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Abstract 

This paper discusses the impact of a firm’s technology portfolio on its market value. Two 

concepts are used to characterize a firm’s portfolio: the number of technological fields and the 

degree of relatedness within the portfolio characterized by the amount of joint occurrences of 

patents in technological fields. Based on a theoretical framework using an expanded Tobin’s q 

approach, it presents evidence for a negative influence of portfolio size on the market value 

caused by a diminishing potential to make use of economies of scale. This discount can be 

counterbalanced when the relevant fields share a common technological base which is 

measured by the degree of technological relatedness. 
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I. Introduction 

Is a wide research portfolio in line with market value maximization? So far, empirical 

research has concentrated on evaluating the impact of research and development (R&D) and 

patents on the market value of a firm. Relatively little is known about the relationship 

between the composition of the research portfolio and its valuation by financial markets. 

Efforts in answering this question directly lead to an application of the theory of the 

multiproduct firm (Panzar and Willig 1977, 1981): economies of scope and scale in future 

research and production. 

In this line of theory, it is widely assumed that economies of scale and scope in R&D reveal a 

significant impact on a firm’s innovative performance (Henderson and Cockburn 1996). 

Firms acquire a specific knowledge base over time which is used as an input in future 

research projects. This input is self-generated and cannot be provided efficiently by the 

market. By taking patents as an approximation of research output as suggested by Pakes 

(1985), and grouping them into technological fields, we can transfer the idea of the 

multiproduct firm to the level of technologies. Knowledge serves as a shareable input that is 

used in research on various technologies. The innovations patented belong to certain fields 

and provide access to corresponding technologies. All technological fields covered can be 

summarized by a firm’s technology portfolio. We define the technology portfolio by the 

number of technological fields a firm is engaged in research and the relatedness of these fields 

within the portfolio.  

The technology portfolio can either be highly specialized on certain technologies or rather 

broad and providing access to many technologies (Leten et al. 2007). Individual 

characteristics of a firm’s technology portfolio determine its potential to make use of 

economies of scale and scope in the knowledge creation process. The fact that we observe 

multi-technology firms implies the existence of economies of scope in the knowledge 

generation process caused by internal knowledge spillovers (Granstrand 1998). In contrast, 

economies of scale are mainly driven by learning effects due to higher specialization in 

certain technologies (Garcia-Vega 2006).  

In this paper, we focus on the idea that the market values two firms – depending on 

technology portfolio characteristics – with equivalent tangible and intangible assets 

differently. Economies of scale and scope in research and development influence the cost 

structure of a firm and thereby current and expected future cash-flows.  
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The purpose of this paper is twofold: firstly we analyze the impact of the size of the portfolio 

on the market value of a firm and secondly provide evidence for the hypothesis that 

technological relatedness influences the market value via its potential to make use of 

economies of scope. We test the suggested relationship in an expanded Tobin’s q model 

containing individual heterogeneity. A simple count measure and the number equivalent 

entropy are used to capture the portfolio size. 

The paper is organized as follows: section I summarizes the relevant literature; section II 

introduces the theoretical framework; section III provides the metrics used to capture 

technological fields and their relatedness; section IV describes the data sources; section V 

presents the econometric specification while section VI discusses the results of our model. 

Finally, section VII summarizes the main conclusions.  

 

II. Theoretical framework 

Empirical studies on the relationship between research and development and the market value 

mainly come to the conclusion that innovative efforts are rewarded by financial markets1. 

Usually, valuation equations based on a firm’s assets are used to analyze the aspects of 

interest. The market value encompasses those assets that influence expected future cash flows 

and profits (Connolly and Hirschey 1988). Changes in these assets alter the expectations 

about uncertain future cash flows and hence also the present value of the firm’s expected 

entire stream. The market value under simplifying assumptions should immediately react on 

this and reflect the revaluation that has taken place. Predominant in the literature is the 

division of assets in tangible ones like plant, equipment and inventories and intangible assets, 

which are usually approximated by R&D expenditures, patent counts or patent citations2.  

The technologies generated by the R&D process may influence the market value in two ways: 

firstly, the current knowledge and technology portfolio serves as an input for future research 

projects and thereby determines its cost structure. Inputs like researchers, equipment and 

codified knowledge can be devoted to several technological fields but at varying costs. A 

widespread technology portfolio may generate economies of scope in research. Future 

research in many fields will be less costly when the corresponding knowledge base already 

exists (Teece 1980). In contrast, economies of scale arise due to specialization on certain 

technologies when firms benefit from learning effects (Fai and von Tunzelmann 2001). 

                                                 
1 For a detailed survey see Hall (1999). 
2 Examples for the application of various approximations of intangible assets can be found in: Hall et al. (2005), 
Bloom and van Reenen (2002) and Shane and Klock (1997)  
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A firm’s current technology portfolio is linked to future production technologies that will be 

used to generate future cash-flows. Hence, the potential for economies of scale and scope on 

the innovation stage can be taken as a signal for future production. 

The main methodology to evaluate impacts on the market value was developed by Griliches 

(1981) and is based on hedonic Tobin’s q equations3:  

[ ]KAqV γ+= .     (1) 

In this standard version of the value function, the market value (V) is assumed to equal the 

weighted sum of physical (A) and intangible knowledge assets (K ). The variable q can be 

interpreted as the current market valuation coefficient of a firm reflecting its monopoly 

position, differential risk and overall costs of capital adjustment. 

We adopt the standard version of the value function and expand it with a term capturing the 

number of technological fields in the portfolio. Within this framework, the range of activity 

where a firm can utilize its assets productively and generate future cash flows is denoted by 

the variableD, which stands for the size of the portfolio meaning the degree of technological 

diversification. Furthermore, we assume its impact may vary with the technological 

relatedness (R) of fields within the portfolio. The technological relatedness captures the 

amount of common knowledge between fields and thereby influences the potential to make 

use of economies of scope: 

( )[ ]RDKAqV δθγ ++=      (2) 

The term Rδ  adjusts the elasticity of the number of technological fields with respect to the 

market value by including technological relatedness and its corresponding coefficient delta. 

Accordingly, the influence of the number of fields is either reduced or enhanced by this 

modification depending on the expected parameters of the model and the measure of 

relatedness in use. This discount can be counterbalanced when the relevant fields share a 

common technological base which is measured by the degree of technological relatedness. 

Formally speaking4: 

   0&0: >< δθH     (3) 
There are mainly three reasons for this hypothesis:  

Firstly, a firm reduces its ability to exploit economies of scale when the composition of its 

portfolio changes. This is linked to the idea of ray-economies of scale developed by Baumol 

et al (1988). In contrast, the benefits generated by economies of scope depend on the amount 
                                                 
3 The value function assumes constant returns to scale. 
4 The applied measure of relatedness exhibits an expected value of zero, relatedness matters only when being 
larger (positive value) or smaller (negative value) than expected. 
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of relatedness in the portfolio since it will be less costly to develop these technologies with 

the existing knowledge base. Secondly, Wernerfelt and Montgomery (1988) argue that 

transferring technological knowledge to new fields might lead to a reduction in economic 

efficiency since factors of production contain a firm and thereby field specific component5. 

Accordingly, the rent generated by these factors depends on the closeness of the current field 

and the new ones. Still firms may decide to spread their economic activity because of excess 

capacity in their R&D department even though they are left with a lower rent generated by 

their factors of production. Thirdly, the decision to cover many technologies can be 

interpreted as an indicator for the degree of risk aversion of a firm’s decision makers. Future 

returns of technological improvements being generated by cash flows from future markets are 

uncertain and working in many fields can reduce the variance of these returns. Accordingly, 

the negative impact of D on q can be seen as causing a risk premium (Mansi and Reeb 2002). 

 

III. Measurement of technological diversification and relatedness 

In order to test our hypothesis suggested above, we need to derive measures to characterize a 

firm’s technology portfolio. In particular, we need a count measure for the portfolio size and 

an index for the degree of relatedness within the portfolio. We use the technology based 

USPTO patent classification system to define technological fields.  

To capture the number of fields, it is either possible to use an unweighted count measure, 

which simply sums over the areas of research activity, or to apply a weighting scheme like the 

one suggested by the number equivalent entropy. Both measures will be tested in the 

empirical part of this paper. The weights applied in calculating the entropy measure reflect the 

relative importance of each field (j=1…N); therefore, we employ the share of the patent count 

Sj  dedicated to each field: 

∑ =

=
N

l kl

kj
j

pc

pc
S

1

      (5) 

The weighting scheme mirrors the relative sizes of the technological fields in the firm’s patent 

portfolio. It is obvious, that the entropy measure assigns a lower weight to fields with small 

shares than the unweighted count measure. The entropy of firm k’s portfolio can be derived 

using the common formula6    

                                                 
5 see also Montgomery and Wernerfelt (1988) 
6 For a first application of the entropy measure in industrial economics see Jacquemin and Berry (1979). 
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In line with our theoretical model, for interpretative purposes we use a number equivalent 

transformation of the entropy measure to obtain the adjusted number of fields7, which is 

constructed by exponentiating Ek: 
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   (7) 

The number equivalent entropy lies between 1 and 42, which corresponds to the total number 

of fields in the classification system. Only in case of equal distribution of patents across 

fields, its value will be equal to the simple field count; otherwise it will be lower. Hence, a 

firm with a number equivalent entropy of five and actually serving seven fields is as 

diversified as another firm engaged in five fields and having twenty percent of their patents in 

each field. 

Besides the size of the technology portfolio, the relatedness of the fields within the firm’s 

portfolio matters. The measure of technological relatedness applied here is based on a method 

developed by Teece et al. (1994), which was used to determine how coherent a companies’ 

product portfolios is. The main assumption is that activities being related are more frequently 

combined within the same cooperation. Nesta and Saviotti (2005) adapt this approach and 

conduct a corresponding analysis on the patent class level8. Applying this concept to patents 

implies that patent classes exhibit technological relatedness if patents are more often assigned 

to the same combination of classes than expected. Instead of using patent classes, we conduct 

this analysis on the level of technological fields to determine their relatedness within a firms’ 

technology portfolio. 

Let K be the total number of patent applications being assigned (to two or more patent 

classes) and 1=ikP  in case that patent k is assigned to field i, and 0 otherwise. The total 

number of patents assigned to field i equals ∑=
k iki PC . Using this notation, the number of 

joint occurrences in fields i and j can be depicted as ∑=
k jkikij PPJ .  This count is used to 

derive our measure of relatedness. Applying it to all possible pairs we obtain a square 

( )NN ×  matrix with typical cell ijJ . Since ijJ  can be effected by either an increase in the 

relatedness of fields i and j or an increase in the number of patents assigned to i or j, Teece et 

                                                 
7 The number equivalent interpretation of the entropy was suggested by Baldwin et al. (2001). 
8 A similar approach is used by Piscitello (2000) and Breschi et al. (2003), where the number of firms patenting 
in two or more fields is used to determine technological relatedness. In contrast, Leten et al. (2007) compare the 
observed number of co-citations with its expectation. 
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al. suggest to compare the observed value of ijJ  with its expectation. The expected value is 

derived under the hypothesis of joint random occurrences using a hypergeometric 

distribution9 for the number of patents xij  assigned to fields i and j with mean 

K

CC
xXE ji

ijij === )(µ      (8) 

and variance 










−
−








 −=
1

2

K

CK

K

CK ji
ijij µσ .     (9) 

If the actual number of joint occurrences ijJ  in fields i and j exceeds its expected valueijµ , 

then the two classes are assumed to be related. The measure of relatedness between the two 

fields is thus derived by 

ij

ijij
ij

J
t

σ
µ−

= .       (10)  

A negative value of ijt  indicates low relatedness since less joint occurrences are observed 

than under the hypothesis of randomness. Accordingly, large and positive values of ijt show a 

high degree of relatedness between the technological fields i and j.  

Calculating the pairwise relatedness measures for every possible combination of fields leads 

to a symmetric ( )NN ×  relatedness matrix. This matrix is used to calculate a measure of 

relatedness of a firm’s technology portfolio. The derivation is conducted in two steps: firstly, 

the weighted-average relatedness WARki  of field i with all other technological fields within 

firm k’s portfolio is derived: 

WARki =
tij pkjj≠ i

∑
pkjj ≠ i

∑
,      (11) 

where pkj  denotes the number of patents of firm k assigned to field j. Obviously, iWAR 

depends on the number of fields a firm is engaged in research. Secondly, we aggregate the 

WARki ‘s on the firm level by weighting them with the same scheme used above to determine 

the average relatedness of a firm’s technology portfolio:  

∑

∑

=

=

×
= N

i
ki

N

i
kiki

k

p

pWAR
TC

1

1 .     (12) 

                                                 
9 K denotes the population, Ci  number of successes and C j  the sample size. 
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A value of TCk  from equation (12) suggests a generally high relatedness or complementarities 

within the portfolio, while a negative value indicates the opposite. It is worth mentioning in 

this context that TCk  will vary even when the structure of the technology portfolio remains 

constant in case the relatedness of the fields tij  change. 

 

IV. Data and Descriptives 

The dataset stems from four different sources: the NBER Patent database, the manufacturing 

sector masterfile by Hall10, the CUSIP match file and the USPTO patent classification 

scheme. The NBER Patent database contains all patents granted by the USPTO during the 

period 1965 to 1996, including citations11. We exploit this information to calculate firm 

specific patent and citation stocks using the perpetual inventory method with a 15% 

depreciation rate which is common in the literature (Griliches and Mairesse (1984), Hall 

(1993)). Firm specific data are taken from an updated version of the manufacturing sector 

master file. The data stem from the Compustat Annual Industrial Files and provide 

information on market value, book value of physical assets, and R&D investments. Firm 

specific R&D capital stocks are calculated using the perpetual inventory method again with 

15% depreciation. The CUSIP match file provided by the NBER Patent database is used to 

merge patent and firm data. We add the USPTO patent classification scheme to define 

technological fields. Every patent applied for at the USPTO must have at least one principal 

mandatory classification consisting of class and subclass. A class hereby generally delineates 

one technology from the other, whereas subclasses delineate processes, structural features, 

and functional features of the subject matter encompassed within the scope of a class. Patents 

with more than one claim receive additional mandatory classification for all claims disclosed. 

The USPTO classification systems uniquely identifies more than 500 classes and over 150 

000 subclasses. It therefore captures every patented innovation in detail. To identify the 

technological fields a firm is engaged in research, we aggregate the classification scheme to 

42 main groups using the “Classes within the U.S. Classification System” 12 provided by the 

USPTO13. 

Combining our datasets and dropping all companies with less than two patents in our 

observation period, we end up with an unbalanced panel of 1700 firms for the years 1969 to 

                                                 
10 For details on variables and construction, see the documentation by Hall (1990) on the original Manufacturing 
Sector Master File 1959-1987. 
11 A detailed description is provided in Hall et al. (2001). 
12 Classes within the U.S. classification scheme December 2006. 
13 A table of the 42 groups is provided in appendix 1. 



 9 

1995. Firms in our sample are publicly traded at the American stock exchange and belong to 

the U.S. manufacturing sector. The analysis is conducted using a sample from 1983 onwards 

since several important changes took place in the US legal environment in the early 1980s 

which enhanced the ability of patent holders to enforce their patents and led to increased 

patent activities of companies (Kortum and Lerner (1998), Hall and Ziedonis (2001)). Due to 

data restrictions, mainly because of the NBER CUSIP match file, the sample lasts until 1995. 

 

Table 1 Summary Statistics14 

Variable N Mean Median SD Min Max 

Tobin's q 9584 1,79 1,37 1,34 0,00 8,29 

R&D/Assets 9584 0,35 0,171 0,70 0,00 19,45 

Patents/R&D 7832 1,01 0,55 5,11 0,00 333,33 

Citations/Patents 9553 12,99 10,20 10,09 0,00 179,01 

Number eq. Entropy 9584 5,0 3,99 3,72 1,00 20,98 

Number of Fields 9584 8,28 5,00 7,97 1,00 39,00 

Relatedness 8424 8,87 5,35 13,65 -35,46 108,19 
 

Table 1 displays the sample statistics of the main variables used in our analysis for the 

estimation period 1983-1995. On average, the market value exceeds the book value by a 

factor of 1.8. Comparing mean and median of Tobin’s q, we observe a distribution skewed to 

the right. The average value of the R&D/Asset ratio shows that R&D efforts of patenting 

companies are considerably high compared to their assets.  

In our sample, firms are on average engaged in eight technological fields. When a weighting 

scheme is applied, this number reduces to five fields. None of our companies observed is 

active in all 42 fields. The maximum portfolio size equals 39 technologies. This number 

reduces to 20 when the number equivalent entropy is used since some fields are of less 

importance. 

In Figure 1, the kernel densities of the number equivalent entropy and the unweighted count 

measure are depicted to illustrate their distribution in our sample. We observe that the 

distribution of the number equivalent entropy is more skewed to the right than the count 

measure due to different weighting schemes. Most firms cover about 1 to 6 fields within their 

patent portfolio and the share working in more than ten fields becomes substantially small, 

especially when we weight the fields according to their relative importance.  

 

                                                 
14 Both measures, the number of fields and the technological relatedness, are derived using the firm’s patent 
portfolio constructed as a three-year moving window of patent applications. Yearly data would generate too 
much volatility (Nesta and Saviotti 2006) and due to the fact that technology portfolio changes are at least mid-
term decisions, three-year moving window of patent applications are used to depict the technological strategy. 
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Figure 1 Kernel densities for the number of fields 
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The measure of technological relatedness ranges from -35.46 (less related as expected) to 

108.19 (more related then expected). Figure 2 shows the estimated kernel density of the 

relatedness measure. The distribution is centered around zero with a median value of five. 

Dotted lines denote the 25, 50 and 75 percent quartiles of the distribution.  

 

Figure 2 Kernel density for technological relatedness 
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Our results suggest that the majority of firms exhibit a related technology portfolio that might 

be an indication for a strategic alignment focusing on expansion into related technologies. 

 

V. Econometric specification 

Starting with our theoretical model, we move the book value itA  to the left hand side and take 

logs of equation (1). Our fundamental estimation equation becomes: 

   ( ) ( ) ( ) itititit
it

it
itit uRDD

A

K
qQ +++








++= lnln1ln)ln(ln δθγ  . (13) 

The deviation of Tobin’s q from unity thus depends on the ratio of intangible capital to assets, 

the number of technological fields a company is engaged in research (itD ), their relatedness 

( itR ) and a constant denoted by the log of itq  which captures its current market valuation 

coefficient. It should be noted here that by taking the logarithm, we are left with the usual 

entropy measure in our estimation equations. For explanatory purposes, we will refer to the 

number equivalent entropy in the upcoming discussion of our results, since the estimated 

coefficient plus the relatedness adjustment is simply the elasticity of the market value with 

respect to technology portfolio size.  

Two different approaches are present in the literature concerning the treatment of the non-

linear term ( )itit AKγ+1ln . Approximating the term ( )itit AKγ+1ln  by γ K it Ait  leads to a 

linear specification of the model15. A non-linear estimator has to be applied without this 

approximation. The accuracy of the approximation depends on the magnitude of itit AK , 

generally speaking: the smaller, the better the approximation. Even though a non-linear 

estimator avoids committing an approximation error, it reveals a major shortcoming because 

it restricts us to the use of a pooled model without controlling for unobserved heterogeneity. 

Firms are likely to exhibit various inter-firm differences like unmeasured capital components, 

monopoly power or market characteristics that influence the magnitude of their individual 

Tobin’s q. Some authors suggest using a pooled non-linear estimator by arguing that the high 

correlation between individual effects and slowly changing R&D intensities leads to an over- 

correction of R&D effects16. We argue in the opposite direction: high correlation between 

individual effects, explanatory variables and existing inter-firm differences creates biased 

coefficient estimates, unless we control for them. The tradeoff occurring when using a linear 

                                                 
15 Approximation: ln 1+ x( )= x  if x is small 
16 for instance Hall et al. (2005), Megna and Klock (1993), Czarnitzki et al (2005) 
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approximation including fixed effects is the risk of a bias due to the approximation of the non-

linear logarithmic term.  

Approximating ( )itit AKγ+1ln  by itit AK  and defining qit  by: 

qit = exp dt + mi + uit( ),        (14) 

including time effects td and observed heterogeneityim , leads to:  

( ) ( ) ( ) ititititit
it

it
it umdRDD

A

K
Q +++++= lnlnln δθγ   (15) 

Theory provides various approaches to specify the knowledge stock itK  of a firm. We follow 

Hall, Jaffe and Trajtenberg (2001, 2005) who define the knowledge creation process as a 

continuum from R&D over patents to citations. Every step adds further information 

concerning the value of innovations. R&D shows the commitment of a firm to promote 

innovation. Patents are interpreted as an indicator of inventive output and citations measure 

the extent to which these innovations turn out to be “important” and valuable for the firm 

(Trajtenberg 1990, Harhoff 1999 et. al.). Instead of dividing all three measures by physical 

assets – which causes the problem of collinearity in the estimations – ratios according to their 

position in the knowledge creation process are included. Hence, the basic linear estimation 

equation is given by: 

( ) ( ) ( ) ititititit
it

it

it

it

it

it
it umdRDD

Pat

Cit

RnD

Pat

A

RnD
Q +++++








++= lnlnln δθγβα  (16) 

A first look at the bivariat correlations, as shown in table 2, reveals the expected positive 

correlations between R&D intensity, citations per patents and the logarithm of Tobin’s q. The 

magnitude of the correlations of Tobin’s q differs substantially, from 30 % with citations per 

patents to 2 % with patents per R&D. 

 

Table 2 Correlation matrix 

  Log(q) R&D/Assets Pat/R&D Cit/Patents 
Num. equ. 

Ent. Fields 

log(q) 1.00           

R&D/Assets 0.19 1.00         

Patents/R&D 0.02 -0.05 1.00       

Citations/Patents 0.30 0.17 0.01 1.00     
Number equ. 
Entropy -0.14 -0.12 -0.01 -0.15 1.00   

Number of Fields -0.07 -0.09 -0.01 -0.09 0.85 1.00 

Relatedness 0.14 0.07 0.01  0.02 -0.29 -0.17 
 

The number equivalent entropy measure and the number of fields are negatively correlated 

with the logarithm of Tobin’s q, which is in line with the hypothesis of this paper.  
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VI. Results 

A first impression concerning the relationship between the number of technological fields and 

the market value can be gained by comparing the average q across different numbers of fields. 

Figure 3 displays the average Tobin’s q of firms with approximately the same number of 

fields in its portfolio. We observe that the average q being maximal for firms covering 

roughly two or three fields.  

 

Figure 3 Average q and number equivalent entropy17 
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The average q of firms with one field is lower which might indicate that the market 

appreciates reaching a minimum threshold of diversification. From the second and third field 

onwards, the average q steadily declines until the seventh field, where q is about 0.4 lower 

than for a firm working in two fields. Overall, figure 3 shows descriptive evidence for a 

negative relationship between the number of technological fields and the market value which 

will be analyzed further in the following.  

Table 3 presents empirical results under the linear approximation of the term encompassing 

the knowledge assets. Starting with the simplest approach to approximate the knowledge 

stock including patents, citations and R&D, the specification is expanded stepwise by 

including the number of technological fields, technological relatedness and size corrected 

measures.  

 

                                                 
17 The number equivalent entropy is used here, because we aim to control for the relative importance of each 
field. Rounded numbers are displayed to obtain a discrete distribution. 
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Table 3 Estimation results, linear model   
 Pooled Fixed Effects 

log(q) (1) (2) (3) (4) (5) (6) 

R&D/Assets 0.094** 0.050* 0.048* 0.046* 0.052 0.046 

 (5.114) (2.320) (2.218) (2.166) (1.746) (1.497) 

Patents/R&D 0.005** 0.004** 0.004** 0.004** 0.004** 0.004** 

 (4.038) (6.738) (6.978) (6.974) (6.335) (6.353) 

Citations/Patents 0.017** 0.007** 0.007** 0.007** 0.007** 0.006** 

 (10.150) (3.583) (3.525) (3.480) (2.850) (2.764) 

Entropy    -0.060**  -0.074**  

    (-3.303)  (-3.044)  

log(Number)     -0.059**   

     (-3.620)   

Entropy * Relatedness      0.002*  

      (-2.326)  

Entropy (corr.)       -0.069** 

       (-2.815) 
Entropy * Relatedness 
(corr.)       0.002* 

       (-2.406) 

log(Sales)       -0.040 

       (-1.425) 

Constant 0.410** 0.204** 0.292** 0.618** 0.620** 0.807** 

 (11.613) (6.631) (7.074) (14.704) (11.876) (4.090) 

Observations 7826 7826 7826 7826 7084 7084 

Number of groups   1007 1007 1007 950 950 

R-Squared (overall) 0.163 0.142 0.139 0.123 0.175 0.163 
Heteroscedasticity-robust t-statistics in parentheses. All equations include a complete set of year dummies and a dummy for 
non-reported R&D 
* significant at 5 %; **significant at 1% 
 
 

The estimation results in columns 1 are derived using a pooled OLS model while columns 2 

to 6 include fixed effects. The specification in column 1 serves as our benchmark model 

covering the whole knowledge creation process with R&D, patents and citations. R&D, 

patents and citations reveal a stable, positive and significant impact on a firm’s market value. 

Column 2 exploits the panel structure of the data by using a fixed effects estimator. A 

conducted F-test for the significance of individual effects indicates the presence of 

unobserved heterogeneity. The Hausman-test rejects the hypothesis of zero correlation 

between individual effects and explanatory variables; therefore fixed effects estimation is 

used. Still, the impact of R&D, patents and citations remains significantly positive, even 

though the coefficients became substantially smaller. The largest drop occurs in case of 

citations per patents where the coefficient reduces to less than half of the pooled one. This 

might be due to the fact, that a part of the R&D expenditures remains rather stable over time 

and thereby reducing their explanatory power in the within variation. 
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Column 3 introduces the entropy measure, which captures the number of technological fields. 

We find a negative and significant influence with a coefficient of -0.06. This corresponds to 

an elasticity of the weighted number of technological fields D with respect to the market 

value of minus 6%. Hence, a firm with equivalent tangible and intangible assets compared to 

another firm with one equally important field more in its portfolio experiences a market value 

that is 6% lower. The coefficients of the other variables capturing the knowledge stock are not 

affected by this expansion of the standard model. 

The logarithm of the unweighted number of technological fields is used in column 4 instead 

of the entropy measure to control for the impact of the weighting scheme in use. We likewise 

find a negative and significant impact with a coefficient being absolutely similar in size. This 

is not surprising since the number equivalent entropy is bounded from above by the 

unweighted count measure. Hence, the number of fields will generally be at least as large as 

the corresponding weighted measure. The point estimate of -0.06 implies an elasticity of the 

size of the technology portfolio with respect to Tobin’s q of 6% without controlling for the 

relatedness of the portfolio and thereby neglecting to distinguish between the different effects 

of economies of scale and scope. 

Column 5 turns to the estimation of the full model and takes a closer look at the composition 

of the technology portfolio by introducing the measure of technological relatedness. Since 

only companies with large portfolios can exhibit technological relatedness, the analysis is 

restricted to firms being engaged in at least two technological fields. The parameters 

encompassing the knowledge creation process remain stable compared to the fixed effects 

regressions of table 3. All of them exhibit a positive influence on Tobin’s q and are mainly 

significant at the five percent level. As expected, the coefficient of the interaction term points 

in the opposite direction, suggesting a counterbalancing effect in case of large and related 

technology portfolios. The elasticity of the size of the technology portfolio with respect to 

Tobin’s q rises when the relatedness of the portfolio increases. Evaluated at median 

relatedness and entropy, we find a discount of 6% per additional equally important field. This 

discount reduces to 4% for the 75% quartile of the distribution of relatedness, implying that 

highly related technology portfolios experience a smaller loss We believe this relationship is 

due to the fact that the ability of firms to exploit economies of scope reduces when enlarging 

its technology portfolio to unrelated fields, while spreading into related areas increases the 

possibility to benefit from economies of scope, which may reduce costs and thereby increase 

future profits. 
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Furthermore, we construct a size-corrected entropy measure in column 6 by regressing the 

entropy and the interaction term on the logarithm of sales and utilizing the residuals since 

some authors argue that portfolio size is mainly driven by firm size. This leaves us with the 

opportunity to include sales as a further explanatory variable. Both coefficients are hardly 

affected by this correction, which can be taken as further evidence for the robustness of our 

results and as the absence of a size effect in our analysis.  

Now, we compare the estimation results for the linear approximation with the exact non-linear 

specification of the model; table 3 displays the corresponding estimation results. In contrast to 

the linear specification in equation 14, the parameters of R&D, patents and citations in the 

non-linear pooled model of table 4 exceed those of pooled OLS and fixed effects in table 3. 

The difference in size between pooled OLS and pooled non-linear is caused by the linear 

approximation of the logarithm. However, one could also argue that the pooled model 

overestimates the coefficients by ignoring individual firm specific effects and their correlation 

with the explanatory variables. 

As expected, the coefficients of the entropy measure and the interaction term are comparable 

in signs to what is found in the linear model, presumably because they are mainly unaffected 

by the linear approximation. However, the coefficient of the interaction term became 

substantially larger which enhances the role of relatedness. In contrast, the coefficient of the 

number of fields – the entropy measure – got smaller. Overall, this will lead to a reduction in 

the corresponding elasticity. This change might be caused by estimating the non-linear term 

directly, since the explanatory power of the variables representing the knowledge creation 

process increases. Again, we calculate the elasticity of the size of the technology portfolio 

with respect to Tobin’s q for various degrees of relatedness. Evaluated at mean entropy, we 

observe a discount of 4% per additional field at the 25% quartile of the distribution. At the 

median, this reduces to 0.6%, so approximately zero. For high levels of relatedness, we find a 

positive elasticity, e.g. 5% for the 75% quartile. Hence, the firm benefits from additional 

equally important fields by exploiting economies of scope through a common knowledge 

base.  
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Table 4 Estimation results, non linear model 

  Non Linear 

log(q) (1) (2) (3) 

R&D/Assets 0.291** 0.306** 0.166** 

 (8.462) (8.512) (8.308) 

Patents/R&D 0.018** 0.023** 0.013** 

 (4.905) (6.074) (5.425) 

Citations/Patents 0.045** 0.047** 0.034** 

 (11.196) (10.713) (10.981) 

Entropy -0.051*  -0.043 

 (-2.277)  (-1.937) 

Entropy * Relatedness 0.006**  0.007** 

 -5015  -6177 

Entropy * Relatedness (p25)  -0.056*  

  (-2.422)  

Entropy * Relatedness (p50)  -0.054*  

  (-2.280)  

Entropy * Relatedness (p75)  -0.041  

  (-1.466)  

Entropy * Relatedness (p100)  0.022  

  (0.631)  

High-Tech Industry   0.100 

   (-1.882) 

Stable Tech Industry (long)   -0.115* 

   (-2.005) 

Stable Tech Industry (short)   -0.002 

   (-0.027) 

Observations 7084 7084 7084 

R-squared 0.438 0.429 0.450 
Heteroscedasticity-robust t-statistics in parentheses. All equations include a complete set 
of year dummies and a dummy for non-reported R&D 
* significant at 5 %; **significant at 1% 
 
 

In order to analyze the impact of portfolio size adjusting for relatedness, dummy variables are 

generated for the quartiles of the relatedness measure and interacted with the entropy 

measure. Firms belonging to the lowest level of relatedness, the 25% percentile, exhibit a 

significantly negative impact of -0.056. This corresponds to an average discount for firms 

with unrelated portfolios of nearly 6% per additional field. The coefficient for the second 

quartile is again negative and significant and comparable in size. In case of on average related 

portfolios – the upper 50% of the distribution – the results are less compelling. Even though 

we observe larger coefficients which are in line with our story, they are not significant. 

Column 2 indicates that the negative impact on the market value diminishes as the relatedness 

within the portfolio rises since a significant discount occurs only in case of unrelated 

portfolios. 
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In column 3, we include industry effects according to segments developed by Chandler (1994) 

that are based on technological dynamics. Even though the distinction between high-tech, 

stable-tech and low-tech industries seems to be quite rough, it shows that the coefficient of 

our measure of technological diversification is not driven by some sort of technological fixed 

effect that affects only a couple of industries. As expected, firms in high-tech industries 

experience a significantly higher Tobin’s q on average. In contrast, there is no systematic 

difference in the market value of stable-tech industries. 

 

VII. Conclusion 

The aim of this paper was to analyze the impact of a firm’s technology portfolio on its market 

value. Two concepts were used to describe a firm’s portfolio: the number of fields and the 

relatedness of the technologies covered by a firm in research. Based on a theoretical 

framework using an expanded Tobin’s q approach, it presents evidence for a negative 

influence of portfolio size on the market value caused by a diminishing potential to make use 

of economies of scale. This discount can be counterbalanced when the relevant fields share a 

common technological base which is measured by the degree of technological relatedness. 

In the linear version of our model, we find an elasticity of the size of the technology portfolio 

with respect to Tobin’s q, evaluated at median relatedness and entropy, of 6% per additional 

equally important field. This discount reduces to 4% for the 75% quartile of the distribution of 

relatedness, implying that highly related technology portfolios experience a smaller loss. The 

picture slightly changes when applying a nonlinear estimator: evaluated at mean entropy, we 

observe a discount of 4% per additional field at the 25% quartile of the distribution. At the 

median, this reduces to 0.6%, so approximately zero. For high levels of relatedness, we find a 

positive elasticity, e.g. 5% for the 75% quartile. Hence, the firm benefits from additional 

equally important fields by exploiting economies of scope through a common knowledge 

base.   

Generally speaking, enlarging the technology portfolio in unrelated fields negatively 

influences the market value of a firm due to the fact that it reduces the ability to exploit future 

economies of scale and scope. In contrast, spreading into related areas increases the 

possibility to benefit from economies of scope, which reduces future costs and thereby 

increases future profits.  

Our results suggest that under the objective of value maximization, the composition of the 

research portfolio plays an important role for valuation by financial markets. The possibilities 
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to exploit economies of scale and scope should be considered when deciding to expand 

research activities into new areas and the relatedness of the current research portfolio and the 

intended new field or fields should be taken into account. A properly designed – meaning 

related – research portfolio can have substantial influence on future profits and thereby on the 

market value.  
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Appendix 1 

Classes within the U.S. Classification System 
December 2006 

 
1) Superconductor Technology: Apparatus, Material, Process 
2) Nanotechnology 
3) Life and agricultural sciences and testing methods 
4) Stock materials; articles (e.g., layered products, filters, batteries) 
5) Compositions and synthetic resins; chemical compounds 
6) Chemical processing technologies: processes and apparatus (e.g., wave energy, metallurgy, separatory 

contacting) 
7) Calculators, computers, or data processing systems 
8) Information storage 
9) Measuring, testing, precision instruments 
10) Electricity, heating 
11) Electro-mechanical systems 
12) Electricity: subsystems, components, or elements 
13) Ammunition, weapons 
14) Body treatment care, adornment 
15) Apparel and related arts 
16) Plant and animal husbandry 
17) Teaching 
18) Amusement devices 
19) Foods and beverages: apparatus 
20) Heating, cooling 
21) Buildings 
22) Receptacles 
23) Supports 
24) Closures, partitions, panel 
25) Textiles 
26) Earth working and agricultural machinery 
27) Check-Actuated control mechanisms 
28) Dispensing 
29) Material or article handling 
30) Fluid handling 
31) Vehicles 
32) Motors, engines, pumps 
33) Coating, printing, and printed material; stationery, books 
34) Manufacturing, assembling, including some correlative miscellaneous products 
35) Cutting, comminuting, and machining 
36) Miscellaneous treating 
37) Handling or storing sheets, webs, strands, and cable 
38) Machine elements or mechanism 
39) Miscellaneous hardware 
40) Tools 
41) Joints and connections 

42) Fastenings 
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Appendix 218 

Chandler 
Segment 19 

SIC Description SIC Code 

High-Tech: 1 Electronic computing equipment 3570-3573 3575 3576 3577 
  Calculating machines excl. comp. 3578 
  Refrigerating & heating equip. (comml) 3580-3582 3585 3589 3596 
  Power distribution & transformers 3612 
  Switchgear & switchboard apparatus 3613 

  
Motors, generators & industrial 
controls 

3600 3620 3621 3622 3625 

  Electronic & electric coils & connectors 3524 3677 

  
Household refrigerators & freezers 3630 3631 3632 3633 3635 

3639 

  
Lighting fixtures & equipment 3640 3641 36425 3646 3647 

3648 
  Primary & storage batteries 3691 3692 3693  
  Engine elctrical equipment & misc 3694 3699 
  Electronic & electric connections 3643 3644 3678 
  Electronic signaling & alarm systems 3669 
  Radio & TV broadcasting sets 3663 
  Radio & TV receiving sets 3651 
  Records, magnetic, &optical recording 3652 3690 3695 

  
Communication equipment 3661 3662 3669 4810 4812 

4813 
  Electron tubes 3671 

  
Semiconductors & printed circuit 
boards 

3672 3674 3675 3676 

  Electronic components, computer acc. 3670 3679 
  Engineering scientific instruments 381x 
  Measuring & controlling devices 382x 
  Aircraft parts & engines 3720 3721 3724 3728 
  Ship & boat building & repairing 373x 3795 
  Railroad equipment 374x 
  Complete guided missiles, aerospace 376x  
  Optical instruments & lenses 3827 
  Dental equipment & supplies 3843 

  
Surg. & med. inst., appliances, & 
supplies 

3840 3841 3842 

  X-ray apparatus 3844 
  Photographic equipment & supplies 3861 
  Electromedical apparatus 3845 
  Pharmaceuticals 283x 
  Opthalmic goods 3851 
Stable-Tech: 2 Industrial inorganic chemicals 281x 
(long horizon) Plastic materials & resins 282x 
  Paints & allied products 285x 
  Industrial organic chemicals 286x 
  Fertilizer 287x 
  Explosives & misc. chemicals 289x 

  
Asphalt, roofing & misc coal/oil prods 2950 2951 2952 2990 2992 

2999 
  Petroleum & refining 291x 1311 1389 
  Steelworks, rolling & finishing mills 331x 
  Iron & steel foundries 332x 
  Primary metal products 339x 

                                                 
18 Source: Hall and Vopel (1997) 
19 Segments (High-, Low- and Stable-Tech) were derived by Chandler (1994) and modified by Hall (1994). 
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  Prim aluminum smltg, reg, roll, &draw 3334 3353 3354 3355 
  Primary smeltg & refing (non-ferrous) 3330 3331 3332 3333 3339 
  Secondary smeltg & refing (non-fer.) 334x 

  
Rolling, drawing, & extruding of 
nonferr. 

3350 3351 3356 

  Drawing & insulating of nonfer. wires 3357 
  Nonferrous metal casting 336x 

  
Turbines, generators, & combustion 
eng. 

351x 

  Lawn, garden & farm mach. & equip. 3523 3524 
  Const. & mining mach. & equip. 3530 3531 3532 
  Oilfield machinery 3533 3534 

  
Conveyors, ind. trucks&cranes, 
monorails 

3535 3536 3537 

  Mach. tools, metalworking eq. & acc. 354x excl. 3548 
  Special industrial machinery 3550 3559 
  Food prods & packaging machinery 3556 3565 
  Textile machinery 3552 
  Wood & paper industry machinery 3553 3554 
  Printing trades machinery & equip. 3555 
  Pumps & pumping equip. 3561 3586 3594 
  Ball & roller bearings 3562 

  
Compressors, exhaust., & ventilation 
fans 

3563 3564 3634 

  General industrial machinery 3560 3568 3569 359x 
  Ind. high drives, changers & gears 3566 
  Industrial process furnace ovens 3567 3558 
  Scales & balances excl. laboratory 3596 
  General office machines 3579 
  Motor vehicles 3711 3713 3715 3799 
  Motor homes 3716 3792 
  Motorcycles & bicycles 3751 3790 
Stable-Tech: 3 Tires & innertubes 301x 
(short horizon) Plastic products 307x 3080 3084-3089 
  Unsupported plastics, films &sheets 3081 3082 3083 

  
Packing & sealing dev. & fab. rubber 
nec 

3050 3051 3052 3053 3060 
3061 3069 

  Glass & glass products 321x 322x 323x 
  Cement 324x 
  Structural clay products 325x 
  Pottery & related products 326x 
  Concrete, gypsum & related prods 327x 

  
Abrasive asbestos & mineral wool 
prods 

329x 

  Metal cans & containers 3411 3412 
  Cutlery & hand tools 342x 

  
Heating equipment & plumbing fix. 3430 3431 3432 3433 3437 

3467 
  Fabricated structural metal 344x 
  Screw machine products, bolts, nuts 345x 
  Metal forgings, plating & coating 346x 347x 
  Wire springs & misc. metal prods. 3495-3499 
  Ordnance & accessories 348x 
  Valves & pipe fittings 3490 3491 3492 3493 3494 
  Perfumes & toilet prods. 2844 
  Soaps & cleaning products 2840-2843 
  Motor vehicle parts & accessories 3714 
Low-Tech: 4 Meat products 2010 2011 2013 2015 2016 

  
Dairy products 2020 2021 2022 2023 2024 

2026 
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Canned & frozen foods 2030-2032 3037 2038 2053 

3091 3092 
  Processed fruits & vegetables 2033 2034 2035 2068 2096 
  Breakfast cereals 2043 
  Animal feed 2047 2048 
  Grain mill products 2040 2041 2044 2045 
  Wet corn milling 2046 
  Bakery products 2050 2051 2052 
  Sugar chocolate & cocoa prods. 2060-2067 
  Fats & oils 207x 
  Malt & malt beverages, alcoholic bev. 2082 2083 2084 2085 
  Soft drinks & flavourings 2080 2086 2087 
  Miscellaneous preproduced food 2090 2095 2098 2099 
  Tobacco products 21xx 
  Textile mill products 22xx excl. 2270 2273 
  Rugs 2270 2273 
  Apparel 23xx 3965 
  Footwear, rubber & leather 3021 314x 

  
Leather & leather products 310x-313x 315x 316x 317x 

319x 3961 
  Logging & sawmills 241x 242x 
  Millwork, veneer & plywood 243x 2450 2451 2452 
  Wood products 244x 249x 
  Household furniture 251x 
  Office furniture 252x 

  
Shelving, lockers, office & store 
fixtures 

253x 254x 259x 

  Pulp, paper & paperboard mills 261x 262x 263x 
  Industrial paper & paper products 2600 264x 265x 266x 
  Converted paper - household use 267x 
  Commercial printing 275x 2796 
  Printing & publishing 27xx excl. 275x 2796 
  Musical instruments 3931 
  Sporting & athletic goods 3949 
  Dolls, games & toys 3942 3944 

  
Pens, pencils, & other office & artists 
mat. 

395x 

  Misc. manufacturing industries 399x 

  
Jewelry & watches 3873 3910 3911 3914 3915 

396x 
 
 




