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In the euro area, monetary policy is conducted by a single
central bank for 20 member countries. However, countries are
heterogeneous in their economic development, including their
inflation rates. This paper combines a New Keynesian model
and a neural network to assess whether the European Central
Bank (ECB) conducted monetary policy between 2002 and 2022
according to the weighted average of the inflation rates within
the European Monetary Union (EMU) or reacted more strongly
to the inflation rate developments of certain EMU countries.
The New Keynesian model first generates data which is used to
train and evaluate several machine learning algorithms. We find
that a neural network performs best out-of-sample. We use this
algorithm to (i) generally classify historical EMU data, and to (ii)
determine the exact weight on the inflation rate of EMU members
in each quarter of the past two decades. Our findings suggest
disproportional emphasis of the ECB on the inflation rates of
EMU members that exhibited high inflation rate volatility for the
vast majority of the time frame considered (80%), with a median
inflation weight of 67% on these countries. We show that these
results stem from a tendency of the ECB to react more strongly
to countries whose inflation rates exhibit greater deviations from
their long-term trend.
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I. Introduction

In the European Monetary Union (EMU), monetary policy is conducted by a
single central bank for its 20 member countries. The European Central Bank
(ECB) aims to stabilize the union-wide price level. This setup harbors an obvious
potential issue when countries are heterogeneous in their economic development,
including the development of their inflation rates. In particular, we show that
EMU members significantly differ in their inflation rate volatility: some countries
exhibit below-average inflation rate volatility while others display above-average
volatility.

This naturally raises the question of whether the ECB conducts monetary policy
in accordance with the EMU’s weighted average of the inflation rates (i.e., with
changes in the HICP)1 or reacts more strongly to potential deflationary or infla-
tionary pressure in some member states. This paper aims to shed light on how
the ECB conducted monetary policy over the past two decades, especially with
regard to the weighting of different inflation rate developments. Since latent vari-
ables, such as the ECB’s inflation weight on EMU members, cannot be directly
observed and may be subject to variation over time, conventional empirical meth-
ods fall short in its identification. To circumvent these challenges, we simulate
a New Keynesian model of a monetary union to generate a synthetic data set in
which we control for variation in this latent variable. The New Keynesian model
is then combined with a neural network (NN) to assess the ECB’s historical in-
flation weight on high- and low-volatility countries over the last two decades. We
find that the ECB reacted disproportionally to the inflation rates experienced by
EMU members that exhibited high inflation rate volatility (in 80% of the quar-
ters).
Our analysis consists of five parts. First, we establish that inflation rate develop-
ments structurally differ between EMU countries. Second, we build a two-country
New Keynesian model of a monetary union that replicates first and second mo-
ments of main macroeconomic variables in low- and high-volatility EMU countries.
In the model, the central bank is assumed to react to the union-wide inflation
rate or more strongly to the inflation rate experienced by either the low- or the
high-volatility country respectively. Third, we use this data set to train and eval-
uate a multitude of machine learning algorithms. We find that a NN performs
best, accurately categorizing over 97% of the simulated data in an out-of-sample
exercise. Fourth, using the trained NN, we classify a historical EMU data set
between 2002 and 2022. The machine learning algorithm classifies 80% of the last
two decades as periods during which the ECB reacted more strongly to the infla-

1Specifically, the ECB states that “the Harmonised Index of Consumer Prices (HICP) is used to
measure consumer price inflation”, which is “compiled by Eurostat” (European Central Bank, 2022).
Eurostat calculates the European HICP “as the weighted average of the national HICPs, using the
weights of the countries [...] concerned. The weight of a country is based on the share of the HFMCE
[household final consumption expenditure that occurs in monetary transactions] in the total”(Eurostat,
2022).
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tion rates of high-volatility countries. Fifth, we use a regression NN to determine
the exact inflation weight of the ECB in each quarter. We find that the distri-
bution of historical inflation weights is skewed towards high-volatility countries
with a median weight of 67%. We empirically show that this result stems from
a tendency of the ECB to react more vigorously to the countries whose inflation
rates deviate more strongly from their long-term trend. We infer that the ECB’s
loss function depends on the individual inflation rate deviations of its members
rather than the deviation of the average inflation rate in the EMU.
Our paper contributes to the existing literature in the following ways. The ap-
proach relates to the trade-off between the degree of theoretical coherence and
empirical validity during the model selection process. Pagan (2003) proposes an
illustration of this trade-off, known as the Pagan Frontier, in which Dynamic
Stochastic General Equilibrium (DSGE) and vector autoregression (VAR) mod-
els are the corresponding specializations. Recently, Genberg and Karagedikli
(2021) suggested an extension of the Pagan Frontier in conjunction with the
growing trend of machine learning in macroeconomics and monetary policy (e.g.,
Chakraborty and Joseph, 2017; Hansen et al., 2017; Athey, 2019; Tiffin, 2019;
Hinterlang, 2020; Baumgärtner and Zahner, 2021; Doerr et al., 2021; Paranhos,
2021; Fouliard et al., 2021), where the black box algorithms are (at least) equiv-
alent in terms of empirical coherence. Figure 1 illustrates this adjusted Pagan
Frontier. The authors then pose the question of how machine learning “can move
towards the middle, and what modifications need to be introduced to enable them
to do so” (Genberg and Karagedikli, 2021, p. 4). In this paper, we propose such a
modification by combining DSGE and machine learning models to study inflation
dynamics in the EMU.

Empirical coherence

Theoretical coherence

DSGE

DSGE − V AR

DSGE +ML

SV AR

ML

Figure 1 : The Pagan Frontier.

Notes: The illustration resembles Pagan’s (2003) original frontier with the extensions by Genberg and
Karagedikli (2021). We append the combination of a DSGE model and a machine learning algorithm.

To the best of our knowledge, Hinterlang and Hollmayr (2022) is the only paper



4

using an approach similar to ours. They generate a synthetic data set from a
DSGE model to identify monetary and fiscal dominance regimes in the United
States. Their approach differs primarily in terms of the applied machine learn-
ing models. The authors focus on tree-based models, with the best performing
model (AdaBoost) achieving 95% accuracy on a binary classification task with
many covariates. We extend this approach by employing NNs, which outperform
tree-based models in our case. We further extend the classification approach by
Hinterlang and Hollmayr (2022) to a regression approach, which allows us to
estimate precise weights.
Lastly, we add to the literature on the assessment of inflation differentials within
New Keynesian models (e.g., Canzoneri et al., 2006; Angeloni and Ehrmann, 2007;
Andrés et al., 2008; Duarte and Wolman, 2008; Rabanal, 2009).
The remainder of this paper is structured as follows. In Section II, we motivate
our research question and provide preliminary descriptive evidence. Section III
introduces the New Keynesian model used for the data-generating process, before
Section IV assesses first and second moments of the simulation. Section V in-
troduces and evaluates the machine learning algorithms, which are subsequently
applied to historical EMU data in Section VI. We present robustness checks in
Section VII. Section VIII concludes this paper.

II. Inflation Development in the Euro Area

The primary objective of the ECB is price stability across the euro area. While its
monetary policy tools are designed to apply uniformly across its member states, in
reality there is substantial heterogeneity across the EMU with respect to inflation
rates. This heterogeneity might pose challenges for the ECB when determining
the appropriate stance of monetary policy.2 If some countries consistently fall
below the inflation target, expansionary monetary policy would be justified in
order to stimulate economic activity and raise inflation in those countries. At
the same time, such a policy stance would be inappropriate for the remaining
countries, if inflationary pressures there call for contractionary measures.
This is particularly relevant when countries deviate structurally from the euro
area average inflation rate. Figure 2 illustrates the inflation rate development of
selected EMU countries between 2002 and 2022. Panel b highlights the average
deviation of each member when the 2% target is exceeded, as well as in times
when the 2% target is missed.
The illustration suggests that Greece (EL), Ireland (IE), Italy (IT), Portugal
(PT), and Spain (ES) (highlighted in red in Figure 2) consistently exceed the
euro area average in times of high inflation and exhibit below-average inflation
rates in times of low inflation. This implies a higher inflation volatility (standard

2While the focus of our work is on inflation differentials across countries, we recognize the possibility
of heterogeneous inflation developments within countries (e.g., Jaravel, 2018). However, a recent ECB
working paper by Consolo et al. (2021) suggests that inflation variation across countries in the EMU is
more substantial than inflation variation within countries. We therefore focus on the former.
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deviation) in those countries (∼ 1.6 on average, shown in panel a) than the average
inflation rate of all EMU members (∼ 1.4).3
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Figure 2 : Inflation Rate Developments and Average Inflation Deviations.

Notes: Panel a: Moving 12-month average inflation rate development of selected high-volatility (red)
and low-volatility (blue) countries. Grey-shaded areas indicate periods in which the EMU-wide inflation
rate was below 2%. Panel b: Average deviation of the inflation rate of EMU members in periods where
the EMU-wide inflation rate was above 2% (left hand side, LHS) and where the EMU-wide inflation rate
was below 2% (right hand side, RHS). BE: Belgium, CY: Cyprus, EE: Estonia, FI: Finland, FR: France,
LV: Latvia, LT: Lithuania, LU: Luxembourg, MT: Malta, SK: Slovakia, SI: Slovenia. Own calculation,
based on years in which countries were members of the EMU. Timeframe: January 2002 - June 2022.
Data source: Eurostat.

Conversely, the inflation rates of Austria (AT), Germany (DE), and the Nether-
lands (NL) (highlighted in blue in Figure 2) display lower volatility (∼ 1.0 on
average) than the EMU-wide rate. This implies that, on average, their inflation
rates deviate positively from the EMU-wide rate in times of low inflation and
vice versa (panel b).4 The difference between high- and low-volatility countries

3The average inflation rate volatility of a country group is calculated as the standard deviation of the
12-month moving average rate of change of the HICP of all countries in the respective group. The results
are qualitatively and quantitatively the same when using the average of the country-specific volatilities.
The time frame considered is January 2002 to June 2022.

4Note that we do not include France in either of the country blocks, as France displays negative
deviations in both times of high and of low inflation.
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is significant at the 5% level.
This descriptive evidence naturally raises the question of whether the ECB con-
ducts monetary policy in accordance with the weighted average of the inflation
rates within the EMU (see Footnote 1) or reacts more strongly to potential de-
flationary/inflationary pressure in some EMU member states.

Table 1: EMU Taylor Rule

Dependent variable:

Interest Rate

(1) (2) (3) (4) (5)

HICP -2% 2.52∗∗∗ 2.24∗∗∗ 2.44∗∗∗ 2.04∗∗∗ 1.86∗∗∗

(0.19) (0.14) (0.26) (0.12) (0.32)

Constant −0.12 −0.17 −0.20 −0.21 −0.41∗

(0.19) (0.17) (0.22) (0.16) (0.24)

Weight on LV countries (ω) = 0.5 0.2 0.8 0 1

Observations 240 240 240 240 240

R2 0.43 0.53 0.26 0.56 0.12

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; HICP is calculated as follows: HICP :=
ω × CPILV + (1− ω)× CPIHV .

Although this question may be approached through conventional empirical meth-
ods, the constraints of this form of investigation lie in the assumptions underlying
the empirical tools. To illustrate, we employ an Ordinary Least Squares (OLS)
regression of the Taylor Rule type, wherein we regress weighted averages of the
Harmonised Index of Consumer Prices (HICP) of high and low volatility countries
on the ECB’s short-term interest rates.5 The results are in Table 1. Assuming
equal weights, the inflation response coefficient is estimated at 2.5 and the model
can explain 43% of the variation. Assigning higher weights to high-volatility
countries leads the inflation response coefficient to decrease but the explained
variation to increase substantially.6

While this may be interpreted as a bias towards high volatility countries, the
regression results do not provide guidance on which weight accurately describes
historical EMU monetary policy, leaving it subject to the discretion of the re-
searcher. In lieu of this shortcoming, we adopt a data-driven approach that is
predicated upon a simple and tractable theoretical model. This approach per-
mits us to generate simulations for multiple scenarios, and to select the optimal

5We rely on the data set presented in Table 3.
6It could be (incorrectly) inferred from Table 1 that either a) solely the inflation rate of countries

exhibiting high volatility holds relevance to the interest rate setting of the ECB, or b) that the inflation
rates of both country blocks are highly correlated to the extent that their distinction is insignificant. To
address these issues, we conduct an analysis of variance (ANOVA), verifying that the inflation rate of
low-volatility countries contributes to the explained variation even after controlling for the inflation rate
of high-volatility countries, indicating the importance of observing both simultaneously.
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weight that exhibits superior fit across a range of variables. Additionally, our
approach enables us to undertake a dynamic assessment of variations in the in-
flation weight over time, a task that is infeasible within the confines of a linear
modeling framework.

III. Model

This section presents the model that generates the synthetic data set used to
train and evaluate the machine learning mechanisms described in Section V. It
is purposely kept simple and tractable. However, we test the robustness of our
results with a more complex model (see Section VII). The model consists of two
countries, k = L,H, with −k being the respective other country, in a monetary
union. Each country consists of a household and a firm sector. Monetary policy
is conducted on the union level.

A. Households

The utility function of a representative household in country k (household k, for
simplicity) is given by

Uk
t = Zk

t log
(
Ck
t −ΨkC

k
t−1

)
−
(
Nk

t

)1+φk

1 + φk
,(1)

with Zk
t being defined as an AR(1) preference shock, Ψk as a habit parameter,

Nk
t as labor, φk as the inverse Frisch elasticity of labor supply, and Ck

t as a con-
stant elasticity of substitution (CES) index of consumption. Preferences change
individually by country

log
(
Zk
t

)
= ρZ log

(
Zk
t−1

)
+ ηkZϵZ,t,

where ρZ denotes the persistence, ηkZ is a scaling parameter that determines the
strength of the shock, and ϵZ,t ∼ N

(
0, σ2

Z

)
is a normally distributed shock with

mean 0 and variance σ2
Z . The CES consumption index is given by:

Ck
t ≡

γ

1

ϑk
C

k

(
Ck
k,t

)ϑk
C−1

ϑk
C + (1− γk)

1

ϑk
C

(
Ck
−k,t

)ϑk
C−1

ϑk
C


ϑk
C

ϑk
C

−1

.(2)

Ck
k,t is defined as the consumption of domestically produced goods, Ck

−k,t rep-
resents foreign consumption. The parameter γk indicates the relative weight of
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domestic goods, ϑk
C denotes the elasticity of substitution between the goods. Ck

k,t

and Ck
−k,t are symmetric CES functions given by

Ck
k,t ≡

(∫ 1

0
Ck
k,t(i)

ϵ−1
ϵ di

) ϵ
ϵ−1

,(3)

Ck
−k,t ≡

(∫ 1

0
Ck
−k,t(i)

ϵ−1
ϵ di

) ϵ
ϵ−1

,(4)

with ϵ denoting the elasticity of substitution between domestic and foreign vari-
eties respectively.

Expenditure minimization with respect to the varieties yields

Ck
k,t(i) =

(
Pk,t(i)

Pk,t

)−ϵ

Ck
k,t,(5)

Ck
−k,t(i) =

(
P−k,t(i)

P−k,t

)−ϵ

Ck
−k,t,(6)

with Pk,t ≡
(∫ 1

0 Pk,t(i)
1−ϵdi

) 1
1−ϵ

and P−k,t ≡
(∫ 1

0 P−k,t(i)
1−ϵdi

) 1
1−ϵ

being the

overall price indices of domestic and foreign goods respectively.

Expenditure minimization with respect to the level of domestic and foreign con-
sumption gives

Ck
k,t =

(
Pk,t

PC,k
t

)−ϑk
C

γkC
k
t ,(7)

Ck
−k,t =

(
P−k,t

PC,k
t

)−ϑk
C

(1− γk)C
k
t ,(8)
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with PC,k
t ≡

(
γkP

1−ϑk
C

k,t + (1− γk)P
1−ϑk

C
−k,t

) 1

1−ϑk
C being defined as the consumer price

index of household k. The household maximizes its expected discounted lifetime
utility given by

Et

[ ∞∑
ι=0

βιUk
t+ι

]
,(9)

subject to the budget constraint

PC,k
t Ck

t +QtB
k
t = Bk

t−1 +W k
t N

k
t +Dk

t ,(10)

where Bk
t is defined as one-period, nominally risk-free bonds purchased at price

Qt, W
k
t as the nominal wage, and Dk

t as exogenous dividends from the ownership
of firms. The optimality conditions are given by

(
Nk

t

)φk

= wk,tU
k
c,t,(11)

Qt = β Et

[
Λk
t,t+1

1

ΠC,k
t+1

]
(12)

with Uk
c,t ≡ Zt

Ck
t −ΨkC

k
t−1

− Et[Zt+1]Ψkβ

Et[Ck
t+1]−ΨkC

k
t

being defined as the marginal utility of

consumption, wk
t ≡ Wk

t

PC,k
t

as the real wage, βΛk
t,t+1 ≡ β Et

[
Uk
c,t+1

Uk
c,t

]
as the stochas-

tic discount factor, and ΠC,k
t+1 ≡ PC,k

t+1

PC,k
t

as HICP inflation. Due to the shared bond

market, we can obtain the following risk sharing condition between the two house-
holds by combining the Euler equations for each household

Uk
c,t = U−k

c,t Φ
k PC,k

t

PC,−k
t

,(13)

with Φk≡Uk
c,SS

U−k
c,SS

, where the subscript SS denotes the zero inflation steady state of
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a variable.

B. Firms

In each country, a representative firm k produces one variety i of goods. The
production function is given by

Yk,t(i) =
(
Nk

t (i)
)1−αk

,(14)

where 1 − αk is the partial factor elasticity of labor. The real cost function is
given by

TCk,t(i) = Ak
tw

k
tN

k
t (i),(15)

where Ak
t is a cost-push shock given by

log
(
Ak

t

)
= ρAlog

(
Ak

t−1

)
+ ηkAϵA,t.

ρA denotes the persistence, ηkA determines the strength of the shock, and ϵA,t ∼
N
(
0, σ2

A

)
is a normally distributed shock with mean 0 and variance σ2

A. The firm
maximizes its expected stream of current and future profits given by

Et

[ ∞∑
ι=0

βιΛk
t,t+ιλ

ι
k

(
Pk,t(i)

PC,k
t+ι

Yk,t+ι|t(i)− TC
(
Yk,t+ι|t(i)

))]
,(16)

subject to

Yk,t+ι|t(i) =

(
Pk,t(i)

Pk,t+ι

)−ϵ

Yk,t+ι.(17)

λk is defined as the probability of a firm not being able to reset its price (as in
Calvo, 1983), Yk,t+ι|t(i) as the output of firm i in period t+ ι for a price set in t,
and Yk,t+ι as the overall output produced in country k. Dropping index i due to
symmetry, the optimal price is given by

(
p∗k,t
)1+ ϵαk

1−αk = µ

(
Pk,t

PC,k
t

)−1
xk1,t

xk2,t
,(18)
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where the auxiliary variables are defined as

xk1,t ≡ Uk
c,tYk,tmck,t + βλk Et

[
Π

ϵ
1−αk
k,t+1x

k
1,t+1

]
,

xk2,t ≡ Uk
c,tYk,t + βλk Et

[
Πϵ

k,t+1

(
ΠC,k

t+1

)−1
xk2,t+1

]
,

and p∗k,t≡
P ∗
k,t

Pk,t
. The variable mck,t =

1
1−αk

wk
t Y

αk
1−αk
k,t Ak

t denotes the economy-wide

real marginal costs of the good produced in country k and Πk,t+1≡
Pk,t+1

Pk,t
is defined

as inflation of domestic goods. Aggregate price dynamics are given by:

1 = (1− λk)
(
p∗k,t
)1−ϵ

+ λk

(
1

Πk,t

)1−ϵ

.(19)

C. Central Bank

The central bank follows a Taylor rule given by

it = ρ+ ϕπ

(
ωππ

C,H
t + (1− ωπ)π

C,L
t

)
,(20)

where it ≡ log (1/Qt), ρ ≡ log (1/β), and πC,k
t ≡ log

(
ΠC,k

t

)
. The parame-

ter ϕπ > 1 denotes the standard reaction coefficient of the central bank to
the weighted HICP inflation rates of households from countries H and L. If
ωπ = CH

SS/(C
H
SS + CL

SS), the central bank reacts to the average (as measured by
the ECB, see Footnote 1), economy-wide HICP inflation rate given by:

πC
t =

CH
SS

CH
SS + CL

SS

πC,H
t +

(
1−

CH
SS

CH
SS + CL

SS

)
πC,L
t .(21)

However, if ωπ ̸= CH
SS/(C

H
SS + CL

SS), the central bank reacts more strongly to the
HICP inflation rate of either country H (ωπ > CH

SS/(C
H
SS + CL

SS)) or L (ωπ <
CH
SS/(C

H
SS + CL

SS)) than suggested by the economy-wide inflation rate.

The Fisher equation holds for each household:

it = rkt + Et

[
πC,k
t+1

]
.(22)
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D. Market Clearing

Bond markets, labor markets, and goods markets clear:

Bk
t = −B−k

t ,(23)

Nk
t =

∫ 1

0
Nk

t (i)di,(24)

Yk,t = Ck
k,t + C−k

k,t .(25)

Union-wide output is defined as:

Yt = Yk,t + Y−k,t.(26)

E. Calibration

The calibration of the model draws from a multitude of sources. In order to
realistically capture the inflation rate developments reported in Section II, we
calibrate country H to represent the high-volatility EMU members (in particu-
lar, EL, IE, IT, PT, ES) and L according to the EMU members which exhibit
low inflation volatility (in particular, AT, DE, and NL).7 Note that these eight
countries account for more than 70% of EMU GDP. For the calibration, we utilize
studies that estimate the structural parameters for the countries that we use in
our model. In particular, we use Breuss and Rabitsch (2008) for AT, Albonico
et al. (2019) for DE, Garcia et al. (2021) for NL, Papageorgiou (2014) for EL,
Garcia et al. (2021) for IE, Albonico et al. (2019) for ES and IT, and Almeida
(2009) for PT.
We then continue by weighting each country-specific parameter with the country-
specific share of GDP in order to calculate the parameter values for H and L.8

For instance, the consumption habit parameter for country L is calculated in the
following way: the values for Germany (0.73), the Netherlands (0.65), and Austria
(0.67) are weighted with their relative GDP, leading to an overall value of 0.71
for L. The corresponding calibration is shown in Table A2.1.
We observe that high-volatility EMU members exhibit structurally higher habit
formation and a higher Frisch elasticity of labor supply. Interestingly, H and
L display a similar level of home bias in consumption as well as a comparable
elasticity of substitution between domestic and foreign goods. Importantly, prices
are stickier in low-volatility EMU member states, which plays an important role
when determining the volatility of the inflation rates of H and L. Note that we

7We decide to calibrate rather than to estimate the model for two reasons: (i) an endogeneity problem
might arise when estimating parameters with the same EMU data we aim to classify, and (ii) parameter
estimates might change depending on the country weights in the Taylor rule.

8Note that weighting with consumption shares delivers similar results.



13

Table 2: Calibration.

Description Value

Households

H L

Ψk Habit parameter 0.77 0.71

φk Inverse Frisch elasticity 2.01 2.73
ηkZ Preference shock strength 1 0.45

γk Weight of domestic goods 0.75 0.75

ϑk
C Elasticity of substitution 1.42 1.50

between domestic and foreign goods

ϵ Price elasticity of demand 6 6

β Discount rate 0.995 0.995

Firms

H L

αk Output elasticity labor 0.33 0.33

ηkA Cost-push shock strength 1 0.45
λk Calvo parameter 0.737 0.852

Central Bank

ϕπ Taylor rule coefficient 1.5; 2.5

ωπ HICP inflation weight
CH

SS

CH
SS

+CL
SS

; [0.1, 0.9]

assume the preference and the cost-push shock to differ in their impacts between
the countries. The validity of this assumption is discussed in Section IV. Lastly, we
simulate model responses for a variety of different Taylor rule specifications. We
simulate three baseline models: one in which the central bank reacts to the union-
wide inflation rate (ωC ≡ ωπ = CH

SS/(C
H
SS + CL

SS)), one where the central bank
reacts more strongly to country H (ωH ≡ ωπ = 0.8), and one in which the central
bank reacts more strongly to country L (ωL ≡ ωπ = 0.2).9 In Section VI.C, we
extend ω to a continuous interval ranging from 0.1 to 0.9. The reaction coefficient
is set to 1.5 in all cases.10 We therefore simulate the model for 3 different versions
of the Taylor rule, which are then used to train and evaluate a multitude of
machine learning mechanisms.

IV. Historical Data

In order to properly assess monetary policy in EMU, the New Keynesian model
must accurately match the statistical properties of historical EMU data, as we use
the simulated data to train the machine learning algorithms. We briefly describe
the historical EMU data in the following.

9Note that countries H and L are roughly equal in size. Therefore, the unbiased inflation weight in
the steady state is close to parity, i.e., ≈ 0.45.

10We test whether our findings depend on the choice of the central bank response parameter ϕπ . See
Section VII for details.
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A. Description

We collect data on consumption, employment, price levels, interest rates, output,
and population. Detailed information on data availability, frequency, and sources
can be found in Table 3.

Table 3: Data Sources.

Data Countries/Regions Years Frequency Source

Consumption AT, DE, EL, ES, IE, IT, NL, PT 2002–2022 Quarterly Eurostat: GDP and main components
Employment AT, EL, ES, IE, IT, NL, PT 2002–2022 Quarterly Eurostat: Employment

by sex, age, and citizenship
Price levels AT, DE, EL, ES, IE, IT, NL, PT 2002–2022 Monthly Eurostat: HICP - monthly data (index)
Interest rates EA 2002–2022 Monthly Bundesbank: ECB interest rates for

main refinancing operations,
shadow rates as in Wu and Xia (2020)

Output AT, DE, EA, EL, ES, IE, IT, NL, PT 2002–2022 Quarterly Eurostat: GDP and main components
Population AT, DE, EA, EL, ES, IE, IT, NL, PT 2002–2021 Annually Eurostat: Population on 1 January

by age and sex

Using population data, consumption, employment, and output values are con-
verted into per capita values.11 Measures for low- and high-volatility EMU mem-
bers are constructed as follows.

Consumption: In order to aggregate the country-specific values into a mea-
sure for consumption of low- and high-volatility EMU members, we calculate the
(consumption-)weighted average per capita consumption of the three low- and
five high-volatility countries.

Employment: We weight the per capita employment values with relative GDP
in order to calculate the aggregate measures for the low- and high-volatility coun-
tries. As data for DE is not available for the entire time period, the employment
data for the low-volatility countries is based on AT and NL.

Price levels: We use the monthly HICP index at the beginning of each quarter
for each country. Following the ECB, we calculate the aggregate price level of
low- and high-volatility countries by weighting the country-specific price levels
with the relative consumption of each country respectively (see Footnote 1).

Interest rates: Interest rates apply EMU-wide and are reported on a monthly
basis. We use the interest rate at the beginning of each quarter. Until 2004Q3,
we use the ECB’s interest rate for main refinancing operations (MRO rate) as
the policy rate. Starting in 2004Q4 (due to data availability), we utilize the
shadow rate, as in Wu and Xia (2020). The shadow rate is useful as it accounts

11We use population data from 2021 for the first quarter of 2022, as population data for 2022 is not
yet available.
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for unconventional monetary policy measures, specifically for quantitative easing.
Hence, including the shadow rate allows us to study an uninterrupted time series.
Furthermore, it ensures a comparable measure for monetary policy in the data as
well as in the simulated model results.

Output: We calculate the aggregate output measure for the low- and high-
volatility countries by weighting their individual GDP per capita with their rela-
tive total GDP. In addition, we use EMU-wide GDP per capita in our analysis.

Our New Keynesian model reports percentage deviations from steady state. As
the data generated from this model is used to train the machine learning algo-
rithms, it is necessary to transform the EMU data set into percentage deviations
from steady state as well. Therefore, the entire data set (except for the inter-
est rates) are transformed into logs and we utilize a Hamilton (2018) filter (lag
length p = 4, forecast horizon h = 8) in order to extract the cyclical component
of each variable in our data set. Figure 3 provides an overview of the trans-
formed macroeconomic variables. As expected, the macroeconomic indicators
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Figure 3 : Hamilton-Filtered Data of Aggregated Low-Volatility, High-Volatility,
and Euro Area Variables.

show greater variance in the high-volatility countries than in the low-volatility
ones. In particular, the aggregated inflation rate in the high-volatility countries
deviates more strongly from its trend than its low-volatility counterpart, as ex-
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Table 4: Comparison of Simulated Moments with Data.

Variable Description ωπ =
CH

SS

CH
SS+CL

SS

ωπ = 0.8 ωπ = 0.2 Data

CH
SS/C

L
SS Relative consumption per capita H, L 0.962 0.962 0.962 0.805

YH,SS/YL,SS Relative GDP per capita H, L 0.980 0.980 0.980 0.773
σ (ŷL,t) /σ (ŷH,t) Relative volatility GDP L, H 0.779 0.773 0.783 0.587
σ (ŷt) /σ (ŷH,t) Relative volatility union-wide GDP, H 0.857 0.888 0.862 0.671
σ (ŷt) /σ (ŷL,t) Relative volatility union-wide GDP, L 1.010 1.149 1.010 1.144
σ
(
ĉLt
)
/σ
(
ĉHt
)

Relative volatility consumption L, H 0.152 0.149 0.158 0.559
σ
(
n̂L
t

)
/σ
(
n̂H
t

)
Relative volatility labor L, H 0.779 0.773 0.783 0.718

σ
(
π̂C,L
t

)
/σ
(
π̂C,H
t

)
Relative volatility inflation L, H 0.913 0.921 0.904 0.842

ρ (ŷL,t, ŷH,t) Correlation GDP L, H 0.859 0.844 0.871 0.591

ρ
(
π̂C,L
t , π̂C,H

t

)
Correlation inflation L, H 0.931 0.990 0.991 0.989

ρ
(
ĉLt , ĉ

H
t

)
Correlation consumption L, H 0.603 0.536 0.640 0.636

ρ
(
n̂L
t , n̂

H
t

)
Correlation labor L, H 0.859 0.844 0.871 0.132

ρ
(
n̂H
t , ĉHt

)
Correlation labor, consumption H 0.943 0.942 0.944 0.627

ρ
(
n̂L
t , ĉ

L
t

)
Correlation labor, consumption L 0.482 0.437 0.513 0.466

Note: x̂t denotes the deviation of a variable X from its zero inflation steady state.

pected from the examination of the descriptive data presented in Section II.12

B. Model Fit

We simulate 10,000 periods with random demand (preference, Zk
t ) and supply

(cost-push, Ak
t ) shocks, corresponding to 2,500 years of observations. In order

to create perfect counterfactual data, we draw the identical shocks for each of
our three baseline models, thus generating a synthetic data set in which only the
latent inflation weight varies. Table 4 reports the simulated moments generated
by the model compared to the respective moments calculated from the historical
data.

Overall, all model specifications match the moments of the actual data reasonably
well. While our model understates (steady state) inequality in consumption and
GDP, it replicates the fact that low-volatility countries produce and consume
more than high-volatility countries do. Furthermore, the model replicates higher
volatility across all variables in the high-volatility countries compared to their
low-volatility counterparts, i.e., the relative volatility of all model variables is
smaller than one. This property can particularly be ascribed to the differences in
the impact of the shocks (ηHZ > ηLZ and ηHA > ηLA), implying that the assumption

12Note that we use deviations from the trend inflation rate instead of deviations from the 2% target of
the ECB for the following reasons: (i) the policy rule in the New Keynesian model is defined in deviations
from its trend/steady state, (ii) uncertainty remains regarding the exact magnitude of the ECB’s inflation
target (at least until the announcement of the exact 2% target in July 2021), (iii) it would be difficult
to justify a 2% target for each individual country, and (iv) it is unlikely to make a difference since the
trend is very close to 2%.
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with respect to the values of these parameters seem reasonable.13 Furthermore,
despite focusing on only eight EMU countries, the model replicates the fact that
EMU-wide output fluctuates more (less) than the output of low-volatility (high-
volatility) members. Finally, we find that the correlations between variables in
EMU data and our model are both qualitatively and quantitatively similar. Thus,
our model appears to fit both the direction and magnitude of correlations between
macroeconomic variables in the EMU. In particular, it replicates the stronger
correlation between labor and consumption in high-volatility states. Naturally,
the model overstates the strength of this relationship as we abstract from other
sources of income apart from work as well as from additional inputs in production
(such as capital). We address this question in our robustness checks in Section VII.

V. Machine Learning Algorithms

This section introduces the algorithms considered for our analysis. Specifically, we
compare the performance of twelve machine learning algorithms in a horserace-
style assessment, subsequently choosing the one with the greatest out-of-sample
prediction performance.14 All models adhere to the following structure

(27) yt = hβ(Xt) + ϵt,

where y ∈ (ωH , ωL, ωC) are the categorical inflation weights for low-volatility (L),
high-volatility (H) and consumption-weighted average (C) at time t. h(·) is a
function with coefficients β that maps the simulated macroeconomic variables X
to the inflation weights and ϵ is the residual. We provide only a brief overview of
the models, as well as their most essential parameterization. A more comprehen-
sive review can be found in Chakraborty and Joseph (2017).

A. (Quasi-) Linear Model

Multinomial logistic regression: Our benchmark is a linear multinomial lo-
gistic regression (MLR) model. MLRs are logistic regressions for a categorical
dependent variable with k ∈ K categories. Explicitly, the following probabilities
are being estimated:

(28) P (Yt = k) =
eβk×Xt

1 +
∑K−1

k=1 eβk×Xt
.

13We are aware that further structural differences between the countries might cause the reported
differences in the development of the macroeconomic variables. However, deciding on which structural
differences between the countries to include in the model seems arbitrary due to the sheer amount of
possibilities. We therefore decide to rely on differences in the structural parameters of the model.

14Note that none of the variables and parameters used in this section coincide with the ones defined
in Section III.
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Penalized linear regression: An alternative to MLRs are penalized linear re-
gressions, which (in linear models) are primarily used to reduce dimensionality.
Although our regression model does not feature many dimensions (10 covariates),
introducing constraints to the complexity of the linear model through regulariza-
tion may nevertheless improve predictive performance. The general form for j
covariates can be described as follows

(29) L =
T∑
t=1

ϵ2t + λ
n∑

j=1

[
(1− α)|βj |+ α|βj |2

]
,

where L represents the loss function being optimized, λ is called intensity, and α
determines the type of regularization. In particular, we employ a Lasso regression
model (α = 0), an elastic net (0 < α < 1) and a ridge regression model (α = 1).
For all three regularized regression methods, we optimize λ ∈ [10−2, 10−4] using
cross fold validation (e.g., Chakraborty and Joseph, 2017).

KNN: K-Nearest-Neighbor (KNN) is a supervised algorithm that classifies the
dependent variable based on a majority vote of the nearest neighbours with re-
spect to the independent variables. In the most basic instance (k = 1), the
inflation weight at time t predicted is simply the inflation weight of the single
nearest neighbor. We optimize the KNN algorithm over k ∈ [1, 100].

B. Tree-Based Model

Decision tree: Tree-based algorithms are a supervised machine learning meth-
ods that divide data into subsets using a series of if-else rules. Each additional
division (layer) increases the complexity of these models, allowing for more pre-
cise and distinct subsets, and thereby predictions. In practice, tree-based mod-
els perform very well out-of-box (e.g., Boehmke and Greenwell, 2019) and are
straightforward to interpret, given the possibility to provide a schematic repre-
sentation for a particular tree model. The decision tree grows using the following
loss function:

(30) Lγ = −
Y∑

y=1

p(y|X) log(p(y|X)) + γ|T |.

p(y|X) represents the fraction of observations with the specific inflation weight
conditioned on the macroeconomic information and T being the number of nodes
in the decision tree. γ controls the regularization in a similar manner to λ for
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penalized regressions, which, in the case of a decision tree, is set to zero. Instead,
following the literature, we specify a range of cut-of losses (Lγ), used to determine
the complexity of the tree.

Prune tree: Pruning a tree is equivalent to optimizing Lγ over γ. As trees
tend to overfit, pruning a tree is a good method of improving the predictive
performance.

Random forest: A random forest is a classification algorithm that uses r deci-
sion trees to classify data. All decision trees are randomly generated and produce
one single prediction for the classification task. The random forest’s classification
is determined by the class with the most votes. We use 1000 trees (r = 1000).

C. Neural Network

A neural network (NN) is a supervised machine learning algorithm modeled on
the functioning of the human brain. A network consists of i ∈ I layers, where
each layer has k so-called perceptrons. Every NN consists of - at least - three
layers: an input layer (the covariates), a hidden layer and an output layer (the
prediction of the NN). An illustrative example is provided in Figure 4. Except for
the first layer, the input for each layer is the dot product of a weighting matrix
Wi and the output of the previous layer Xi−1 plus a bias bi. The output for each
layer is then passed through a non-linear activation function f(·):

(31) Xi = f(Wi ×Xi−1 + bi)

The two functional forms of f(·) applied in this paper are rectified linear unit
(ReLU) activations and softmax activations. They can be expressed as follows,
with x representing the activations input:

f(x) = max(0, x) ReLu(32)

f(x) =
exk∑K
k=1 e

xk

Softmax(33)

During the training process, the NN optimizes Wi and bi, in order to perform
well on a given classification task using an iterative optimization algorithm called
stochastic gradient descent (see, e.g., Athey, 2019). We initiate our training
with a simple four-layer NN (I ≡ [1, 4]), as shown in Figure 4. As a result our
inflation weight y is the outcome X4. With the exception of the output layer
where a softmax function is used to obtain a probabilistic distribution over the
classification task, we rely on ReLu activation functions. The network is trained
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Figure 4 : Illustration of NN.

Notes: This figure illustrates the model architecture of a feed-forward NN with four layers: One input
layer, two hidden layers, and an output layer. The connections between the layers represent the weighting
matrix Wi and are adjusted during the training process.

on 500 iterations, with 20% of the data set serving as validation.15

D. Evaluation

In this subsection, we apply the machine learning models introduced in the pre-
vious subsection to our synthetic data set to evaluate their relative performance.
The aim is to determine the algorithm that best predicts the underlying inflation
weight (ωπ) provided by the New Keynesian model. In order to do so, we simu-
late the New Keynesian model from Section III for three specifications, namely
ωC ≡ ωπ = CH

SS/(C
H
SS + CL

SS) (C), ωH ≡ ωπ = 0.8 (H), and ωL ≡ ωπ = 0.2
(L) for 10,000 periods each. We randomly split this data set into a training set
(75%) and a test set (25%). In order to maintain a balanced data set, we employ
stratification on the training data based on our inflation weight. This ensures
that the distribution of classes remains consistent between the training and test
sets. The training data is used to parameterize the machine learning algorithms
and the test set is used to evaluate the models out-of-sample. The results are
presented in Table 5.
There are several noteworthy observations. First, linear models do not perform
particularly well, at best marginally better than an uninformed guess. Second,
using tree-based models yields an improvement in performance. However, with
an accuracy of below 50%, single tree-based models still perform rather poorly.

15We choose 32 nodes per hidden layer, which in itself is a relatively small number. It is worth noting
that even a simple model like this has over 1500 trainable parameters. In an unreported test, we increase
the depth, width, and number of iterations. While we notice a slight improvement, we refrain from
evaluating more complicated models due to the strong relative performance of this simple NN.
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Table 5: Evaluation on Test Set.

Accuracy

Uninformed guess 0.33

MLR 0.34
Ridge regression 0.33

Lasso regression 0.33

Elastic net 0.33
K-nearest-neighbor 0.38

Decision tree 0.48
Complex tree 0.48

Prune tree 0.48

Prune complex tree 0.48
Random forest 0.67

Neural network 0.97

Note: Accuracy of the machine learning algorithms introduced
in Section V in classifying the true inflation weight ωπ,t from
the simulated data set introduced in section III. Accuracy can
be calculated by the fraction of correct predictions over all pre-
dictions.

Table 6: Confusion Matrix of Out-of-Sample Prediction by NN.

True label

Consumption Low-Volatility High-Volatility
Consumption 2405 50 39

Prediction Low-Volatility 48 2443 9

High-Volatility 47 7 2452

Despite exhibiting relatively superior performance, the random forest model still
falls short of our expectations, with an accuracy of only 2/3. 16

Finally, the NN – despite its simple structure – outperforms the other algorithms
by a huge margin. With an accuracy of > 97%, the NN successfully predicts the
correct weight around 50% more often than the second best algorithm. Given
the black-box nature of machine learning models, it is only possible to speculate
as to the underlying causes of the NNs superior performance. Nevertheless, it is
important to emphasise that the differences in the simulated data sets depend on
the interaction between all variables, a task for which a high-dimensional classifier
such as a NN appears to be better equipped than its competitors.

16As part of our analysis, we have experimented with diverse model specifications, including variations
in the number of trees and the number of variables randomly sampled as potential candidates at each split.
We have also attempted to assess the impact of employing different implementations of the random forest
model in R, specifically the caret and randomForest packages. Nonetheless, none of these alterations
have yielded an improvement in model accuracy surpassing 67%.
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The use of accuracy as an assessment metric involves trade-offs with respect to
the informativeness of a model’s shortcomings. For example, our model may pre-
dict ωH disproportionately often, revealing a bias that may not be detected in an
assessment based only on the accuracy metric. Despite the fact that we have a
balanced data set by design, we assess whether our model suffers from biased pre-
dictions, which might invalidate the identification of the latent ωπ. As a result, we
exhibit the NN’s performance through a confusion matrix in Table 6. Each row in
the table represents the networks’ prediction of ωπ, while the columns reflect the
true ωπ. For example, the NN predicted ωL 2499 times. This forecast was cor-
rect 2443 times, while ωC (ωH) would have been the correct prediction in 48 (9)
cases. Table 6 provides no evidence of bias, which can be further mitigated using
alternative performance metrics such as Recall = 0.97 and Precision = 0.97.17

Based on the results from our evaluation task and the unbiased predictive per-
formance we are confident in adopting the NN as our primary predictor.

VI. Results

This section presents the results of our machine learning algorithm, applied to
historical EMU data. Due to the constraint imposed by the Hamilton filter, the
historical inflation weight is classified on a quarterly basis between 2004Q4 and
2022Q1.

A. Monetary Policy Regime Classification

Figure 5 shows the retrieved inflation weight classification and the development
of several macroeconomic variables in the EMU.18 There are several interesting
results. First, our findings do not indicate a systematic focus of the ECB on the
consumption-weighted, union-wide inflation rate. In fact, we find a dispropor-
tional emphasis on inflation rates experienced by high-volatility EMU members
(i.e., ωπ = 0.8), in 80% of the periods, whereas we find evidence of a balanced
stance (ωC) in only five quarters (∼ 7%).
Second, it appears that the ECB is reacting more strongly to greater deviations
of inflation rates from their long-term trend, which would imply a predominant
inflation weight on H. This interpretation tallies with the fact that a higher
weight on low-volatility countries occurs at times when the inflation rates of low-
volatility countries exhibit stronger deviations from their long-term trend, par-
ticularly when considering the regime switches around 2010 and 2018. The fact
that the (rare) ωC classification occurs at times when the inflation rate deviations

17For this multi-label case, we define the two metrics in the following way with TP := true posi-

tive, FP := false positive, and FN := false negative: Recall := 1
n

∑n
i=1

TPi
TPi+FPi

and Precision :=

1
n

∑n
i=1

TPi
TPi+FNi

.
18We follow Hinterlang (2020) by incorporating a regime change only if it occurs over n quarters,

choosing n = 2.
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Figure 5 : ωH , ωL, ωC Classification and Macroeconomic Indicators.

Notes: The shaded areas represent the inflation weight at the respective time, given by the NN classifier.
The lines illustrate the deviation from the steady state for four macroeconomic variables in the EMU
between 2004 and 2022. The deviations are derived as described in Section IV.

of low- and high-volatility countries are almost identical supports this interpreta-
tion. The period following the EMU debt crisis in 2012 provides further evidence.
The high-volatility economies first experienced a relatively higher trend-adjusted
inflation deviation, which prompted the central bank to implement tighter mon-
etary policy. Around 2015, the relationship reverses: high-volatility countries
experienced a stronger drop in inflation rates than low-volatility countries at a
time when the monetary policy rate decreased substantially.

This interpretation also tallies with the arguments brought forward by Isabel
Schnabel (2022) who pleads in favor of “forceful action[s] by central banks” in
times of high inflation volatility.

B. On the ECB’s Taylor Rule and Loss Function

In the following we attempt to align our observations to certain theoretical prop-
erties of the ECB’s loss function, in particular, with regards to the way heteroge-
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neous inflation rates enter the loss function. Generally, a standard loss function19

depends on the (consumption-)weighted average of the inflation rates within the
EMU:

Lt = −1

2

(
πEMU
t

)2
.(34)

πEMU
t =

∑K
k=1 ω

kπk
t is defined as the EMU-wide inflation rate, k ∈ [1,K] denotes

the member state of the EMU, and πk
t its respective inflation rate weighted by

ωk = Ck/
∑K

k=1C
k. The corresponding Taylor rule is given by:

it = ρ+ ϕππ
EMU
t .(35)

However, our results indicate that the ECB reacts more strongly to countries
whose inflation rates exhibit greater deviations from their long-term trend. Thus,
we infer that the ECB’s losses arise from individual deviations rather than from
aggregated ones, i.e.,20

Lt = −1

2

K∑
k=1

ωk
(
πk
t

)2
,(36)

leading to a Taylor rule given by:

it = ρ+ ϕπ

(
K∑
k=1

Ωk
t π

k
t

)
.(37)

In particular, the ECB’s loss occurs disproportionally from high-volatility mem-
bers under this specification. A Taylor rule consistent with this loss function
considers this fact in Ωk

t given by

Ωk
t = ωk − νkt

(
|πEMU

t | − |πk
t |
)
.(38)

This implies that the weight on the inflation rate of country k is adjusted according
to its deviation from the EMU-wide inflation rate, for instance, when |πk

t | >
|πEMU

t | then Ωk
t > ωk.

19See Debortoli et al. (2019) for a comprehensive overview.
20Note that, from a theoretical perspective, both ways of aggregation might be consistent with max-

imizing union-wide utility. Furthermore, both loss functions (Equation (34) and Equation (36)) are
consistent with the ECB’s mandate.
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C. Regression Model

To empirically test Equation (38), we need to account for variations in the inflation
weight over time, i.e., Ωk

t . Since the structure of NNs permits regression models,
we proceed with a regression task that allows us to predict the inflation weight
on a continuous scale.21

Compared to our earlier identification, we make two adjustments, one for the New
Keynesian model as specified in Section III and one for the NN as introduced in
Section V. First, we redefine the inflation weight in the Taylor rule as Ωπ ∈
[0.1, 0.9]. This continuous scale is then used to recreate the synthetic data set.
Practically, we simulate the New Keynesian model with nine Ωπs in increments of
0.1. Second, to adapt the NN to the regression task, we remove the last softmax
layer and adjust the loss function so that the mean square error is minimized.
Repeating the out-of-sample evaluation on 25% of the synthetic data set, the NN
predicts the weighting exceptionally well, as evidenced by a mean average error
(MAE) of about 4% and mean squared error (MSE) of 0.5%, 22 which makes us
confident in the NN’s performance. An illustration of the out-of-sample prediction
can be found in the appendix in Figure A1.1.
Next, we obtain the weights from the predictions on the historical data set intro-
duced in Section IV. We examine the distribution and the temporal variation of
the estimated inflation weight before conducting a regression analysis.

0
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2

0.2 0.4 0.6 0.8
Inflation weight (ωπ)

 

Figure 6 : Density Inflation Weight Prediction.

Figure 6 shows the density distribution of the inflation (solid line), its histogram,

21One might also consider this as a robustness check of our methodology.
22MAE = 1

n

∑
ϵt = 4% and MSE = 1

n

∑
ϵ2t = 0.5%
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and its median weight over the period (0.67, dotted line). As expected, the
inflation weight distribution is skewed to the right, implying that the estimated
weight favors the high-volatility countries. This confirms our first finding that the
ECB systematically emphasizes the inflation rate development of high-volatility
countries.
Next, we examine the inflation weight in relation to the inflation deviation for
both country blocks across time in Figure 7. The figure provides further evidence
in support of our earlier interpretation that the ECB reacts more strongly to larger
deviations of inflation rates from their long-term trend. Stronger deviations in
inflation in L countries coincide with periods of higher weights on these countries
(early 2005, 2011, 2017/18), while periods of higher weights on high-volatility
countries (2012-2014 or 2016) correspond to high inflation deviations in the H
countries.

−0.025

0.000

0.025

0.050

2005 2010 2015 2020

 

High−volatility Low−volatility

(Scaled) inflation weight

Figure 7 : Inflation Weight from Regression NN 2004Q4 - 2022Q1.

Notes: The deviation of inflation from its long-term trend for H and L countries (black dotted line
and black straight line, respectively) from 2004Q4 to 2022Q1 is illustrated. The scaled inflation weight
(grey stair step plot) is obtained by subtracting the consumption weight, i.e., 0.45, the result of which is
divided by 10.

Finally, we test the aforementioned hypothesis empirically by running an OLS re-
gression of the inflation weight (Ωk

t ) on the difference between the average (EMU)
inflation rate and inflation rate in country L (|πEMU

t | − |πL
t |). This corresponds

to the Equation (38). The result can be found in Table 7, column one.
The regression constant (0.62) can be interpreted as ωk in Equation (38), i.e.,
as the inflation weight in the absence of inflation deviations. Statistically, the
hypothesis of the inflation weight being equal to parity can be rejected with 99%
confidence.
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Table 7: Main Regression Results.

Dependent variable:

Inflation weight := Ωk
t

(1) (2) (3) (4) (5)

HICP ( = νkt ) 25.09∗∗∗ 24.06∗∗

(9.41) (9.56)

Y 3.23∗∗ 3.59∗∗

(1.36) (1.44)

C −1.83 −2.90
(2.60) (2.73)

L 8.95 7.44
(6.51) (6.29)

Constant (= ωk) 0.62∗∗∗ 0.62∗∗∗ 0.64∗∗∗ 0.63∗∗∗ 0.62∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)

Observations 70 70 70 70 70
R2 0.09 0.08 0.01 0.03 0.21

Adjusted R2 0.08 0.06 −0.01 0.01 0.16

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Regression based on Equa-
tion (38); The RHS variables are defined as follows: ∆X :=
|XEMU | − |XL|; the EMU average is defined as XEMU

t := ω ×
XH

t + (1 − ω) × XL
t with ω set to 0.45, as this is the correct con-

sumption weight as shown in Table 4. Regression results based on
ω ̸= 0.45 are available upon request.

Next, the coefficient on HICP can be interpreted as νkt . We find clear evidence that
relatively higher deviations in L countries’ inflation rates lowers Ω and vice versa.
In particular, a 0.1 percentage point increase in the difference between L inflation
and EMU inflation decreases the weight on L by 2.5 percentage points. The
coefficient on the inflation deviation is statistically significant and economically
relevant. A one standard deviation increase in the difference between L inflation
and EMU inflation lowers the inflation weight on L by about 0.06 percentage
points, which translates to around 1/3 of its standard deviation.23

Next, the remaining macroeconomic variables are included in univariate regres-
sions in columns 2-4 and in a multivariate regression together with inflation in
the last column. In all specifications we observe uniformity with respect to the in-
tercept, i.e., ωk. Moreover, only production appears to affect the inflation weight
in a significant way. The size of the effect is somewhat smaller than the HICP
effect, with a one standard deviation increase in the output difference towards

23sd(HICP ) = 0.0023 and sd(ω) = 0.19.
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EMU output shifting the inflation weight by a quarter of a standard deviation.24

The effect of inflation and output on ωk persists when both are included into the
regression jointly, as highlighted in the last column.

VII. Robustness Checks

In this section, we extend and modify our theoretical framework to test the ro-
bustness of our findings with respect to our modeling decisions. Moreover, we
examine alternative hypotheses that may explain our empirical results. Across
all tests, our findings remain robust and we thus find no reason to deviate from
our previous conclusions.

A. Model Extension: Investment and Capital

In our baseline theoretical model, we opted for a small scale tractable model. In
this section we test the impact of including additional variables such as investment
and capital on our findings. Thus, we extend our model to closely follow a setup
such as Gertler and Karadi (2011). While they consider a closed economy, we
extend it to a monetary union model of two countries.25 Consequently, we include
capital, intermediate, and final good producers on the firms’ side of the model.
This allows us to include investment in the set of considered variables. We thus
generate synthetic data sets for the classification as well as the regression task.
The data set consists of all variables considered in the simple version of the
model plus investment in both countries. A detailed overview of the model,
its calibration and data fit, as well as the entire set of results can be found in
Appendix A.A2.
We proceed by retraining the NN and evaluate the robustness of our outcomes.
Notably, our findings remain unaffected by the inclusion of investment and capital.
First, we check the robustness of the classification. Figure A2.1 shows that the
classification of quarters into neutral, high-, or low-volatility regimes is robust to
the model extension and the inclusion of additional variables, with 82% of the
quarters being classified in the same way. Furthermore, we assess the prediction
of the inflation weight (ωk), and observe an upward shift in the average weight
(from 0.63 to 0.70) and in the median weight (from 0.67 to 0.74), indicating that
our main results constitute a lower bound. However, Figure A2.2 shows that the
development of the estimated inflation weight in each quarter closely resembles
our main findings. Next, we repeat the regression analysis of the inflation weight
on the macroeconomic variables in a univariate and multivariate analysis based
on Equation (38). We find that our findings exhibit no quantitative or qualitative
changes. The comprehensive results are presented in Table A2.3.

24sd(∆Y ) = 0.0162 and sd(ω) = 0.19.
25A similar open economy model based on Gertler and Karadi (2011) can be found in Horst et al.

(2020).
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B. Taylor Parameter

Our findings indicate that the ECB reacts more strongly to countries exhibiting
larger inflation deviations from their trend. This implies larger overall interest
rate adjustments than suggested by the EMU-wide, average inflation rate. In
principle, this result could be driven by our choice of the Taylor parameter ϕπ.
We test whether our findings are affected by ϕπ by re-training the NN on synthetic
data with a higher response parameter (ϕπ = 2.5). The results remain unchanged
with the new classification closely resembling the previous classification with an
accuracy of 90%.

C. Composition of the board

Previous literature on the ECB decision-making process found it to be both colle-
gial (e.g., Ehrmann and Fratzscher, 2007) and driven by board members pursuing
national objectives (e.g., Hayo and Méon, 2013). Hence, we examine whether the
composition of the ECB board can explain our results, using the relative share of
members from H countries as a proxy.26 The hypothesis is tested in a regression
both by itself and in conjunction with our main inflation variance hypothesis. The
results are reported in the Appendix in Table A3.1. We find no significant effect
of board composition on the inflation weight. Consequently, our finding indicates
that national objectives by board members do not not significantly impact the
ECB’s inflation weights.

D. Inflation expectations

In our analysis, we adopt the classical Taylor Rule, as stipulated in the existing
literature (e.g. Rabanal, 2009; Hinterlang and Hollmayr, 2022) as the basis for
our monetary policy rule. However, we acknowledge that in reality the conduct
of monetary policy is not solely based on contemporaneous inflation levels, as
it is necessary to account for future price level projections in order to disentan-
gle transitory effects on inflation and economic activity. In order to mitigate
concerns regarding the selection of our monetary policy framework, we collect
inflation data, as well as inflation forecasts from the Organisation for Economic
Co-operation and Development (OECD) for all member states within the euro
area. We find a correlation of 98% between both series (97% if we focus on the
countries in our analysis), underscoring the robustness of our results vis-à-vis
variations in the inflation data used.

26Considering the low variation across presidents as well as the very different economic conditions
during presidencies, we focus on the composition of the board.
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VIII. Conclusion

Combining DSGE models with machine learning methods facilitates the exami-
nation of various classification and regression exercises. In particular, this paper
investigates whether the ECB conducted monetary policy according to the EMU-
wide inflation rate between 2002 and 2022. We first show that the inflation rate
development of EMU members differs substantially over time, with some countries
exhibiting greater volatility in their inflation rates than others.
In order to investigate whether the ECB reacted to the EMU-wide inflation rate or
more strongly to low- or high-volatility members, we generate data utilizing a New
Keynesian model of a monetary union. We simulate a series of random demand
and supply shocks for different monetary policy rules of the union-wide central
bank: one where the central bank reacts to the average union-wide inflation rate,
and a multitude of rules where the central bank reacts more strongly to the rate
experienced in low- or high-volatility countries respectively. This synthetic data
set is then used to train and evaluate several machine learning algorithms. We
find that a neural network (NN) performs best out-of-sample, with an accuracy
of 97%.
Using the NN, we first classify historical EMU data between 2002 and 2022. Our
findings suggest a disproportional emphasis on the inflation rates experienced by
EMU members that exhibited high inflation rate volatility for the vast majority
of the time frame considered (80%). However, we find that there are several
instances where a regime switch (from an emphasis on high-volatility countries
to the weighted average or to low-volatility countries) takes place. This occurs
especially in periods when the inflation rates of high-volatility countries have
already moved back to their long-term trend while the inflation rates of low-
volatility countries still exhibit deviations from theirs. We then show that these
regime switches are related to a tendency of the ECB to react more strongly
to the countries whose inflation rates deviate more from their long-term trend
by utilizing the trained NN for a regression task. We find a median weight on
high-volatility countries of 67%, particularly due to the ECB’s stronger reaction
to greater inflation deviations. Finally, our results allow us to infer that the loss
function of the ECB depends on weighted, individual inflation rate deviations of
EMU members rather than on the deviation of the weighted average inflation rate
in the EMU.
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Appendix

A1. Regression NN model
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Figure A1.1 : Density Forecasts - Out-of-Sample Predictions.
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A2. Model Extension: Investment and Capital

We keep the household section as well as the central banks’ reaction function(s)
unchanged. If not explicitly defined differently, all variables and parameter def-
initions from Section III hold. The remaining sections change in the following
manner.

Intermediate goods producers

Intermediate goods producing firms are perfectly competitive and supply their
goods solely on the domestic market. The production function is

(A2.1) Y k
m,t =

(
Kk

t−1,t

)αk
(
Nk

t

)1−αk

,

with Kk
t−1,t denoting capital chosen in t−1 and productive in t. The intermediate

goods firm buys capital from a capital producer at price Qk,t−1 and sells the
depreciated capital back to the capital producer at Qk,t − δk for refurbishment,
with δk denoting the depreciation rate. The cost function is given by

(A2.2) TCk,t = Ak
t

(
wk,tN

k
t +Qk,t−1K

k
t−1,t − (Qk,t − δk)K

k
t−1,t

)
Profit maximization then implies

Qk,t = αkmck,m,t+1

Y k
m,t+1

Kk
t,t+1

+ (Qk,t+1 − δk) ,(A2.3)

mck,m,t =
wk,tA

k
t

(1− αk)
Y k
m,t

Nk
t

,(A2.4)

where mck,m,t is defined as the marginal costs of the intermediate goods firm.

Capital goods producers

Perfectly competitive capital producers repair depreciated capital and sell the
refurbished capital to intermediate goods firms. Gross investment is thus given
by

(A2.5) Igr,kt = Ikt + δkK
k
t−1,t ,

where Ikt denotes newly created capital, i.e., net investment.

The law of motion for capital is

(A2.6) Kk
t,t+1 = Kk

t−1,t + Ikt .
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We assume unity capital production costs and capital adjustment costs of the
form

(A2.7) f

(
Ikt + ISS

Ikt−1 + ISS

)
=

nk

2

(
Ikt + ISS

Ikt−1 + ISS
− 1

)2

,

where nk captures the degree of capital adjustment costs and ISS is steady state
gross investment. From profit maximization follows

Qk,t = 1 +
nk

2

(
Ikt + ISS

Ikt−1 + ISS
− 1

)2

+
Ikt + ISS

Ikt−1 + ISS
nk

(
Ikt + ISS

Ikt−1 + ISS
− 1

)

(A2.8) − Et βΛ
k
t,t+1

(
Ikt+1 + ISS

Ikt + ISS

)2

nk

(
Ikt+1 + ISS

Ikt + ISS
− 1

)
.

Final goods producers

The monopolistically competitive final goods producing firm simply repackages
one unit of intermediate goods into one unit of final goods and sells them to
households in both countries. Assuming Calvo (1983) price setting, the optimal
price of a firm being able to adjust its price in t is

(A2.9) p∗k,t = µ

(
Pk,t

PC,k
t

)−1
xk,1,t
xk,2,t

,

where
xk,1,t ≡ Uk

c,tYk,tmck,m,t + βθk Et

[
Πϵk

k,t,t+1xk,1,t+1

]
,

xk,2,t ≡ Uk
c,tYk,t + βθk Et

[
Πϵk−1

k,t,t+1xk,2,t+1

]
.

Equilibrium

As before, bonds are in zero net supply and labor markets clear. Goods market
clearing implies

(A2.10) Y k
t = Ck

k,t + C−k
k,t + Igr,kt +

nk

2

(
Ikt + ISS

Ikt−1 + ISS
− 1

)2 (
Ikt + ISS

)
,

as well as

(A2.11) Y k
m,t = Y k

t .



36

Calibration

The calibration of most parameters remains unchanged. Parameters that were
added by the extension are either chosen as in Albonico et al. (2019) (i.e., δk)
or (re-)calibrated to match relative volatilities of output, consumption, inflation,
and investment (nk, η

k
Z , η

k
A). The corresponding model fit can be found in the

following.

Table A2.1: Calibration: Model with Investment.

Description Value

Households

H L

Ψk Habit parameter 0.77 0.71
φk Inverse Frisch elasticity 2.01 2.73

ηkZ Preference shock strength 1 0.5

γk Weight of domestic goods 0.75 0.75
ϑk
C Elasticity of substitution 1.42 1.50

between domestic and foreign goods
ϵ Price elasticity of demand 6 6

β Discount rate 0.995 0.995

Intermediate Goods Producers

H L

αk Output elasticity labor 0.33 0.33

δk Depreciation rate capital 0.0136 0.0143

ηkA Cost-push shock strength 1 0.75

Capital Goods Producers

H L

nk Capital adjustment costs 0.75 8

Final Goods Producers

H L

λk Calvo parameter 0.737 0.852

Central Bank

ϕπ Taylor rule coefficient 1.5; 2.5

ωπ HICP inflation weight
CH

SS

CH
SS

+CL
SS

; [0.1, 0.9]

Investment data description

Quarterly data on investment is provided by Eurostat as gross fixed capital for-
mation within GDP and its main components. We extract values for each of the
considered countries within the considered time period and calculate the (GDP-
)weighted average per capita investment for country group H and L, respectively.
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Model Fit

We include the relative volatility as well as the correlation of investment into
the set of compared moments. An overview of the model fit can be found in
Table A2.2. Overall, we find that the extended model matches the moments in
the data very well in almost all cases. The model fit is, unsurprisingly, better
than the one of the simpler model. The moments of the newly added investment
data are matched as well. We conclude that the model fit is a satisfactory basis
for (re-)training the NN.

Table A2.2: Comparison of Simulated Moments with Data.

Variable Description ωπ =
CH

SS

CH
SS+CL

SS

ωπ = 0.8 ωπ = 0.2 Data

CH
SS/C

L
SS Relative consumption per capita H, L 0.630 0.630 0.630 0.805

YH,SS/YL,SS Relative GDP per capita H, L 0.796 0.796 0.796 0.773
σ (ŷL,t) /σ (ŷH,t) Relative volatility GDP L, H 0.460 0.508 0.446 0.587
σ (ŷt) /σ (ŷH,t) Relative volatility union-wide GDP, H 0.611 0.610 0.614 0.671
σ (ŷt) /σ (ŷL,t) Relative volatility union-wide GDP, L 1.330 1.201 1.380 1.144
σ
(
ĉLt
)
/σ
(
ĉHt
)

Relative volatility consumption L, H 0.447 0.476 0.449 0.559
σ
(
n̂L
t

)
/σ
(
n̂H
t

)
Relative volatility labor L, H 0.441 0.477 0.431 0.718

σ
(
π̂C,L
t

)
/σ
(
π̂C,H
t

)
Relative volatility inflation L, H 0.803 0.833 0.790 0.842

σ
(
îLt

)
/σ
(
îHt

)
Relative volatility investment L, H 0.650 0.706 0.623 0.354

ρ (ŷL,t, ŷH,t) Correlation GDP L, H 0.492 0.381 0.545 0.591

ρ
(
π̂C,L
t , π̂C,H

t

)
Correlation inflation L, H 0.977 0.979 0.977 0.989

ρ
(
ĉLt , ĉ

H
t

)
Correlation consumption L, H 0.664 0.567 0.698 0.636

ρ
(
n̂L
t , n̂

H
t

)
Correlation labor L, H 0.480 0.353 0.537 0.132

ρ
(
n̂H
t , ĉHt

)
Correlation labor, consumption H 0.903 0.898 0.903 0.627

ρ
(
n̂L
t , ĉ

L
t

)
Correlation labor, consumption L 0.04 −0.143 0.141 0.466

ρ
(
îLt , î

H
t

)
Correlation investment L, H 0.508 0.572 0.478 0.408

Note: x̂t denotes the deviation of a variable X from its zero inflation steady state.
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Results
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Figure A2.1 : Robustness Check 1: ωH , ωL, ωC Classification and Macroeconomic
Indicators.

Notes: The shaded areas represent the inflation weight at the respective time, given by the NN classifier.
The lines illustrate the deviation from the steady state for four macroeconomic variables in the EMU
between 2004 and 2022. The deviations are derived as described in Section IV.
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Figure A2.2 : Inflation Weight from Regression NN 2004Q4 - 2022Q1.

Notes: The deviation of inflation from its long-term trend for H and L countries (black dotted line
and black straight line, respectively) from 2004Q4 to 2022Q1 is illustrated. The scaled inflation weight
(grey stair step plot) is obtained by subtracting the consumption weight, i.e., 0.45, the result of which is
divided by 10.
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Table A2.3: Robustness Check 1: Investment and Capital

Dependent variable:

Inflation weight := Ωk
t

(1) (2) (3) (4) (5) (6)

HICP 22.97∗∗ 27.33∗∗

(10.99) (10.41)

Y 4.36∗∗∗ 3.56∗∗

(1.54) (1.55)

C −0.14 −2.39
(2.99) (2.93)

L 24.24∗∗∗ 20.47∗∗∗

(6.97) (6.89)

I 0.70∗ 0.53
(0.42) (0.38)

Constant (= ωk) 0.74∗∗∗ 0.74∗∗∗ 0.76∗∗∗ 0.76∗∗∗ 0.74∗∗∗ 0.72∗∗∗

(0.03) (0.03) (0.03) (0.02) (0.03) (0.03)

Observations 70 70 70 70 70 70
R2 0.06 0.11 0.0000 0.15 0.04 0.32

Adjusted R2 0.05 0.09 −0.01 0.14 0.03 0.26

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Regression based on Equation (38); The RHS vari-
ables are defined as follows: ∆X := |XEMU | − |XL|; the EMU average is defined as
XEMU

t := ω×XH
t + (1−ω)×XL

t with ω set to 0.45, as this is the correct consumption
weight as shown in Table 4. Regression results based on ω ̸= 0.45 are available upon
request.
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A3. Composition of the board

Table A3.1: Regression Results: Political Economy.

Dependent variable:

Inflation weight := Ωk
t

(1) (2)

HICP ( = νkt ) 26.2∗∗∗

(9.6)
Y 3.2∗∗

(1.5)

C −3.3
(2.7)

L 6.9

(6.3)
HV

LV +HV
−0.5 −0.6

(0.4) (0.4)

Constant (= ωk) 1.0∗∗∗ 1.0∗∗∗

(0.3) (0.3)

Observations 70 70

R2 0.02 0.2

Adjusted R2 0.01 0.2

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Regression
based on Equation (38); The RHS variables are de-
fined as follows: ∆X := |XEMU | − |XL|; the EMU
average is defined asXEMU

t := ω×XH
t +(1−ω)×XL

t
with ω set to 0.45. Regression results based on
ω ̸= 0.45 are available upon request.
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