production, trade and consumption dramatically dropped, affecting almost all

markets around the world).

Figure 7: Retuns and volatility connectedness - rolling sample
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Nevertheless, RV connectedness does exhibit spikes in correspondence of key economic

and geo-political events. On the contrary, connectedness for returns seems to be less re-

sponsive. The announcement of tarrifs on US aluminium imports by president Trump in

March 2018 and the nickel short squeeze in the London Metal Exchange March 2022 are

both associated with a decrease in RV connectedness. RV connectedness also decreases in

correspondence of Britain’s General Election in December (i.e. that with the victory of the

conservatory party meant the confirmation Brexit) and the outbreak of the Covid-19 pan-

demic in March 2020. On the contrary, we see that in correspondence of the Russian invasion

of ukraine in February 2022, RV connectedness rapidly rises. The effect is then confounded

by the response to the nickel short squeeze in March 2022.17

17See e.g.: https://internationalbanker.com/brokerage/the-nickel-short-squeeze-what-happened/
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We consider rolling-sample within- and between-group connectedness for both returns

and RV in Figure 8. It is interesting to note that in both cases, the total connectedness mimic

the evolution of the between-group connectedness, meaning that spillovers across- rather than

within-groups are key in shaping the final time-varying system-wide connectedness.

Figure 8: Time-varying Connectedness: total, within and between groups
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Lastly, Figure 9 shows the evolution of the Net connectedness for each group of metals.

Overall, the dynamics of the total connectedness in returns or RV (Figure 7) are closer to the

Net connectedness of base metals, which shows almost the same pattern. On the contrary,

the evolution of precious metals and other ETMs net connectedness is not in line with the

fluctuations of total connectedness, neither considering returns nor volatilities. We believe

this is a further confirmation of the relative importance of base metals within ETMs.
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Figure 9: Time-varying net connectedness by groups
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3.4 Connectedness and macroeconomic variables

To better understand the drivers of total connectedness, we consider its correlation with

different macoreconomic variables. Specifically, since connectedness in returns should be

associated to fluctuations in the business cycle, we focus on the correlation between the

estimated time-varying return connectedness (Cret
t ) and the Global Economic Conditions

Indicator (GECON) of Baumeister et al. (2022). We further examine the correlation between

Cret
t and the Global Supply Chain Pressure Index (GSCPI) of Benigno et al. (2022), since this

proxy should capture fluctuations strongly associated with commodities, including ETMs.

As for RV connectedness (CRV
t ), we focus on measures of economic uncertainty. In

particular, we analyse the correlation of CRV
t with the Global Economic Policy Uncertainty

(GEPU) index (Davis, 2016) and the Trade Policy Uncertainty (TPU) indicator proposed

by Caldara et al. (2020).18 Figure 10 shows the selected indices together with returns and

RV time varying connectedness measures.

Interestingly, connectedness for returns increases during the Covid-induced recession of

2020, when the GECON index exhibits a severe drop. After the Covid-19 pandemic, how-

18We also consider the VIX index, but since its dynamics are similar to the evolution of the GEPU, we
show results considering the GEPU only.
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Figure 10: Time-varying connectedness, economic activity, uncertainty and supply chain
pressure
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ever, the degree of connectedness for returns seems positively correlated with the economic

activity (top-left panel). A simple leads-and-lags analysis between the GECON index and

our measure for returns connectedness, Cr
t , reveals that the correlation coefficient is indeed

positive and statistically significant at all lags and leads we consider (see Figure B3). On

the contrary, we fail to detect statistically significant correlation between connectedness for

ETMs returns and the global supply-chain pressure (Figure 10, top-right panel).

Focusing on the RV connectedness, it is clearly shown that, whereas at the beginning

of the sample CRV
t negatively correlates with economic uncertainty, starting from the mid-

2021 the two indicators are both on a rising trend (bottom-left panel).19 The correlation

between CRV
t and the GEPU indicator is negative sign and is only statistically significant

when considering lags, that is, volatility connectedness is influenced by global economic

uncertainty, but the effect takes some months to manifest. The higher economic uncertainty

is, the lower system-wide connectedness becomes after some periods, suggesting that markets

interconnection decreases after periods of great uncertainty. On the contrary, it is hard to

detect some kind of co-movement between the trade policy uncertainty indicator and ETMs

19A similar behaviour is observed also for the VIX index.
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volatility connectedness (Figure 10, bottom-right panel).

It is possible that the leads-and-lags analysis results are sensitive to different sub-sample

definitions and that correlation between the time-varying connectedness and the selected

measures in Figure 10 changes with time. However, since the set of observations is already

limited, we find it hasty to analyse subsets of the five years span. Our conclusion is that

the only significant drivers of the system-wide connectedness for the period of interest are

business cycle fluctuations summarized by GECON in the case of returns and economic

policy uncertainty as measures by GEPU for volatilities (see Figure B3).

3.5 Alternative measures of connectedness

As a robustness check, we compare our methodology with an alternative measure of connect-

edness suggested by Billio et al. (2012). Specifically we derive the time-varying system-wide

connectedness for returns and volatilities relying on a principal component analysis (PCA).

Billio et al. (2012) show that in a highly connected system, a small number of principal com-

ponents is sufficient to explain most of the volatility of the entire system, thus constituting

a valid alternative to the connectedness measure proposed by Diebold and Yilmaz (2009).

To make a comparison, we extract the first two principal components as the major drivers

of returns and volatilities over the rolling sample and plot the share of variance explained

by the components.

Results in top panel of Figure 11 show the percent of variability explained by the first

principal component and our baseline measure of connectedness, normalized to have the

same mean and standard deviation of the PCA-based measure. We can see that for what

concerns volatilities the two proxies are strikingly similar. As for returns, the similarity

increases adding also the second principal component (bottom panel).
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Figure 11: Alternative measures of time-varying connectedness
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4 Conclusions

To combat climate change, countries have engaged in a historical effort to reduce green-

house gas emissions. Among the necessary conditions for the success of these efforts are the

substitution of fossil fuels with renewable energy sources in energy technologies for power

23



generation, industry, mobility, buildings. This substitution entails at the same time a sub-

stantial increase in the demand for metals such as copper, nickel, cobalt, and lithium, which

are key building blocks of the energy transition. For example, an electric car requires five

times more of these metals than a conventional car.

The problem governments, companies, experts, public opinions are becoming increas-

ingly aware of is that a more mineral-intensive global economy raises concerns that supply

might not catch up with soaring demand. Shocks to the price of minerals as inputs could

result from cost increases due to supply shocks but also from demand pressure. Countries

that are material-dependent could be especially adversely affected. This is familiar terrain.

The macroeconomic consequences of oil shocks are well understood by both economists and

policy makers.

The case of critical raw materials, and of energy transition metals in particular, presents a

few significant differences, though. Shocks that can occur along the supply chain of materials

will have macroeconomic impacts on material-dependent economies (possibly on material-

rich countries as well). Unlike oil and gas, however, several minerals are exchanged in thin

illiquid markets, increasing the volatility of prices and making it difficult for traders to

hedge risks. In addition, besides economic and financial aspects, for minerals there is an

environmental problem as the above-mentioned difficulties may, perhaps significantly, delay

the energy transition.

The other important difference is that, while there is only one oil (and gas) there are

many minerals that are critical for carrying out the energy transition within a relatively

short horizon. This paper presents evidence that these minerals tend to bind together.

In this paper we provide quantitative evidence on the spillovers that characterise a set of

metals that are critical for the challenge represented by the radical change of energy sectors

required by the goal of net zero emissions and the decarbonisation of economies. These are 16

metals that constitute the IMF’s Energy Transition Metals index and are comprised of three

groups: Base, Precious, and Other metals. We compute returns and realised volatilities

and estimate spillovers among them by relying on the connectedness approach pioneered

by Diebold and Yilmaz (2009, 2012, 2014). Specifically, we estimate a sparse VAR with

an elastic-net structure and construct our connectedness measures from the Generalised
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Forecast Error Variance Decomposition, which is independent from variables ordering.

The static full-sample connectedness analysis shows that the Base and Precious metal

groups transmit shocks to the Other ETMs that are net receivers. By splitting the 16

commodities in three groups we show that almost half of the connectedness originates within

each group, whereas the other half is due to cross-group spillovers.

Considering the dynamics of connectedness, obtained with a rolling window estimation

of the VAR, we find that the system-wide volatility connectedness has increased after the

COVID-19 outbreak. Moreover, the system-wide connectedness of ETM returns is positively

correlated with the economic activity, whereas volatility connectedness seems to be more

related to global economic policy uncertainty. Finally, alternative measures of connectedness

may lead to slightly different results, but our results seem overall robust to the different

definition of connectedness based on principal components.

The deployment of low-carbon energy technologies is expected to make the energy-

mineral nexus ever more important. This is because these emerging technologies, charac-

terized by a potential to mitigate global warming, require specific mineral resources in sig-

nificant quantities which makes resource depletion a real concern. Because nearly all clean

energy technologies employ several critical minerals, the degree of interconnection among

them is relevant information and so is the pattern of transmission of potential shocks for

both managers and policymakers.
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A Descriptive statistics

Here we report the log of the realised volatility in standard deviations for the 16 ETMs over

the entire sample (Figure A1) and additional information considering aggregation of the 16

commodities in three groups. In particular, Figure A2 shows the price indices and the RV

for each group (base metals, precious metals, other ETMs). Finally, Table A1 describes the

IMF nominal commodity price indices used in the analysis.

Figure A1: Log realised volatility of energy transition metals: June 2012 - December 2022
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Figure A2: Energy Transition, Base, Precious and Other Metals: price indices and volatilities
June 2012 - December 2022

(a) Price indices

20
16

=
10

0

2014 2016 2018 2020 2022
50

100

150

200

250

300
Energy transition metals

2014 2016 2018 2020 2022
50

100

150

200

250

300
Base Metals

2014 2016 2018 2020 2022
50

100

150

200

250

300
Precious Metals

2014 2016 2018 2020 2022
50

100

150

200

250

300
Other Metals

(b) Log Realized Volatilities
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m is the average price of m for 2016. Metal
groups are defined in Table 1.
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Table A1: IMF Price indices and commodity price indices: metals
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B Additional tables and figures

This Section reports the connectedness tables for returns and RV of the 16 ETMs (Tables

B1 and B2). Additionally, Figures B1 and B2 focus on From, To and Net connectedness

statistics for returns, not reported in the paper. Figure B3 reports the leads and lags

correlation analysis between the estimated connectedness and some selected indicators of

economic activity, uncertainty and supply-chain pressure.

33



T
ab

le
B
1:

C
on

n
ec
te
d
n
es
s
ta
b
le

fo
r
re
tu
rn
s

B
a
se

P
re
ci
o
u
s

O
th

er

A
lu
m
in
iu
m

C
o
b
a
lt

C
o
p
p
er

L
ea

d
M
o
ly
b
d
en

u
m

N
ic
k
el

Z
in
c

S
il
v
er

P
a
ll
a
d
iu
m

P
la
ti
n
u
m

C
h
ro
m
iu
m

L
it
h
iu
m

M
a
n
g
a
n
es
e

R
E
E

S
il
ic
o
n

V
a
n
a
d
iu
m

F
ro
m

A
lu
m
in
iu
m

3
6
.5
7

0
.1
3

1
2
.3
8

1
0
.6
6

0
.7
9

6
.8
0

1
2
.4
7

2
.2
5

4
.1
9

3
.6
5

1
.8
4

0
.9
9

0
.9
1

2
.4
3

3
.5
5

0
.4
0

3
.9
6

C
o
b
a
lt

1
.5
7

7
2
.1
7

1
.4
2

1
.8
2

2
.8
8

1
.0
3

1
.1
0

0
.6
6

1
.1
6

0
.9
2

0
.2
7

0
.3
1

1
1
.3
2

1
.3
6

0
.3
6

1
.6
5

1
.7
4

C
o
p
p
er

1
0
.8
3

0
.0
3

3
1
.4
3

1
1
.2
7

0
.0
2

7
.1
5

1
5
.7
8

4
.8
2

9
.1
8

6
.1
1

0
.6
7

0
.0
5

0
.6
4

1
.5
5

0
.1
7

0
.3
1

4
.2
9

L
ea

d
1
0
.0
8

0
.4
2

1
2
.3
3

3
4
.5
5

0
.1
7

8
.0
8

1
4
.5
3

4
.2
3

5
.5
3

7
.8
2

0
.3
3

0
.1
2

0
.0
1

1
.3
1

0
.0
7

0
.4
3

4
.0
9

M
o
ly
b
d
en

u
m

2
.8
2

1
.4
4

1
.5
9

1
.6
1

7
1
.7
0

5
.7
0

1
.3
5

0
.7
9

2
.3
7

1
.4
0

1
.2
8

0
.2
3

6
.0
9

0
.8
2

0
.0
6

0
.7
5

1
.7
7

N
ic
k
el

7
.4
5

0
.0
6

8
.8
7

9
.4
0

2
.3
9

3
8
.2
0

6
.6
9

5
.7
2

8
.2
6

9
.9
6

0
.0
2

1
.1
9

0
.0
7

0
.8
9

0
.4
6

0
.3
7

3
.8
6

Z
in
c

1
1
.4
9

0
.0
2

1
6
.7
3

1
4
.0
6

0
.1
3

5
.8
0

3
3
.3
7

3
.2
8

6
.6
5

5
.7
4

0
.6
7

0
.9
7

0
.1
0

0
.5
2

0
.2
3

0
.2
4

4
.1
6

S
il
v
er

2
.9
9

0
.4
4

7
.1
3

5
.7
0

0
.1
5

6
.8
7

4
.5
8

4
6
.3
4

1
2
.8
4

7
.8
7

1
.0
5

0
.0
8

1
.6
4

0
.5
1

0
.9
9

0
.8
2

3
.3
5

P
a
ll
a
d
iu
m

4
.1
3

0
.0
1

1
0
.3
7

5
.7
1

0
.5
6

7
.5
3

7
.0
7

9
.8
3

3
5
.3
5

1
8
.1
6

0
.0
0

0
.1
7

0
.0
1

0
.6
1

0
.1
5

0
.3
4

4
.0
4

P
la
ti
n
u
m

3
.9
2

0
.0
8

7
.3
8

8
.5
7

0
.3
6

9
.6
7

6
.5
1

6
.4
6

1
9
.2
2

3
7
.1
9

0
.0
6

0
.0
2

0
.1
0

0
.3
0

0
.1
0

0
.0
7

3
.9
3

C
h
ro
m
iu
m

4
.5
2

1
.0
1

1
.9
5

0
.7
8

1
.8
5

0
.2
6

1
.7
5

1
.7
7

0
.1
7

0
.1
3

7
7
.6
0

0
.8
5

3
.3
2

0
.5
3

0
.4
7

3
.0
4

1
.4
0

L
it
h
iu
m

2
.0
5

0
.6
0

0
.3
6

0
.3
4

0
.6
1

2
.0
9

2
.0
2

0
.6
8

0
.3
8

0
.0
3

1
.2
4

6
9
.0
2

4
.5
5

6
.7
1

7
.5
1

1
.8
3

1
.9
4

M
a
n
g
a
n
es
e

2
.9
8

5
.3
1

2
.8
8

1
.5
4

5
.9
3

1
.0
8

1
.3
4

2
.5
1

0
.8
7

0
.9
0

2
.2
3

0
.2
7

6
8
.6
6

2
.0
2

0
.3
6

1
.1
0

1
.9
6

R
E
E

3
.9
9

2
.0
8

3
.4
6

2
.7
5

1
.6
4

1
.0
3

0
.7
5

1
.7
4

1
.2
5

0
.4
8

0
.5
6

3
.0
5

7
.1
9

6
7
.2
2

1
.7
0

1
.0
8

2
.0
5

S
il
ic
o
n

5
.9
6

0
.5
0

0
.5
6

0
.2
1

0
.3
4

0
.3
5

0
.6
2

1
.0
9

0
.2
9

0
.1
3

1
.0
7

0
.0
9

2
.4
5

1
.9
7

8
4
.0
7

0
.3
1

1
.0
0

V
a
n
a
d
iu
m

1
.0
5

4
.8
0

0
.7
4

0
.9
5

3
.4
4

0
.8
3

0
.5
4

1
.5
2

0
.7
8

0
.2
2

0
.6
3

1
.7
3

3
.1
0

1
.7
3

0
.2
7

7
7
.6
7

1
.4
0

T
o

4
.7
4

1
.0
6

5
.5
1

4
.7
1

1
.3
3

4
.0
2

4
.8
2

2
.9
6

4
.5
7

3
.9
7

0
.7
4

0
.6
3

2
.5
9

1
.4
5

1
.0
3

0
.8
0

4
4
.9
3

N
et

0
.7
7

-0
.6
8

1
.2
2

0
.6
2

-0
.4
4

0
.1
5

0
.6
5

-0
.3
9

0
.5
3

0
.0
4

-0
.6
6

-1
.3
0

0
.6
3

-0
.5
9

0
.0
3

-0
.6
0

-

N
o
te
s
:
fu
ll
sa
m
p
le

co
n
n
ec
te
d
n
es
s.

E
n
tr
y
in

b
o
ld

is
to
ta
l
co

n
n
ec
te
d
n
es
s.

34



T
ab

le
B
2:

C
on

n
ec
te
d
n
es
s
ta
b
le

fo
r
vo
la
ti
li
ti
es

B
a
se

P
re
ci
o
u
s

O
th

er

A
lu
m
in
iu
m

C
o
b
a
lt

C
o
p
p
er

L
ea

d
M
o
ly
b
d
en

u
m

N
ic
k
el

Z
in
c

S
il
v
er

P
a
ll
a
d
iu
m

P
la
ti
n
u
m

C
h
ro
m
iu
m

L
it
h
iu
m

M
a
n
g
a
n
es
e

R
E
E

S
il
ic
o
n

V
a
n
a
d
iu
m

F
ro
m

A
lu
m
in
iu
m

4
7
.1
5

0
.0
2

1
1
.1
8

4
.2
3

0
.2
3

1
0
.1
1

8
.3
5

9
.6
4

2
.8
8

1
.0
5

0
.7
1

0
.2
7

0
.5
9

2
.4
3

1
.1
0

0
.0
8

3
.3
0

C
o
b
a
lt

0
.0
5

7
5
.9
3

0
.8
6

0
.1
2

6
.9
2

3
.1
1

0
.3
7

0
.3
2

1
.6
3

0
.1
2

0
.7
5

0
.0
3

4
.1
6

0
.5
9

2
.2
4

2
.8
0

1
.5
0

C
o
p
p
er

8
.2
6

0
.3
9

3
4
.8
6

8
.7
5

0
.7
1

8
.0
3

1
0
.5
1

1
1
.7
3

9
.0
1

3
.8
1

2
.7
1

0
.7
1

0
.1
7

0
.2
4

0
.0
5

0
.0
8

4
.0
7

L
ea

d
3
.9
9

0
.0
7

1
1
.1
8

4
4
.5
4

0
.2
0

6
.1
4

2
1
.1
7

5
.3
6

4
.0
5

0
.8
1

0
.7
8

0
.5
8

0
.3
8

0
.7
0

0
.0
0

0
.0
4

3
.4
7

M
o
ly
b
d
en

u
m

0
.3
7

6
.7
2

1
.4
5

0
.3
1

7
0
.3
0

0
.3
1

0
.6
9

0
.1
7

1
.2
6

0
.0
2

0
.1
9

0
.3
1

1
2
.1
6

0
.1
2

1
.4
0

4
.2
2

1
.8
6

N
ic
k
el

9
.3
7

1
.7
7

1
0
.0
6

6
.0
2

0
.1
7

4
3
.6
9

1
0
.4
8

7
.0
5

4
.3
8

0
.3
7

3
.7
6

0
.3
2

0
.0
2

0
.6
4

1
.2
3

0
.6
7

3
.5
2

Z
in
c

6
.3
0

0
.1
7

1
0
.7
4

1
6
.9
2

0
.3
4

8
.5
4

3
5
.6
1

9
.7
9

5
.6
7

1
.2
3

1
.1
1

1
.4
9

0
.0
8

1
.9
0

0
.0
1

0
.0
8

4
.0
2

S
il
v
er

7
.1
5

0
.1
4

1
1
.7
6

4
.2
1

0
.0
7

5
.6
4

9
.6
1

3
4
.9
5

1
4
.5
8

4
.9
3

1
.1
0

2
.2
5

1
.0
5

2
.5
5

0
.0
2

0
.0
1

4
.0
7

P
a
ll
a
d
iu
m

2
.3
0

0
.8
1

9
.7
2

3
.4
2

0
.6
5

3
.7
7

6
.0
0

1
5
.6
9

3
7
.6
2

1
3
.5
2

0
.5
5

2
.5
0

0
.2
3

3
.1
5

0
.0
5

0
.0
2

3
.9
0

P
la
ti
n
u
m

1
.2
9

0
.0
9

6
.3
6

1
.0
6

0
.0
3

0
.5
0

2
.0
0

8
.1
9

2
0
.8
8

5
8
.1
0

0
.0
6

0
.4
3

0
.3
1

0
.3
3

0
.1
2

0
.2
5

2
.6
2

C
h
ro
m
iu
m

1
.1
4

0
.7
9

5
.6
9

1
.2
9

0
.4
2

6
.3
3

2
.3
0

2
.3
2

1
.1
0

0
.0
8

7
3
.1
5

1
.0
3

1
.4
1

0
.3
2

2
.2
1

0
.4
3

1
.6
8

L
it
h
iu
m

0
.6
4

0
.0
9

1
.5
0

1
.0
2

0
.3
0

0
.6
9

3
.2
3

4
.7
3

5
.0
8

0
.5
4

0
.9
2

7
3
.8
6

1
.5
2

2
.9
8

2
.6
5

0
.2
6

1
.6
3

M
a
n
g
a
n
es
e

0
.8
9

3
.5
2

0
.3
3

0
.5
6

1
1
.8
6

0
.0
8

0
.1
6

1
.9
9

0
.4
3

0
.3
5

0
.7
1

1
.1
1

6
6
.8
7

0
.5
0

6
.8
5

3
.8
0

2
.0
7

R
E
E

3
.7
3

0
.6
4

0
.5
4

1
.1
5

0
.4
1

1
.0
9

3
.8
9

5
.2
9

6
.0
9

0
.3
9

0
.3
2

2
.1
9

0
.7
6

7
0
.8
9

2
.4
9

0
.1
2

1
.8
2

S
il
ic
o
n

1
.5
8

2
.3
8

0
.1
6

0
.0
1

3
.2
0

1
.8
8

0
.0
4

0
.1
4

0
.1
9

0
.0
9

0
.8
8

0
.9
7

6
.6
8

2
.1
3

6
5
.8
2

1
3
.8
6

2
.1
4

V
a
n
a
d
iu
m

0
.1
2

3
.8
4

0
.2
2

0
.0
8

6
.0
8

1
.1
7

0
.2
1

0
.0
3

0
.1
2

0
.0
9

0
.1
8

0
.2
6

2
.5
0

0
.0
4

1
4
.9
1

7
0
.1
6

1
.8
7

T
o

2
.9
5

1
.3
4

5
.1
1

3
.0
7

1
.9
7

3
.5
9

4
.9
4

5
.1
5

4
.8
3

1
.7
1

0
.9
2

0
.9
0

2
.0
0

1
.1
6

2
.2
1

1
.6
7

4
3
.5
3

N
et

-0
.3
5

-0
.1
6

1
.0
4

-0
.3
9

0
.1
2

0
.0
7

0
.9
1

1
.0
9

0
.9
4

-0
.9
1

-0
.7
6

-0
.7
3

-0
.0
7

-0
.6
6

0
.0
7

-0
.1
9

-

N
o
te
s
:
fu
ll
sa
m
p
le

co
n
n
ec
te
d
n
es
s.

E
n
tr
y
in

b
o
ld

is
to
ta
l
co

n
n
ec
te
d
n
es
s.

35



Figure B1: Full sample group connectedness measures for returns

(a) Within and cross group connectedness
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(b) To, From and Net connectedness

Base Precious Other

T
o

F
ro

m

N
et T
o

F
ro

m

N
et T
o

F
ro

m

N
et

0

5

10

15

20

25

Notes: panel (a) shows within group connectedness along the main diagonal, while off-diagonal elements
are cross group connectedness measures. Panel (b) shows the to, from and net connectedness statistics for
groups of metals. Colored areas refer to the off-diagonal statistics, whereas the white areas denote statistics
comprehending the diagonal elements.

Figure B2: To, From and Net connectedntess – returns
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Figure B3: Leads and Lags correlation analysis

(a) Returns connectedness correlation
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Notes: red bars highlights the correlation coefficient and relative standard deviations for different leads (k
up to 3) and lags (k up to -3).
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