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1959 2020
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Abstract

Evidence based policy re global warming is best relying on a relevant sample of

data. Showing close correlation between CO2 and temperature over hundreds of

thousands of years is irrelevant today. We choose a sample of annual data from 1959

to date to provide some statistically robust stylized facts about the relationships

between actual CO2 and temperature. Visually, there is a clear upward trend in both

data. Time series analyses suggest that CO2 is difference stationary and temperature

is trend stationary. Thus, the moments (mean, variance, etc.) of the data in levels are

functions of time, which means that the correlation between the two variables may

be spurious. Most importantly is that the variance of CO2 (and all greenhouse gases)

are significantly smaller than the variance of temperature, hence they cannot explain

the variations in temperature. We find no statistically robust evidence of correlation,

long run co variation, long run common trend, or common cycles between CO2 and

temperature over a period of 60 years. Nonetheless, at most 40 percent of the

variance of the Northern Hemisphere temperature is due to , 20 percent of the

Southern Hemisphere, and much less of global temperature.

1 Research fellow, School of Economics and Finance, Massey University, New Zealand. Contact
razzakw@gmail.com and w.razzak@massey.ac.nz . I thank John Seater, Peter C.B. Phillips, and the
participants of the seminar at the School of Economics and Finance – Massey University for valuable
comments.



JEL Classifications: C01, C22, C3, Q54
Keywords: Econometrics of unit root, trend, cycle, VAR, temperature and global warming,
CO2, greenhouse gasses, and fossil fuel consumption



1. Introduction

There has been growing scientific evidence that the actual increase in greenhouse

gasses (GHG; CO2, CH4, N2O, fluorinated gases) and global warming, i.e.

temperature, are closely correlated over time, hence, the policy urgency to act faster

to reduce greenhouse gases. Cook et al. (2013) says that 97.1 percent of articles’

abstracts on global warming “endorsed the consensus position that humans are

causing global warming.” Lindsey and Dahlman (2020) wrote, “Though warming

has not been uniform across the planet, the upward trend in the globally averaged

temperature shows that more areas are warming than cooling. According to the

National Oceanic and Atmospheric Administration (NOAA) 2019 Global Climate

Summary, the combined land and ocean temperature has increased at an average

rate of 0.07°C (0.13°F) per decade since 1880; however, the average rate of increase

since 1981 (0.18°C / 0.32°F) is more than twice as great.” There is no doubt that both

temperature and CO2 level have been increasing.

In addition to correlation, the common consensus among scientists across many

different disciplines is that (manmade) greenhouse gases cause an increase in global

warming (increase in land and ocean temperature), hence the growing global

popular campaign re climate change. Scientists use many different methods to

measure temperature and greenhouse gases, e.g., ice coring, tree rings,

balloons...etc. This literature is extraordinarily voluminous, runs across many



disciplines, and readily available on the Internet, which we will not attempt to cite

but we will restrict our citation to immediately relevant articles.

Scientists have used many different sources of data too, and many different

techniques to show correlation between CO2 and temperature. A typical argument

goes like this, “One of the most remarkable aspects of the paleoclimate record is the

strong correspondence between temperature and the concentration of CO2 in the

atmosphere observed during the glacial cycles of the past several hundred thousand

years,” and the graphical presentation in (Jouzel et al. 2007 and Lüthi et al. 2008).

Figure (1) shows the temperature (light color) and (dark color) measured by the

European Project for Ice Coring in Antarctica (EPICA). The graphical correlation is

extraordinary. The relationship is so tight one needs do nothing else but believe it.

However, there are a number of issues in figure (1). First, given the significant

correlation between CO2 and temperature for 800,000 years, obviously not all

greenhouse gasses have been manmade. Second, the correlation between CO2 and

temperature at zero years before present seems the same or lower than it was

100,000 years before present! Third, history seems to suggest that there are

prolonged periods of low CO2 and low temperature levels, so what caused CO2

level to fall without any interventionist policy? Fourth, the graph is not a proof of

causation. Could temperature cause CO2? Could causality be bi directional, running

in both directions? Fifth, however, most importantly for this paper, which is not

about the science of climate warming per se but about using statistics to analyze

scientific data of global warming, is that both CO2 and temperature are measured in



levels and have trends. Trend in the data could render the correlation between the

levels spurious. This paper focuses on the time series analysis of trend, and on how

to calculate and estimate meaningful associations between, mainly, CO2 and

temperature.

In this paper, we argue that the analysis of global warming must depend on

identifying the nature of the trend, not only in temperature, but in greenhouse gases

data too. If CO2 and temperature exhibit trends, then the moments (the mean,

variance, kurtosis, and skewness) are functions of time and therefore, the correlation

between these variables is spurious (i.e., meaningless) in general, unless these two

variables share a common long run trend (i.e., cointegrated), Granger and Newbold

(1974) and Engle and Granger (1987). Predicting the trend is difficult (Phillips, 2003).

In this paper, we examine whether the trend is stochastic (i.e., unit root) or linear. If

the trend is linear, the time series is said to be trend stationary, i.e., the trend

adjusted time series is stationary, or I (0,) and its moments are not functions of time.

If the trend is stochastic (i.e., unit root), the time series is difference stationary.i

However, the correlation between the trended time series is not spurious, if the two

series share a common long run trend, i.e., temperature and CO2 are cointegrated.

Cointegration means that there is a stationary linear combination of the two trending

time series CO2 and temperature.

Another important question that we attempt to answer is whether temperature and

CO2 share a common cycle. Common cycle could be conditional on cointegration as



in Vahid and Engle (1993). We also examine the correlation between the cyclical

components of the time series. We do so by using frequency filters to remove the

noise and the trend first, and then test for correlation between the remaining cyclical

components.

Furthermore, we test the dynamics of the data by investigating whether it could tell

us whether, or not, past information (i.e., the lagged values) of CO2 could explain

current temperature. We estimate a Vector Auto Regression (VAR). We also measure

the effect of CO2 on temperature conditional fossil fuel consumption and world

population and how this dynamic affects current temperature, which would be

informative for policymakers.

We take the data from NOAA and NASA. We focus on the recent history because

CO2 emissions due to industrialization, modern mechanized agriculture, increasing

use of fossil fuel, electricity generation, combustion engines, etc., at least in the

Northern Hemisphere, increased significantly in the second half of the 20 century.

Our data, therefore, are from 1959 to 2020. The data for CO2 measure mean global

CO2. The method of measurement is described on the NOAAWebsite. CO2 is

expressed as a mole fraction in dry air, micromol/mol, abbreviated as parts per

million (ppm). BP Statistical Review (2020) also reports data for CO2 emission in

millions of tones, which looks very similar to the NOAA data. Average global land

and ocean temperature (Celsius) data are from the NOAA. NASA compiles similar



data, but smoother, and they include Northern and Southern Hemispheres. It is

informative to test the Northern and Southern Hemispheres separately because the

North should logically have more emissions that the South. The NASA data source

is GISTEMP (2021) and Lenssen (2019). We plot the data, which we use in this paper

in figure (2). Visually, the data have trends.

We test the data in many different ways; use a variety of methods, models, and

specifications for robustness. Here is a summary of our findings. First, we present

convincing statistical evidence that the level of CO2 cannot explain the variations in

temperature. Second, CO2 is a difference stationary time series, I (1), i.e., has a unit

root, but temperature is trend stationary, i.e., no unit root as suggested by Chang at

al. (2020). We show that the correlation is positive but statistically insignificant.

However, if temperature has a unit root then the correlation between the differenced

stationary CO2 and the percentage change in temperature is insignificantly different

from zero. Third, there is no cointegration – i.e., the levels of CO2 and temperatures

do not share a common long run trend. Fourth, we found that there is a statistically

insignificant correlation between trend adjusted (i.e., stationary) global Co2 and

trend adjusted global temperature; trend adjusted global CO2 and trend adjusted

Northern hemisphere temperature; and trend adjusted CO2 and trend adjusted

Southern hemisphere temperature. Fifth, the variance of trend adjusted temperature

is 100 times larger than the variance of trend adjusted CO2. Sixth, there is no

evidence of long run co variation. Seventh, the cyclical fluctuations obtained after



removing noise and trend from the data indicate a weak cyclical correlation, 0.53.

Eighth, we found that unrestricted (atheoretical) VARs present a useful summary of

the dynamics of CO2 and temperature, whereby past information of (lagged values)

has a significant, however, short lived, and a small in magnitude, predictive power

of current temperature, more so in the Northern hemisphere. Ninth, the variance of

temperature due to CO2 is between 20 and at most 40 percent; and significantly less

for fossil fuel consumption.

Including other greenhouse gasses such as Methane and Sulfur Hexafluoride did not

alter the results. We conclude that although many people tend to believe that

increasing measured CO2 in the atmosphere is not a good thing, which might very

well be true, there is no statistically robust evidence – in our sample of 60 years of

the most industrialized times on earth – that it is related to global warming. Policy,

therefore, should be evidence based.Manmade greenhouse gasses will be reduced

when people realize more profitable investment opportunities in greener economic

activities without government intervention based on flimsy statistical evidence.

Next, we briefly discuss the most relevant literature. In section (3), we then test the

nature of the trend in CO2 and in temperature. Section (4) answers the question of

whether CO2 and temperature share a common long run trend, i.e., cointegrated.

Section (5) examines the cyclical correlations. Section (6) tests for the correlation, and

the long run correlation, between the two variables are in section. In section (7), we



look at the short run dynamics. We estimate a number of unrestricted bivariate

VARs, which include CO2 and temperature. Section (8) investigates whether omitted

variables might have some explanatory power. We include global fossil fuel

consumption in the VARs, and world population growth as an additional exogenous

variable. Section (9) is a multivariate analysis of all available greenhouse gases

effects on temperature, and section (10) includes a summary and conclusions.

2. Most relevant literature review

The literature includes a number of attempts to examine the nature of the trend in

temperature. The evidence about the nature of trend in temperature, and greenhouse

gases is mixed. Chang et al. (2020) cites the studies that “generate results consistent

with unit root in temperature,” which are Gordon (1991), Woodward and Gray

(1993, 1995), Gordon et al. (1996), and Kärner (1996). The studies that “generate

results” consistent with the presence of a deterministic trend with possibly highly

persistent noise, on the other hand, include, Bloomfield (1992), Bloomfield and

Nychka (1992), Baillie and Chung (2002), and Fomby and Vogelsang (2002).

Chang et al. (2020) found direct support to a one unit root process (stochastic trend)

in the Southern Hemisphere, and two unit root processes in the Northern

Hemisphere and the globe, with no evidence for higher order processes in any of the

moments of any of these distributions over time. They acknowledge the difficulty in

distinguishing between a stochastic trend and a deterministic trend with breaks

using statistical techniques alone.



There are more studies about the trend in temperature, however. Seater (1993), for

example, is concerned that there has been no significant trend in temperature, thus,

global warming is problematic. He focused on temperature data only, i.e., not CO2.

He studied three data sets on world temperature, and argued that “data on direct

measurements of world temperature over the past century yield trend estimates of

.45 degrees Celsius per century with rather wide confidence intervals of (.15, .75).

The data s behavior raises questions about whether the trend is genuine or due to

greenhouse gas emissions.” He means by genuine that it is natural and unaffected

by CO2 and other emissions. He says, “Data on temperature measurements inferred

from tree rings over the past 1,500 years display no trend. The upward drift over the

past century could easily be a cyclical upswing of the type that has occurred many

times in the past.” His method was regressions of the temperature data on a constant

term, linear trend, and lagged dependent variable. Indeed, some of the long time

series data of temperature, measured from tree rings, have no obvious trend.

Shakun et al. (2012) argued that, “The covariation of CO2 concentration and

temperature in Antarctic ice core records suggests a close link between CO2 and

climate during the Pleistocene ice ages. The role and relative importance of CO2 in

producing these climate changes remains unclear, however, in part because the ice

core deuterium record reflects local rather than global temperature.” He constructed

a record of global surface temperature from 80 proxy records and showed that,

temperature is correlated with and generally lags CO2 during the last (that is, the

most recent) deglaciation. Differences between the respective temperature changes



of the Northern Hemisphere and Southern Hemisphere parallel variations in the

strength of the Atlantic meridional overturning circulation recorded in marine

sediments. These observations, together with transient global climate model

simulations, support the conclusion that an antiphased hemispheric temperature

response to ocean circulation changes superimposed on globally in phase warming

driven by increasing CO2 concentrations is an explanation for much of the

temperature change at the end of the most recent ice age.”

McKitrick (2014) pointed out that, “The Intergovernmental Panel on Climate

Change (IPCC) has drawn attention to an apparent leveling off of globally averaged

temperatures over the past 15 years or so. He argued that measuring the duration of

the hiatus (break in the data) has implications for determining if the underlying

trend has changed, and for evaluating climate models. Here, I propose a method for

estimating the duration of the hiatus that is robust to unknown forms of

heteroskedasticity and autocorrelation (HAC) in the temperature series and to

cherry picking of endpoints. For the specific case of global average temperatures, I

also add the requirement of spatial consistency between hemispheres. The method

makes use of the Vogelsang and Frances (2005) HAC robust trend variance

estimator, which is valid as long as the underlying series is trend stationary, which is

the case for the data used herein. Application of the method shows that there is now

a trendless interval of 19 years duration at the end of the Had CRUT4 surface

temperature series, and of 16 26 years in the lower troposphere. Use of a simple

AR1 trend model suggests a shorter hiatus of 14 20 years but is likely unreliable.”



McKitrick and Vogelsang (2014) compare trends across climatic data sets using

heteroskedasticity and autocorrelation robust methods, specifically the Vogelsang –

Frances (VF) nonparametric testing approach, to allow for a step change in the mean

(level shift) at a known or unknown date. The VF method is robust to unknown

serial correlation up to but not including unit roots. They show that the critical

values change when the level shift occurs at a known or unknown date. They derive

an asymptotic approximation that can be used to simulate critical values, and outline

a bootstrap procedure that generates valid critical values and p values. This method

builds on the literature comparing simulated and observed trends in the tropical

lower troposphere and mid troposphere since 1958. The method identifies a shift in

observations around 1977, coinciding with the Pacific Climate Shift. Allowing for a

level shift causes apparently significant observed trends to become statistically

insignificant. Model overestimation of warming is significant whether, or not, a level

shift is accounted for, although null rejections are much stronger when the level shift

is included.

3. Examining the trend

3.1 . Graphical correlation

The correlation between CO2 and temperature depends on the type of trend in the

data. Determining the nature of the trend of both CO2 and Temperature, therefore, is



crucial. Figure (2) shows a trend in both, with CO2 rising smoothly over time while

global, Northern, and Southern hemispheres temperatures have trend and fluctuate

more than CO2. Before we test for, or remove, the trend, figure (3) shows the

confidence ellipse (a 95% Chi Squared test) of the correlation between the levels of

global CO2 and global temperature. The correlation is positive, as expected, and

statistically significant. However, graphical correlation may, or may not, be verified

by a regression equation.

3.2 Regression analysis

Table (1) reports six OLS regressions in three panels. The dependent variables are

global temperature in panel (1), Northern Hemisphere in panel (2), and Southern

hemisphere in panel (3); the explanatory variable in all three panels is CO2. Each

panel has two regressions, without, and with, a constant term. The results are very

informative. The regressions with constant terms are significantly different from the

ones without. In the first panel and first column, regression, without a constant term,

is low equal to 0.15, and the DW statistic is low equal to 0.53. The slope coefficient

is 0.001. In the second regression in the first panel, with a constant term, there is a

significant negative intercept, increased to 0.77, and the DW statistic increased to

1.92, which is a significantly improved result. This regression seems very reasonable

in the terms of increased goodness of fit and serially uncorrelated residuals. The

estimator is BLUE.ii Moreover, the slope coefficient increased from 0.001 to 0.009. In

this regression, one could interpret the results to say that a 100 ppm increase in CO2

would increase temperature by 0.9 degrees. The regression suggests that, perhaps,



there are missing variables that explain global temperature, which are captured by

the constant term. Scientists must know what these variables are. Nawaz and Sharif

(2019) cite Lamb (1997) and they reported, “Who [Lamb] is considered the father of

modern climatology, argued that CO2 levels alone couldn’t account for all of the

global warming that’s been observed.” Lamb’s conclusion seems consistent with our

results.

In the second panel, similar things happened when the regression included a

constant term, increased from 0.14 to 0.88 in the case of the Northern Hemisphere.

The slope coefficient increased from 0.001 to 0.013. However, this regression, unlike

the global temperature regression, is likely to be spurious because the DW statistic is

low. In the third panel, second regression increased to 0.85. The DW statistic was

low. This regression is also spurious.

2.2. Testing the trend

The difference between trend and difference stationary time series is that the trend

stationary time series tends to return to a fixed deterministic trend function or it

would fluctuate around a fixed trend function. The differenced stationary time

series, however, has no tendency to return to a fixed trend function. It simply grows

at a rate from its current position. Differencing might render the data stationary,

most of the time. A stationary time series will be , i.e., stationary, but not all



time series are stationary. Some AR (1) model’s can be stationary but they are not

. Also, not all non stationary times series are . The inability to determine the

nature of the trend results in misspecification with all common consequences such as

inconsistency of the coefficients, see for example, Hamilton (1994).

We test the nature of the trend using a number of commonly used unit root tests,

e.g., the Dickey Fuller (1979) – Augmented Dickey Fuller (Said and Dickey, 1984),

the GLS (Elliot, Rothenberg, and Stock, 1996), and Phillips Perron (1988). One should

be cautious about the ability (the power) of these tests to tell the difference between

a root of one and 0.98. This is a conclusion shared by many economists, see for

example, Stock (1991), Cochrane (1991), Rudebusch (1993), and Christiano and

Eichenbaum (1990). There is a large literature about measuring the power of these

tests, which we will not cite; however, there is a consensus that the power of these

tests is low.

Table (2) reports the ADF test results for global temperature and CO2. The OLS

regression specification includes a constant term and a linear trend. For the

Augmented Dickey Fuller test, we use Akaike, Schwarz, and Hannan Quinn

Information Criteria, and the modified versions of them to choose the lag structure.iii

More lags weaken these tests further. However, the ADF overwhelmingly rejects the

null hypothesis of a unit root in temperature. Linear trend, though, is statistically

significant. For CO2, the null hypothesis of unit root could not be rejected.



The results of the Phillips – Perron nonparametric test statistic reported in table (3),

which are identical to the ADF test results. We use a variety of methods to estimate

the spectral density function. All specifications indicate rejection of the null

hypothesis of unit root. The linear trend is statistically significant too.iv

Table (4) reports the ADF ERS test results. The test rejects the unit root in

temperature when the number of lags in the regression is zero; the test fails to reject

the unit root in temperature when the lags increased. This is typical because the

power of the test deteriorates fast with more lags. For all of the three test statistics

above, even when we fit different models, i.e., with a constant term only, or without

a constant term and without a trend, we could not reject the unit root in CO2 and

with a much higher P value (1 and close to 1).

Finally, we test for unit root with a breakpoint (in the intercept and the trend) in the

temperature data only because we suspect that the data have been measured using

many different methods over time. The results are in table (5). It included the results

of a number of specifications: the ADF test with minimum intercept break t stat test,

maximum intercept t stat test, and maximum intercept beak absolute t stat test. In

addition, we specify an innovation and additive outliers, and breaks in the intercept

and the trend. For each of these specifications, we use the same Information Criteria

that we used earlier to determine the lag structure. All tests reject the unit root



except when the modified Information Criteria are used to determine the lag

structure because the number of lags increased, which weakened the test.

Although the tests that we used to test the trend have low powers, however, when a

weak test rejects the null, i.e., in the case of temperature, the power of the test

becomes irrelevant. We take the rejection of the null results in the case of the

temperature time series to be statistically meaningful and conclude that global land

and ocean temperature is not a unit root process. However, there is a significant

linear trend; hence, temperature is highly probably a trend stationary time series.

We found the same results for NASA’s Northern and Southern land and Ocean

temperatures data. We do not report these results but they are available on request.

One last test is the KPSS (1992) nonparametric test. It cannot reject the null

hypothesis that temperature is I(0) stationary series, with a significant linear trend,

hence consistent with all other tests. The value of the KPSS test is 0.071578, i.e.,

smaller than the 1, 5, and 10 percent critical values that are reported in Kwiatkowski,

Phillips, Schmidt & Shin (1992, table 1). The results do not change when we choose

different methods to estimate the spectral density. However, because its null

hypothesis is I(0) – not I(1) as in the other previous tests; we cannot compare the

powers of the tests. Nonetheless, the test confirms that temperature is not a unit root

process.



Figures (4a, 4b, 4c,) plot the actual data, their linear trend, and their stationary trend

adjusted temperatures. However, the non rejection of the unit root by all tests of

CO2 indicates that CO2 is a difference stationary time series.

2.3. The spectral density

To shed more light on the unit root, we also estimated the spectral density of CO2

and global temperature. Figures (5a and 5b) plot the spectral density functions.

There is a very clear difference. CO2’s spectral is more consistent with a unit root,

whereby there is a relatively higher activity at zero frequency, albeit not close to 1,

while temperature’s spectral is relatively flat, and there is very low activity at zero

frequency.

2.4. Descriptive stats of the trend adjusted data are meaningful

Now since we have assessed the nature of that trend, the moments of the trend

adjusted data are not functions of time and are meaningful. Table (6) reports such

descriptive statistics for the trend adjusted stationary data. Note that the variance of

log difference CO2 is 100 times smaller than the variance of the trend adjusted

temperature. Therefore, variations in CO2 cannot explain the variations in

temperature.



4. Do CO2 and temperature share a common long run trend

4.1 Cointegration

The next testing step in the unit root analysis is to test the null hypothesis that

temperature and CO2 are “not” cointegrated, and try to reject it! If the level of CO2

and the level temperature (i.e., not adjusted for trend) share a common long run

trend, the two variables are cointegrated. Since temperature and CO2 are non

stationary data, cointegration essentially implies the existence of a stationary, I (0),

linear combination of the two variables, i.e., the Triangular Representation Theorem,

e.g. Granger (1983).

We test the null hypothesis that CO2 and temperature (the levels) are “not”

cointegrated. If we reject this null hypothesis, we may conclude that they share a

common trend in the long run. Testing the null of “no” cointegration requires a long

span of data, and 62 years of annual data is a sufficient span, see for example, Hakkio

and Rush (1991). Tables (7a, 7b and 7c) present the results. Typically, the testing is

done in steps. In table (7a), we regress the level of global temperature on the level of

CO2 using OLS; and we output the residuals. Engle and Granger (1987) suggested

six different ways to test for cointegration. One of them is to test the residuals for

unit root using the ADF test. Thus, in table (7b), we test the residuals from the first

regression for unit root using the ADF test. The test is distributed Engle Granger



(1987) and it is best suitable for testing a bivariate system. The weak ADF test cannot

reject the unit root with a P value equal 0.9709. Thus, it suggests that the residuals

are I(1), hence the two variables are not cointegarted – i.e., do not share a common

trend. However, a necessary and sufficient condition for cointegration is the

Triangular Representation Theorem, which involves estimating an Error Correction

equation. Therefore, in table (7c), we regress the trend adjusted global temperature

on a constant, the log differenced CO2, and the lagged residuals from the previous

level regression. For cointegration to exist, the t statistic on the coefficient of the

lagged residuals must be very large (P value is 0). We found that the t statistics to be

statistically insignificant with a P value 0.5853. We conclude that the temperature

and CO2 are not cointegrated – i.e., they do not share a common long run trend and

there exist no linear stationary combination of the two variables.

Our results are similar to those published in Phillips et al. (2020). They tested

temperature (T), CO2 and radiation (R) time series for cointegration, and say, “Table

B.1 in Appendix B provides residual based tests for cointegration among the

aggregate variables (T, R, CO2). These results are strongly confirmatory of a long run

linkage among these three variables taken together but show no direct linkage

between the two component variables (R, CO2) or between (T, CO2). This confirms

the role that R and CO2 play jointly in the long run determination of T.”



4.2 The long run covariance

Alternatively, we check whether there is a long run co variation between the trend

adjusted CO2 and temperature. Table (8) reports the long run covariance between

CO2 and temperature. These long run co variances are symmetric, degree of

freedom adjusted, the weights are chosen using Akaike Information Criterion (AIC),

the kernel is computed using Bartlett method, and the bandwidth method is the

Newey West. The long run covariance is close to zero.

5. Do CO2 and temperature have common cycle

Because we found no cointegrating vector between CO2 and temperature, we cannot

use Vahid and Engle (1993) to test for a common cycle, which is based on squared

canonical correlation and conditional on the number of cointegrating vectors.

However, we examine the cyclical relationship, which Seater (1993) suspected by

decomposing the time series into trend, cycle, and noise using symmetric and

asymmetric Band Pass frequency Filter, Christiano – Fitzgerald (1995). The typical

cycle periodicity in an annual data is 2 to 8 years. Figures (6), (7), (8), and (9) are the

cyclical fluctuations of the average global temperature, the average Northern

Hemisphere temperature, the average Southern Hemisphere temperature, and CO2.

Figure (10) plots together the cyclical fluctuations of global temperature and CO2.

There is a weak 0.53 correlation between them over the cycle.



6. Correlation

Since we have no statistically significant evidence of long run and cyclical

relationships between CO2 and temperature, we examine the correlation between

the trend adjusted data. Figures (11), (12), and (13), plot the Chi Squared 95%

Confidence Ellipses, which tests the significance of the correlations between the

trend adjusted CO2 (differenced stationary) and temperature (trend stationary).

These tests show that there is a positive but statistically insignificant correlation

between CO2 and temperature globally.

It is important to mention that if temperature is assumed to be a unit root processes

as suggested by Chang et al. (2020), then the correlation between the differenced

stationary temperature and the differenced stationary CO2 is, in fact, zero. Figures

(11b), (12b), and (13b) plot the Chi squared tests.

7. The short run dynamics: could past CO2 information predict current

temperature?

So far, there are no significant short run, long run, or cyclical relationships between

temperature and CO2. Here, we examine the dynamic, i.e., whether past information

of CO2 (i.e., lagged values) has any predictable power of current temperature. We

summarize the dynamics of the data using an unrestricted Vector Autoregression



(VAR). Essentially, a bi variate unrestricted VAR is similar to the so called Granger

causality test, where by the variables are regressed on their own lagged values and

the lags of the other variables, then the null hypothesis that does not Granger

cause and does not Granger cause are tested using an statistic.

Our atheoretical VAR is unrestricted, i.e., we do not impose theoretical restrictions on

the VAR, because the econometrician does not have theoretical restrictions to impose

on the variables to identify the shocks. The model is not an economic model, and the

theory about the relationship between CO2 and temperature is not an economic

theory. Therefore, we will simply examine the dynamic effect of CO2 on

temperature. We view this VAR as a method to summarize the dynamics of the two

variables, CO2 and temperature, no more than that.

The VAR is:

, (1)

where is a vector of endogenous variables, and

is a vector of exogenous variables. is matrix

of lag coefficients , and is a matrix of the exogenous variables’ coefficients.



There is also an exogenous constant term, is a vector of

white noise innovations with ; , and for .

We begin with an unrestricted VAR without any exogenous variables. We examine

the growth rate of CO2 and trend adjusted global temperature first. We test the

number of lags using a number of commonly used exclusion tests (sequential

modified LR test statistic, final prediction error, AIC, SIC, and HQ criteria). We

chose two lags because temperature is volatile, which affects the calculation of the

variances. We think that variance decomposition is more informative than impulse

response function in this case. The variance decompositions (standard errors are

generated using 1000 Monte Carlo iterations) are plotted in figure (14). The variance

of the trend adjusted global temperature due to CO2 growth is no more than 20

percent. A structural VAR does not alter the results.v

Then we estimate the same VARs for CO2 and the trend adjusted Northern and

Southern Hemispheres trend adjusted stationary temperatures. Figure (15) shows

that the variance of the Northern Hemisphere temperature due to CO2 growth is

about 30 percent. Figure (16) shows a similar result for the variance of the Southern

Hemisphere due to CO2 growth. Figure (17) puts the variance of the three measures

of temperature due to CO2 growth together. These short run dynamics indicate that



past information of CO2 could predict a small percentage of the current temperature

over the sample from 1959 to 2020.vi

8. An Omitted variable problem

It is quite reasonable to assume that there are other variables, which might affect

both temperature and CO2, i.e., omitted variables. We had this clue from the

regressions in Table (1). The constant terms were very significant, and they changed

the goodness of fit of the regressions. There are potential effects of solar variation,

cosmic ray flux, and the Milankovich cycles, and soil erosion and desertification,

which may explain some of the unexplained variations in temperature. This would

the scientists’ job. In this paper, however, we are more concerned with the effect of

the greenhouse effect on policy. Given that non fossil fuel – non manmade

greenhouse gasses can also affect global warming, we want to test the effect of CO2

on temperature, conditional on fossil fuels, production and consumption, which

were missing from our previous VAR, and they could be affecting the dynamic. In

another word, we test whether adding a third variable that affects CO2 might

change the relationship between with temperature.vii

We estimate a VAR, which includes in addition to the growth rate of CO2 and trend

adjusted global land and ocean temperature, the growth rate of global fossil fuel



consumption. Fossil fuel consumption is the sum of oil, gas, and coal consumptions

measured in Exajoules (BP Statistical Review, 2020). We also included in the VAR

the world population growth as an exogenous variable. World population (OECD

Statistics) has been growing over the past sixty years, and it could have some

significant exogenous effect on greenhouse gasses.

Figure (18) plots the additional variables, global fossil fuel consumption, and world

population. Both have unit roots. Figure (19a), (19b) and (19c) report the variance

decompositions, i.e., percent temperature variance due to CO2, based on Cholesky

degree of freedom adjusted, and 1000 Monte Carlo generated standard error. The

growth rate of CO2 explains more of the variance of the Northern Hemisphere

temperature than it does for the Southern Hemisphere, and global temperatures,

about 40 percent. It explains just a little more than 20 percent of the global

temperature, and about 30 percent of the Southern Hemisphere’s. Figures (20a),

(20b), and (20c) plot the variances of temperature due to fossil fuel. The amount of

variations in temperature due fossil fuel consumption growth is trivial.

Scientists believe there is a feedback mechanism that significantly influences the

CO2 – temperature connection. Perhaps they reached the same conclusion Lamb

(1997) has reached, which is consistent with our results in table (1). See the Royal

Society on water vapor feedback effect on temperature. Dlugokencky (2016) et al.

say, “This strong water vapor feedback means that for a scenario considering a

doubling of the CO2 concentration from pre industrial conditions, water vapor and



clouds globally lead to an increase in thermal energy that is about three times that of

the long lived greenhouse gases. Therefore, measured in the ability to trap the heat

emanating from the Earth’s surface, water vapor and clouds are the largest

contributors to warming. The amount of water vapor in the atmosphere is a direct

response to the amount of CO2 and the other long lived greenhouse gases, increasing

as they do.”

Note that there are many different methods to measure water vapor. At least eight

are mentioned in Dlugokencky (2016) et al. However, these methods make it

difficult to have a consistent trend measurement. They argue that “for example, the

limited lifespan of satellite missions or insufficiently documented or understood

changes in instrumentation. Combining records from different instruments that do

not agree with one another is also a problem. One example is the offset between

records from the HALOE and MLS satellite instruments. Nevertheless, observations

show a steady increase of the total water vapor column as well as a 30 year net

increase in stratospheric water vapor. Also, see Ning et al. (2016), for example, who

found number of breaks in the integrated water vapor (IWV) time series obtained

from reprocessed data acquired from global navigation satellite systems (GNSS).

Furthermore, it is very difficult to get a consistent time series data for water vapor

online. We conclude that since water vapor amplifies CO2 effect on temperature, our

Dynamic OLS regressions include lag and lead CO2, albeit one lag and one lead,

they should capture some of the water vapor feedback effect. The data for water



vapor are not readily and easily accessible from NOAA webpage, and there is no

time series data as far as we know.

9. The other greenhouse gases

Finally, we attempt to include the other greenhouse gases in our analysis. NOAA

publishes data for methane, , Sulfur Hexafluoride , and Nitrous Oxide, .

However, they come with different samples. Take methane ( ) for example, the

sample is 1984 to 2019. has a shorter sample from 1998 and is very short

from 2001. The sample size affects the time series analysis, and the method of

analysis. We use a multivariate method for cointegration instead of bivariate

methods. Water vapor is also a greenhouse gas.

We begin with the three gases, methane, Nitrous Oxide, and Sulfur Hexafluoride

because some time series data are readily accessible. We test for unit root just like

did before. Methane (CH4) has a unit root because the common tests for unit root

could not reject the null, which might be due to low power. Nonetheless, it has a

significant positive trend. Thus, it is differenced stationary. For Sulfur Hexafluoride

SF6, has a unit root too. Nitrous Oxide, data are unsuitable for time series

analysis. Figure (21) plot these time series.

To test the null hypothesis of “no” cointegration, we follow two strategies. First, we

test pair wise, with temperature exactly like what we have done with CO2 earlier



and use the bivariate Engle Granger (1987) method. So, we test temperature and

then we test temperature and separately.

Table (9) reports the results of the temperature Methane pair. In (9a), we regress

global temperature on a constant and Methane. In table (9b), we test the residuals

from the above regression for unit root using the ADF test. The test with the AIC

rejects the unit root and with the modified, AIC cannot reject the unit root, however,

in (9c), the lagged residuals are statistically insignificant from zero, which suggest

that there is no evidence of cointegration between global temperature and methane.

This latter ECM regression is a more reliable method to test for the null hypothesis of

no cointegration. Table (10) tests the pair of temperature . The sample is much

smaller, from 2001to 2019. There is no evidence of cointegration here either.

Since none of the greenhouse gasses is cointegrated with temperature, we do not

expect a multivariate test for temperature and all the three greenhouse gases

together to provide any insight about the long run common trend between them. It

would indicate cointegration, but it would be a cointegration among the greenhouse

gasses themselves, and not with temperature. The Johansen Maximum Likelihood

test suggests two to three cointegration relationships. Two cointegration

relationships are probably between CO2 and because the sample is longer while

the sample of is short. These multivariate results are also similar to Phillips et al.



(2020). They did not find a cointegration relationship between CO2 and temperature,

but they found a cointegration relationship among CO2, Temperature, and radiation.

Table (11) reports the results. We test the null hypothesis of no cointegration among

the four variables temperature, CO2, CH4, and SF6 using both the bivariate Engle

Granger (1987) and the Johansen’s Maximum Likelihood Test, Johansen (1988, 1991

and 1995) and Johansen and Juselius (1990). The Johansen tests in more appropriate

in a multivariate case like this one. However, the sample size is short, 22 years as

compared with 62 in the previous analysis because the sample for is short, 2001

to 2019. Cointegration requires a long span of data, and the Johansen test statistics,

i.e., the Trace and the Maximum Eigenvalue, have a small sample bias that is very

difficult to fix, therefore, one should take these results with a grain of salt. See, for

example, Cheung and Lai (1993) for correcting the critical values of the Johansen’s

test statistics.

For the Engle Granger test, we use OLS to regress global temperature on the levels

of CO2, , and deterministic linear trend; output the residuals; test them for

unit root using the ADF test; and finally estimate an OLS error correction equation.

The tests suggest that these variables are cointegrated. The error correction term has

a large t statistic (p value is 0.0033). The ADF also strongly rejects the unit root in the

residuals of the level regression. The Johansen tests include intercept and trend in

the cointegration equation and no intercept in the VAR. This is the only plausible



specification because we tested the normalized cointegration relationships for unit

root using the ADF and we could reject the unit root at the 10 percent level. Recall

that the Johansen test statistic and the ADF are identical in the case of one unit root.

Other specifications do not seem to be same.viii

Figure (22) plots the three cointegration relationships and the residuals from the

level regression of temperature on the greenhouse gasses, i.e., the Engle Granger

cointegartion relationship. These plots suggest that there might be a long trend

among these variables albeit one should be careful about such interpretation because

of the small sample problem. The first cointegration relationship is indeed I(0), the

second too, but the third has a trend. The Engle Granger residuals are I(0). A

cointegration relationship among the greenhouse gasses is not a surprise in general.

The question is whether the share one with temperature.

Cointegration implies that we could either run OLS regressions in levels, whereby

the t statistics is still valid or we could use other error correction methods such as

VECM, FMOLS and Dynamic OLS. We do both. In table (12), we report several

regression results. All variables are in levels. The dependent variable is temperature,

and the regressers are CO2, , and . The table has six panels. The first three

panels are for OLS. The third panel is Dynamic OLS (see Phillips – Loreatn (1991),

Saikkonen 1991, and Stock and Watson (1993) for the asymptotic theory).ix Each



panel has two columns. The first column reports regressions without a constant

term. The second column reports the regressions with constant terms.

The first three panels are the OLS results for average global land and ocean

temperature, the Northern Hemisphere temperature, and the Southern Hemisphere

temperature respectively. The regressions without constants suggest that all

greenhouse gasses are statistically insignificant explanatory variables for

temperature. The goodness of fit is low in global temperature regression in column

(1), 0.29 and DW statistic is 1.94. Adding a constant to the regression in the second

column makes all coefficients statistically significant and improves the fit, adjusted

R squared increases to 0.50, not particularly high. The DW statistic is 2.3. CO2 has a

large coefficient 0.25; methane coefficient is 0.023 and is negative 2.30. The point

is that the constant term captures more missing explanatory variables. Nevertheless,

most importantly, these estimates are nonsensical. A 100 ppm increase in CO2 raises

global temperature by 25 degrees Celsius!

In the second panel for the Northern Hemisphere temperature, the first column

reports all three explanatory variables are statistically insignificant. The relatively

high adjusted R squared and low DW statistic suggests that the regression is

spurious. Again, the results change when we add a constant to the regression. The

coefficients are statistically significant and the errors are serially uncorrelated with a



DW statistic 1.72. Here too, the coefficient of CO2 is 0.15, too large to make any

sense.

And, in the third panel for the Southern Hemisphere temperature, the first column is

the regression without a constant, and the coefficients are insignificant except for

. The goodness of fit, adjusted R squared is 0.63 and the DW statistic is 1.78,

however, surprisingly when we add a constant to the regression the coefficients

become statistically insignificant. In all regressions without a constant CO2 has a

negative sign. We believe that the short sample size has some effect on these results

and one should be careful interpreting them. That said, the constant term must be

accounting for some other explanatory variables.

The last panels report the results of the Phillips – Loreatn (1991) dynamic OLS in

levels to estimate the coefficients. The small sample size restricted our ability to

search for the optimal lag length. Therefore, we fixed the lag lead length to be one

lag. None of the coefficients is significant, except for , methane. The regressions

of the global temperature in column (g) and (h), without and with a constant, have

insignificant coefficient estimates, except for methane, which has a coefficient of 0.03

and statistically significant. The regression in column (i) has all the coefficient

estimates insignificant. Adding a constant term to it in column (j) makes all the

coefficients significant, improves the adjusted R squared to 0.88, but the magnitude

of CO2 coefficients is too large to make sense, 0.31. For the Southern Hemisphere



temperature, both regressions in column (k) and (l), without and with a constant

term are insignificant.

The results in table (12) are not robust to specifications and methods. The sample

size is too small perhaps. The Phillips Loretan Dynamic OLS is restricted to one

lag/lead because of the small sample and that might have affected the estimates. One

thing remains clear; a constant in the regression makes a difference and is likely to

be telling us that there are any other explanatory variables missing.

Finally, we examine the short run dynamics by estimating a VAR, which has the

variables in this order ; ; CO2 and trend adjusted global

temperature. The sample is 1998 – 2019 because the first variable is only available

from 1998 to 2019. Table (13) reports the variance decomposition. These are based on

Cholesky, degree of freedom adjusted, and 1000 Monte Carlo generated standard

error. The variance of global temperature due to is negligible, only slightly more

is due to methane , but now more variations in temperature is attributed to CO2

than in the previous VAR, about 55 percent. Keep in mind that this VAR has a much

shorter sample. The order of the variables did not seem to influence the outcome.

We re estimate the VAR with the growth rate of fossil fuel consumption in addition

to the four other greenhouse variables. The VAR is ordered as follows, growth rate

of fossil fuel consumption, followed by ; ; CO2 and trend



adjusted global temperature. The results change significantly because of the

inclusion of fossil fuel consumption growth. They might have affected by the short

sample too. Table (14) reports the variance decomposition, with the variance of

temperature due to CO2 now dropped to less than 10 percent of total variation.

More than 10 percent is due to methane, and more than 30 percent is due to fossil

fuel consumption. Greenhouse gasses do not seem to explain much of the dynamic

of global temperature.

Tables (15) and (16) report the variance decompositions of the Northern and

Southern hemisphere temperatures. The variance of temperature due to CO2,

however, remains small, but it doubled in the South compared with the North. The

variance of temperature due to fossil fuel consumption growth tripled in the

Southern hemisphere compared with the North. These results are significantly

different from what have seen before adding the other two greenhouse gasses

and , and make less sense because we expect more influence in the Northern

hemisphere than the South. This dynamic must be influenced by the short sample

we have now and the loss of the degrees of freedom to estimate the dynamics.

10. Summary and conclusions

There is a global acceptance among people that CO2 and global temperature are

correlated. Some people suggest causation from the former to the latter. It is rather



very difficult to argue otherwise. Greenhouse effects, global warming, and climate

change are very important contemporary issues to governments, businesses, and

people. There is a pressure on governments to adopt policies to reduce or eliminate

CO2, fossil fuel, and other greenhouse gasses, which is a costly endeavor. The

International Renewable Energy Agency (IRENA) estimates to achieve a zero carbon

world and to keep global temperature at 1.5 Celsius by 2050 are huge. It says, “Major

economies have announced economic stimulus packages that will pump

approximately USD 4.6 trillion directly into carbon relevant sectors such as

agriculture, industry, waste, energy and transport, but less than USD 1.8 trillion is

green.” Stimulus is either tax financed or borrowing, which could have significant

economic consequences. Then it goes on saying, “By contrast, energy transition

investment will have to increase by 30% over planned investment to a total of USD

131 trillion between now and 2050, corresponding to USD 4.4 trillion on average

every year. Socio economic benefits will be massive; investing in transition will

create close to three times more jobs than fossil fuels, for each million dollars of

spending. To address concerns about a fair and just transition, IRENA’s Outlook

calls for a holistic and consistent overall policy framework.”

Most scientists agree that policy should be evidence based. The first step is to make

sure that CO2 and temperature are correlated in a statistical sense, and that the

correlation is stable over time, which is something that seems to have been assumed

and taken for granted. The objective of this paper is simple. We test the statistical



significance of the association, e.g., correlation, long run common trend, long run co

variation, common cycles, etc., between CO2 and temperature.

We began by showing Jouzel, J. et al. (2007) graphical correlation between and

global temperature over a period of 800,000 years. On the X axis, age, which is years

before present, and on the main vertical axis is temperature, and on the RHS vertical

axis is CO2. Most importantly, both variables are in levels. So, 800,000 years ago,

500,000 years ago…etc. The correlation between these two variables is remarkable.

We thought that this graph would be a scientifically sufficient proof for the existence

of correlation between CO2 and temperature. However, given the significant

correlation between CO2 and temperature for 800,000 years, obviously not all

greenhouse gasses have been manmade, not even 30,000 years ago. Second, the

relationship shows rising and falling CO2 and temperature 100,000 years ago and

now look the same, even less now. Third, there are prolonged periods of low

CO2 and low temperature levels, so what caused CO2 level to fall without any

interventionist policy? However, most importantly for this paper is that both

CO2 and temperature are measured in levels and have trends. Trend in the data could

render the correlation between the levels spurious. This paper focuses on the time

series analysis of trend, and on how to calculate and estimate meaningful

associations between CO2 and temperature.



We used a shorter sample that covers a more realistic period of greenhouse gas,

which is more appropriate to examine for policy purposes. NOAA and NASA report

data from 1959 to 2020, a sample more logical to investigate. This period includes

increased industrialization, at least in the Northern Hemisphere, global population

growth, marked increases in fossil fuel production and consumption, vast

mechanized agriculture, more power generation, more cars, more planes, and many

other harmful practices that exploded during the past 60 years. Crippa. M. Solazzo,

E., Guizzardi, D. et al. (2021) show that “food systems” were responsible for 34

percent of all human caused greenhouse gas emissions in 2015.

In our sample, we can visually identify positive trends in CO2 and temperature,

globally and in Northern and Southern hemispheres. Any correlation between the

levels of these variables is, therefore, spurious, unless they are cointegrated. All the

moments are functions of time, hence, uninformative unless, these two variables are

cointegrated (i.e., share a common long run trend). In order to make sense of the

relationship between CO2 and temperature, we have to, first, identify the nature of

the trend, and second, remove it.

We run a number of OLS regressions of temperature (global, Northern Hemisphere,

and Southern Hemisphere) on CO2 from 1959 to 2020 in the levels. In global

temperature, we found no correlation whatsoever, and the residuals were

significantly serially correlated. Then we repeated the regressions by adding a

constant term. This regression changed significantly, the fit increased significantly



and the residuals became white noise. This suggests that the constant term is

accounting for something missing that explains temperature. In the Northern and

Southern Hemispheres, the fit also increased significantly, but the residuals

remained serially correlated, which is a sure sign of spurious regression.

Since we have sufficient evidence that the trend in the data affects the correlation

between temperature and CO2, we investigated the nature of the trend in the data.

The trend is either linear or stochastic. We used a variety of commonly used and

well know statistical tests to test for unit root (i.e., stochastic trend) conditional on

linear time trend. When testing, we used different specifications, and many different

Information Criteria to determine the lag length. At the end, the results are quite

significant. We rejected the unit root hypothesis in temperature, but not in CO2. The

rejection of the unit root in temperature by already known weak statistical tests is a

significant result because the power of the test in this case is irrelevant, i.e., the null

has been rejected already. Therefore, CO2 is probably a unit root process, hence, it is

difference stationary but temperature is trend stationary. As a matter of fact the

association between temperature and CO2 completely disappears if we assume that

temperature is difference stationary too.

We proceeded with these conclusions to investigate the correlation between the

trend adjusted data. First, we found weak positive correlation between the two

variables as indicated by the Chi squared 95% confidence interval. Second, the



variance of the log differenced CO2 is 100 times smaller than the variance of the

trend adjusted temperature, thus CO2 could not possibly explain temperature.

Third, widely used nonparametric methods indicate no long run significant

covariance in these data. Fourth, a series of tests for a bivariate cointegration, i.e.,

whether CO2 and temperature share a common long run trend, indicated that we

could not reject the hypothesis that there is “no cointegration”. Temperature and

CO2 do not share a long run common trend. Phillips et al. (2020) found a similar

result essentially. Fifth, because there is no statistical evidence of a cointegrating

vector, we fail to test for common cycles. However, sixth, we decomposed the time

series into noise, trend, and cycles, removed the noise and the trend and examined

the correlation between the cyclical CO2 and cyclical temperature. We computed the

correlation to be 0.53, which is very small indeed. Seventh, our final exercise

involved estimating a number of unrestricted VARs to examine whether there is a

dynamic relationship between CO2 and temperature. In other words, we examine

whether past information in CO2 has predictive power of current temperature.

We found that temperature responds positively to CO2 shock. The variance of

temperature due to the growth in CO2 is small, less than 20 percent in global

temperature, about 30 percent in the Northern hemisphere and the Southern

hemisphere. To the extent that such VAR is too small and omitted variables might

play a significant role in explaining the dynamic of temperature in such atheoretical

exercise, we also estimated VARs that include global fossil fuel consumption in



addition to CO2 and temperature. We added population growth is an exogenous

variable too. No significant change in the results that we obtained earlier from

smaller VARs is found. Most importantly, only up to about 40 percent of the

variations in Northern hemisphere temperature is due to CO2, less than 30 percent

in Southern hemisphere, and less than 20 percent in global temperature. For fossil

fuel consumption, less than 20 percent of the variations in temperature are due to

fossil fuel consumption.

These stylized statistical facts are inconsistent with widely held views and openly

expressed opinions of scientific communities, governments, and people at large. The

temperature’s variance is 100 times larger than the variance of the supposedly

explanatory variable, CO2. Thus, it cannot explain the variation in temperature.

We attempted to examine the effects of the other greenhouse gasses, such as

methane, Oxide, and Sulfur Hexafluoride along with CO2, on temperature in a

multivariate analysis. Unfortunately, we do not find anything significant.

Our results are consistent across the various tests that we ran in this paper. The

variation in temperature cannot be explained by that of CO2, and there is a lot of

explaining that needs to be done before policymakers take actions. Our results were

derived from straightforward statistical methods, which are easily reproducible. The



sources of the data we used are referenced and the data are readily available online.

We also put the data we used in the appendix.

That said, policy based on the weak statistical relationship between trend adjusted

CO2 and temperature is a questionable policy. However, we believe that it is

probably prudent for policy to provide incentives to invest in greener energy, where

profit opportunities are available. Indeed, data show that investment in non fossil

fuel has been increasing worldwide, see Bloomberg NEF Clean Energy Investment

Trends (2020).
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Table (1)
OLS Regression

Sample 1959 2020

1 2 3 4 5 6
Global Temp(i) Northern Hem Temp(ii) Southern Hem Temp(iii)

3.14 4.5 2.4
(0.0000) (0.0000) (0.0000)

0.001 0.009 0.001 0.013 0.0008 0.007
(0.8486) (0.0000) (0.4973) (0.0000) (0.3145) (0.0000)
0.15 0.77 0.15 0.88 0.18 0.85
0.53 1.92 0.16 1.22 0.22 1.28

Correlation Weak Strong Weak Spurious Weak Spurious
(i) HAC Standard errors & covariance, Bartlett Kernel, prewhitening with lag =3, from AIC

maximum lag=3, Newey West fixed bandwidth=4
(ii) HAC Standard errors & covariance, Bartlett Kernel, prewhitening with lag =2, from AIC

maximum lag=3, Newey West fixed bandwidth=4
(iii) HAC Standard errors & covariance, Bartlett Kernel, prewhitening with lag =1, from AIC

maximum lag=3, Newey West fixed bandwidth=4
(iv) P values are in parentheses.



Table (2)

Unit Root
Augmented Dickey – Fuller

Estimator: OLS
Standard errors are HAC – Newey West with df Adj.

: Temperature
Information Criteria Modified Information Criteria
Lag AIC SIC HQ Lag AIC SIC HQ

0 0.12
(0.0104)

= = 3 0.12
(0.0418)

= =

0.015
(0.0000)

= = 0.012
(0.0000)

= =

0.92
(0.0000)

= = 0.67
(0.0062)

= =

0.44 = = = =
0.16 = = = =
2.00 1.98

Unit
Root

NO NO NO NO NO NO

: CO2
Information Criteria Modified Information Criteria
Lag AIC SIC HQ Lag AIC SIC HQ

2 0.41
(0.9391)

= = 0 0.57
(0.9070)

= =

0.03
(0.2421)

= = 0.03
(0.2816)

= =

0.001
(0.9283)

= = 0.0005
(0.9760)

= =

0.54 = = 0.55 = =
0.45 = = 0.45 = =
1.93 = = 2.04 = =

Unit
Root

YES YES YES YES YES YES

Augmented Dickey Fuller is Said – Dickey test statistic. P values are in parentheses. = means
that the results are the same.



Table (3)

Unit Root
Phillips – Perron

Standard errors are HAC – Newey West with d.f. Adj.
: Temperature

Spectral Estimation Method

Bartlett
and
Parzen

Quadratic AR (OLS) AR (OLS
de trended)

AR (GLS
de trended)

0.12
(0.0104)

= = = = =

0.014
(0.0000)

= = = = =

0.92
(0.0000)

= = = = =

0.44 = = = = =

0.16 = = = = =

1.89

Band Width/Lag 4 8 4.38 /0 /0 /0

Unit Root NO NO NO NO NO NO

: CO2
Spectral Estimation Method

Bartlett
and

Parzen

Quadratic AR (OLS) AR (OLS
de trended)

AR (GLS
de trended)

0.57
(0.9070)

= = = = =



0.03
(0.2816)

= = = = =

0.0004
(0.9760)

= = = = =

0.55 = = = = =

0.45 = = = = =

2.04 = = = = =

Band
Width/Lag

2 3 1.79 /0 /3 /7

Unit Root YES YES YES YES YES YES

P values are in parentheses. For AR (OLS), AR (OLS detrended) and AR (GLS deterended) the
Information Criteria are AIC, SIC, and HQ and the results do not change.



Table (4)
Elliott – Rothenberg – Stock (GLS – ADF Test)

Temperature
Information Criteria Modified Information Criteria

AIC SIC HQ AIC SIC HQ
ERS 2.26

(2)
5.99
(0)

2.26
(2)

1.18
(3)

1.18
(3)

1.18
(3)

Unit Root YES No YES YES YES YES

CO2
Information Criteria Modified Information Criteria

AIC SIC HQ AIC SIC HQ
ERS 1.08

(7)
0.79
(4)

0.79
(4)

0.79
(4)

0.56
(3)

0.79
(4)

Unit Root YES YES YES YES YES YES
We test at the 5% level, where the critical value is 3.16120 – Elliott Rothenberg Stock (1996)
table (1). Parentheses include the number of lags. The estimator is GLS.



Table (5a)
Testing for Unit Root with Break in the Intercept and the Trend

Temperature Information Criteria Modified Information Criteria
Test AIC SIC HQ AIC SIC HQ
Min ADF 8.15

[<0.01]
(0)

8.15
[<0.01]
(0)

8.15
[<0.01]
(0)

7.9
[<0.01]
(0)

7.9
[<0.01]
(0)

7.9
[<0.01]
(0)

Break 2007 2007 2007 2010 2010 2010
Type innovation innovation innovation Innovation innovation innovation
Unit Root No No No No No No

Lag length in parentheses, P values are Vogelsang (1993) asymmetric on sided in squared brackets, no
change in results when the break type is an additive outlier. The trend is significant.

Table (5b)
Temperature Information Criteria Modified Information Criteria
Test AIC SIC HQ AIC SIC HQ
Min t trend
Break t stat

6.88
[<0.01]
(0)

*
*
*

*
*
*

1.73
[0.8819]
(3)

*
*
*

*
*
*

Break 1985 * * 1982 * *
Type innovation * * Innovation * *
Unit Root No No No Yes Yes Yes

Lag length is in parentheses. Asterisk means the results do not change. Vogelsang (1993) asymptotic
one sided P values are in squared brackets, no change in results when the break type is an additive
outlier. Number of lags reduced the power of the test, hence increases the chance of non rejection of
the null hypothesis. The trend is significant.

Table (5c)
Temperature Information Criteria Modified Information Criteria
Test AIC SIC HQ AIC SIC HQ
Max t trend
Break t stat

8.30
[<0.01]
(0)

*
*
*

*
*
*

2.43
[0.6688]
(4)

*
*
*

*
*
*

Break 2007 * * 1982 * *
Type Additive * * Additive * *
Unit Root No No No Yes Yes Yes

Lag length is in parentheses. Asterisk means the results do not change. Vogelsang (1993) asymmetric
one sided P values are in squared brackets, no change in results when the break type is an additive
outlier. Number of lags reduced the power of the test; hence increase the chance of non rejection of
the null hypothesis. The trend is always statistically significant.



Table (6)
Sample: 1959 2020

Trend Adjusted Stationary Data

CO2 Temp Northern Hemp Temp
Southern Hemp

Temp

Mean 0.004439 0.004456 0.007033 0.010459
Median 0.004623 0.012650 0.002000 0.006000
Maximum 0.008443 0.341050 0.373000 0.178000
Minimum 0.001313 0.383940 0.307000 0.190000
Std. Dev. 0.001640 0.163817 0.169711 0.085500
Skewness 0.127377 0.027184 0.255654 0.016708
Kurtosis 2.580262 2.629405 2.570077 2.238257

Jarque Bera 0.612744 0.356587 1.134272 1.477646
Probability 0.736113 0.836697 0.567148 0.477676

Sum 0.270767 0.271790 0.429000 0.638000
Sum Sq. Dev. 0.000161 1.610161 1.728114 0.438611

Observations 61 61 61 61



Table (7a)
OLS regressions

Variable
Coefficien

t Std. Error t Statistic P value
3.15 0.30 10.1 0.0000
0.01 0.0008 11.4 0.0000

Adjusted R squared 0.76 S.D. dependent var. 0.33
S.E. of regression 0.16 Akaike info criterion 0.81
Sum squared res. 1.50 Schwarz criterion 0.74
Log likelihood 27.20 Hannan Quinn criterion 0.78
F statistic 199.6 Durbin Watson stat 1.92
Prob. (F statistic) 0.000 Wald F statistic 129.2
Prob. (Wald F statistic) 0.000
HAC standard errors & covariance (Prewhitening with lags = 0 from AIC
Maximum lags = 3, Bartlett kernel, Newey West fixed bandwidth = 4.

Lag Length: 3 (Automatic based on AIC, maximum lag=10)
t Statistic Prob.*

Augmented Dickey Fuller test statistic 0.207819 0.9709
Test critical
values: 5% level 2.912631

*MacKinnon (1996) one sided p values. Modified AIC gives a similar result.
Table (7c)

Error Correction

Variable
Coefficien

t Std. Error t Statistic Prob.

Constant 0.17 0.083 2.034 0.0466
36.57 15.913 2.30 0.0252
0.046 0.0843 0.55 0.5853

R squared 0.11 Mean dependent variable 0.004
Adjusted R squared 0.08 S.D. dependent variable 0.16
S.E. of regression 0.15 Akaike info criterion 0.82
Sum squared res. 1.42 Schwarz criterion 0.71
Log likelihood 28.0 Hannan Quinn criterion 0.78
F statistic 3.74 Durbin Watson stat 1.57
Prob. (F statistic) 0.029 Wald F statistic 2.69
Prob. (Wald F statistic) 0.076

is trend adjusted. HAC standard errors & covariance, with lag=1, from AIC
maximum lag=3, Bartlett kernel, and Newey West fixed bandwidth=4.



Table (8)
Long Run Covariance Matrix

Pre whitening with lag=1. Max. Lags =3, Bartlett Kernel with Newey West
Bandwidth=4

CO2
Global
Temp Northern H Temp Southern H Temp

CO2 5.56E 06 9.33E 05 0.000231 5.51E 05
Global Temp 9.33E 05 0.036636 0.033947 0.010704
Northern H 0.000231 0.033947 0.082385 0.003650
Southern H 5.51E 05 0.010704 0.003650 0.011986
Using other methods to estimate the kernel does not seem to alter the results.



Table (9a)
The Engle Granger Tests for Cointegration between

Global Temperature and Methane
OLS regressions

Sample 1984 2019
Variable Coefficient Std. Error t Statistic P value

5.05 0.92 5.45 0.0000
0.003 0.00053 5.98 0.0000

R squared 0.55 Mean dependent var. 0.54
Adjusted R squared 0.54 S.D. dependent var. 0.23
S.E. of regression 0.16 Akaike info criterion 0.78
Sum squared res. 0.86 Schwarz criterion 0.69
Log likelihood 16.04 Hannan Quinn criterion 0.75
F statistic 42.07 Durbin Watson stat 1.93
Prob. (F statistic) 0.0000 Wald F statistic 35.7
Prob. (Wald F statistic) 0.000001
HAC standard errors & covariance (Prewhitening with lags = 0 from AIC, max lag=3, Bartlett Kernel, Newey
West fixed bandwidth=4

Table (9b)
Test the Residuals for Unit Root – ADF – Engle Granger

t Statistic P value

AIC, lag=0 5.69 0.0000
Modified AIC, lag=2 2.74 0.0785

All other Information Criteria give similar results

Table (9c)
Error Correction

Variable Coefficient Std. Error t Statistic P value
1.82 4.76 0.38 0.7051
0.02 0.20 0.09 0.9288

R squared 0.005 Mean dependent variable 0.014
Adjusted R squared 0.035 S.D. dependent variable 0.158
S.E. of regression 0.1613 Akaike info criterion 0.754
Sum squared res. 0.8594 Schwarz criterion 0.665
Log likelihood 15.207 Hannan Quinn criterion 0.724
Durbin Watson stat 1.91

is trend adjusted . Constant term not reported. HAC standard errors & covariance (Pre
whitening with lags = 0 from AIC. Max lags = 3, Bartlett kernel, Newey West fixed bandwidth =4.



Table (10a)
The Engle Granger Tests for Cointegration between

Global Temperature and Sulfur Hexafluoride
OLS regressions

Sample 2001 2019
Variable Coefficient Std. Error t Statistic P value

0.20 0.16 1.30 0.2087
0.07 0.20 2.94 0.0095

R squared 0.22 Mean dependent variable 0.68
Adjusted R squared 0.22 S.D. dependent variable 0.21
S.E. of regression 0.18 Akaike info criterion 0.46
Sum squared res. 0.62 Schwarz criterion 0.419
Log likelihood 5.46 Hannan Quinn criterion 0.461
Durbin Watson stat 1.76

HAC standard errors and covariance (pre whitening, lag=0, from AIC with maximum
lag=2, Bartlett kernel, Newey West with fixed bandwidth=3

Table (10b)
Test the Residuals for Unit Root – ADF – Engle Granger

t Statistic Prob.*

AIC, lag=0 3.78 0.0116
Modified AIC, lag=2 1.80 0.3601
MacKinnon (1996) critical values are computed from sample of 20 observations, thus
maybe inaccurate for this smaller sample. Test critical value at the 5% level is 3.040391

Table (10c)

Coefficient Std. Error t Statistic Prob.
0.49 12.7 0.04 0.9694
0.06 0.307 0.19 0.8443

R squared 0.004 Mean dependent variable 0.006
Adjusted R squared 0.13 S.D. dependent variable 0.188
S.E. of regression 0.20 Akaike info criterion 0.223
Sum squared res. 0.60 Schwarz criterion 0.074
Log likelihood 5.0 Hannan Quinn criterion 0.202
F statistic 0.03 Durbin Watson stat 1.866
Prob.(F statistic) 0.97 Wald F statistic 0.025
Prob.(Wald F statistic) 0.97
HAC standard errors and covariance (pre whitening, lag=0, from AIC with maximum
Lag=2, Bartlett kernel, Newey West with fixed bandwidth=3.



Table (11)
Johansen’s ML Test Results for “no” Cointegration

Sample 2001 2019
Trend assumption: Linear deterministic trend (restricted)
Series: GTEMP CO2 CH4 SF6
Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value P value**

None * 0.942719 105.5181 63.87610 0.0000
At most 1 * 0.745019 51.18212 42.91525 0.0061
At most 2 0.611558 25.21733 25.87211 0.0601
At most 3 0.317244 7.250726 12.51798 0.3191

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon Haug Michelis (1999) p values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value P value**

None * 0.942719 54.33602 32.11832 0.0000
At most 1 * 0.745019 25.96479 25.82321 0.0479
At most 2 0.611558 17.96660 19.38704 0.0794
At most 3 0.317244 7.250726 12.51798 0.3191

Max eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon Haug Michelis (1999) p values
We don’t report the results, but we also carried out the tests with different assumptions about trend
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Table (13)
Variance Decomposition of Global Temperature

Period S.E. SF6 CH4 CO2
Trend adjusted
Temperature

1 0.236795 0.030674 2.476814 58.28683 39.20568
(7.39166) (8.08993) (14.1119) (13.0130)

2 0.241270 2.131906 3.229579 56.81478 37.82374
(12.1137) (10.6268) (14.4931) (12.3727)

3 0.244424 2.383563 4.689667 55.43510 37.49167
(14.0016) (11.7295) (14.2587) (12.5337)

4 0.244800 2.442591 4.821598 55.26749 37.46832
(14.4288) (12.1398) (14.1431) (12.2748)

5 0.245527 2.637693 4.828121 55.24373 37.29046
(14.7702) (12.4129) (14.2589) (12.2768)

6 0.245980 2.816144 4.920739 55.10326 37.15986
(15.5282) (12.9027) (14.4321) (12.5087)

7 0.246031 2.823351 4.929198 55.09583 37.15162
(16.3114) (13.2672) (14.5023) (12.6993)

8 0.246091 2.853454 4.932172 55.07628 37.13809
(17.1307) (13.5717) (14.7595) (12.9287)

9 0.246241 2.934683 4.959746 55.01017 37.09540
(17.6784) (13.9406) (14.9645) (13.0507)

10 0.246331 2.973532 4.971177 54.97996 37.07533
(18.2617) (14.2735) (15.1808) (13.3016)



Table (14)
Variance Decomposition of Global Temperature

Period S.E.

Fossil fuel
consumpti
on growth

rate SF6 CH4 CO2
Trend adjusted
Temperature

1 0.187967 0.053653 1.732646 15.14369 15.34214 67.72787
(8.32800) (10.5581) (13.1705) (11.3110) (15.4309)

2 0.241854 30.53246 10.02299 9.251383 9.277542 40.91563
(17.9747) (13.3192) (11.1544) (7.80495) (12.9214)

3 0.248600 31.24406 9.493994 8.759872 9.000673 41.50141
(16.3244) (11.7002) (12.4046) (6.87794) (11.3502)

4 0.252693 30.24314 9.415166 11.40362 8.767874 40.17020
(15.0044) (10.3668) (13.5127) (6.22119) (10.7994)

5 0.259701 32.07307 9.135137 10.98669 8.430248 39.37485
(15.7756) (10.7418) (13.4952) (6.15082) (11.5816)

6 0.263012 31.52398 9.697861 10.95134 8.245082 39.58174
(15.5607) (11.9583) (13.1147) (5.86024) (11.0049)

7 0.265332 31.80558 9.739780 10.86688 8.124656 39.46311
(14.9419) (13.0516) (14.0147) (5.63982) (11.0574)

8 0.265868 31.70846 9.720572 11.02949 8.141462 39.40001
(15.0379) (14.2863) (14.1229) (5.79997) (10.9845)

9 0.266695 31.82086 9.672300 11.13047 8.158770 39.21760
(15.7584) (15.9432) (13.9012) (5.88292) (11.5821)

10 0.267697 31.61276 9.907188 11.17639 8.127355 39.17631
(15.4627) (17.0779) (14.7270) (5.84513) (11.8342)



Table (15)
Variance decomposition of Northern hemisphere temperature

Period S.E.

Fossil fuel
consumpti
on growth

rate SF6 CH4 CO2
Trend adjusted
Temperature

1 0.117170 8.016926 3.712420 17.07571 6.034037 65.16090
(13.2481) (9.76967) (13.5215) (8.34940) (16.5440)

2 0.162640 19.71743 15.52897 9.056645 3.622128 52.07483
(17.9387) (14.5820) (10.4056) (6.15033) (15.9073)

3 0.164544 19.98890 15.24164 9.720973 3.696593 51.35189
(17.8770) (13.4788) (12.4004) (5.39707) (14.9991)

4 0.168619 19.22421 16.26656 10.01850 3.525038 50.96569
(17.4944) (14.0730) (12.4299) (4.88194) (14.3568)

5 0.179030 17.61522 18.60861 13.15459 3.324177 47.29740
(17.8327) (14.7541) (12.9154) (4.64329) (14.1406)

6 0.182755 17.16337 20.07363 13.27285 3.264060 46.22609
(18.0378) (15.6088) (13.0292) (4.50480) (13.8289)

7 0.185000 17.75507 20.92907 12.96373 3.185629 45.16650
(18.2754) (16.3890) (13.0835) (4.44336) (13.8368)

8 0.186155 17.53605 21.83087 12.86499 3.148727 44.61936
(19.0722) (17.3864) (13.3739) (4.34207) (13.9248)

9 0.187454 17.53440 22.60061 12.75111 3.107100 44.00678
(19.2969) (18.0005) (13.5342) (4.31492) (13.9582)

10 0.188980 17.27415 23.51253 12.76654 3.058255 43.38853
(19.6587) (18.6416) (14.0953) (4.27284) (14.0795)



Table (16)
Variance decomposition of the Southern hemisphere temperature

Period S.E.

Fossil fuel
consumpti
on growth

rate SF6 CH4 CO2
Trend adjusted
Temperature

1 0.070704 56.17321 5.802424 5.558556 18.36526 14.10054
(15.4827) (7.64937) (6.82489) (9.16113) (5.78022)

2 0.081120 57.04799 8.602236 8.801034 14.71535 10.83339
(15.9829) (10.3430) (10.6381) (7.97124) (4.81782)

3 0.083330 54.45555 8.957269 11.92328 13.96009 10.70380
(15.8577) (11.2199) (12.5427) (7.59763) (5.13591)

4 0.085976 53.61120 8.526886 14.68414 13.11468 10.06308
(16.1920) (11.6180) (12.9440) (7.29741) (4.90116)

5 0.088855 51.86729 12.35492 14.02817 12.27864 9.470983
(16.8286) (12.5986) (12.8827) (7.20221) (4.90914)

6 0.092117 50.12100 15.46873 13.13571 11.88057 9.393991
(17.3522) (13.8748) (13.4098) (7.50797) (5.16762)

7 0.092873 50.03039 15.82761 13.12547 11.73282 9.283701
(17.8113) (14.4445) (13.9344) (7.81177) (5.29569)

8 0.093064 49.91271 16.04199 13.10869 11.68527 9.251342
(18.1647) (15.0926) (14.3663) (7.86838) (5.36737)

9 0.093655 49.36446 16.94259 13.00322 11.53894 9.150793
(18.6952) (15.8866) (14.5478) (8.04022) (5.64798)

10 0.094252 48.78942 17.55280 13.10969 11.46177 9.086320
(19.1289) (16.5267) (15.1030) (8.19411) (5.65854)



Fi
gu

re
(1
)



Figure (2)
Trend is visually clear



Figure (3)
Spurious Correlation



Figure (4a)

Figure (4b)



Figure (4c)



Figure (5a)

Figure (5b)



Figure (6)

Figure (7)

Figure (8)



Figure (9)

Figure (10)



Figure (11a)

Figure (12a)



Figure (13a)

Figure (11b)



Figure (12b)

Figure (13b)



Figure (14)
D denotes log differenced

Figure (15)
D denotes the log differenced
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Data

CO2 CO2_BP Temperature North Hem. Temp South Hem. Temp Fossil Population
1959 315.98 NA 0.16 0.12 0.06 NA NA
1960 316.91 NA 0.04 0.08 0.13 NA 3.03E+09
1961 317.64 NA 0.13 0.09 0.03 NA 3.09E+09
1962 318.45 NA 0.12 0.13 0.07 NA 3.15E+09
1963 318.99 NA 0.06 0.14 0.03 NA 3.21E+09
1964 319.62 NA 0.01 0.19 0.21 NA 3.27E+09
1965 320.04 11207.7 0.07 0.14 0.07 753.69 3.34E+09
1966 321.37 11725.3 0.05 0.02 0.09 815.86 3.41E+09
1967 322.18 12084.7 0.09 0.03 0.08 870.43 3.48E+09
1968 323.05 12743.1 0.2 0.07 0.09 944.71 3.55E+09
1969 324.62 13530.9 0.09 0.03 0.14 1032.26 3.63E+09
1970 325.68 14312.9 0.14 0.04 0.09 1119.06 3.7E+09
1971 326.32 14788.4 0.01 0.15 0.02 1191.82 3.78E+09
1972 327.46 15495.5 0.24 0.18 0.2 1257.22 3.85E+09
1973 329.68 16345.1 0.28 0.1 0.23 1319.19 3.93E+09
1974 330.19 16255.8 0.19 0.18 0.03 1345.44 4E+09
1975 331.12 16281.7 0.11 0.06 0.02 1346 4.08E+09
1976 332.03 17173.1 0.02 0.21 0.01 1425.29 4.15E+09
1977 333.84 17739.3 0.13 0.12 0.24 1472.14 4.23E+09
1978 335.41 18016.1 0.16 0.02 0.12 1530.68 4.3E+09
1979 336.84 18596.5 0.15 0.08 0.25 1618.6 4.38E+09
1980 338.76 18433.6 0.33 0.17 0.35 1626.97 4.46E+09
1981 340.12 18202.3 0.51 0.37 0.27 1639.11 4.54E+09
1982 341.48 18022.4 0.14 0.05 0.23 1643.39 4.62E+09
1983 343.15 18185.1 0.53 0.25 0.38 1668.35 4.7E+09
1984 344.85 18852.4 0.3 0.04 0.27 1794.46 4.79E+09
1985 346.35 19249.9 0.22 0 0.23 1834.09 4.87E+09
1986 347.61 19579.1 0.31 0.13 0.23 1854.61 4.96E+09
1987 349.31 20186.5 0.32 0.25 0.41 1946.66 5.06E+09
1988 351.69 20863 0.56 0.37 0.4 2034.4 5.15E+09
1989 353.2 21242.6 0.17 0.27 0.27 2115.75 5.24E+09
1990 354.45 21331.5 0.36 0.53 0.37 2177.31 5.33E+09
1991 355.7 21338.6 0.43 0.41 0.4 2225.6 5.42E+09
1992 356.54 21433.7 0.46 0.14 0.31 2236.72 5.5E+09
1993 357.21 21488.9 0.36 0.19 0.28 2256.49 5.59E+09
1994 358.96 21709.9 0.27 0.37 0.26 2272.25 5.67E+09
1995 360.97 21982.9 0.56 0.58 0.32 2346.34 5.75E+09
1996 362.74 22598.7 0.25 0.26 0.39 2457.33 5.83E+09
1997 363.88 22749.9 0.34 0.52 0.41 2447.99 5.91E+09
1998 366.84 22819.7 0.6 0.7 0.51 2488.54 5.99E+09
1999 368.54 23127.8 0.51 0.48 0.28 2555.62 6.07E+09
2000 369.71 23676.4 0.34 0.5 0.29 2653.13 6.15E+09



2001 371.32 24010.3 0.47 0.64 0.43 2689.17 6.22E+09
2002 373.45 24544.5 0.71 0.71 0.54 2766.6 6.3E+09
2003 375.98 25767.5 0.72 0.75 0.49 2849.18 6.38E+09
2004 377.7 27077.5 0.61 0.66 0.42 2961.31 6.46E+09
2005 379.98 28186.5 0.65 0.86 0.5 3045.18 6.54E+09
2006 382.09 29074 0.51 0.82 0.46 3125.17 6.62E+09
2007 384.03 30095.9 0.92 0.85 0.48 3249.85 6.71E+09
2008 385.83 30378.4 0.27 0.68 0.4 3320.41 6.79E+09
2009 387.64 29745.2 0.6 0.73 0.59 3253.58 6.87E+09
2010 390.1 31085.5 0.73 0.9 0.54 3485 6.96E+09
2011 391.85 31973.4 0.47 0.75 0.46 3570.34 7.04E+09
2012 394.06 32273.5 0.44 0.82 0.48 3658.03 7.13E+09
2013 396.74 32795.6 0.62 0.8 0.56 3717.46 7.21E+09
2014 398.87 32804.7 0.7 0.92 0.57 3741.29 7.3E+09
2015 401.01 32787.2 0.83 1.18 0.62 3819.05 7.38E+09
2016 404.41 32936.1 1.12 1.31 0.72 3901.41 7.47E+09
2017 406.76 33279.5 0.98 1.18 0.67 4003.93 7.55E+09
2018 408.72 34007.9 0.76 1.04 0.66 4201.94 7.63E+09
2019 411.66 34169 0.94 1.22 0.75 4280.09 NA
2020 414.24 NA 1.15 1.36 0.68 NA NA

i Furthermore, the time series can be fractionally integrated, whereby in is less than one.
If , is said to be long memory stationary and if it is > 0.5, it is said to be long memory non
stationary. We could still make inference in regressions if the two time series have unit roots, but
cointegrated, i.e., have a common trend. Further, similarly if they are fractionally integrated and
fractionally cointegrated. Such findings may indicate that temperature and CO2 share a long –run
common trend. We do not pursue this test because we will show that CO2 is I (1).

ii BLUE is Best, Linear, Unbiased Estimator.

iii The bandwidth parameter is for the kernel based estimators of , which is the Newey West
(1994). They use AR1. So we choose the lag length to minimize these criteria AIC );

the SIC ; HQ . The modifications add to every

and

iv The Ng – Perron (2001) test, which is a modified Phillips – Perron, two test statistics and ,
Bhargava (1986). These last two tests reject the unit root in the temperature data with two lags in the
model, spectral GLS – de trended AR based on AIC with maximum lag of 10. Different methods of
estimating the spectral do not alter the results.

v We estimated and SVAR. Estimating an SVAR does not alter the results, therefore, we do not report
the result. The results are available on request. The observed residuals have a covariance matrix



. The structural VAR model is , where is a matrix of unobserved shocks,

which we want to identify. This matrix has an identity covariance matrix . Different

methods can be used to identify shocks, but the orthogonality of the shocks implies that the

identifying restrictions on and are of the form . Since the matrices on both sides

of the equality sign are symmetrical, we have restrictions on the unknown
elements in and . To identify and , additional identifying restrictions are
needed. We use short run restrictions on . These restrictions imply that CO2 growth is unaffected
by temperature, and it is a function of its own past only. Temperature, however, depends on its own
lags and lagged CO2 growth rate.

vi Tests for the lag structure are based on a Wald – Chi Squared test. We run a 6 year lag VAR, but we
find 3 to 2 lags to be significant. The joint P values indicate non rejections. The lag length tests include
sequential modified LR statistics at 5% level; final prediction error, AIC, SIC, and HQ information
Criteria. We choose 2 lags because temperature is volatile and affects the variance decompositions.
The F stats for the equations in all VARs reject the hypothesis that the coefficients are insignificant.
The residuals are tested for serial correlation using LM test, which cannot reject the null hypothesis of
“no serial correlation” at lag 1 to 4.

vii Cooley and LeRoy (1985) famous article criticizing the atheoretical VAR method seems like a logical
criticism.

Assume the following model

(1)

and,
(2)

Let  and assume that is stationary and Gaussian with zero mean and spectral density

 with .  The cointegration relation (1) can be efficiently estimated by an empirical
leads and lags regression of the following type:

(3)

The lag and lead truncation parameter  satisfies , and as the sample size. Phillips and
Loretan (1991) note that, in practice, it is useful to augment regression formulation in (3) with lagged
equilibrium relation regressors that help to whiten the error term tu  in (1) with respect to its own
history.  This leads to an empirical leads and lags and equilibrium lags regression equation:

(4)




