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Abstract 

In this paper we analyse the relationship between technological innovation in the 
artificial intelligence (AI) domain and productivity. We embed recently released data 
on patents and publications related to AI in an augmented model of productivity 
growth, which we estimate for the OECD countries and compare to an extended 
sample including non-OECD countries. Our instrumental variable estimates, which 
account for AI endogeneity, provide evidence in favour of the modern productivity 
paradox. We show that the development of AI technologies remains a niche 
innovation phenomenon with a negligible role in the officially recorded productivity 
growth process. This general result, i.e. a lack of a strong relationship between AI and 
macroeconomic productivity growth, is robust to changes in the country sample, in 
the way we quantify labour productivity and technology (including AI stock), in the 
specification of the empirical model (control variables) and in estimation methods. 
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1. Introduction 

This paper evaluates the role played by technological innovations in the artificial intelligence (AI)1 

domain in the productivity growth process. The starting point for our analysis is the observation of a 

significant slowdown in the rate of productivity growth worldwide. This is visible in advanced economies 

such as the OECD countries (OECD, 2021a), the USA (Byrne et al., 2016) and the UK (Crafts and Mills, 

2020) but also in emerging markets.2 Obviously, the very recent economic slowdown (i.e. since 2019) can 

largely be attributed to the Covid-19 pandemic, when real GDP declined by 3.4% worldwide in 2020 

(OECD, 2022) and the recovery, which generated large imbalances between and within countries (World 

Bank, 2021a), was delayed by a new set of adverse shocks due to the war in Ukraine (OECD, 2022). 

However, looking from a longer perspective, the tendency of weak productivity growth is surprising, 

especially if one takes into account the breakthrough innovations and impressive pace of technological 

progress in recent decades. In particular, how is it possible that there is no acceleration in productivity 

growth given that at the same time a striking advance can be observed in digital technologies3 using 

advanced software, robots, AI, machine learning and cloud computing? Since the 1980s, the world’s 

technological capacity to store, communicate and compute information has exploded (Hilbert and López, 

2011). The volume of data, processing power and bandwidth double every 2-3 years, while global 

production only doubles every 20-30 years (Growiec, 2021, p.2). Acceleration in AI technologies has 

been widely documented (Tseng and Ting, 2013; WIPO, 2019; IPO, 2019; Fujii and Managi, 2018; Van 

Roy et al., 2020; OECD.AI, 2022; USPTO, 2020). In 2016, OECD countries reported 34 times as many 

AI patent applications than in 1985 (for comparison, the total number of patents and publications had 

                                                                        
1 We follow the OECD Council on Artificial Intelligence’s definition of AI as a “(…) machine based system that can, for a given set 
of human-defined objectives, make predictions, recommendations, or decisions influencing real or virtual environments. AI systems are designed to 
operate with varying levels of autonomy” (Baruffaldi et al., 2020: 11). AI solutions are capable of learning and improving while ICT 
software is typically pre-programmed. 
2 According to data reported by The Conference Board (2022), in mature economies (including the US, the EU and Japan) 
GDP per hour worked only grew by 1.1 per cent a year in 2011-2019 (compared to 2.1 per cent a year in the pre-2008 crisis 
period, i.e. 2000-2007). Productivity growth in major emerging economies (including China) also slowed down, from 5.2 per 
cent a year in 2000-2007 to 4.8 per cent a year in 2011-2019. In 2022 output per hour worked is forecast to decline by 0.2 cent 
in mature economies and grow by 1 per cent in emerging economies (The Conference Board, 2022). 
3 We use the term ‘digital technologies’ to refer to broadly understood ADP (Advanced Digital Production) technologies 
defined as “technologies that combine hardware (advanced robots and 3D printers), software (big data analytics, cloud computing and artificial 
intelligence) and connectivity (the Internet of Things)” (UNIDO, 2019, Industrial Development 2020 main report: xvi). Artificial 
intelligence technologies (AI) are therefore part of the ADP or technologies related to the so-called fourth industrial revolution 
(4IR), which is characterised by a fusion of technologies blurring the lines between the physical, digital and biological spheres 
(Schwab, 2017). 
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tripled (OECD, 2021c; see Section 3 for more detailed evidence). In the US between 2002 and 2018 the 

annual number of AI patent applications increased by more than 100% while the share of AI patent 

applications grew from 9% to 16% (USPTO, 2020). Nevertheless, pro-growth effects of “the second 

machine age” (Brynjolfsson and McAfee; 2014; Bughin et al., 2018; Aghion et al., 2019) are not reflected 

in productivity records. 

The slowdown in the productivity growth rate registered in official statistics despite impressive 

developments in the digital sphere has become an intriguing theme in economic research (Brynjolfsson 

et al., 2019, 2021; Byrne et al., 2016; Crafts, 2018; Gal et al., 2019; Syverson, 2017; van Ark, 2016; 

Venturini, 2022). The phenomenon has been named the ‘modern productivity paradox’ (i.e. negligible 

productivity growth with simultaneous dramatic technological progress – Brynjolfsson, 1993), echoing 

Solow’s popular claim “You can see the computer age everywhere but in the productivity statistics” (Solow, 1987, p. 

36). Given the size of the AI market4 (Righi et al., 2022; OECD.AI, 2022; Dalla Benetta et al., 2021), its 

expansion in terms of AI-related patents and publications (Zhang et al., 2022) and expectations related 

to the growth potential of AI technologies (Purdy and Daugherty, 2016; Bughin et al., 2018), weak 

productivity records are a source of disappointment. 

The key motivation for our study comes from this still unresolved productivity puzzle but our 

contribution is based on an explicit focus on AI technology production assessed from a broad cross-

country perspective. Using data on AI patent applications and AI publications we focus strictly on the 

AI production effect, i.e. the effect associated with the development of AI technologies and related 

technological knowledge5. We focus on AI because an overwhelming part of the existing evidence on the 

impact of modern technologies on productivity relies on ICT data (Jorgenson et al., 2008; van Ark et al., 

2008; Inklaar et al., 2005; Timmer and Van Ark, 2005; Oliner et al., 2007; Acemoglu et al., 2014; Pieri et 

                                                                        
4 As the OECD.AI Policy Observatory reported, worldwide venture capital (VC) investment in AI rose from 3220 million 
USD in 2012 to 194,414 million USD in 2021. The number of annual VC AI investments in 2021 was 10 times higher than a 
decade before, while the median AI investment size increased fivefold. The EU invested between €7.9 billion and €9 billion 
in AI in 2019 (Dalla Benetta et al., 2021) and is likely to exceed its annual AI investment target of €22 billion by 2030 (Righi 
et al., 2022). 
5 The production effect of more broadly defined 4IR technologies has been analysed at the macro level by Venturini (2022) 
and at the micro level by Benassi et al. (2022). An alternative mechanism, not investigated in our study, deals with the adoption 
effect quantified by the number of installations of robots (Ballestar et al., 2020; Kromann et al., 2020; Acemoglu et al., 2020; 
Graetz and Michaels, 2018) or by trade in capital goods embodying 4IR technologies (robots, 3D printers or numerically 
controlled machines) capturing technology diffusion and so adoption across countries (Foster McGregor et. al., 2019; 
Castellani et al., 2022). 
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al., 2018) or, more recently, on automation statistics concerning the use of robots (Ballestar et al., 2020; 

Kromann et al., 2020; Acemoglu et al., 2020; Graetz and Michaels, 2018; Koch et al., 2021; Van Roy et 

al., 2020). Although it is developing, AI-focused research on the productivity-technology nexus is still 

scant, mainly due to methodological challenges related to the conceptualisation and measurement of 

highly intangible technological solutions such as AI. However, noticeable progress in this sphere 

(Baruffaldi et al., 2020; EPO, 2020; OECD.AI, 2022; USPTO, 2020; Zhang et al., 2022) has opened new 

ground for AI-productivity research. Another research gap which we fill is related to the incomplete 

international picture: the modern productivity paradox has been documented for well-developed 

economies such as the US, Germany and the UK (Byrne et al., 2016; van Ark, 2016; Elstner et al., 2018) 

and a sample of industrialised countries (Venturini, 2022). To the best of our knowledge, no studies have 

assessed the macroeconomic productivity-AI nexus in a setting which (i) uses both AI patent and AI 

bibliometric data and (ii) compares trends in the industrialised (here, the OECD) and non-industrialised 

worlds. This paper addresses these research gaps. 

Following other studies using patent data in a macroeconomic context (Frietsch, 2014; Venturini, 

2022), our analysis builds on a key assumption that AI technology production is reflected in the number 

of AI patent applications and additionally AI scientific publications (EPO, 2020; Tseng and Ting, 2013; 

USPTO, 2020). We use the latest methodological advances in the measurement of AI progress and 

employ information on AI-related patents (from OECD, 2021c) and AI-related scientific publications 

(from Elsevier/Scopus – Zhang et al., 2021) in an augmented model of productivity growth, which we 

estimate for OECD and non-OECD countries from the mid-1980s onwards. 

The remainder of the paper is structured as follows. Section 2 provides a review of the literature on 

the role of digital technologies, including AI, in productivity growth. Section 3 presents the empirical 

setting – the data and key international evidence on AI technology production (patents and publications) 

and productivity developments. Estimates of the productivity growth model are described and discussed 

in Section 4 and the last section concludes. 

2. Digital technologies and productivity – a literature review 
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For a long time technological progress has been viewed as a key element in economic growth (Solow, 

1956; Romer, 1990; Jones, 1995; Aghion and Howitt, 1992) either by improving the physical capacity and 

productivity of labour or with growth-enhancing innovations generated by R&D (Romer, 1990; Jones, 

2005). Historically, big technological breakthroughs like the steam power revolution and electrification 

accompanied productivity growth (Crafts, 2004; Schurr et al., 1960) so similar hopes have arisen in the 

digital era. The widely documented rise in automation and digital technology, including AI (Hilbert and 

López, 2011; Tseng and Ting, 2013; WIPO, 2019; IPO, 2019; Fujii and Managi, 2018; Van Roy et al., 

2020; OECD.AI, 2022; USPTO, 2020; Zhang et al., 2022) has led to both concerns about potential 

negative effects on labour (mainly via the human replacement effect, Acemoglu and Restrepo, 2018) and 

enthusiasm about its ability to boost growth (Brynjolfsson and McAfee, 2014; Bughin et al., 2018; Aghion 

et al., 2019). In the extreme case, “rapid growth in computation and artificial intelligence will cross some boundary or 

singularity after which economic growth will accelerate sharply as an ever-accelerating pace of improvements cascade through 

the economy” (Nordhaus, 2021: 299). 

Models of automation6 with endogenous technological progress conceptualise the contribution of 

intangible technologies, such as AI, to growth. They assume that some (or even all) tasks, including R&D, 

can be automated (Zeira, 1998; Acemoglu and Restrepo, 2018; Aghion et al., 2019; Growiec, 2020, 2021). 

The importance of AI for growth can be modelled through reinterpretation of the knowledge production 

function (Jones, 1995) with breakthroughs in AI enhancing discovery rates and boosting economic 

growth (Agrawal et al., 2019). However, the related empirical literature focuses on the puzzling mismatch 

between expectations related to the development and use of digital technologies and their poor reflection 

in productivity records (Crafts, 2018). The modern productivity paradox (see, among many others, 

Brynjolfsson et al., 2019, 2021; Polák, 2017; Acemoglu et al., 2014) is a redux of the information 

technology productivity paradox of the late 1980s (Brynjolfsson, 1993). A significant drop in the 

productivity growth rate observed in parallel with increasing spending on new digital technologies and 

decreasing prices of them has been identified in such mature economies as the US, the UK and Germany 

                                                                        
6 Growiec (2021) points out that the distinction between mechanisation (the replacement of human physical work by 
machines), automation (the replacement of human cognitive work by pre-programmed software) and AI (i.e. software capable 
of learning and improving) is crucial. 
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(Byrne et al., 2016; van Ark, 2016; Elstner et al., 2018) and may be part of a “secular stagnation” (Haskel 

and Westlake, 2017).  

Among the alternative explanations of the modern productivity paradox, we find a 

“mismeasurement hypothesis” (Syverson, 2017; Byrne et al., 2016; Elstner et al., 2018) of underestimation 

of real GDP, productivity and income growth in the technologically advanced age (Watanabe et al., 2018). 

Intangible assets are difficult to capture in national accounts and their omission may have led to serious 

underestimation of changes in output per worker (Corrado et al., 2009; Corrado et al., 2021). A similar 

problem relates to the magnitude of AI investment, which is also likely to be mismeasured (Gordon, 

2018). Indeed, collection and discussion of AI statistics, especially in the international context, are 

difficult as AI is a cross-cutting technology likely to be improperly captured by existing classifications of 

products and economic activities (Righi et al., 2022: 9). Nevertheless, while differences in AI levels are 

present in different studies, the growth in AI investment activity has been documented worldwide (e.g. 

Righi et al., 2022; EU AI investments report – Dalla Benetta et al., 2021; OECD.AI, 2022). 

An alternative explanation of the paradox conceptualised through the J-curve hypothesis 

(Brynjolfsson et al., 2019; 2021) relates to the time lag between technological progress and the 

commercialisation of new innovative ideas, often relying on complementary investments typical of 

general-purpose technologies (GPTs, Bresnahan and Trajtenberg, 1995). The productivity J-curve 

illustrates the productivity slowdown accompanying the advent of GPTs: “total factor productivity growth will 

initially be underestimated because capital and labor are used to accumulate unmeasured intangible capital stocks. Later, 

measured productivity growth overestimates true productivity growth because the capital service flows from those hidden 

intangible stocks generate measurable output” (Brynjolfsson et al., 2021: 334). Empirical evidence on the time 

pattern of productivity spillovers associated with digital technologies is mixed. It either supports the J-

curve view (US: Brynjolfsson et al., 2021; Japan: Miyagawa, 2021; industrialised countries: Venturini, 

2022) or finds arguments against it (Corrado et al., 2021 on 11 European countries and the US). 

Technological pessimists argue that growth at the technological frontier has slowed down because it is 

harder and more expensive to find new good ideas (Bloom et al., 2020). 

Many studies have attempted to estimate the productivity effects of the digital revolution but most 

of them refer to digital technologies before AI (namely, ICT: see, among many others, Jorgenson et al., 
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2008; van Ark et al., 2008; Inklaar et al., 2005; Timmer and Van Ark, 2005; Oliner et al., 2007; Acemoglu 

et al., 2014; Ceccobelli et al.; 2012). In general, the contribution of ICT capital to growth has been lower 

in the EU than in the US (Inklaar et al., 2005), where information technology played a critical role in the 

post-1995 productivity resurgence (Jorgenson et al., 2008) and contributed to the Atlantic divide (Van 

Ark et al., 2008; Timmer and Van Ark, 2005; Van Ark et al., 2019). In most OECD countries (the focus 

of our study) the contribution of ICT to growth was rather disappointing (Pilat et al., 2003) and, as 

Ceccobelli et al. (2012) argued, acted as GPT requiring complementary investments and temporal lags to 

lead to productivity benefits. The picture is more optimistic once the effect of ICT in OECD countries 

is analysed jointly with the effects of R&D activity accelerating technical change and generating spillovers 

within sectors (Pieri et al., 2018).  

Some (fewer) studies explicitly focus on the productivity effects of robotisation. Graetz and Michaels 

(2018) analyse a panel of industries in seventeen countries (1993-2007) and find that increased use of 

robots contributes approximately 0.36 percentage points to annual labour productivity growth, while 

Kromann et al. (2020) document that an increase of one standard deviation in robot intensity is associated 

with even 6% higher total factor productivity (in a sample of nine advanced countries and 10 

manufacturing industries, 2004-2007). In addition, firm-level studies (such as Koch et al., 2021 and 

Ballestar et al., 2020 on firms in Spain and Acemoglu et al., 2020 on French companies) find a significant 

impact of robot adoption on productivity. 

The literature focusing explicitly on the AI-productivity nexus is still in its infancy, mainly due to 

methodological challenges related to the measurement of highly intangible AI solutions and their overlap 

with ICT. Recent attempts to quantify AI-based technological progress draw on bibliometric or patent 

records (Baruffaldi et al., 2020), replicating the well-established use of patent data as a general indicator 

of innovation (among others, see Griliches, 1990; Archibugi and Pianta, 1992; Frietsch et al., 2014; Jaffe 

and Trajtenber, 2005). Paradoxically, the development of AI and advanced machine learning techniques 

have enabled more accurate quantification of patent activity in specific technological domains, such as 

AI (USPTO, 2020). Qualitative factors have been incorporated in time-consuming search techniques 

detecting AI-related patents via classification codes (such as Cooperative Patent Classification (CPC) and 

analogous UPC/IPC – Tseng and Ting, 2013) and/or by screening patent descriptions for AI-related 
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keywords (EPO, 2020). This approach has been used at the micro level by Benassi et al. (2022), who 

show a positive and significant relationship between firm productivity and the accumulated stock of 4IR 

technological knowledge. A similar conclusion is reached by Damioli et al. (2021), who confirm a positive 

and significant impact of AI patent applications on labour productivity in a worldwide sample of AI 

patenting firms. Additionally, Bassetti et al. (2020) find that firms that are successful at obtaining a greater 

number of AI patents tend to increase not only total factor productivity but also wages. In addition, the 

adoption of digital technologies in an industry can be associated with productivity gains at the firm level 

(Gal et al., 2019). 

Macro-level studies relying on patent data describe the global landscape of AI technology document 

its impressive rise since the 1990s, which was accompanied by extreme geographical concentration 

(WIPO, 2019; IPO, 2019; USPTO, 2020) with just a handful of players involved in intensive AI 

development (Dernis et al., 2019; Van Roy et al., 2020). Venturini (2022) documents that knowledge 

(patent stock) related to broadly defined “intelligent technologies” (corresponding to 4IR technology 

areas) accounts for 3% to 8% of the observed productivity change in a sample of 32 industrialised 

countries (1990-2014). In the empirical analysis presented in the next sections we focus exclusively on 

the productivity effects of AI technology and compare patent and bibliometric data in a wider sample 

(OECD and non-OECD) and a longer time perspective. 

3. The data and descriptive evidence 

3.1 Dataset(s) 

This paper compares the effect associated with the production of AI technologies (and the 

development of related technological knowledge – Venturini, 2022; Benassi et al., 2021) as recorded in 

patent applications (dataset 1: 35 OECD and 23 non-OECD economies, 1985-20167) and in scientific 

publication records (dataset 2: 35 OECD countries and 28 non-OECD countries, 1998-2017) with 

growth in countries’ productivity. In line with Righi et al. (2022:11), patent applications are used to 

address innovation capacity while AI publications serve as an additional proxy for involvement in frontier 

AI research. Information about the countries in particular samples is included in Appendix A, Table A.1.  

                                                                        
7 Patent data (OECD, 2021c) are available until 2017 but we follow the OECD practice (Baruffaldi et al., 2020: 53) and 
truncate the series in 2016 because the 2017 data are incomplete due to legal delays in publishing patent information.  
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In the patent analysis, the number of AI patent applications comes from the OECD Science, 

Technology and Patents database (OECD, 2021c). The OECD provides separate data for such 

technology domains as ICT, artificial intelligence, nanotechnology, biotechnology and environment-

related and health-related technologies. AI patents were identified using patent classification codes and 

keywords as is described in detail in Baruffaldi et al. (2020: 66-68).8 We selected patents filed with at least 

two intellectual property offices (which belong to IP5 patent families9). These are presented according to 

the priority date.10 In the benchmark analysis we use patent data identified by the applicant’s country of 

residence (data by the inventor’s country of residence are used in the robustness checks).11 All the patent 

figures are based on fractional counts reflecting the contributions of applicants/inventors (by country) 

in cases of multiple authorship. To complete the research conclusions based on AI patent data, we also 

analyse the number of peer-reviewed AI scientific publications recorded in the Elsevier/Scopus database 

(Zhang et al., 2021).12  

Apart from considering countries’ annual AI technology production activity, we compute AI patent 

stock (and AI publication stock), AIST, which quantifies the knowledge (ideas) accumulated in the area of 

AI technologies (similarly to Venturini, 2022 and Benassi et al., 2022, who focus on 4IR technology 

patent stock). We employ the perpetual inventory method (Belderbos et al., 2022; Venturini, 2022) and 

use the formula 𝐴𝐼𝑖,𝑡
𝑆𝑇 = 𝐴𝐼𝑖,𝑡 + (1 − 𝛿) × 𝐴𝐼𝑖,𝑡−1

𝑆𝑇  with the initial value of AIST defined as 𝐴𝐼𝑖,𝑡0
𝑆𝑇 =

𝐴𝐼𝑖,𝑡0

𝑔𝑖+𝛿
, 

where gi is the average rate of growth in a period analysed. Following Schankerman and Pakes (1986), we 

                                                                        
8 Given that AI can be related to the development of robotics, some of the AI-related keywords refer to robots (e.g. humanoid 
robot, human-robot interaction) but for the AI-patent search these words are only included in combination with IPC or CPC 
classes (Baruffaldi et al., 2020: 67) so overlaps should be limited. ICT is a separate category in the OECD (2021c) data.  
9 IP5 refers to the five intellectual property offices, i.e. the European Patent Office, the Japan Patent Office, the Korean 
Intellectual Property Office, the US Patent and Trademark Office and the State Intellectual Property Office of the People’s 
Republic of China. 
10 The patent priority date reflects the first worldwide filing of an invention and is close to the invention date. IP5 patent 
families are only available according to priority date. 
11 The data by applicant allow us to take a closer look at the innovativeness of firms (legal patent application owners) in a 
given country regardless of the location of their research centres. Applicants have a legal right to exploit and commercialise 
an invention covered by a patent. Patents considered from the applicants’ perspective should translate into country 
productivity growth more easily. The data by inventor, in turn, capture the innovativeness of a country’s researchers and 
laboratories (OECD, 2021c). 
12 AI publication activity is identified in the Elsevier/Scopus database (Zhang et al., 2021) using papers’ tags with keywords, 
publication dates, country affiliations and other bibliographic information. Elsevier’s methodology of counting AI papers uses 
a bottom-up approach with about 800 keywords. The details of Elsevier’s dataset defining AI, country affiliations and AI 
subcategories can be found in the 2018 AI Index Report Appendix (https://hai.stanford.edu/sites/default/files/2020-
10/AI_Index_2018_Annual_Report.pdf). 
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assume a depreciation rate 𝛿 of 15% (both for patents and publications), which is often used in patent 

research (Belderbos et al., 2022; Venturini, 2022).13 

AI technology production data are matched with labour productivity measured in terms of output 

(GDP at chained PPPs in millions of 2017 US dollars) per hour worked, and alternatively per person 

employed in the robustness checks. The data come from Penn World Table 10.0 (PWT 10.0, Feenstra et 

al., 2015), which is also a source of capital stock (at constant 2017 prices in millions of 2017 US dollars) 

and labour force data. 

Following the literature, we consider other country-specific factors that may affect productivity 

growth apart from AI. First, we follow Venturini (2022) and Damioli et al. (2021) and add a proxy for 

countries’ general innovation incorporating overall patenting (OECD, 2021c) and scientific publication 

activity (Zhang et al., 2021). Next, given that regardless of country income the quality of human resources 

positively influences productivity (Miller and Upadhyay, 2000; Botev et al. 2019 on OECD), we consider 

human capital measured with average years of schooling (Barro and Lee, 2013; PWT 10.0, Feenstra et al., 

2015). We then incorporate trade openness in the model (the sum of exports and imports of goods and 

services as a share of GDP from World Bank, 2021b) because productivity tends to benefit from 

countries’ outward orientation (Buccirossi et al., 2013; Miller and Upadhyay, 2000). Finally, we also take 

into account the regulatory quality index in World Bank (2021c), which reflects the quality of governance 

and institutions, also important in the growth process (Acemoglu et al., 2005; Buccirossi et al., 2013). 

3.2 Evidence of AI technology production  

The acceleration in AI technology production is reflected in the increasing shares of AI patents and AI 

publications in all patents and publications (Table 1). Regardless of the way patents are attributed to 

countries (by applicants/inventors – the former is used in the benchmark analysis), in the OECD 

countries there is a clear increase in the share of AI patents – from as little as 0.18% (0.17% by inventors) 

in 1985 to 1.80% (1.78%) in 2016. In non-OECD countries, this increase is even higher as they started 

from scratch, but at the end of the period 2.17% (2.28%) of their patents concerned AI. Analysis of AI 

scientific publications (Table 1, column C) reveals that their importance among all publications also 

                                                                        
13 The 15% depreciation rate set by Schankerman and Pakes (1986) is representative of the rate of decay in returns from patent 
protection. 
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increased and, similarly to patent data, this is more visible in non-OECD countries (1.09 p.p. growth) 

than in OECD (0.70 % p.p. growth). 

 

Table 1. Shares of AI patents/AI scientific publications in all patents/all scientific publications 

(%), 1985-2017 

 A. Share of AI patents in all 
patents – by applicants 

B. Share of AI patents in all 
patents – by inventors 

C. Share of AI publications1 in all 
publications 

 OECD non-OECD OECD non-OECD OECD non-OECD 

1985 0.18 0.00 0.17 0.00 - - 

1990 0.57 0.10 0.57 0.09 - - 

1995 0.49 0.10 0.49 0.13 0.682 1.072 

2000 0.89 0.40 0.89 0.51 0.71 1.16 

2005 0.94 0.45 0.93 0.53 0.94 1.80 

2010 1.14 0.88 1.12 0.99 0.87 1.98 

2017 1.803 2.173 1.783 2.283 1.38 2.16 

Note: The list of countries can be found in Appendix A (Table A.1). 1 Data available from 1998 onwards. 2 Data for 1998. 
3Last available data for 2016 – see footnote 7. 

Source: Authors’ elaboration using data from OECD (2021c) and Scopus/Elsevier data from Zhang et al. (2021). 

 

Figure 1 illustrates the boom in AI patenting activity in OECD countries since 1985.14 Non-OECD 

countries started to be active in the field of AI patenting later, from 1999.15 Compared to the growth rate 

of the total number of patents, the growth rate of AI patents in both OECD and non-OECD countries 

is much more intense. At the end of 2016, in OECD countries AI patenting activity was reflected in 

almost 3,700 applications, which is 34 times more than in 1985. In the same period, the total number of 

patents only increased 3.3 times. The increase in AI patents in non-OECD countries is even more 

spectacular. In 1999, about 20 AI applications were filed. During the period analysed, that number 

increased 37 times and in 2016 it amounted to about 800 AI patents. The growing importance of these 

countries in AI patenting is also visible when we express patents as a share of employment. In non-

OECD countries this share started growing intensively in 1999 and in 2009 it exceeded the analogous 

share recorded in OECD countries.   

  

                                                                        
14 The exact numbers of AI-related patents and publications may differ across studies due to methodological differences in 
AI-patent definitions and ways of AI activity identification. However, the general trend of increasing AI activity since 1980/the 
1990s has been reported in numerous sources (Baruffaldi et al., 2020; Corrado et al., 2021; WIPO, 2019; Venturini, 2022; 
OECD.AI, 2022; USPTO, 2020). 
15 In 1999, the number of AI patents in non-OECD countries registered in the OECD (2021c) database exceeded 20 
applications. 
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Figure 1. Numbers of patents (AI and all) by applicants, OECD and non-OECD countries, 

1985-2016  

 
Note: The scales in the four graphs differ. 5-period moving average for patents expressed in millions of persons employed. 
The list of countries can be found in Appendix A (Table A.1). 
Source: Authors’ elaboration using data from OECD (2021c). 

 

To complete this description of developments in AI technology production, the increase in the 

number of scientific publications related to AI is compared to the overall trend in scientific publication 

activity (Figure 2). Due to limited data availability, the bibliometric analysis covers a shorter period (1998-

2017) but it is sufficient to observe a rapid growth of the AI phenomenon. Both for OECD and non-

OECD countries there are periods with more than 10% year-on-year increases in the number of AI 

publications (e.g. 2014 and 2017 in OECD countries and 2016-2017 in non-OECD countries). More 

importantly, the inclination of the lines clearly shows that while increases in the total number of 

publications are quite stable throughout the whole period, increases in AI scientific production became 

even faster after approximately 2013. Similarly to the absolute number of publications, the share per 

million persons employed also grew with comparative average growth rates of 8.3% in OCED countries 

and 8.8% in non-OECD countries (for all publications these average growth rates are 5.8% and 8.2% 

respectively). 
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Figure 2. Numbers of scientific publications (AI and all), OECD and non-OECD countries, 
1998-2017  

 
Note: The scales in the four graphs differ. 5-period moving average for patents expressed in millions of persons employed. 

The list of countries can be found in Appendix A (Table A.1). 

Source: Authors’ elaboration using Scopus/Elsevier data from Zhang et al. (2021). 

 
Table 2. Correlations between AI patents/AI scientific publications and labour productivity 

 AI patents AI publications1 
AI patents per 

person employed 
AI publications per 
person employed1 

 OECD 
OECD 
& non-
OECD 

OECD 
OECD 
& non-
OECD 

OECD 
OECD 
& non-
OECD 

OECD 
OECD 
& non-
OECD 

A.  Labour productivity - level 
[PPPs in 2017 US$ per hour 
worked] 

0.147* 0.199* 0.224* 0.120* 0.334* 0.428* 0.397* 0.601* 

B.  Labour productivity growth 
[annual rate of growth, in %]  

-0.075* -0.069* -0.071* 0.016 -0.055 -0.102* -0.093* -0.119* 

Note: * denotes significance at the 10% level. For the list of countries, see Appendix A (Table A.1). 1 Data available from 1998 

onwards. 

Source: Authors’ elaboration using data from OECD (2021c), Elsevier/Scopus (Zhang et al., 2021) and PWT 10.0. 

 

Which economies are the leaders in the production of AI technology? Unsurprisingly, countries with 

higher levels of labour productivity tend to be more engaged in AI patenting and publication activity. 

This is confirmed by the positive and significant correlations between the levels of output per hour 

worked and AI patenting, both for OECD countries and the extended group of economies reported in 

Table 2 (row A). This is also visible when the number of AI patents is considered in relative terms, per 

person employed, and in this case the correlations are even stronger.  
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However, AI patenting correlates negatively with labour productivity growth (Table 2, row B), which 

contradicts the view that AI boosts macroeconomic productivity growth. This correlation is weak, 

however, and even close to null regardless of which group of countries is analysed. Similar observations 

are valid when the production of AI technologies is proxied by AI publications (overall and per person 

employed). The next step is a more complete analysis of the relationship between productivity growth 

and AI technology production. 

4. AI and productivity growth – empirical analysis 

4.1 The model and the estimation strategy 

To derive the empirical equation linking AI activity with productivity growth, we use the basic country-

level aggregate production function 𝑌 = 𝐴𝐹(𝐾, 𝐿) as the point of departure. Output Y depends on total 

factor productivity A, and is a function F of capital K and labour L. Capital can be both physical (tangible, 

directly measurable) and intangible. Technological solutions derived from AI are difficult to measure 

(Corrado et al., 2009, 2021), so in line with Brynjolfsson et al. (2021), unmeasured intangible capital 

investments are considered, which once implemented provide inputs into the production function. In 

the setting presented, U mirrors the production of AI knowledge and is quantified in two ways – based 

on AI patent activity and AI scientific activity (see Section 3). The extended aggregate production 

function, 𝑌′ = 𝐴′𝐹′(𝐾, 𝑈, 𝐿), which includes the intangible input U, serves to derive the empirical 

model. After dividing both sides of the formula by L, log-linearising it, and assuming that productivity 

growth tends to depend on past productivity levels (a beta convergence-type mechanism: Sala-i-Martin, 

1996), we obtain the empirical model of labour productivity growth: 

 Δln(
𝑌

𝐿
)
𝑖𝑡
= 𝛽0 + 𝛽1ln(

𝑌

𝐿
)
𝑖,𝑡−1

+ 𝛽2Δln (
𝐾

𝐿
)
𝑖𝑡
+ 𝛽3ln (

𝐴𝐼

𝐿
)
𝑖𝑡
+ 𝛽4ln𝑍𝑖𝑡 + 𝜇𝑖 + 𝜐𝑡 + 𝜀𝑖𝑡 (1) 

The productivity growth ∆ln(
𝑌

𝐿
)for countries i and time periods t depends on lagged productivity levels 

ln(
𝑌

𝐿
), growth of the capital to labour ratio ∆ln(

𝐾

𝐿
) , AI technology production ln(

𝐴𝐼

𝐿
) resulting in the 

creation of intangible input U and a set of other country-time specific characteristics (Z). Possible effects 

of new technology on productivity need time to materialise but we do not introduce a lagged AI variable 
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due to significant delays in publication and patenting activity. The AI patents and publications observed 

in the data at time t actually correspond to earlier AI technology production.  

In a benchmark estimation of equation (1), to measure(
𝑌

𝐿
) we consider labour productivity per hour 

worked (while productivity per person employed, is used in a robustness check). (
𝐴𝐼

𝐿
) is based on 

alternative indicators: the number of patents related to AI as a ratio with employment (
𝐴𝐼𝑃𝑎𝑡

𝐿
) , AI patent 

stock related to employment (
𝐴𝐼𝑺𝑻𝑃𝑎𝑡

𝐿
), the number of AI publications and AI publication stock both 

measured in relative terms, i.e. per million persons employed (
𝐴𝐼𝑃𝑢𝑏

𝐿
 and 

𝐴𝐼𝑺𝑻𝑃𝑢𝑏

𝐿
). In the regressions 

containing the numbers of patents and the numbers of publications related to employment, the data 

series are smoothed with the aid of 5-period moving averages. The set of control variables Z consists of: 

the general innovativeness (GI) of countries (measured with the overall number of patents/publications 

related to employment)16, human capital (HC), trade openness (Trade) and the institutional measure of 

regulatory quality (RQ) (described in Section 3.1); 𝜇𝑖and 𝜈𝑡 control for all the remaining country- and 

time-specific fixed effects, and 𝜀𝑖𝑡 is a random term. A correlation matrix of all the explanatory variables 

is included in Table A.2 in Appendix A while Table A.3. contains summary statistics of the variables used 

in (1). 

To confirm the benchmark results, we employ numerous robustness checks concerning five areas – 

the dependent variable, explanatory variables, the cross-sectional dimension (OECD countries and the 

extended sample including a set of non-OECD countries), the time dimension and estimation techniques. 

Concerning the estimation method, basic OLS is the starting point. Then we address the problem of 

endogeneity in AI technology production (potential reverse causality) and switch to instrumental variable 

(IV) estimation. It is difficult to find suitable instruments for AI and the related innovation literature 

instead offers by-passing solutions to this problem.17 In a first step, we follow Damioli et al. (2021) and 

                                                                        
16 Alternatively, we have used the measure based on non-AI technologies instead of overall innovation. The estimation results 
are strongly robust and are available upon request.  
17 Firm-level studies often use lags. Benassi et al. (2022) exclude contemporaneous variables (using lags of patent-based 
explanatory variables) to reduce the problem of reverse causality. Bassetti et al. (2020) and Damioli et al. (2021) use lags of AI 
patent applications in a GMM model. Venturini (2022) relies on cointegration estimators and argues that reverse causality 
between digital technologies and macro level productivity is a minor concern as “intelligent” (4IR) technologies are produced 
by few global players/companies (see also the evidence in: EPO, 2020; WIPO, 2019; IPO, 2019; USPTO, 2020; Dernis et al., 
2019; Van Roy et al., 2020), whose patenting activity is determined internally rather than by external (country-level) conditions. 
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employ first lags of patents and publications. In a second step we consider an external instrument based 

on the share of R&D expenditure in the engineering and technology fields, which are presumably the 

ones most related to AI (from OECD, 2021c), matched with total R&D expenses over GDP (from 

OECD, 2021d). R&D data by field is limited so this approach, unfortunately, significantly limits the 

sample size. 

4.2 Results and discussion 

According to the basic estimates of eq. 1 (reported in Table 3), in OECD countries the rate of labour 

productivity growth is negatively related to lagged levels of productivity (consistently with the beta 

convergence hypothesis) and positively related to capital deepening (growth in 
𝐾

𝐿
). Obviously, our key 

interest is in the potential growth-enhancing effects of AI knowledge production. According to basic 

OLS estimates (reported here just for comparison), productivity growth in OECD countries is linked in 

a statistically significant way neither to AI patenting level nor to AI patent stock, both of which are related 

to employment (columns 1-4). In the IV setting (columns 5-8; the quality of instruments is confirmed by 

weak identification tests, underidentification tests and overidentification tests of all instruments), a lack 

of a significant relationship between AI patent stock and productivity growth is confirmed regardless of 

how we consider AI patents, separately or controlling for them with the aid of a measure of countries’ 

overall innovation. Similar conclusions are obtained for the wider sample of OECD and non-OECD 

countries (Table 4). The results are robust to particular changes in the method of IV estimation. 

Table 5 reports estimates of model (1) with additional control variables corresponding to factors that 

are likely to influence the productivity growth process: human capital (HC), country trade openness 

(Trade) and regulatory quality (RQ). Including them does not affect the key coefficients: the relationship 

between AI patenting activity and productivity growth is negligible. Once the production of AI 

technologies is quantified using AI-related bibliometric records we observe a positive and significant 

relationship between AI publications and productivity growth in both OECD and non-OECD countries 

(Table 6 and Table 7), which indicates that bibliometric data can capture other wider types of AI 

innovation than patents can. 
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Table 3. The relationship between AI technology production (AI patents by applicants) and 
labour productivity growth, OECD countries 

Dependent 
variable: 

∆ln(
𝑌

𝐿
) 

Number of patent 
applications1 

Patent stock 

OLS IV-GMM2 IV-GMM3 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.055*** -0.061*** -0.088*** -0.109*** -0.099*** -0.119*** -0.138*** -0.265*** 

 (0.014) (0.017) (0.025) (0.030) (0.021) (0.024) (0.028) (0.046) 

∆ln(
𝐾

𝐿
) 0.375*** 0.391*** 0.395*** 0.418*** 0.363*** 0.386*** 0.149 0.193* 

 (0.079) (0.081) (0.100) (0.094) (0.088) (0.087) (0.112) (0.113) 

ln(
𝐴𝐼𝑃𝑎𝑡

𝐿
) 0.003 0.002       

 (0.002) (0.002)       

ln(
𝐴𝐼𝑆𝑇𝑃𝑎𝑡

𝐿
)   0.001 0.001 -0.001 -0.001 -0.005 0.000 

   (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) 

ln(𝐺𝐼)  0.006  0.016**  0.016***  0.030*** 
  (0.006)  (0.008)  (0.006)  (0.008) 

N 736 736 746 746 720 720 260 260 

N of countries 34 34 33 33 33 33 16 16 

R-squared 0.406 0.410 0.304 0.312 0.310 0.318 0.420 0.453 

K-P rk LM (p-val)     0.000 0.000 0.000 0.000 

K-P rk Wald F     550.6 270.7 121.5 86.89 

Hansen J (p-val)           0.304 0.244 

Notes: *, ** and *** denote significance at the 1%, 5% and 10% levels respectively. Robust standard errors are provided in 
parentheses. All specifications contain country and time fixed effects. K-P refers to Kleibergen-Paap test statistics. All 
estimations are based on productivity per hour worked. 1 Estimations are based on a 5-period moving average. 2 Patents are 
instrumented with their first lag. 3 Patents are instrumented with the instrument described in Section 4.1 and supported by the 
first lag of the explanatory variable. 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0. 

 

Table 4. The relationship between AI technology production (AI patents by applicants) and 
labour productivity growth, full sample (OECD and non-OECD countries) 

Dependent 
variable: 

∆ln(
𝑌

𝐿
) 

Number of patent 
applications1 

Patent stock 

OLS IV-GMM2 IV-GMM3 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.034*** -0.051*** -0.062*** -0.089*** -0.065*** -0.091*** -0.075*** -0.124*** 

 (0.011) (0.013) (0.013) (0.022) (0.017) (0.018) (0.029) (0.037) 

∆ln(
𝐾

𝐿
) 0.497*** 0.506*** 0.420*** 0.442*** 0.402*** 0.429*** 0.289*** 0.266** 

 (0.102) (0.099) (0.094) (0.077) (0.075) (0.072) (0.106) (0.104) 

ln(
𝐴𝐼𝑃𝑎𝑡

𝐿
) 0.003* 0.000       

 (0.002) (0.002)       

ln(
𝐴𝐼𝑆𝑇𝑃𝑎𝑡

𝐿
)   0.001 -0.002 0.001 -0.003 0.004 0.001 

   (0.003) (0.003) (0.003) (0.003) (0.005) (0.004) 

ln(𝐺𝐼)  0.013**  0.016*  0.017***  0.021** 
  (0.007)  (0.010)  (0.005)  (0.008) 

N 1,046 1,046 1,000 1,000 956 956 361 361 

N of countries 57 57 52 52 51 51 22 22 

R-squared 0.260 0.290 0.272 0.286 0.275 0.289 0.336 0.362 

K-P rk LM (p-val)     0.000 0.000 0.000 0.000 

K-P rk Wald F     711.4 294.5 315.2 176.7 

Hansen J (p-val)       0.0513 0.725 

Notes: as under Table 3 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0. 
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Table 5. The relationship between AI technology production (AI patents) and labour 
productivity growth, OECD countries – estimations with control variables 

Dependent 
variable: 

∆ln(
𝑌

𝐿
) 

OECD countries OECD & non-OECD countries 

Number of 
patent 

applications1 
Patent stock 

Number of 
patent 

applications1 
Patent stock 

OLS 
IV-

GMM2 
IV-

GMM3 
OLS 

IV-
GMM2 

IV-
GMM3 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.075*** -0.168*** -0.206*** -0.313*** -0.064*** -0.133*** -0.141*** -0.171*** 

 (0.014) (0.026) (0.041) (0.064) (0.014) (0.031) (0.029) (0.043) 

∆ln(
𝐾

𝐿
) 0.326*** 0.421*** 0.388*** 0.242* 0.310*** 0.411*** 0.365*** 0.213** 

 (0.108) (0.091) (0.119) (0.124) (0.103) (0.086) (0.097) (0.095) 

ln(
𝐴𝐼𝑃𝑎𝑡

𝐿
) 0.002    0.001    

 (0.003)    (0.003)    

ln(
𝐴𝐼𝑆𝑇𝑃𝑎𝑡

𝐿
)  0.005 0.008 0.002  0.002 0.005 0.006 

  (0.005) (0.007) (0.007)  (0.004) (0.005) (0.006) 

ln(𝐺𝐼) 0.012* 0.025** 0.028** 0.047*** 0.021*** 0.027*** 0.022** 0.029** 
 (0.007) (0.010) (0.012) (0.013) (0.006) (0.009) (0.010) (0.011) 

HC -0.022 -0.032 -0.059 0.001 -0.019 -0.043* -0.043 -0.080** 
 (0.037) (0.038) (0.043) (0.053) (0.022) (0.024) (0.028) (0.034) 

Trade 0.000** 0.001** 0.001*** -0.000 -0.000 0.000 0.000 -0.001 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

RQ -0.004 0.003 0.004 0.025** -0.012 -0.009 -0.008 0.027** 
 (0.010) (0.015) (0.012) (0.012) (0.009) (0.015) (0.013) (0.013) 

N 511 512 499 196 743 699 674 269 

N of countries 34 33 33 16 55 50 49 21 

R-squared 0.399 0.324 0.349 0.480 0.310 0.321 0.316 0.447 

K-P rk LM (p-val)   0.000 0.000   0.000 0.000 

K-P rk Wald F   75.41 37.95   81.15 59.56 

Hansen J (p-val)      0.701      0.357 

Notes: as under Table 3 
Source: Authors’ elaboration using data from OECD (2021c) and PWT 10.0. 

 
 

Table B.1 and Table B.2 (in Appendix B) show the results of further robustness checks. Country-

level indicators of AI patenting activity by employment are obtained using the identification of inventors 

instead of applicants. For OECD countries the results confirm the conclusions presented in Table 3. For 

non-OECD countries the slightly positive coefficient associated with AI patents disappears once we 

control for countries’ overall innovativeness. Next, in Table B.3 we consider an alternative measure of 

labour productivity (per million persons employed). Finally, we check the results with the period of the 

analysis split in two sub-periods (1985-2000 and 2001-2016, Table B.4), and with the same time frame 

for both types of data (sticking to 1996-2016, as in the AI publications models, Table B.5). None of these 

modifications alter the general conclusion: despite the undeniable growth in the production of AI 

knowledge reflected in patent and bibliometric records, we do not find strong support for the view that 
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knowledge accumulated in AI patent stocks plays a role in the productivity growth process, either in 

OECD countries or in a wider sample. 

However, other mechanisms can be at play at the micro and sectoral level. Patents associated with 

the 4IR, including AI patents, can have a positive effect on companies’ labour productivity (Benassi et 

al., 2022; Damioli et al., 2021) while adoption of digital technologies in an industry can be associated with 

productivity gains at the firm level (Gal et al., 2019). Our results can also differ from estimates using 

broader patent stock data in which AI patents are combined with other technological fields attributed to 

the 4IR (Venturini, 2022, Benassi et al., 2022). 

 

Table 6. The relationship between AI technology production (AI scientific publications) and 

labour productivity growth, OECD countries 

Dependent 
variable: 

∆ln(
𝑌

𝐿
) 

Number of scientific 
publications1 

Publication stock 

OLS IV-GMM2 IV-GMM3 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.055*** -0.059*** -0.119*** -0.125*** -0.143*** -0.149*** -0.145*** -0.144*** 

 (0.015) (0.018) (0.015) (0.016) (0.024) (0.024) (0.029) (0.030) 

∆ln(
𝐾

𝐿
) 0.355** 0.351** 0.411*** 0.414*** 0.454*** 0.456*** 0.411*** 0.411*** 

 (0.139) (0.141) (0.090) (0.088) (0.076) (0.075) (0.084) (0.084) 

ln(
𝐴𝐼𝑃𝑢𝑏

𝐿
) 0.007*** 0.003       

 (0.002) (0.006)       

ln(
𝐴𝐼𝑺𝑻𝑃𝑢𝑏

𝐿
)   0.024*** 0.014* 0.026*** 0.013 0.024*** 0.020** 

   (0.005) (0.007) (0.008) (0.009) (0.008) (0.008) 

ln(𝐺𝐼)  0.010  0.027*  0.031***  0.014 
  (0.015)  (0.015)  (0.011)  (0.013) 

N 560 560 695 695 660 660 318 318 

N of countries 35 35 35 35 35 35 18 18 

R-squared 0.349 0.351 0.333 0.339 0.357 0.360 0.456 0.457 

K-P rk LM (p-val)     0.000 0.000 0.000 0.000 

K-P rk Wald F     400.7 180.8 531.9 214.3 

Hansen J (p-val)       0.721 0.860 

Notes: *, ** and *** denote significance at the 1%, 5% and 10% levels respectively. Robust standard errors are provided in 
parentheses. All specifications contain country and time fixed effects. K-P refers to Kleibergen-Paap test statistics. All 
estimations are based on productivity per hour worked. 1 Estimations are based on a 5-period moving average. 2 Publications 
are instrumented with their first lag. 3 Publications are instrumented with the instrument described in Section 4.1 and 
supported by the first lag of the explanatory variable. 
Source: Authors’ elaboration using data from Elsevier/Scopus (Zhang et al., 2021) and PWT 10.0. 
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Table 7. The relationship between AI technology production (AI scientific publications) and 
labour productivity growth, full sample – OECD and non-OECD countries 

Dependent 
variable: 

∆ln(
𝑌

𝐿
) 

Number of scientific 
publications1 

Publication stock 

OLS IV-GMM2 IV-GMM3 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.052*** -0.053*** -0.105*** -0.109*** -0.110*** -0.111*** -0.108*** -0.112*** 

 (0.009) (0.010) (0.015) (0.015) (0.014) (0.015) (0.022) (0.023) 

∆ln(
𝐾

𝐿
) 0.409*** 0.410*** 0.494*** 0.491*** 0.471*** 0.470*** 0.390*** 0.392*** 

 (0.091) (0.091) (0.068) (0.068) (0.057) (0.057) (0.074) (0.075) 

ln(
𝐴𝐼𝑃𝑢𝑏

𝐿
) 0.006 0.004       

 (0.003) (0.005)       

ln(
𝐴𝐼𝑺𝑻𝑃𝑢𝑏

𝐿
)   0.020*** 0.015* 0.019*** 0.016*** 0.022*** 0.017** 

   (0.005) (0.008) (0.005) (0.006) (0.008) (0.008) 

ln(𝐺𝐼)  0.003  0.013  0.007  0.014 
  (0.009)  (0.011)  (0.009)  (0.013) 

N 969 969 1,216 1,216 1,154 1,154 445 445 

N of countries 63 63 63 63 63 63 25 25 

R-squared 0.313 0.314 0.319 0.321 0.322 0.322 0.393 0.394 

K-P rk LM (p-val)     0.000 0.000 0.000 0.000 

K-P rk Wald F     1266 406.1 623.6 243.1 

Hansen J (p-val)         . . 0.934 0.887 

Notes: as under Table 6 
Source: Authors’ elaboration using data from Elsevier/Scopus (Zhang et al., 2021) and PWT 10.0. 
 

5. Conclusions 

An increasing body of empirical literature documents the puzzling mismatch between expectations 

related to the production and diffusion of modern digital technologies on the one hand and the poor 

reflection of them in official productivity records of many countries on the other. Evidence on the 

modern productivity paradox referring explicitly to the effects of AI technologies is still scant. Our study 

has differed from other works on the productivity-digital technology nexus in that (i) it explicitly focuses 

on AI technologies (while the cross-country literature on the ‘modern productivity paradox’ refers mainly 

to an earlier wave of technological progress, namely ICT); (ii) it quantifies the importance of highly 

intangible AI solutions using both patent and publication data; and (iii) it provides a complete 

international picture of the AI innovation-productivity nexus comparing developments in the OECD 

countries with a wider non-OECD sample from the mid-1980s onwards (while the related literature is 

country-specific and/or only focuses on industrialised countries). 

By comparing AI data with productivity records we have shown that an increase in patenting and 

scientific activity can indeed be observed in the AI domain. However, this activity is at odds with evidence 

on productivity growth. Our results point towards negligible macro-level effects of AI technology 
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production, especially of that reflected in patent records. This result characterises OECD countries but 

they do not differ from the rest of the world, as is shown by our wider estimates also taking into account 

non-OECD countries. 

Our results, confirming the niche character of AI, enrich the findings assessing the long-run 

productivity effects of broader 4IR technologies encompassing AI among other domains (Benassi et al., 

2022, Venturini, 2022). Moreover, our study needs to be read in the context of related micro-level 

evidence. Even if the engagement of countries in the production of knowledge leading to AI 

technological innovation is not (yet?) reflected in their aggregate productivity growth records, as this 

study has shown, productivity gains from AI can be manifested within firms (Benassi et al., 2022; Damioli 

et al., 2021; Gal et al., 2019). At the micro level digital technologies can even accelerate the recovery of 

production to pre-COVID-19 levels (Cugno et al., 2022). 
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Appendix A 

Table A.1. List of countries 

Group of countries 

(number of countries) 

Countries 

OECD (35)1) Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Republic of Korea, Latvia, 

Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, 

Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States 

non-OECD (28)2) 

 
Argentina, Brazil, Bulgaria, China (People's Republic of), China Hong Kong SAR3), Colombia, 

Costa Rica, Croatia, Cyprus, Ecuador, India, Indonesia, Jamaica, Lithuania, Malaysia, Malta, 

Pakistan, Peru, Philippines, Romania, Russian Federation, Singapore, South Africa, Sri Lanka, 

Taiwan3), Thailand, Uruguay, Venezuela 

Note: 1) The OECD group includes countries that were OECD members at the end of the research period, i.e. at the end of 
2017, thus it does not classify Colombia, Costa Rica, and Lithuania as OECD economies; 2) the analysis based on AI scientific 
publications uses all listed non-OECD countries. Due to data limitations, the analysis using AI patent data includes only 
countries that are underlined 3) original data sources (OECD, Penn World Table) report separate statistics for these territories 
despite their complex political status and/or relationship with China. The patent data in the OECD (2021c) is reported 
separately for China (People's Republic of), Hong Kong - Special Administrative Region of China, and Chinese Taipei (TWN). 
Penn World Table (PWT 10.0, Feenstra et al., 2015) reports separate productivity statistics for China; China Hong Kong SAR, 
and Taiwan (TWN). 
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Table A.2. Pairwise correlations between explanatory variables 
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RQ 0.3925* 0.4765* 0.5381* 0.3692* 0.5545* 0.6033* 

       

 ln(
𝐴𝐼𝑺𝑻𝑃𝑢𝑏

𝐿
) ln(𝐺𝐼𝑃𝑎𝑡) ln(𝐺𝐼𝑃𝑢𝑏) HC Trade RQ 

ln(
𝐴𝐼𝑺𝑻𝑃𝑢𝑏

𝐿
) 1      

ln(𝐺𝐼𝑃𝑎𝑡) 0.6120* 1     

ln(𝐺𝐼𝑃𝑢𝑏) 0.8665* 0.7655* 1    

HC 0.4178* 0.6404* 0.5868* 1   

Trade 0.1528* 0.1669* 0.0663* 0.1547* 1  

RQ 0.3342* 0.6113* 0.5672* 0.5064* 0.1799* 1 

Note: * correlations significant at the 10% level. Correlations were calculated using a sample of OECD countries. APP refers 
to patents by applicants, INV refers to patents by inventors 
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Table A.3. Summary statistics for the variables employed in the empirical model (eq. 1) 
 Sample: OECD countries 

Variable  Obs Mean Std. Dev. Min Max 

∆ln(
𝑌

𝐿
)per mil hours worked 1067 0.0252 0.0396 -0.1788 0.2341 

∆ln(
𝑌

𝐿
) per mil persons employed 1095 0.0223 0.0420 -0.2776 0.2371 

ln(
𝐾

𝐿
) 1102 5.3641 0.5425 3.3437 6.1937 

ln(
𝐴𝐼𝑃𝑎𝑡

𝐿
)APP 661 -7.4707 1.5255 -13.4920 -4.3902 

ln(
𝐴𝐼𝑃𝑎𝑡

𝐿
)INV 713 -7.5629 1.5035 -13.3582 -4.6190 

ln(
𝐴𝐼𝑃𝑢𝑏

𝐿
) 693 -4.1367 0.8907 -7.5803 -2.4903 

ln(
𝐴𝐼𝑺𝑻𝑃𝑎𝑡

𝐿
)APP 753 -6.1734 1.6691 -12.2431 -2.9458 

ln(
𝐴𝐼𝑺𝑻𝑃𝑎𝑡

𝐿
) INV 825 -6.3283 1.6382 -12.8581 -2.9814 

ln(
𝐴𝐼𝑺𝑻𝑃𝑢𝑏

𝐿
) 695 -2.6775 0.9851 -6.3222 -1.0777 

ln(𝐺𝐼𝑃𝑎𝑡) 1066 -1.5892 2.1103 -9.3829 1.2106 

ln(𝐺𝐼𝑃𝑢𝑏) 700 2.0932 0.9251 -1.1019 3.6010 

HC 1130 3.0913 0.4173 1.7016 3.8071 

Trade 1089 81.8259 50.7417 15.8103 408.3620 

RQ 665 1.2786 0.4477 0.0351 2.0980 

 Sample: OECD & non-OECD countries 

Variable  Obs Mean Std. Dev. Min Max 

∆ln(
𝑌

𝐿
)per mil hours worked 1844 0.0270 0.0489 -0.2660 0.2699 

∆ln(
𝑌

𝐿
) per mil persons employed 2909 0.0198 0.1195 -2.6832 1.9689 

ln(
𝐾

𝐿
) 1910 4.7776 1.0025 1.8120 6.1937 

ln(
𝐴𝐼𝑃𝑎𝑡

𝐿
)APP 861 -7.9732 1.9569 -14.5201 -4.3902 

ln(
𝐴𝐼𝑃𝑎𝑡

𝐿
)INV 953 -8.1393 1.9404 -15.2881 -4.6190 

ln(
𝐴𝐼𝑃𝑢𝑏

𝐿
) 1198 -4.9412 1.7210 -11.3604 -2.2619 

ln(
𝐴𝐼𝑺𝑻𝑃𝑎𝑡

𝐿
)APP 1010 -6.8452 2.2017 -14.3949 -2.9458 

ln(
𝐴𝐼𝑺𝑻𝑃𝑎𝑡

𝐿
) INV 1169 -7.1415 2.1583 -13.6259 -2.9814 

ln(
𝐴𝐼𝑺𝑻𝑃𝑢𝑏

𝐿
) 1219 -3.5962 1.9023 -10.6454 -0.8520 

ln(𝐺𝐼𝑃𝑎𝑡) 1829 -3.2134 2.9628 -11.0590 1.2106 

ln(𝐺𝐼𝑃𝑢𝑏) 1234 1.1076 1.7140 -4.7007 3.6010 

HC 2712 2.6855 0.5819 1.2079 3.9742 

Trade 2773 85.2730 60.8454 9.1358 442.6200 

RQ 1767 0.4888 0.9264 -2.2362 2.2605 

Note: For the list of countries, see Appendix A (Table A.1). APP refers to patents by applicants, INV refers to patents by 
inventors 
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Appendix B. Robustness checks 

 

Table B.1. The relationship between AI technology production stock (measured by AI patents 
by inventors) and labour productivity growth, OECD countries 

Dependent variable: 

∆ln(
𝑌

𝐿
) 

Patent stock 

OLS IV-GMM1) IV-GMM2) 

(1) (2) (3) (4) (5) (6) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.079*** -0.098*** -0.080*** -0.097*** -0.110*** -0.193*** 

 (0.022) (0.026) (0.019) (0.022) (0.029) (0.038) 

∆ln(
𝐾

𝐿
) 0.467*** 0.483*** 0.440*** 0.456*** 0.350*** 0.361*** 

 (0.103) (0.099) (0.079) (0.079) (0.108) (0.105) 

ln(
𝐴𝐼𝑆𝑇𝑃𝑎𝑡

𝐿
) 0.001 -0.001 -0.001 -0.002 0.004 0.005 

 (0.003) (0.003) (0.003) (0.003) (0.005) (0.004) 

ln(𝐺𝐼𝑃𝑎𝑡)  0.014*  0.013**  0.026*** 
  (0.008)  (0.006)  (0.008) 

N 818 818 791 791 309 309 

N of countries 34 34 34 34 17 17 

R-squared 0.317 0.325 0.301 0.309 0.384 0.422 

K-P rk LM (p-val)   0.000 0.000 0.000 0.000 

K-P rk Wald F   823.3 365.3 102.2 87.30 

Hansen J (p-val)     . . 0.0934 0.997 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; 
all specifications contain country and time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based 
on productivity per hour worked. 1) Patents are instrumented with the aid of their first lag, 2) Patents are instrumented with 
the aid of instrument described in Section 4.1 and supported by first lag of explanatory variable. 
 

Table B.2. The relationship between AI technology production stock (measured by AI patents 
by inventors) and labour productivity growth, full sample OECD and non-OECD countries 

Dependent variable: 

∆ln(
𝑌

𝐿
) 

Patent stock 

OLS IV-GMM1) IV-GMM2) 

(1) (2) (3) (4) (5) (6) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.064*** -0.090*** -0.064*** -0.091*** -0.080*** -0.114*** 

 (0.014) (0.017) (0.013) (0.016) (0.023) (0.027) 

∆ln(
𝐾

𝐿
) 0.508*** 0.508*** 0.487*** 0.493*** 0.384*** 0.368*** 

 (0.079) (0.075) (0.062) (0.061) (0.087) (0.085) 

ln(
𝐴𝐼𝑆𝑇𝑃𝑎𝑡

𝐿
) 0.003 -0.000 0.004* 0.000 0.010** 0.006 

 (0.003) (0.002) (0.002) (0.003) (0.004) (0.004) 

ln(𝐺𝐼𝑃𝑎𝑡)  0.016**  0.017***  0.017** 
  (0.006)  (0.004)  (0.007) 

N 1,159 1,159 1,111 1,111 427 427 

N of countries 56 56 55 55 23 23 

R-squared 0.282 0.295 0.274 0.288 0.332 0.347 

K-P rk LM (p-val)   0.000 0.000 0.000 0.000 

K-P rk Wald F   1127 445.8 290.8 124.8 

Hansen J (p-val)       0.118 0.949 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; 
all specifications contain country and time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based 
on productivity per hour worked. 1) Patents are instrumented with the aid of their first lag, 2) Patents are instrumented with 
the aid of instrument described in Section 4.1 and supported by first lag of explanatory variable. 
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Table B.3. The impact of AI technology production (measured by AI patents stock by 
applicants and by AI scientific publications stock) on labour productivity (output per number 
of persons employed) for OECD countries and for full sample OECD and non-OECD 
countries 

Dependent 
variable: 

∆ln(
𝑌

𝐿
) 

Patent stock Publication stock 

OECD countries 
OECD & non-OECD 

countries 
OECD countries 

OECD & non-OECD 
countries 

IV-
GMM1) 

IV-
GMM2) 

IV-
GMM1) 

IV-
GMM2) 

IV-
GMM1) 

IV-
GMM2) 

IV-
GMM1) 

IV-
GMM2) 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.113*** -0.211*** -0.008 -0.062** -0.150*** -0.150*** -0.023 -0.105*** 

 (0.023) (0.033) (0.054) (0.027) (0.024) (0.029) (0.066) (0.021) 

∆ln(
𝐾

𝐿
) 0.358*** 0.150 0.426*** 0.340*** 0.379*** 0.311*** 0.491*** 0.372*** 

 (0.112) (0.136) (0.101) (0.122) (0.098) (0.101) (0.069) (0.090) 

ln(
𝐴𝐼𝑆𝑇𝑃𝑎𝑡

𝐿
) -0.002 -0.008* 0.007 0.003     

 (0.004) (0.004) (0.005) (0.005)     

ln(
𝐴𝐼𝑆𝑇𝑃𝑢𝑏

𝐿
)     0.025*** 0.023*** 0.009 0.021*** 

     (0.008) (0.007) (0.007) (0.008) 

N 720 260 1,035 363 660 318 1,641 448 

N of countries 33 16 57 22 35 18 90 25 

R-squared 0.334 0.446 0.203 0.348 0.371 0.462 0.152 0.420 

K-P rk LM (p-val) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

K-P rk Wald F 567.3 122.9 1092 318.1 398.9 514.9 2941 618.2 

Hansen J (p-val) . 0.208 . 0.0427 . 0.766 . 0.828 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; 
all specifications contain country and time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based 
on productivity per number of persons employed. 1) Publications are instrumented with the aid of their first lag, 2) Publications 
are instrumented with the aid of instrument described in Section 4.1 and supported by first lag of explanatory variable. 

 
Table B.4. The relationship between AI technology production (measured by AI patents) and 
labour productivity growth, two sub-periods: 1985-2000 and 2001-2016. 

Dependent 
variable: 

∆ln(
𝑌

𝐿
) 

Patent stock 

Time period: 1985-2000 Time period: 2001-2016 

OECD countries 
OECD & non-OECD 

countries 
OECD countries 

OECD & non-OECD 
countries 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.162*** -0.266*** -0.184*** -0.280*** -0.196*** -0.220*** -0.126*** -0.143*** 

 (0.025) (0.056) (0.028) (0.086) (0.037) (0.053) (0.024) (0.037) 

∆ln(
𝐾

𝐿
) 0.104 0.034 0.205 0.122 0.440*** 0.367*** 0.352*** 0.274** 

 (0.144) (0.199) (0.140) (0.211) (0.101) (0.114) (0.089) (0.118) 

ln(
𝐴𝐼𝑆𝑇𝑃𝑎𝑡

𝐿
) -0.001 0.008 -0.007 0.005 0.001 -0.002 0.002 0.006 

 (0.004) (0.008) (0.005) (0.010) (0.007) (0.007) (0.005) (0.007) 

N 260 76 299 99 460 184 656 262 

N of countries 23 7 27 10 33 16 51 22 

R-squared 0.282 0.435 0.259 0.339 0.339 0.465 0.319 0.421 

K-P rk LM (p-val) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

K-P rk Wald F 717.0 147.1 702.9 103.9 102.4 47.47 166.6 117.6 

Hansen J (p-val)  0.135  0.195  0.322  0.818 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; 
all specifications contain country and time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based 
on productivity per hour worked. Columns (1,3,5,7) – patents are instrumented with the aid of their first lag, Columns (2,4,6,8) 
– patents are instrumented with the aid of instrument described in Section 4.1 and supported by first lag of explanatory 
variable. 
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Table B.5. The relationship between AI technology production (measured by AI patents) and 
labour productivity growth, sub-period: 1998-2016. 

Dependent variable: 

∆ln(
𝑌

𝐿
) 

Patent stock 
Time period: 1998-2016 

OECD countries OECD & non-OECD countries 

(1) (2) (3) (4) 

ln(
𝑌

𝐿
)
𝑡−1

 -0.133*** -0.139*** -0.093*** -0.106*** 

 (0.032) (0.045) (0.022) (0.034) 

∆ln(
𝐾

𝐿
) 0.353*** 0.133 0.379*** 0.271** 

 (0.115) (0.135) (0.090) (0.120) 

ln(
𝐴𝐼𝑆𝑇𝑃𝑎𝑡

𝐿
) 0.001 -0.007 0.005 0.009 

 (0.006) (0.006) (0.004) (0.005) 

N 566 215 783 308 

N of countries 33 16 51 22 

R-squared 0.303 0.400 0.285 0.366 

K-P rk LM (p-val) 0.000 0.000 0.000 0.000 

K-P rk Wald F 223.5 79.11 378.4 242.3 

Hansen J (p-val)  0.0964  0.221 

Notes: *,**,*** denote significance at the 1%, 5%, 10% levels respectively; robust standard errors are provided in parentheses; 
all specifications contain country and time fixed effects; K-P refers to Kleibergen-Paap test statistics. All estimations are based 
on productivity per hour worked. Columns (1,3) – patents are instrumented with the aid of their first lag. Columns (2,4) – 
patents are instrumented with the aid of instrument described in Section 4.1 and supported by first lag of explanatory variable. 
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