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Abstract

We leverage the timing of coalmine accidents to examine the effect of coal min-
ing on air pollution. Safety regulations mandate that coal mining be suspended
if a mine experiences an accident with 10 or more fatalities. We use a stacked
difference-in-differences approach to compare counties with an accident to those
experiencing an accident more than two years earlier or later. We provide evidence
that the timing of accidents cannot be predicted. Next, we combine satellite-based
air pollution data at the county-day level with the dates of accidents to show that
on average, suspending coal mining reduces local air pollution by 8%. Changes in
the level of coal consumption do not drive this reduction. We also find significant
decreases in respiratory mortality after suspending coal mining with particularly
large effects on vulnerable populations.
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1 Introduction

Coal is a major source of air pollution and harms public health. Many studies have examined the

impact of burning coal (Cesur et al., 2017; Clay et al., 2016; Beach and Hanlon, 2018; Johnsen et al.,

2019), but few address the fact that producing coal also generates pollution. Coal mining generates

pollution in three ways. The first is wind erosion of uncovered coal stockpiles and gangue (the

waste products of mining) that generates pollution laden dust. Second, the oxidation of coal and

gangue causes the formation of pollutants. Third, handling coal, moving it from the mine-mouth

to stockpiles; crushing it; and loading it onto trucks, trains, or barges for delivery creates pollution

as well.

We estimate the casual effect of coal mining on air quality and mortality in China, which has

long been the global leader in coal production. Our identification strategy exploits an orthogonal

determinant of coal mining: the timing of accidents. Between 2003-2015, the Chinese central

government required coalmines that experienced an accident with 10 or more deaths to suspend

underground mining until inspectors certified their operations as safe.1 We use a stacked difference-

in-differences approach (Deshpande and Li, 2019; Fadlon and Nielsen, 2021; Baker et al., 2022)with

a staggered treatment rollout and construct multiple counterfactual groups to parse the sources of

identification.

Combining satellite measures of particulate matter (aerosol optical depth, referred to as AOD)

with dates and locations of severe accidents between 2003-2015 allows us to map suspensions of

coal mining to nearby air pollution levels. We restrict our event window to 90 days before and

after the accident to minimize the effects of confounding factors that are correlated with both

coal mining and air quality. One threat to identification is that unobserved differences between

mines that experience severe accidents and those that do not may also be correlated with pollution

associated with coal mining. To address this concern, we exploit the timing of accidents. We use

a stacked difference-in-differences approach to compare counties currently experiencing a severe

accident with those experiencing one but over two years in the future (or over two years in the

past). Our identification only requires that the timing of accidents with suspensions of coal mining

is random for which we provide evidence. Our research design is similar to several studies that

1We use the term “severe accident” to refer to a coal mine accident with 10 or more fatalities throughout the
remainder of the paper.
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exploit the potential randomness of the timing of shocks within a short period of time (Guryan,

2004; Deshpande and Li, 2019; Fadlon and Nielsen, 2021). We also test the external validity of

our estimation results by comparing counties that experience an accident to a comparison group of

counties that experienced no accidents during our sample period.

Our results indicate that suspensions of coal mining lead to a lagged reduction in the levels

of ambient air pollution. In the first month after a suspension, our results, albeit imprecisely

estimated, show that AOD levels decrease. In the second month of suspension, AOD levels fall

significantly by 8% of the sample mean. Our findings are robust across the three sets of comparison

groups. We show that the lagged effect on AOD levels can be explained by the continued operation

of non-mining activities during a suspension of mining. During a suspension, regulators do allow

moving, handling, and shipping the coal inventory. The amount of inventory held by coal companies

influences the length of the lag before the decrease in the levels of ambient air pollution. We show

that coal companies hold inventory equivalent to a month of sales on average that is consistent

with the lag we observe in the decrease in air pollution. We also provide evidence that the observed

improvement in ambient air quality is not driven by changes in the level of economic activities or

coal consumption in counties that experience an accident. As a placebo test, we estimate the effect

of suspending coal mining on the level of SO2, which is associated with coal combustion but not

with its production. We do not find a significant reduction in SO2 levels.

We provide evidence that suspensions of coal mining are associated with reduced all-age mortal-

ity in the mine’s county. For a subset of counties in our sample we are able to collect daily mortality

information. We combine the mortality data with the dates and locations of severe accidents from

2003-2015, obtaining a matched sample of 16 counties with 18 accidents. We then compare the

daily cause-specific all-age mortality rates between the treated and the comparison groups shortly

before and after a suspension using a Poisson event-study framework. Our results show that the

average all-age mortality rate due to respiratory (RES) diseases significantly decreases by 12.9%

in the third month following a suspension relative to the comparison group. Additionally, women

are more affected than men. Consistent with the literature (Tanaka, 2015; Anderson, 2020), we

also find that populations vulnerable to air pollution experience much larger decreases in mortality

rates following a suspension: the elderly see a significant drop in the RES mortality rate. Our

back-of-envelope calculation indicates that the annual cost to health imposed by coal mining in
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China is 51.2 billion USD.

This paper contributes to the literature in three ways. First, there is a burgeoning literature

about the effects from coal combustion on pollution and health (Clay et al., 2016; Cesur et al.,

2017; Beach and Hanlon, 2018; Johnsen et al., 2019). Beach and Hanlon (2018) estimate the

mortality effects of British industrial coal use in the period from 1851 to 1860 using wind patterns

for identification. Clay et al. (2016) demonstrate that a sizeable increase in infant mortality could

be attributed to the historical expansion of US coal-fired power plants in the early and mid-1900s.

Leveraging variation in the intensity of natural gas use, Cesur et al. (2017) find that the expansion

of natural gas infrastructure in Turkey significantly reduced the rate of infant mortality. Johnsen

et al. (2019) find that the recent displacement of coal by cheap natural gas in the U.S. electricity

sector significantly lowers PM2.5 levels.

In the Chinese context, several studies have investigated the effects of air pollution from coal

combustion on health during winter heating. Chen et al. (2013a) and Ebenstein et al. (2017) use

a regression discontinuity design that is based on a policy that only areas to the north of the Huai

River received free or highly subsidized coal for indoor heating and find significant reductions in life

expectancy. Fan et al. (2020) also use a regression discontinuity design that is based on the exact

starting dates of winter heating across different cities and find that turning on the heating system

leads to a significant increase in mortality rates. Chen et al. (2018) find that coal-fired power

generation increases the SO2 levels nearby, which increases respiratory and lung cancer deaths. In

our paper, we add to this literature by extending the analysis to the upstream of the coal industry

and investigating the pollution and health effects of coal mining.

Second, there has been some evidence in the literature that a negative correlation exists between

coal mining and local air quality or public health. In this early literature, causal identification has

been elusive. Several scientific studies have shown that a rise in the level of particulate matter

during coal mining by sampling a few sites (Onder and Yigit, 2009; Aneja et al., 2012; Knuckles et

al., 2013). Fitzpatrick (2018) finds that increased exposure to surface coal mining is associated with

significantly more asthma hospitalizations in West Virginia. Although the study controls for time-

invariant confounding factors with panel regressions, their findings are subject to contamination

from time-varying unobservables that are correlated with both mining and health outcomes. In a

review article, Greenstone et al. (2021) suggest that the decrease in PM2.5 levels in China during
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the period from 2015 to 2018 after it declared war against air pollution were less likely to decrease

in cities with coal mining. Our study contributes to the literature by estimating the causal effect

of coal mining on both air quality and mortality based on a comprehensive, county-level dataset in

the largest coal-producing country in the world. In addition, while most studies have focused on

the environmental effects of surface mining, we investigate a setting where almost all coal mining

is conducted underground.

To the best of our knowledge, there is only one paper that attempts to estimate the causal effect

of coal inventories on air pollution. Jha and Muller (2018) find that a 10% increase in PM2.5 causes

a 1.1% increase in average adult mortality in the US by instrumenting for the exposure to PM2.5

with coal stored at power plants. We study the same mechanism - pollution emissions from coal

storage – using a different identification strategy (coal mining accidents vs coal inventory levels)

in a different country. We find a slightly larger air pollution elasticity of all-age mortality, perhaps

because coal mining generates more particulate matter than coal storage at power plants. In

addition, the levels of environmental regulation and health care differ significantly between China

and the US. Because China is the world’s largest producer of coal, we argue that these results

provide important additional context to those presented in Jha and Muller (2018).

Third, several studies have pointed out greater pollution emissions and negative health effects

that are associated with natural gas production (Litovitz et al., 2013; Rasmussen et al., 2016; Hill,

2018; Banan and Gernand, 2020). Our paper complements these studies and highlights the impor-

tance of conducting a comprehensive life-cycle evaluation of fossil fuels for an accurate calculation

of their social costs.

Fourth, our paper adds to a growing literature that demonstrates the potential negative effects

of mining and extractive industries on women’s health in developing countries. Baum and Benshaul-

Tolonen (2021) note that the effect of mining on health in general and women’s health in particular

is not obvious. Mining typically is associated with increased economic activities that in turn leads

to better access to medical care. On the other hand, mining is associated with increased pollution

which has negative health effects. The literature refers to this as the health-wealth trade off. This

tradeoff has been documented in the context of gold mining (Von der Goltz and Barnwal, 2019),

oil fields (Hurtig and San Sebastián, 2002) and coal mining (Hendryx and Ahern, 2008). Different

from (Hendryx and Ahern, 2008) who study the tradeoff in the US, our paper identifies the tradeoff
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for women from coal mining in a developing country: exposure to air pollution from mining leads

to significant increases in mortality for women in mining regions that tend to have lower incomes.

There are several clear policy implications of this work. First, previous estimates of the external

costs that are associated with coal are understated. We find relatively large human health effects

from coal mining that are, to our knowledge, new to the literature. A future cost-benefit analysis

of environmental regulation should incorporate these external costs. Second, some regions will

continue to rely on coal for the foreseeable future, so it is important to reduce the local air pollution

and health effects of its production. These effects we find suggest that regulations on the air

pollution from coal mining could be justified. Better handling of coal and gangue could reduce

pollution exposure at modest costs.

2 Background

China is the world’s largest producer and consumer of coal. Large flows of capital have entered the

coal mining and processing industry since the mid-2000s that led to an approximately 50% increase

in production capacity between 2005 and 2017. Domestically, coal has played a dominant role in

the energy sector by providing 70% of the energy consumed in China.

In China, the vast majority of the mining is underground. Open pit mines only account for

13% of the total production among the key state-owned coal mines in China (National Coalmine

Safety Administration, 2009). All the accidents in our sample occurred in underground coal mines.2

The Chinese coal mining industry has experienced a large number of accidents. In 2004, China’s

fatalities amounted to 80% of the world’s total, while producing 40% of the world’s coal (Nie et al.,

2013). The fatality rate for coal mining in China is significantly higher than other countries, even

other developing ones.3

Surging coal mine deaths have attracted public attention and posed a threat to social stability.

In response, the central government has comprehensively overhauled regulations to substantially

improve the safety of coal mines. One of them is the “Measures for Administrative Punishment

of Coal Mine Security Supervision” issued by the State Administration of Work Safety and the

2There were a handful of accidents in open pit mines, but they were all during the construction of the mine so
there was no suspension of mining. We exclude these accidents from the analysis.

3As of 2000, the fatality rate for coal mining in China was 140 times that of the US; and 14 times higher than
India (Wright, 2004).
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National Coal Mine Safety Administration in 2003. The regulation focused on a standard set of

punishments for coal mines that experienced accidents or did not follow health and safety regu-

lations. We focus on a provision that states that any coal mine experiencing an accident with

“material incidence of over 10 deaths” would suffer a suspension.

The regulatory agencies categorize accidents with 10 or more fatalities as “very serious”, and

the media covers them extensively. The State Council of China has categorized workplace accidents

based on the number of fatalities. An accident with 3 or fewer fatalities is classified as “general”,

3–9 is classified as “relatively serious”, and 10 and above is classified as “very serious”. “Very

serious” (severe) accidents must be reported to the State Administration of Work Safety and the

State Council immediately. Mine officials and local bureaucrats that delay reporting or under-

report accidents are subject to administrative penalties (e.g., demotion or dismissal) and criminal

charges.4 After a coalmine reports a severe accident, a suspension of mining occurs that is strictly

enforced by state officials until the workplace can be certified as safe.

In practice, this regulation means that coalmines are required to stop all underground mining

activities after an accident with 10 or more deaths. The safety risks in our case all come from

underground activities but not above-ground activities. The safety regulation that requires a sus-

pension upon the occurrence of a severe accident only mentions suspensions of mining, where the

risk lies. Suspensions do not apply to above-ground activities such as transporting, handling, or

shipping coal stored above ground, which are critical for coal companies during a suspension since

they can mitigate cash-flow problems. We have confirmed the ban only applies to underground

activities.5 Once the coal company ships the limited coal stocks, local air pollution should begin

to drop.

We identify the date of each severe accident from the website of State Administration of Work

Safety of China. We collect online media articles about each accident and confirm that the regulator

enforced the “Measures for Administrative Punishment of Coal Mine Security Supervision” and that

each mine experienced a suspension immediately after the accident. Local governments have the

discretion on whether to extend a suspension to nearby coal mines. We manually collect data on

the range of suspensions (e.g., single mine, county-wide, city-wide, or province-wide) after each

4See Articles 91 and 92 in “The Production Safety Law” issued in 2002.
5We met with private mine owners and confirmed that coalmines can still operate above ground while under

suspension.

7



accident that we use in alternative empirical model specifications for robustness checks. For the

few accidents that the media reported its length, the suspensions lasted for up to three months.

The length of suspension varies across coal mines but we are not able to obtain this information

from online media coverage for all accidents. We choose a 90-day event window to estimate the

effect of suspensions on ambient air pollution and all-age mortality. We also perform robustness

checks on whether the lagged effect lasts more than 90 days after a suspension.

Mines that experienced less severe accidents are our alternative comparison group, but regula-

tors occasionally suspend these mines due to accidents as well. However, these suspensions are not

mandated by the National Coal Mine Safety Administration, but provincial and local officials have

the discretion to order suspensions. Because the decision rule is unclear regarding these suspensions,

we exclude them from the analysis.

3 Empirical Strategy

In this section, we discuss how we use accidents and the subsequent suspensions of underground

mining to identify the effect of coal mining on the ambient air pollution and the mortality of nearby

residents. Since the most granular data available for many of our key variables are at the county

level, we conduct most of our analyses at this level.

3.1 Estimation of the Air Pollution Effects

To choose the proper empirical strategy, we start by testing whether accidents are correlated with

county characteristics. We find that some variables consistently predict the occurrence of a severe

accident. However, we find no observable characteristic or interaction of characteristics that consis-

tently predicts the timing of an accident conditional on an accident taking place during the sample

period. This evidence means none of the factors that predict the existence of severe accidents are

effective at predicting their timing.6 We therefore only use the timing of accidents in designing our

empirical strategy.7 The key identifying assumption is that the timing of coalmine accidents is as

good as random.

6A description of this analysis and the empirical results are reported in Appendix A1.
7Our approach is similar to a host of studies that exploit the variation in the timing of program roll-outs to

estimate the causal effects of those programs (Guryan, 2004; Deshpande and Li, 2019; Fadlon and Nielsen, 2021).
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Accidents happen at different times in different counties. Goodman-Bacon (2021) has shown

that the source of identification can be non-intuitive in a two-way fixed effects, difference-in-

differences estimation where treatment timing varies across units. This pooled specification pro-

duces an estimator that is a weighted average of the differences between various groups, including

the early treated units versus the untreated units, the late treated units versus the untreated units,

and groups that receive treatments at different times (e.g., using earlier treated units as the control

after their treatment begins or later treated units as the control before their treatment begins).

To avoid this confusion, we set counties that are currently experiencing an accident as the treated

ones and construct two samples: one that exploits the earlier treated counties as the control and

a second that exploits the later treated counties as the control. We do not use the set of counties

that never experience an accident for comparison, except in a robustness check. This approach

allows us to parse the source of identification. Importantly, we also show that the estimated effects

of suspensions are similar across our two samples.

We compare pollution in counties that have a coalmine that experiences an accident to other

counties whose coalmines experience an accident during a different part of the sample period.

Counties with coalmines that experience a suspension at time t are defined as treated in that

period. We compare the treated and control counties within a short time window (day -90 to day

90) around time t. We choose two sets of comparison groups: (a) counties that did not experience

an accident for at least two years after time t ; and (b) counties that experienced an accident more

than two years prior to time t.

We call comparison group (a) the later treated, because they had an accident resulting in

suspension after the treated group. To deal with the fact that a county may experience multiple

accidents, for the later treated comparison group we drop counties that also experienced an accident

in the 180 days before time t because the lingering effects of previous mining suspensions could

contaminate the comparison group. We call comparison group (b) the earlier treated, because they

experienced an accident before the treated group. For the earlier treated comparison group we

drop counties that also experienced an accident within 180 days of the treatment date t for similar

reasons. To shield our estimates from a potential spillover effect, we also drop the counties that

are in the same province as the treated county from the control group.

We build our sample using the following procedure. First, we identify each of the 315 severe
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coalmine accidents. For an accident j, we mark the timing of occurrence, date tj . We define as

treated the county where accident j occurred and select as controls the counties that experienced

an accident but after date tj +∆ (or those that experienced an accident but before date tj −∆).

We set ∆ to be 730 days or equivalently 2 years. This approach means that for each event, we

have one treated county but multiple control counties. We then confine our sample period to a

short time window (day -90 to day 90) around date tj for both the treated and control groups

for accident j. How we select the treated and comparison counties and construct our sample for

each time window of an accident is illustrated in Figure 1. A narrow event window avoids biases

from potential confounding factors correlated with coal mining.8 We label event months (30 days)

relative to the accident date. Next, we append the panels of all 315 accidents into a single dataset.

Eventually, we have 199 counties in our sample.9

To estimate the causal effect of a suspension in coal mining on the ambient air quality, we

estimate the following equation using a stacked difference-in-differences framework:

Yict = δ0 · Treatedict +
∑
τ

ατM
τ
ict +

∑
τ

δτ (Treatedict ·M τ
ict) + β ·Xict + ϵict (1)

where Yict is the ambient air pollution (AOD) level for county i affected by accident c on day

t. Treatedic is an indicator equal to one for the county that experienced accident c. M τ
ict is an

indicator equal to one if day t is τ month (defined as 30 days) after (or before, if τ is negative)

the accident date and zero otherwise. Specifically, M1
ict is the indicator for the days from Day 1 to

Day 30 following the date of accident c, M−1
ict is the indicator for the days from Day -30 to Day -1

prior to the date of accident c and so on. We use a narrow window around each accident date such

that |τ | ⩽ 3. The difference-in-differences estimator, δτ , is our primary coefficient of interest, and

we use it to measure the relative difference in the AOD levels between the treated and comparison

counties τ months after (or before) an accident. Day -90 to -60 (τ=-3) is the reference category

8There is another reason for focusing on the current time window after the accident. Anecdotal evidence suggests
that a coal mine suspension after a severe accident could last for three months.

9In our sample period, some counties experience multiple accidents. We treat consecutive accidents that occur
in the same county as two separate events if they are sufficiently distant away from each other (more than 180
days). If the timing difference between two accidents is less than 180 days, there is an overlap of the (day -90 to
day 90) event windows around the two accidents. Under such scenarios, for the first accident, we drop the post-
treatment observations that overlap with the window of the following accident; for the second accident, we drop the
pre-treatment observations that overlap with the window of the prior accident. If the dates of the two accidents
are too close, we drop both events from our sample. More detailed explanations of how we deal with overlapping
observations between two accidents within the same county can be found in the Appendix A2.
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and is omitted from the regressions.

Xict is a vector of control variables: the linear and quadratic weather characteristics (average

temperature, sunshine duration, average relative humidity, average wind speed, precipitation, and

average air pressure); day-of-week dummies; Chinese holiday dummies; and a set of fixed effects

at the county, province-by-year, and province-by-month levels.10 In some specifications, we also

control for county-specific trends and county-level annual industrial activities by using the lagged

total value of coal-related sectors (electricity, coal, metallic minerals, and nonmetallic minerals)

and total industrial output.

Our identifying assumption is that in the absence of suspensions caused by accidents, the

ambient air pollution in counties that experience a current accident will evolve in a parallel fashion

to counties that will experience an accident in the future or counties that experienced an accident

in the past. We test the validity of our identifying assumption by estimating the following empirical

model:

Treatedict = β ·Xict + µict (2)

which is a modified version of equation (1). We construct the sample as discussed above except

that we drop all post-accident observations (i.e., day 0 to day 90) for each accident. The dependent

variable is Treatedict that is an indicator for the county that experienced an accident. The DID

terms are dropped from equation (1). In this manner, we test whether key observable characteristics,

Xict, are able to predict the timing of an accident conditional on an accident taking place during

the sample period. Shown in Table 1, we find that none of the factors, even those predicting

the existence of severe accidents (reported in Table 13 in Appendix A1), are effective at predicting

their timing. This finding holds regardless of whether we choose the later treated comparison group

(shown in panel A of Table 1) or the earlier treated comparison group (shown in panel B of Table

1). This congruence indicates the timing of accidents is essentially random.

Selecting a comparison group based on the timing of accidents has the advantage of alleviating

endogeneity, but it may raise concerns about the external validity of our results since we restrict

our sample to only counties that have experienced a coal mine accident. We then explore the

external validity of our results using an additional comparison group that consisting of counties

10Treatment status varies within county over time so we can include county-level fixed effects to control for time
invariant unobserved county-level variables.
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that have never experienced an accident with a death during our sample period. We follow the

same procedure as explained earlier to construct the estimation sample.

3.2 Estimation of the All-age Mortality Effects

Next we describe the econometric model for estimating the all-age mortality effect of suspensions

of coal mining on nearby residents. We use mortality to illustrate the part of the economic costs of

air pollution caused by coal mining. We focus on mortality because the nationally representative

data of other health outcomes are not available or reliably measured at the county level during our

sample period. Data on the number of deaths and their causes are available at the county-day level.

Because the dependent variable is count data, we use a Poisson model. Due to data availability, we

are only able to match the mortality information to 16 counties with 18 accidents that had resulted

in the suspension of coal mining. Therefore, our identification strategy for estimating the effect of

mining suspensions on air quality will not work with such a small number of accidents. Instead,

we estimate the following Poisson regression:

E(Mortalityit|Xit, α) = α · exp[γ ·M |τ |>3
it +

3∑
τ=1

·δτ (Treatedit ·M τ
it) + β ·Kit + φit] (3)

where Mortalityit is the number of all-age deaths in county i on day t, Treatedict is an indicator

that equals one if a county experienced an accident, and M τ
ict is an indicator for the τth month

after an accident had resulted in a suspension. Rather than assembling observations from different

time windows around each accident as specified in equation (1), we use the entire sample period

(2004-2015). We add an indicator, M
|τ |>3
it , for the periods outside the window of (Day -90 to Day

90) around each accident. This indicator helps us to focus on the comparison between the treated

and the comparison groups shortly before and after a suspension. The coefficient of the interaction

between Treatedict and M τ
ict, δτ , is the coefficient of primary interest, and it captures the relative

change in all-age mortality in the treated counties in the τth month following the suspension of coal

mining compared to the comparison group. Note that Treatedict is co-linear with the county fixed

effects and therefore are left out from the model. We include all counties covered by our mortality

data as our controls.11

11We check for robustness of our health results by confining the control counties to be those that have coal mining.
Our results hold. These results are available on request.
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Kict is a vector of control variables that comprise daily weather characteristics (average temper-

ature, sunshine duration, average relative humidity, average wind speed, precipitation, and average

air pressure) and their quadratic terms for Chinese holiday dummies, day-of-week dummies, and

annual county-level industrial activities (i.e., lagged total value of coal-related sectors and lagged

total industrial output). We also add county, year, and calendar month fixed effects.

The results from the above model may reflect not only the pollution effect but also the socioe-

conomic effect from a suspension of coal mining. Testing the fall in employment or controlling for

county-level socioeconomic variables before and after a suspension may help to probe the severity

of bias due to the latter effect. Unfortunately, mine-level data for China are not available, so we do

not have information on the employment at mines with accidents.12 Neither do we have monthly

county-level socioeconomic data, so we cannot control for these variables in our model.13 Yet, even

if suspensions did affect a population’s health through socioeconomic factors such as income or

employment, then the marginal effect would be negative and would be opposite to the health effect

induced by a lower level of air pollution. Thus, our estimate would be a lower bound of the true

pollution effect.

4 Data and Summary Statistics

In this section, we describe the data sources used to estimate the air pollution and the all-age

mortality effects of coal mining. First, we collect the location (county), date, number of deaths,

and cause of all the coal mine accidents in China from January 2003 to December 2015 from the

State Administration of Work Safety of China.

Second, we collect the daily AOD at a pixel size of 3 km × 3 km during 2003 to 2015 from

the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua

12However, we are able to exploit annual data sets to check the mean share of employment of the coal-mining
industry in our treated counties. We use the employment information from the Annual Survey of Industrial Enterprises
of China that provides information on all state-owned enterprises and other types of enterprises with annual sales
above the threshold of five million RMB. We aggregate the data at the county level to calculate the total employment
of the coal-mining industry in the treated counties. Combining this variable with data on annual county-level total
employment, we find that the mean share of employment in the coal-mining industry in our treated counties is 4.5%
(the median is 1.2%). Therefore, a suspension of coal mining is unlikely to drastically affect the entire labor market
in our treated counties. We thus argue that the potential bias arising from labor market disruptions in our health
analyses is likely to be small.

13We conduct sensitivity tests where county-specific trends are added to our regression model. The results remain
robust. The results are available on request.
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satellites. AOD is a remotely sensed measure of particulate matter, which is calculated based

on the fraction of incoming light reflected by the air column before reaching the ground.14 The

literature has used AOD as a proxy for air pollution to estimate the effects of a voluntary program

to reduce pollution in Mexico, Indonesian wildfires, and subway system openings worldwide (Foster

et al., 2009; Jayachandran, 2009; Gendron-Carrier et al., 2018). Approximately 30% of days have

missing AOD values, usually due to thick clouds. To calculate the daily county-level AOD, we

keep only the pixels with valid AOD values for at least 30 days in each year. We then calculate

the daily county-level AOD by averaging its values for all pixels within the geographic boundary

of each county. In addition, as a falsification test, we collect daily SO2 at a spatial resolution

of 0.25◦×0.25◦ from the Level-3 Aura/OMI Global OMSO2e Data Products from NASA. This

variable is calculated suing the vertical column density of SO2 in Dobson Units (1 DU = 2.69×1016

molecules/cm2), which is suitable for analyzing near-surface pollution.15 The SO2 data dates back

to 2004.

The air quality data from monitoring stations released by China’s Ministry of Ecology and

Environment (referred to as MEE) are not ideal for this analysis for several reasons. First, air

quality data based on records from monitoring stations were only available at the prefecture-city

level and covered only 113 cities prior to 2013.16 The network of monitoring stations was greatly

expanded in 2013, but many counties still do not have a station. Second, the MEE changed

the computing formula for the air quality data in 2013 so that the data are incompatible across

time.17 Third, even though the concentration of PM10 is available before and after 2013, the

data quality is very likely to differ. This is because the MEE launched the real-time pollution

monitoring and disclosure programs in 2013, which significantly improve the data quality of air

pollution (Greenstone et al., 2022). In fact, researchers have found evidence that the air quality

14See Remer et al. (2013) for the details of how to construct AOD.
15Since the spatial resolution of remote-sensed SO2 data are a little coarse, we construct SO2 at the county by day

level using an inverse-distance weighting method. For each county, we draw a circle with a radius of 100 km from the
county’s center and calculate the weighted average daily SO2 using all grids within that circle. The weight we use is
the inverse of the distance between the center of the county and that of each grid.

16The prefecture-level city is a Chinese administrative unit between the county (our level of analysis) and the
province.

17The data were termed as the Air Pollution Index (API) before 2013 and the Air Quality Index (AQI) afterwards.
Besides PM10, SO2, and NO2, the AQI also incorporates PM2.5, CO, and O3, all of which are not included in the
calculation of API. The weight of the concentration of NO2 is also different between the API and AQI. See Ghanem
and Zhang (2014) and https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/W020120410332725219541.pdf
for more information.
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data before 2013 suffered from manipulation in many Chinese cities (Andrews, 2008; Chen et al.,

2012; Ghanem and Zhang, 2014; Stoerk, 2016; Greenstone et al., 2022).18 The geographic and

time series limitations as well as the credibility issue of station-level data on air quality reduce our

ability to identify the effects of coal mining on air quality. In contrast, as an object measure, AOD

does not suffer from the flaw of data manipulation due to gaming incentives of Chinese officials

(Chen et al., 2013b; Stoerk, 2016; Greenstone et al., 2022). The literature has also found a high

correlation between AOD and the ground-level monitoring data of particular matter in China (Guo

et al., 2009; Chen et al., 2012; Xin et al., 2016; Guo et al., 2017). Therefore, we rely on the AOD

data provided by NASA for the relevant empirical analysis.

Weather plays a role in influencing air pollution levels. Therefore, we collect weather data from

the China Meteorological Data Sharing Service System that provides the daily average tempera-

ture, relative humidity, wind speed, precipitation, and atmospheric pressure for approximately 700

weather stations in China. Since many counties do not have any weather station, we construct

daily county-level weather variables from station-level weather records using an inverse-distance

weighting method.19 Specifically, for each county, we draw a circle with a radius of 100 km from

its center and calculate the weighted average daily weather variables using all stations within the

circle. We use the inverse of the distance between the county’s center and each station as the

weight.

In certain model specifications, we also control for the one-year lagged annual industrial ac-

tivities: the total industrial output value and the output values of the electricity, coal, metallic

minerals and nonmetallic minerals sectors. These variables are collected from the Annual Survey

of Industrial Enterprises of China that is a large-scale enterprise survey conducted by the Chinese

National Bureau of Statistics. It covers all state-owned enterprises and other types of enterprises

with annual sales above the threshold of five million RMB. Leveraging the input-output table avail-

able from the Chinese National Bureau of Statistics, we also compute the value of coal consumption

for enterprises in major coal-consuming sectors which we define as the electricity, metallic minerals

and nonmetallic minerals sectors. We aggregate the enterprise-level industrial activity and coal

18For instance, Chen et al. (2012) show that there exists a significant discontinuity for the API (used before 2013)
data at the threshold for ”Blue Sky” days (API=100). Ghanem and Zhang (2014) report similar findings for the the
PM10 data. These evidences indicate the air quality data before 2013 suffered from manipulation in some Chinese
cities.

19There are 2844 county-level administrative districts in China.
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consumption variables at the county level.

We collect cause-specific daily mortality data for a subset of Chinese counties from the Disease

Surveillance Point System (referred to as DSPS) of the Chinese Center for Disease Control and

Prevention. The data span from 2004 to 2015. A series of studies have used these data to explore the

effects of air pollution on health in China (Chen et al., 2013a; He et al., 2016; Ebenstein et al., 2017;

Fan et al., 2020; He et al., 2020). Launched in the 1990s, the DSPS collects the most comprehensive

mortality information in China via reports from community or hospital doctors at representative

survey locations. Before 2013, the DSPS covered 161 distinct counties in China. From 2013, the

coverage increased to 605 counties. The sampled locations eventually encompassed approximately

a quarter of China’s total population. In the end, we are able to match 16 counties where severe

accidents occurred (with a total number of 18 accidents) with the DSPS data. Additionally, we

have 72 matched coal-producing counties with no accident in the sample period. We focus on the

deaths caused by cardio-respiratory illness (i.e., cardiovascular diseases and respiratory diseases)

that according to the public health literature are closely associated with air pollution.

Our sample comprises 315 severe coal mine accidents from 2003 to 2015. This corresponds

to 199 coal-producing counties, some of which experienced multiple accidents during the sample

period. Our sample also includes 379 coal-producing counties that experienced no accidents with

fatalities in the sample period, which we explore in certain empirical specifications as an additional

comparison group. By identifying the date of each accident from 2003 to 2015 and the locations of

the treated and comparison counties, we match the information on suspensions to our air pollution

and weather data at the county-day level. Figure 2 displays the number of severe accidents across

different years. The Chinese central government made mining safety a policy priority in the late

2000s so that the number of accidents has decreased since that time.

Table 2 has a summary of the data. The AOD and weather characteristics are at the county-

day level. Production values in coal-consuming sectors are at the county-year level. From 2003 to

2015, we have a balanced panel of 578 coal-producing counties comprising 2,744,344 county-day

level observations. AOD can be missing when cloud cover is thick or the level of air pollution is

extremely high, so there are fewer observations with valid AOD values than weather characteristics.

Column 5 of Panel A in Table 3 presents the mean differences in AOD and weather variables

between counties that experience severe accidents that lead to the suspension of coal mining and
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those that experience no accidents with a fatality. The t-statistics indicate that the AOD level

is higher in counties without an accident and that several weather variables such as the average

temperature, sunshine duration, relative humidity, wind speed, and the air pressure also differ

between the two subsamples. We therefore directly control for these weather characteristics when

estimating the effects of coal mine accidents on AOD. Column 5 of Panel B in Table 3 presents

the mean differences in production values in coal-consuming sectors between the two subsamples.

Counties experiencing severe accidents have higher production values in coal and electricity sectors

but lower production values in the metallic mineral sector and lower total industrial output.

5 Results

In this section, we discuss our empirical findings. We first describe the effect of suspending coal

mining after a severe accident on air quality. We demonstrate that our results are not contaminated

by potential threats to identification, particularly not by variations in the levels of coal combustion.

Next, we present the effect of an accident on all-age mortality. Finally, we calculate the health costs

of air pollution induced by coal mining in China.

5.1 The Effects of Coal Mining on Ambient Air Pollution

As discussed in Section 3.1, we identify the causal effect of coal mining on the ambient air quality

based on a difference-in-differences framework by comparing counties with a current severe accident

to other comparison counties.

Table 4 presents the estimation results of our baseline model (equation (1)). The dependent

variable is the AOD on a specific day. We restrict our event window to +/-90 days around each

accident date. Each row in the table gives the relative difference in AOD between the treated and

comparison groups in a given month (30 days) prior to or following an accident, with the first month

chosen as the reference group. Regressions in Panels A and B exploit the timing of accidents for

identification. We exploit the later treated counties as the control group in Panel A, whereas we

exploit the earlier treated counties as the control group in Panel B. More details of how we build

our sample is explained in Section 3.1. They serve as robustness checks for the internal validity of

our estimation results. In Panel C, we use all coal-producing counties that experienced no accidents

17



during the sample period as the comparison group. By doing so, we investigate the external validity

of the estimation results. In all specifications, we control for the linear and quadratic terms for

weather variables, Chinese holiday dummies, day-of-week dummies and for the fixed effects at the

county, province-by-year, and province-by-calendar month levels.

Overall, we find a lagged effect of suspending coal mining on the ambient air quality. Panel

A shows that compared with the comparison group, AOD in the treated group is 0.02-0.022 units

(though imprecisely estimated), 0.038-0.043 units, and 0.033-0.034 units lower in the first, second,

and third months after an accident, respectively. Panel B shows that the AOD in the treated

group is 0.024-0.025 units, 0.046-0.047 units, and 0.022-0.023 units (though imprecisely estimated)

lower in the first, second, and third months following an accident. In Panel C, we find significant

decreases in AOD in the treated group in the second month after an accident. This panel also

shows significant decreases in treated-group AOD in the first and third months after an accident,

with coefficients having similar magnitudes relative to those in Panels A and B. Within each panel,

our results are also robust across various model specifications in which we alternate between county

characteristics and county-specific trends. In sum, we find robust evidence that the suspension of

coal mining after accidents leads to a significant decrease in the level of AOD in the second month.20

The length of the lag before air pollution levels start to decline is likely a function of inventory

held by coal companies. As mentioned in Section 2, the suspension under the current analysis

only applies to underground mining, where the risk lies, but not to above-ground activities. If

coal companies stock a significant level of inventory, the wind erosion and oxidation of onsite coal

stockpiles or their handling will continue generating particulate matter after the suspension of

coal mining. With no mining activities, coal inventory and waste stored above ground are not

replenished. Over time, emissions from them dissipate.21

We probe the inventory explanation for our findings by comparing the end-of-year inventory

with monthly sales for coal companies in the treated counties during our sample period (2003 to

2015). Specifically, we calculate the ratio of inventory to monthly sales for the coal mining industry

20We also check whether the impact lasts beyond 3 months by extending our event window to 120 days before and
after each accident. The results are reported in Figure 3. We do not find statistically significant lagged impacts in
the fourth month following a coalmine accident.

21Jha and Muller (2018) find that coal storage in U.S. power plants significantly increases the concentration of
PM2.5 pollution nearby. The authors argue that the major source of air pollution is wind erosion and oxidation of
coal stock and handling of coal stock. We think a similar mechanism applies to coal storage at coalmines.
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in the treated counties by using the ASIEC data described in Section 4. Figure 4 displays the

distribution of this ratio and the kernel density estimates. The mean is 1.1, and the median is 0.7.

These values indicate that the air pollution associated with the coal inventory above ground at our

sampled mines may last for approximately one month after an accident, even though regulators have

suspended the underground coal mine. This is consistent with our findings of a lagged reduction

in the AOD level in the second month after an accident.

In addition to being statistically significant, the estimated improvement in air quality is eco-

nomically significant. Table 4 shows that suspensions decrease AOD by 0.032-0.06 units in their

second month.22 These figures amount to 5.88%-11.03% of the average AOD (0.544 units) in the

sample of counties that experience a severe accident.

5.2 Potential Threats to Identification

In this subsection, we discuss possible threats to identification such as different trends in air pol-

lution and the effects of suspensions on local coal users and spillovers to coal consumers in nearby

counties. We also conduct a placebo test to examine the effects of accidents on SO2 levels. SO2 is

not associated with coal mining or storage and therefore should not be influenced by suspensions

of mining.

The first potential threat to identification is the existence of any different trends in air pollution

between treated and comparison counties prior to accidents. Our baseline results in Table 4 already

provide some evidence that this is unlikely to be true. In all specifications across the three panels,

we find no significant differences in AOD in the first and second months before an accident between

the treated and comparison groups. This finding indicates that the parallel trend assumption holds.

To further check the robustness of this assumption, we implement an event-study analysis following

Jacobson et al. (1993) in which we expand the pre-treatment period to six months (180 days) prior

to an accident. Setting the month immediately before the accident date as the reference point, we

examine the relative change in the treated-group AOD in the second to the sixth months before an

accident date and in the first to third months after the accident date in one regression.

Table 5 and Figure 5 display the DID coefficients. Panels A to C refer to the results from using

22We use the point estimate in column (4) of Panel B. We add to (subtract from) it one standard error to calculate
the upper (lower) bound.
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comparison group A, B and C as in Table 4, respectively. Table 5 and Figure 5 further confirm

the parallel trend assumption since the change in AOD for the treated group is not significantly

different from that for the comparison group in the second to sixth months before the accident date.

As a comparison, we still find significant decreases in treated-group AOD in the second month after

the accident date regardless of the comparison group used.

The second identification concern is whether a suspension decreases coal stocks in local coal-

burning facilities and in turn reduces air pollution due to less intensive coal combustion. This

reduction would bias our estimation results downward. We perform several robustness checks to

demonstrate that our results are not driven by changes in the level of coal combustion. First,

we regress the first log difference of the production values of electric power and coal production

companies on a series of dummy variables that represent coal mine accidents in different years. Table

6 presents these results. D1 indicates a dummy for the occurrence of an accident in the current

year but not the previous year. D2 indicates the occurrence of an accident in the previous year

but not in the current year. D3 indicates the occurrence of accidents in the current and previous

years. The reference group is no accident for two consecutive years. Columns (1)-(3) give the effects

on production values of the electric power companies. Columns (4)-(6) show the effects on coal

companies. Columns (2) and (5) further control for a vector of time-varying firm characteristics

which comprises age, a dummy for state ownership, a dummy for export firms, employment, and

the capital-labor ratio. Columns (3) and (6) further control for a vector of time-varying county

variables which consists of the lagged production values of coal, nonmetallic minerals, metallic,

and electricity industries and lagged total industrial output values. Across all specifications, we

find that the occurrence of an accident in the current or previous year significantly decreases the

production values of coal companies but has no influence on companies in the electric power sector.

These results indicate that coal mine accidents are unlikely to lead to less coal burning by electric

power companies that then reduces PM2.5.

We also conduct a placebo test to examine the effects of accidents on SO2 levels. We replace

SO2 as the dependent variable and re-estimate the baseline model (equation (1)). We also define

the treated group based on the intensity of coal combustion and match the valid comparison group

to further investigate whether our results are contaminated by changes in the level of coal combus-
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tion.23 Table 7 presents these results. Column (1) uses the full sample. In Column (2), we restrict

the treated group to counties with electric power generation. In Column (3), we restrict the treated

group to counties with both electric power generation and steel production. In addition, we divide

all the treated counties into four subsamples based on the quartiles of consumption as a share of

coal production. Columns (4)-(7) present the estimated effects of an accident on SO2 for these four

subsamples. We find that compared with the comparison group, SO2 in the treated group is not

significantly different after an accident in most cases. This finding indicates that the suspension

generally does not lead to a drop in coal usage in corresponding counties. Our best guess is that

given the large production capacity of the coal mining industry, plants can find alternative sources

of coal relatively easily in China. The only exception is column (7), where we find SO2 in the

treated group is 0.046 and 0.058 units lower in the second and third months after an accident.

Therefore, as another robustness check, we drop the treated counties in the highest quartile of the

consumption to production ratio and reestimate the effect of an accident on AOD. Our main results

are almost unchanged.24

Third, suspensions may also reduce coal consumption and improve air quality in nearby counties.

This improvement in turn may cause a reduction in particulate matter in the counties experiencing

accidents due to spatial spillovers of air pollution. To probe whether this channel biases our results,

we implement another placebo test in which we examine the spillover effects of coal mine accidents

on the daily average SO2 of nearby counties that burn coal. Our sample consists of Chinese counties

with coal-consuming industries. The results are displayed in Table 8. The treated group comprises

counties located within a certain distance (50 km for Panel A, 100 km for Panel B, and 200 km for

Panel C) from the center of a county that experienced a severe accident. The comparison group

comprises counties located within the respective radius around the center of a county that did

not experience a severe accident within six months before the accident date but would experience

one two years later. In columns (1) - (3) of each panel, we further restrict the comparison group

23Reduction in coal combustion may be more likely to occur under geographically wider suspension. Based on
manually collected information on the geographical range of suspensions, we also examine this concern by dividing
our sample into accidents that lead to suspensions of different geographical ranges. We separately focus on treated
counties with accidents that result in a suspension for a single mine or that result in suspensions that apply to all or
some of the coal mines in the related county, city, or province. Estimating the baseline model with matched controls,
we fail to find a significant decrease in SO2 levels in any of the subsamples, even in treated counties that experienced
province-level suspensions. The results are available on request.

24This result is available on request.
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to counties that are 200-500 km, 500-700 km, and 700-1000 km away from the treated counties,

respectively. Table 8 shows that there are no significant spillover effects on SO2 from accidents.

This evidence suggests that suspending coal mining does not result in less coal combustion in nearby

counties.

5.3 The Effects of Coal Mining on All-age Mortality

In this section, we describe the estimated effects of coal mining on all-age mortality that are a

part of the economic costs imposed by air pollution. The empirical model we use in the health

regressions, shown in equation (3), differs from the one used in the air pollution analyses due to a

major difference in the sample size: we are only able to match 16 counties (versus 199 counties in

the air pollution regressions) that both have mortality information and that experienced a severe

accident.25 The dependent variable is the number of deaths caused by different diseases at the

county-day level. We use the Poisson model because it uses count data. More details of the model

can be found in subsection 3.2.

Columns (1)-(3) of Table 9 display the event-study estimates of the effect of suspensions on the

overall, respiratory (RES), and cardiovascular (CVD) mortality rates for the entire population of a

county. Column (2) shows that the RES mortality rate significantly decreases in the third month

following an accident (and a suspension) compared with the comparison group. Column (3) shows

that the CVD mortality rate also decreases in the third month after an accident, although the

coefficient is imprecisely estimated. In subsection 5.1, we find significant decreases in air pollution

in the second and third months after a coal mine accident which is consistent with the result that

an accident leads to a significant decrease in RES mortality three months later.

This is consistent with the epidemiological literature that finds that the cumulative effects of

air pollution on RES mortality are larger than the contemporaneous effects (Braga et al., 2001;

Costa et al., 2017). We check the parallel trend assumption for RES mortality. As shown in Figure

6, there is no discernible difference before an accident. We also examine the effect of suspending

25For this reason, we are not able to estimate the causal effect of air pollution on mortality by leveraging coal
mine accidents as an instrument for endogenous ambient air pollution. Instead, we check the effect of suspending
coal mining on air pollution based on the matched balanced counties and the same econometric model as the health
analyses. We find that for the same treated counties that we match with the mortality data, there is a significant
drop in the level of AOD in the second month following an accident. This is consistent with the reduction in air
pollution as an underlying channel for our mortality results.

22



coal mining on non-cardiovascular and non-respiratory (non-CVR) mortality as a placebo test. The

results in Column (4) show that the estimated coefficients for the effect on non-CVR morality are

not statistically different from zero.

The literature has shown gender may play a role in the effect of air pollution on health, but

the findings are not consistent (Clougherty, 2010). We examine the heterogeneous effects of coal

mining on all-age mortality rates across genders. The results are displayed in Table 10. In the

male subsample, the only significant result is the decrease in the RES mortality rate in the third

month after a coalmine accident. For the female subsample, both the RES and CVD mortality

rates decrease significantly in the third month following an accident. The estimated effects on RES

and CVD mortality rates in the third month for the females have larger magnitudes than those for

the males.

These results are consistent with findings in the epidemiology literature that females are more

vulnerable to damages from air pollution than males (Chen et al., 2005; Kan et al., 2008). For

instance, Chen et al. (2005) find a significant long-term association between the exposure to ambient

particular matters and the risk of fatal coronary heart disease for females but not for males. Kan et

al. (2008) show that PM10 has a larger impact on daily mortality among females than males. The

physiological literature finds greater lung deposition fractions of air pollution particles for females

(Kim and Hu, 1998; Jaques and Kim, 2000). The deposition of particular matters in the lung could

elicit inflammatory responses (Tamagawa et al., 2008). In addition, Sørensen et al. (2003) find

positive associations between PM2.5 exposure and the level of the red blood cell (RBC) only for

females, the increase of which could raise the risk for cardiovascular diseases (Lowe et al., 1997).

Differences in socioeconomic characteristics such as education levels may contribute to the gender

difference in our mortality results as well. Nevertheless, it is an open question beyond the current

study.

Examining the mortality of the entire population may hide the effect of changes in air quality

associated with coal mining. The literature consistently finds that the elderly are more susceptible

to air pollution than healthy adults (Ostro et al., 2006; Tanaka, 2015; Anderson, 2020). We examine

the effects of coal mine accidents on the mortality rates of the elderly (aged over 60-years-old).26

26Another vulnerable group typically investigated by the literature is infants. However, our sample size for the
health analyses is small and infant mortality is very rare at the daily level. These factors combine to give us a small
number of cases for the less frequent outcome when we focus on infants. The statistics literature has long noted that
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Table 11 presents the results. The elderly experience a significant drop in RES-related deaths in

the third month after an accident.

As we have discussed in subsection 3.2, our results here indicate not only the pollution effect

but also the socioeconomic effect. Since our estimate presents a lower bound of the former effect,

suspensions may negatively affect population health through socioeconomic factors such as income

or employment that is opposite to the effect caused by a lower level of air pollution on health. Our

health results present a lower bound of the pollution effect.

5.4 Estimation of the Health Benefits from Coalmine Suspensions

In this subsection, we calculate the health benefits of improved air quality from the suspensions of

coal mining by using the estimated effects of coal mine accidents on all-age RES mortality rates

obtained in Table 9.27 We calculate the health benefits in 2015 that is the most recent year for

which we have the DSP data. The calculation procedures are as follows: first, we calculate the

sample average of all-age RES mortality rate for each county in 2015 after excluding the three-

month window following an accident. We denote the average daily all-age RES mortality rate in

county i as MortExclAcci and its population as Popi.
28 We then calculate the population-weighted

average daily all-age RES mortality rate across all counties:

AvgMort =

∑
iMortExclAcci × Popi∑

i Popi
(4)

Second, we compute the annual health benefits from improved air quality due to suspensions of

coal mining by using the following formula:

Overall Health Benefit = AvgMort× (1− Irr)× Pop× 365× V SL (5)

Irr refers to the estimated incident rate ratio of the all-age RES mortality rate after an accident to

the rate before an accident obtained from Table 9 (87.1%). Pop refers to the sample population.

this is a recipe for overestimating the magnitude of an effect, which they term as a “type-M” error. Therefore, we
chose not to conduct analyses on infants.

27The underlying assumption is that the estimated reduction in mortality based on the subset of counties in the
health analyses can be applied to other coalmining counties.

28We use the 2010 census data for the county-level population that is the most recent census available.
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V SL refers to the value of statistical life. Using the 2005 Census data of China, Qin et al. (2013)

estimate that the V SL was 1.81 million RMB in 2005. Based on this study, Fan et al. (2020) finds

that the average V SL of in China was around 7.46 million RMB (1.15 million USD) in 2015, which

we use for our calculation.

Table 12 presents the estimated health benefits for three different samples. Sample 1 comprises

all coal-producing counties in China, sample 2 comprises coal-producing counties that had a severe

accident, and sample 3 comprises coal-producing counties that have mortality data from the DSP

system.

The upper panel of Table 12 shows that suspending coal mining results in a health benefit

that spans 109 to 129 million USD per million people and is consistent across different samples.

This consistency indicates that extrapolating our estimated effect of coal mine accidents on all-age

mortality to all coal-producing counties may not result in large biases in total health benefits.

Suspensions of coal mining led to a total health benefit worth 51 billion USD across all coal-

producing counties in 2015. This number is similar in magnitude to the short-term health benefits

from replacing coal with natural gas for winter heating (72 billion USD in Fan et al. (2020)) but

smaller than the long-term health costs from winter heating in China (266 billion USD in Ebenstein

et al. (2017)). We note that the sample size used in the mortality analysis is quite a bit smaller than

the air pollution analysis, so the estimates are less precise. Still, given the consistent result that

particulate matter is associated with mortality, it is not surprising to find reductions in mortality

associated with suspending coal mining.

6 Conclusion

The environmental and health consequences of burning coal are well known and widely studied. To

date the air quality effects of coal mining have not received the same attention. We fill this gap by

estimating the causal effects of coal mining on ambient air pollution and all-age mortality based

on a sample of underground coal mines in China. Our identification strategy leverages the timing

of severe accidents that trigger suspensions of mining due to the safety regulations of the Chinese

central government. We use a stacked difference-in-differences framework to compare the ambient

air pollution and all-age mortality in counties experiencing a coal mine accident with counties that
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experience an accident before or after a current accident.

Our results demonstrate a consistent decrease in ambient air pollution in the second month

after a suspension. Numerous robustness checks bolster our conclusion that the decrease in air

pollution is attributed to a decrease in coal-producing but not coal-burning activities nearby. Our

Poisson regression model shows that all-age respiratory mortality decreases in the third month

following a coal mine accident. We also find that the females benefit more from the reduction in

the air pollution associated with coal mining. Focusing on vulnerable age groups, our results show

that mining suspensions are associated with a decrease in respiratory mortality among the elderly.

Based on our calculation, coal mining in China generates an annual cost of around 51 billion USD

due to premature death.

By showing that there are pollution costs and mortality effects from coal mining, our results

quantify a new negative externality associated with coal use. Future calculations of environmen-

tal costs of coal use should include these damages. The air pollution benefits of suspensions of

underground coal mining are likely from reduced pollution from wind erosion and the handling of

coal inventory and the mining waste, gangue. This inventory is stored outside the mine on the

ground. Enhanced regulation on the storage and management of coal stockpiles and gangue could

help reduce the pollution of particulate matter and decrease the health costs from coal mining for

local communities.

Given that in the foreseeable future coal will continue to be an important source of energy

worldwide, our study has important policy implications for both China and other major coal-

producing countries. First, our results indicate that analysis of the social cost of coal should be

expanded to include the evaluation of the pollution damages from coal mining. The extant analysis

of these damages likely understates the magnitude of the problem. Regulations that manage the

handling of coal and the storage of gangue to minimize emissions are worth exploring. Second,

pollution from coal mining has important equity implications. In China, coal mines are mainly

located in the less developed central and western provinces. Worldwide coal is generally mined in

locations with lower per-capita incomes as well. Since coal is generally produced in less economically

developed regions, the negative external costs of coal mining are primarily imposed on economically

disadvantaged groups. Additionally, our result that women experience larger health effects from air

pollution caused by coal mining indicates gender inequality in human health capital, which deserves
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attention from policymakers.
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Braga, Alfésio Lúıs Ferreira, Antonella Zanobetti, and Joel Schwartz, “The lag structure

between particulate air pollution and respiratory and cardiovascular deaths in 10 US cities,”

Journal of Occupational and Environmental Medicine, 2001, 43 (11), 927–933.

Cesur, Resul, Erdal Tekin, and Aydogan Ulker, “Air Pollution and Infant Mortality: Evi-

dence from the Expansion of Natural Gas Infrastructure,” Economic Journal, March 2017, 127

(600), 330–362.

Chen, Lie Hong, Synnove F Knutsen, David Shavlik, W Lawrence Beeson, Floyd

Petersen, Mark Ghamsary, and David Abbey, “The association between fatal coronary

28



heart disease and ambient particulate air pollution: are females at greater risk?,” Environmental

Health Perspectives, 2005, 113 (12), 1723–1729.

Chen, Shuo, Yiran Li, and Qin Yao, “The health costs of the industrial leap forward in China:

Evidence from the sulfur dioxide emissions of coal-fired power stations,” China Economic Review,

2018, 49, 68–83.

Chen, Yuyu, Avraham Ebenstein, Michael Greenstone, and Hongbin Li, “Evidence on

the impact of sustained exposure to air pollution on life expectancy from China’s Huai River

policy,” Proceedings of the National Academy of Sciences, 2013, 110 (32), 12936–12941.

, Ginger Z Jin, Naresh Kumar, and Guang Shi, “Gaming in air pollution data? Evidence

from China,” BEJ Econ. Anal. Policy.(advanced tier), 2012, 12 (3), 1935–1682.

, Ginger Zhe Jin, Naresh Kumar, and Guang Shi, “The promise of Beijing: Evaluating

the impact of the 2008 Olympic Games on air quality,” Journal of Environmental Economics

and Management, 2013, 66 (3), 424–443.

Clay, Karen, Joshua Lewis, and Edson Severnini, “Canary in a Coal Mine: Infant Mortal-

ity, Property Values, and Tradeoffs Associated with Mid-20th Century Air Pollution,” NBER

Working Papers 22155, National Bureau of Economic Research, Inc April 2016.

Clougherty, Jane E, “A growing role for gender analysis in air pollution epidemiology,” Envi-

ronmental Health Perspectives, 2010, 118 (2), 167–176.

Costa, Amine Farias, Gerard Hoek, Bert Brunekreef, and Antônio CM Ponce de Leon,
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Tables

Table 1: Factors that Predict the Timing of Coalmine Accidents
Panel A: Two years Afterward Panel B: Two Years Beforehand

(1) (2) (1) (2)
Temperature -8.976* -8.662 0.008 -0.489

(5.330) (5.305) (4.079) (4.011)
Sunshine Duration -1.612 -1.345 2.985 3.237

(3.729) (3.755) (3.205) (3.186)
Relative Humidity 0.066 -0.450 1.086 0.908

(2.655) (2.670) (2.425) (2.420)
Wind Speed -9.851 -8.773 2.408 4.009

(18.568) (18.451) (16.110) (16.315)
Precipitation -0.342 -0.479 -0.246 -0.305

(0.942) (0.944) (0.702) (0.698)
Air Pressure 3.556 3.700 -0.147 -0.011

(4.235) (4.205) (3.759) (3.733)
Temperature Sq -0.103 -0.103 0.052 0.052

(0.116) (0.115) (0.107) (0.106)
Sunshine Duration Sq 0.125 0.119 -0.192 -0.216

(0.302) (0.298) (0.277) (0.275)
Relative Humidity Sq -0.013 -0.008 -0.001 0.000

(0.022) (0.022) (0.019) (0.019)
Wind Speed Sq 0.331 0.329 -0.354 -0.596

(2.513) (2.511) (2.732) (2.752)
Precipitation Sq -0.005 -0.002 0.003 0.004

(0.011) (0.011) (0.008) (0.008)
Air Pressure Sq -0.000 -0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)
Coal 59.227 -0.706

(39.986) (12.217)
Non-metallic 63.936 20.380

(43.000) (12.711)
Metallic -22.998 3.462

(15.866) (11.857)
Electricity -46.678* -16.766

(27.157) (11.163)
Industrial -22.125 -9.694

(171.246) (92.584)
Holiday -5.997 -6.044 7.615 7.839

(7.040) (6.992) (5.061) (5.037)
Monday -0.133 -0.135 -0.310 -0.314

(0.941) (0.932) (0.740) (0.740)
Tuesday -0.943 -0.879 -0.407 -0.432

(0.847) (0.845) (0.714) (0.716)
Wednesday -0.969 -0.944 -0.581 -0.649

(0.985) (0.974) (0.881) (0.881)
Thursday 0.096 0.118 -0.191 -0.233

(0.944) (0.930) (0.760) (0.761)
Friday 1.279 1.313 -1.338* -1.362*

(1.048) (1.035) (0.766) (0.761)
Saturday -1.199 -1.139 -0.266 -0.326

(0.871) (0.855) (0.749) (0.744)
# of Counties 214 214 219 219
Observations 641127 641127 663951 663951
R squared 0.481 0.486 0.504 0.505

Note: This table reports regression results of equation (2), where we test whether key observable
characteristics predict the timing of a coal mine accident with ten or more fatalities among
counties that experienced an accident during our sample. We use “later treated counties”, that
experience a 10+ fatality accident two or more years after our treated county as the comparison
in panel A. “Earlier treated counties”, that experience a 10+ fatality accident two or more years
before our treated county are the comparison group in panel B. Key control variables include
linear and quadratic climatic variables, annual county-level industrial activities (one-year lagged
total value of different sectors and total industrial output), Chinese holiday FE and day-of-week
FEs. We also control for the county, province by year, province by calendar month FEs. To
make the coefficients easier to read we divide all explanatory variables in this table by 10,000.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors are reported in the parenthesis.
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Table 2: Summary Statistics
Variable Mean Std. Dev. Min. Max. N Unit of Obs

Panel A: Counties with coalmine accidents (over 10 deaths)
Air quality and climatic variables

AOD 0.544 0.491 -0.05 4.997 320075 County × Day
SO2 (Dobson Units) 0.243 0.727 -4.881 21.121 660951 County × Day
Temperature (◦C) 12.495 11.365 -32.2 36.307 944852 County × Day

Sunshine Duration (Hours) 5.418 3.999 0 14.7 944852 County × Day
Relative Humidity (%) 66.282 17.883 7.107 100 944852 County × Day

Wind Speed (m/s) 2.043 1.082 0 15.24 944852 County × Day
Precipitation (mm) 2.189 6.634 0 341.567 944852 County × Day
Air Pressure (hPa) 940.205 58.131 699.205 1042.165 944852 County × Day

Production values in coal-consuming sectors
Coal (Billion RMB) 3.603 7.639 0 86.857 2566 County × Year

Electricity Production (Billion RMB) 0.594 2.094 0 62.991 2566 County × Year
Metallic (Billion RMB) 2.12 9.255 0 277.852 2566 County × Year

Non-metallic (Billion RMB) 1.203 4.577 0 119.77 2566 County × Year
Total Industrial (Billion RMB) 13.946 22.493 0.005 296.355 2566 County × Year

Panel B: Counties without any coalmine accidents with fatalities
Air quality and climatic variables

AOD 0.606 0.559 -0.05 5 664068 County × Day
SO2 (Dobson Units) 0.244 0.772 -9.505 21.121 1290026 County × Day
Temperature (◦C) 12.809 11.385 -41.5 35.644 1799492 County × Day

Sunshine Duration (Hours) 5.89 3.935 0 15.9 1799492 County × Day
Relative Humidity (%) 65 18.157 4 100 1799492 County × Day

Wind Speed (m/s) 2.107 1.056 0 14.9 1799492 County × Day
Precipitation (mm) 2.173 7.168 0 416.208 1799492 County × Day
Air Pressure (hPa) 944.529 71.341 638.800 1046.01 1799492 County × Day

Production values in coal-consuming sectors
Coal (Billion RMB) 1.057 6.482 0 145.983 4814 County × Year

Electricity Production (Billion RMB) 0.38 1.232 0 18.855 4814 County × Year
Metallic (Billion RMB) 2.763 10.782 0 301.675 4814 County × Year

Non-metallic (Billion RMB) 1.344 4.419 0 91.558 4814 County × Year
Total Industrial (Billion RMB) 21.761 62.365 0 1785.473 4814 County × Year

Note: This table summarizes our county-by-day data set. We have a balanced panel of 578 coal-producing counties observed between
2003-2015 for a total sample size of 2,744,344. Among the sample counties, 379 ones experienced no coalmine accidents with fatalities;
199 counties experienced coalmine accidents with 10 or more deaths (resulting in coalmine suspension by mandates). The data for air
quality and climatic variables is at the county-day level. Production data for coal-consuming sectors is at the county-year level. Some
counties do not have production data in some years in the Annual Survey of Industrial Enterprises of China (ASIEC).
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Table 3: Summary Statistics

Variable Unit No Incidence Incidence No Incidence - Incidence
Panel A: Air quality and climatic variables

AOD - 0.606 0.544 0.061***
(0.559) (0.491) (0.001)

SO2 Dobson Units 0.244 0.243 0.001
(0.772) (0.727) (0.001)

Temperature ◦C 12.81 12.50 0.313***
(11.39) (11.37) (0.014)

Sunshine Duration Hours 5.890 5.418 0.472***
(3.935) (3.999) (0.005)

Relative Humidity % 65.00 66.28 -1.282***
(18.16) (17.88) (0.023)

Wind Speed m/s 2.107 2.043 0.065***
(1.056) (1.082) (0.001)

Precipitation mm 2.173 2.189 -0.015
(7.168) (6.634) (0.009)

Air Pressure hPa 944.5 940.2 4.324***
(71.34) (58.13) (0.085)

Panel B: Production values in coal-consuming sectors
Coal Billion RMB 1.057 3.603 -2.546***

(6.482) (7.639) (0.169)
Electricity Billion RMB 0.380 0.594 -0.214***

(1.232) (2.094) (0.039)
Metallic Billion RMB 2.763 2.120 0.643*

(10.78) (9.255) (0.251)
Non-metallic Billion RMB 1.344 1.203 0.141

(4.419) (4.577) (0.109)
Total Industrial Billion RMB 21.76 13.95 7.815***

(62.36) (22.49) (1.273)

Note: This table summarizes our county-by-day data set. We have a balanced panel of 578 coal-producing counties
observed between 2003-2015 for a total sample size of 2,744,344. Among the sample counties, 379 experienced no
coalmine accidents with fatalities; 199 counties experienced coalmine accidents with 10 or more deaths resulting in
coalmine suspension by mandates. The air quality and climatic data is at the daily level. Production data for coal-
consuming sectors is measured annually. Column 4 reports the mean differences between the two groups, and the
standard errors from the t-test that the means are equal in the comparison and treatment groups. Stars indicate the
significance levels from the t-tests. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 5: Examining Pre-trends in AOD
Panel A: Two Years Afterward Panel B: Two Years Beforehand Panel C: No Accidents

(1) (2) (1) (2) (1) (2)
Treated × (-180, -150] -0.005 -0.005 -0.002 -0.002 -0.002 -0.002

(0.013) (0.013) (0.015) (0.015) (0.013) (0.013)
Treated × (-150, -120] -0.004 -0.004 -0.009 -0.009 -0.006 -0.006

(0.014) (0.014) (0.015) (0.015) (0.014) (0.014)
Treated × (-120, -90] 0.007 0.007 0.000 0.000 0.001 0.001

(0.014) (0.014) (0.016) (0.016) (0.014) (0.014)
Treated × (-90, -60] 0.013 0.013 0.011 0.011 0.011 0.011

(0.013) (0.013) (0.014) (0.014) (0.012) (0.012)
Treated × (-60, -30] 0.003 0.003 0.003 0.003 0.004 0.004

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)
Treated × (0, 30] -0.007 -0.007 -0.007 -0.007 -0.007 -0.007

(0.012) (0.012) (0.014) (0.014) (0.012) (0.012)
Treated × (30, 60] -0.024** -0.024** -0.029** -0.029** -0.027** -0.027**

(0.012) (0.012) (0.015) (0.015) (0.012) (0.012)
Treated × (60, 90] -0.017 -0.017 -0.003 -0.003 -0.015 -0.015

(0.013) (0.013) (0.014) (0.014) (0.014) (0.014)
Weather variables Yes Yes Yes Yes Yes Yes
Holiday FE Yes Yes Yes Yes Yes Yes
Day-of-week FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes
Province×year FE Yes Yes Yes Yes Yes Yes
Province×month FE Yes Yes Yes Yes Yes Yes
County characteristics No Yes No Yes No Yes
# of counties 214 214 219 219 542 542
Observations 586,484 586,484 654,379 654,379 3,625,318 3,625,318
R-squared 0.405 0.405 0.397 0.397 0.402 0.402

Note: This table reports regression results for the effects of coal mining suspensions on the level of AOD based on an
event-study analysis following the methods of Jacobson et al. (1993). Our method of constructing the sample in panels
A, B and C are the same as in Table 4. The month before the accident is the reference category and omitted from the
regressions. All specifications include daily climatic variables and their quadratic terms, Chinese holiday FE, day-of-
week FE, county FE, province-by-year FE, and province-by-calendar-month FE. The specifications alternate the inclusion
of county characteristics (i.e., the log of 1 plus one-year lagged coal/nonmetallic minerals/steel/electricity/industrial
production values at the county level) as controls. The coefficients for the indicators for the τth month relative to the
accident date, Mτ

ict, are not reported to conserve space. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Event Study: Production Values of the Electricity and Coal-mining Firms

Electric Power Coal
(1) (2) (3) (4) (5) (6)

D1 -0.077 -0.074 -0.073 -0.144*** -0.145*** -0.127***
(0.062) (0.062) (0.061) (0.042) (0.042) (0.040)

D2 -0.005 -0.002 -0.002 -0.089** -0.089** -0.097**
(0.056) (0.056) (0.055) (0.040) (0.039) (0.038)

D3 0.006 0.016 -0.005 0.187 0.187 0.154
(0.190) (0.185) (0.187) (0.158) (0.158) (0.149)

Firm characteristics No Yes Yes No Yes Yes
County characteristics No No Yes No No Yes
Firm FE Yes Yes Yes Yes Yes Yes
Province×year FE Yes Yes Yes Yes Yes Yes
# of firms 1,622 1,622 1,622 8,865 8,865 8,865
Observations 8,769 8,769 8,769 39,322 39,322 39,322
R-squared 0.000 0.003 0.018 0.003 0.003 0.017

Note: This table reports results of a regression of log-first-differences of firm-level annual production values
of electric power and coal firms against a set of dummy variables indicating the occurrence of coalmine
accidents. The production data comes from the Annual Surveys of Industrial Enterprises in China (ASIEC).
D1 is a dummy for the occurrence of a coalmine accident in the current year but not the prior year in the
respective county; D2 represents a dummy for the occurrence of a coalmine accident in the prior year but
not the current year in the respective county; D3 represents a dummy for the occurrence of a coalmine
accident in two consecutive years. The scenario of no accidents in two consecutive years is the reference and
omitted from the regression. Specifications alternate in terms of whether firm characteristics (age, dummy
for state ownership, dummy for exporters, employment, capital-labor ratio) and county characteristics (the
lagged production values of coal/nonmetallic minerals/metallic/electricity industries and the lagged total
industrial output values) are included. Firm fixed effects and province-by-year fixed effects are included in
all specifications. The standard errors are clustered at the county level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Placebo Tests using SO2: Local Coal Consumption

(1) (2) (3) (4) (5) (6) (7)
Consumption-Production Ratio (Coal)

Full Power Power+Steel <25% [25%, 50%) [50%, 75%) >75%
Treated 0.005 -0.005 0.010 0.052 -0.034 -0.074∗ 0.041

(0.017) (0.030) (0.037) (0.063) (0.065) (0.040) (0.048)
Treated × (0, 30] -0.002 0.025 0.016 0.026 -0.040 -0.037 -0.002

(0.014) (0.022) (0.027) (0.025) (0.033) (0.024) (0.033)
Treated × (30, 60] -0.007 0.030 -0.015 0.020 0.006 -0.042 -0.046∗

(0.015) (0.022) (0.028) (0.029) (0.038) (0.028) (0.026)
Treated × (60, 90] -0.006 0.011 -0.048 -0.004 -0.007 0.008 -0.058∗∗

(0.017) (0.026) (0.036) (0.040) (0.034) (0.039) (0.027)
# of counties 180 93 72 132 124 123 138
Observations 508663 221479 155218 113772 112624 101943 180324
R squared 0.019 0.022 0.022 0.022 0.022 0.019 0.021

Note: The dependent variable is daily mean SO2 in a Chinese county. Treated is a dummy variable for the county where a
severe accident occurred. Our way of creating the comparison group is the same as that in Panel A of Table 4. We include
as controls daily climatic variables (average temperature, sunshine duration, average relative humidity, average wind speed,
precipitation, and average air pressure) and their quadratic terms, Chinese holiday dummies, day-of-week dummies, county
characteristics (i.e., the log of 1 plus coal/nonmetallic minerals/steel/electricity/industrial production values at the county
level) and county-specific trends. We also control for the county, province-by-year, province-by-calendar-month fixed effects.
The first column represent the full sample result. Columns (2)-(7) alternate in the way that we restrict the treated counties
based on the intensity of local coal consumption. In column (2), we restrict the treated counties to the ones with electric
power generation. In column (3), we select among treated counties the ones with both electric power generation and steel
production. We also rank the treated counties based on coal consumption as a share of coal production, and then separate
them into quartiles. Columns (3)-(7) present the results based on subsamples of the 1st to 4th quartiles. The coefficients
for the indicators of the τth month relative to the accident date, Mτ

ict, are not reported to conserve space. Standard errors
clustered at the accident level are shown in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 8: Placebo Tests using SO2: Spillover Effects
Panel A: Radius of 50 km Panel B: Radius of 100 km Panel C: Radius of 200 km

(1) (2) (3) (1) (2) (3) (1) (2) (3)
Treated 0.007 0.013 0.008 0.003 0.008 0.000 0.005 0.007 -0.002

(0.010) (0.009) (0.012) (0.007) (0.007) (0.009) (0.005) (0.005) (0.008)
Treated × (0, 30] -0.006 -0.021 -0.007 -0.01 -0.018 -0.009 -0.007 -0.013 -0.007

(0.014) (0.017) (0.016) (0.010) (0.012) (0.013) (0.008) (0.010) (0.011)
Treated × (30, 60] -0.005 -0.001 0.013 0.008 0.006 0.019 0.007 0.006 0.019

(0.015) (0.018) (0.016) (0.011) (0.014) (0.013) (0.008) (0.011) (0.011)
Treated × (60, 90] 0.022 0.021 0.012 0.011 0.004 -0.002 0.008 0.002 -0.002

(0.017) (0.023) (0.022) (0.012) (0.018) (0.018) (0.009) (0.014) (0.015)
# of counties 484 481 481 1101 1103 1103 1902 1903 1902
Observations 2426249 1328088 2471148 5984769 3895379 6403553 10941403 8777569 12376875
R squared 0.022 0.015 0.016 0.019 0.014 0.015 0.019 0.015 0.014

Note: The dependent variable is daily average SO2 concentration in a Chinese county with coal-consuming industries. For a
severe coalmine accident j occurring at date tj , we select as the treated group the counties that are located within a particular
radius (50 km for panel A, 100 km for panel B, and 200 km for panel C) around the center of the county that experienced
accident j; we select the comparison group from counties located within the respective radius around the center of counties
that would have a severe accident two years after tj . In columns (1) - (3) of each panel, we further restrict the comparison
counties to those that are 200-500 km, 500-700 km and 700-1000 km away from the treated counties, respectively. Treated is
a dummy variable for the treated group. Besides the treated dummy and the relative-time-window dummy variables, we also
include the interactions of the two, daily weather variables (average temperature, sunshine duration, average relative humidity,
average wind speed, precipitation, and average air pressure) and their quadratic terms, Chinese holiday dummies, day-of-week
dummies, county characteristics (i.e., the log of 1 plus coal/nonmetallic minerals/steel/electricity/industrial production values
at the county level) and province-specific trends. We also control for the county, the province-by-year, and the province-by-
calendar-month fixed effects. The coefficients of the indicators for the τth month relative to the accident date, Mτ

ict, are not
reported to conserve space. Standard errors clustered at the accident level are shown in parentheses. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 9: The Effects of Coalmine Suspension on Disease-Specific All-age Mortality

All-cause RES CVD Non-CVR
(1) (2) (3) (4)

Day (0, 30] 0.008 -0.062 0.017 0.030
(0.038) (0.070) (0.044) (0.036)

Day (30, 60] -0.038 -0.010 -0.077 -0.009
(0.079) (0.104) (0.103) (0.071)

Day (60, 90] -0.093 -0.138∗∗ -0.156 -0.016
(0.078) (0.061) (0.108) (0.069)

# of Counties 605 605 605 605
Observations 1150942 1150942 1150942 1150942

Note: This table reports the estimated effects of coal mining sus-
pension on disease-specific mortality in an event study analysis.
The dependent variable is mortality in a Chinese coal-producing
county on a specific day. Each column reports a Poisson model
for a specific type of mortality: all-cause (excluding injury), res-
piratory (RES) diseases, cardiovascular (CVD) diseases, and non-
cardiovascular and non-respiratory (Non-CVR) deaths (excluding in-
jury). Other control variables include daily climatic variables (av-
erage temperature, sunshine duration, average relative humidity,
average wind speed, precipitation, average air pressure) and their
quadratic terms, Chinese holiday dummies, day-of-week dummies,
county characteristics (i.e., the log of 1 plus coal/nonmetallic miner-
als/steel/electricity/industrial production values at the county level).
We also control for the county FEs, year FEs and calendar month
FEs. Standard errors clustered at the accident level are shown in
parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 10: The Effects of Coalmine Suspension on Disease-Specific All-age Mortality: by Gender
Male Female

All-cause RES CVD Non-CVR All-cause RES CVD Non-CVR
(1) (2) (3) (4) (5) (6) (7) (8)

Day (0, 30] 0.042 0.006 0.057 0.044 -0.043 -0.162 -0.035 0.005
(0.044) (0.085) (0.058) (0.041) (0.037) (0.103) (0.041) (0.075)

Day (30, 60] -0.020 0.047 -0.056 -0.010 -0.066 -0.095 -0.104 -0.006
(0.078) (0.127) (0.104) (0.068) (0.089) (0.112) (0.107) (0.087)

Day (60, 90] -0.064 -0.113∗ -0.110 -0.006 -0.139 -0.176∗∗ -0.215∗ -0.033
(0.072) (0.062) (0.107) (0.062) (0.090) (0.071) (0.117) (0.093)

# of Counties 605 605 605 605 605 605 605 605
Observations 1150942 1150942 1150942 1150942 1150942 1150942 1150942 1150942

Note: This table reports the estimated effects of coal mining suspension on disease-specific mortality by gender
using an event study analysis. The dependent variable is mortality in a Chinese coal-producing county on
a specific day. Each column reports results from a Poisson model for a specific type of mortality: all-cause
(excluding injury), respiratory (RES) diseases, cardiovascular (CVD) diseases, and non-cardiovascular and non-
respiratory (Non-CVR) deaths (excluding injury) for a single gender. Other control variables include daily
weather variables (average temperature, sunshine duration, average relative humidity, average wind speed,
precipitation, average air pressure) and their quadratic terms, Chinese holiday dummies, day-of-week dummies,
county characteristics (i.e., the log of 1 plus coal/nonmetallic minerals/steel/electricity/industrial production
values at the county level). We also control for the county FEs, year FEs and calendar month FEs. Standard
errors clustered at the accident level are shown in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 11: The Effects of Coalmine Suspension on Disease-Specific Mortality: the elderly
All-cause RES CVD Non-CVR

(1) (2) (3) (4)

Day (0, 30] 0.001 -0.085 0.016 0.032
(0.037) (0.072) (0.041) (0.035)

Day (30, 60] -0.034 -0.033 -0.080 0.028
(0.078) (0.113) (0.097) (0.075)

Day (60, 90] -0.103 -0.128** -0.161 -0.015
(0.073) (0.063) (0.101) (0.067)

# of Counties 605 605 605 605
Observations 1150942 1150942 1150942 1150942

Note: This table reports the estimated effect of coal mining sus-
pension on disease-specific mortality for the elderly (age>60) us-
ing an event study analysis. The dependent variable is mortality
at a Chinese coal-producing county on a specific day. The de-
pendent variable is mortality in a Chinese coal-producing county
on a specific day. Each column reports results from a Poisson
model for a specific type of mortality: all-cause (excluding in-
jury), respiratory (RES) diseases, cardiovascular (CVD) diseases,
and non-cardiovascular and non-respiratory (Non-CVR) deaths
(excluding injury). Other control variables include daily weather
variables (average temperature, sunshine duration, average rel-
ative humidity, average wind speed, precipitation, average air
pressure) and their quadratic terms, Chinese holiday dummies,
day-of-week dummies, and county characteristics (i.e., the log of
1 plus coal/nonmetallic minerals/steel/electricity/industrial pro-
duction values at the county level). All specifications include
county FEs, year FEs and calendar month FEs. Standard er-
rors clustered at the accident level are shown in parentheses. ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 12: Imputed health benefits for coal mining counties from improved air quality (unit: billion
USD)

Health benefit per million people
Sample 1: all coal mining counties 0.110
Sample 2: counties with coalmine accidents with 10+ deaths 0.129
Sample 3: coal mining counties with DSP data 0.110
Total health benefit
Sample 1: all coal mining counties 51.234
Sample 2: counties with coalmine accidents with 10+ deaths 10.914
Sample 3: coal mining counties with DSP data 11.720

Note: This table presents the estimated health benefits from coalmine produc-
tion suspension for three samples of counties. Sample 1 includes all coal mining
counties in China. Sample 2 includes coal producing counties with coalmine
accidents with ten deaths or more. Sample 3 includes coal mining counties
covered by the Disease Surveillance Point (DSP) system.
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Figures

Figure 1: Data Construction for the Environmental Effect Analysis
Note: Our estimating sample for the empirical analysis shown in equation (1) consists of panels of all accidents (+/-
90 days around an accident for the treated and controls) pooled together. This figure shows how we construct our
sample for a particular accident, accident i, occurring at county a. The first row shows the event window for accident
i. County a is the treated county. The second row illustrates an example of “later treated” counties, county b, which
experiences an accident two years after the date of accident i. The third row shows an example of “earlier treated”
counties, county c, which experiences an accident two years before the date of accident i. Given that a county may
experience a severe accident multiple times during our sample period, if a “later treated” (“earlier treated”) control
county also experiences an accident shortly before (after) the date of accident i, it will not be used as a control. Row
4 and 5 shows how we exclude those inappropriate controls from our estimation sample.
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Figure 2: Distribution of Coalmine Accidents across Years (2003-2015) in China
Note: This figure reports the frequency of accidents with 10 or more deaths that result in coal mining activity
suspensions by year.

(a) Comparison Group A (b) Comparison Group B (c) Comparison Group C

Figure 3: Robustness Checks on the Event Window: Day -120 to Day 120
Note: The figures here plot the effect of coal mining suspensions on the level of AOD based on equation 1 with
an extended event window (day -120 to day 120). In panel A, counties that experienced no 10+ fatality coalmine
accidents within the six months before the accident date, but would have 10+ fatality accidents two years afterwards
are set as the comparison group. In panel B, counties that experienced no 10+ fatality coalmine accidents within the
six months after the accident date, but had 10+ fatality accidents two years before are set as the comparison group.
In panel C, we choose coal-producing counties that experienced no coalmine accidents as the comparison group. The
x -axis represents the relative month (30 days) to the treatment date. Day -120 to day -90 is the reference category
and omitted from regressions.
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Figure 4: Inventory of Coal Firms in Treated Counties
Note: We compare end-of-year coal inventory with monthly sale of coal in the treated counties of our sample during
2003-2015. The data comes from the ASIEC, a large-scale enterprise survey conducted by the Chinese National
Bureau of Statistics (NBS) which covers all state-owned enterprises and other types of enterprises with annual sales
above the threshold of five million RMB. Focusing on the coal mining industry, we aggregate both the inventory and
sale data to the county level and calculate the statistics of inventory as a share of monthly sale. The figure shows the
distribution of the statistics and the kernel density estimates. The mean is 1.1 and the median is 0.7. For scaling,
observations above the 95th percentile are dropped.

(a) Comparison Group A (b) Comparison Group B (c) Comparison Group C

Figure 5: Tests for Parallel Pre-trends in AOD
Note: The figures plot the effect of coal mining suspensions on the level of AOD based on an event-study analysis
following the methods of Jacobson et al. (1993). Compared to the baseline model in Table 4, we extended the
pre-treatment periods to 180 days before the date of the accident. In panel A, counties that experienced no 10+
fatality coalmine accidents within the six months before the accident date, but would have 10+ fatality accidents two
years afterwards are set as the comparison group. In panel B, counties that experienced no 10+ fatality coalmine
accidents within the six months after the accident date, but had 10+ fatality accidents two years before are set as
the comparison group. In panel C, we choose coal-producing counties that experienced no coalmine accidents as the
comparison group. The x -axis presents the month relative to the date of the accident. The first month prior to the
accident date is set as the reference category and omitted. We also control for daily climatic variables and their
quadratic terms, county characteristics, Chinese holiday FE, day-of-week FE, county FE, province by year FE, and
province by calendar month FE.
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Figure 6: Test for Parallel Trends in All-age RES Mortality
Note: The figures plot the effect of coal mining suspensions on all-age mortality due to RES diseases based on an
event-study analysis following the methods of Jacobson et al. (1993). The x -axis presents the month (30 days) relative
to the accident date. Day -90 to day -60 is set as the reference category and omitted from the regression. We also
control for daily climatic variables and their quadratic terms, county characteristics, Chinese holiday FE, day-of-week
FE, year FE, calendar month FE and county FE.
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Appendix A1: Extra Tests for the Exogeneity of Accident Timing

To choose the proper empirical strategy, we first examine whether coalmine accidents are correlated

with county characteristics. We test whether county characteristics predict the likelihood of an

accident with 10 or more deaths for each year between 2003-2015. We conduct a series of cross-

sectional analyses for all coal producing counties in China by estimating the following equation:

Accidenti = α+ γ · Controlsi + ηi (6)

where Accidenti is an indicator that county i experienced an accident with at least 10 fatalities in a

given year. Controlsi is a vector of annual county characteristics in the previous year, such as the

log value of total industrial output, the log production values for coal-related sectors (coal mining,

electricity, metallic minerals, and nonmetallic minerals), climatic conditions (the median values

of temperature, wind speed and precipitation) and ambient air pollution (the median, minimum

and maximum of AOD). Panel A of Table 13 shows that some variables consistently predict the

probability of an accident across different sample years.

Timingi = α+ γ · Controlsi + εi (7)

Next, we investigate whether local characteristics predict the timing of an accident conditional

on the occurrence. One approach is to estimate the equation (2) shown in Section 4 in the main text.

Additionally, following Deshpande and Li (2019), we also test whether local characteristics predict

the year in which an accident will take place. We restrict our sample to counties that experienced

at least one coalmine accident with 10+ deaths and estimate equation (7). The dependent variable,

Timingi, is the year in which county i experienced an accident. The results are documented in

Panel B of Table 13. We can see that no observable characteristic consistently predicts the timing

of an accident conditional on an accident taking place during the sample period. This evidence

indicates that none of the factors that predict the existence of major accidents are effective at

predicting their timing. We take it as suggestive that the timing of accidents is essentially random.
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Table 13: Factors that Predict the Occurrence or Timing of Coalmine Accidents
Panel A: Probability of Accident Panel B: the Year of Accident

(1) (2) (3) (1) (2) (3)

2003 2008 2013 2003 2008 2013
Area -0.013 -0.011 -0.004* -0.223 2.226* -1.478

(0.012) (0.008) (0.002) (0.167) (1.160) (0.906)

Coal 0.020*** 0.011*** 0.003*** 0.016 0.069 -0.136
(0.002) (0.001) (0.001) (0.063) (0.073) (0.136)

Electricity 0.006** 0.002 -0.000 -0.008 -0.046 -0.016
(0.003) (0.002) (0.001) (0.042) (0.037) (0.043)

Industrial 0.001 0.003 0.002 -0.194 0.083 -0.022
(0.008) (0.006) (0.004) (0.204) (0.206) (0.274)

Temperature -0.004 0.003 -0.000 0.141 0.045 0.050
(0.004) (0.002) (0.001) (0.098) (0.089) (0.063)

Wind -0.010 0.033* 0.021** 0.282 0.446 0.049
(0.020) (0.018) (0.010) (0.543) (0.507) (0.735)

Precipitation 0.235*** 0.456*** 0.050** -0.403 2.029 -1.129
(0.090) (0.130) (0.024) (1.589) (1.860) (1.772)

Median AOD 0.032 -0.109* -0.063 -5.157* 0.583 0.392
(0.128) (0.063) (0.039) (2.876) (2.976) (1.847)

Max AOD -0.019 -0.006 0.003 -0.054 -0.491 -0.403
(0.017) (0.010) (0.007) (0.363) (0.419) (0.302)

Min AOD -0.348 0.056 0.140 4.123 1.982 -0.818
(0.292) (0.173) (0.093) (6.198) (5.294) (5.421)

N 967 1032 950 182 90 21
R squared 0.101 0.084 0.024 0.059 0.140 0.525

Note: Panel A presents the regression results from equation (6) where we test whether
a set of county characteristics can predict the occurrence of a coalmine accident. The
sample is all coal-producing counties in China and the dependent variable is whether
a county experienced a coalmine accident with ten or more fatalities in or after the
year shown in the column heading. Panel B presents the regression results from (7)
where the timing of an accident is regressed against a set of potential predictive county
characteristics. The sample is counties that ever experienced an accident in or after
the year shown in the column heading. The dependent variable in panel B is the year
of an accident. For counties that experienced multiple accidents, we select the timing
of the first accident. ***, **, and * represent 1%, 5%, and 10% significance levels,
respectively. Robust standard errors are reported in parentheses.
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Appendix A2: Overlap of Accidents

A2.1 Overlap of Event Windows between Multiple Accidents

A2.1.1 Multiple Accidents within a County

Some counties experience multiple accidents at coal mines that involve over 10 deaths in our sample.

These multiple accidents may lead to overlaps of event windows (day -90 to day 90) within which

we compare air quality between the comparison and treated counties before and after suspensions

as shown by equation (1). If two accidents are sufficiently distant away from each other (more than

180 days), we keep both accidents as separate events around which we build data with matched

controls. If the timing difference between two accidents is close enough (less than 180 days), the

issue of overlapping event windows arises. Here we discuss in detail how we handle the overlapping

windows of multiple accidents.

There might be three possible scenarios as shown in Figure 7. In each panel, there are two

events that occur on day A and day B. Around each event, there is a window with a bandwidth

of 90 days. In scenario 1, the difference in the accident dates is in the range of (90, 180). Then

the overlap period shown in Figure 7(a) is invalid to serve as a pre-treatment counterfactual for

event B, while it can still serve as a valid post-treatment observation for event A. Therefore, we

only drop the overlap period observation shown in Figure 7(a) from event B under scenario 1. In

scenario 2, event B occurs exactly 90 days after A. The post-treatment period of event A coincides

with the pre-treatment period of event B that leads to no valid pre-treatment observations at all

for event B. This absence means we need to drop the entire window of event B. However, in our

sample no counties experienced two accidents that are exactly 90 days apart. Figure 7(c) shows

the third possible scenario where the difference in the accident dates is less than 90 days. In this

case, different segments of the overlapping period matter differently for events A and B: for event

A, observations in the period labeled by “overlap2” are not valid post-treatment samples; for event

B, observations in the period labeled by “overlap1” are not valid pre-treatment samples. Thus, we

drop them from events A and B respectively when constructing the data. If two accidents are too

close to each other (less than 45 days), we drop both events from our sample. Our results are also

robust when we drop all events categorized by scenario 3.
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 7: Overlaps of Event Windows
Note: Here we show three possible scenarios where two event windows may overlap each other. In each panel, there
are two events that occur on day A and day B. Around each event, there is a window with a bandwidth of 90 days.
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A2.1.2 Overlapping due to Large-range Suspension

Facing coal mine accidents with severe casualties and economic losses, local Chinese governments

may order a large-scale suspension such that all or some of the coal mining are affected within a

county, a city, or even a province. This ability means the air quality may be temporarily amelio-

rated if coal mines are affected by a suspension due to accidents in nearby counties. Accordingly,

observations in periods around the extended suspension may be contaminated.

We tackle this concern by manually collecting information on the geographical range of a sus-

pension associated with each accident in our sample based on news coverage on the internet.29

Given that our analysis is conducted at the county level, we construct windows of geographically

extended suspensions for the counties involved in city-wide or province-wide suspensions and check

whether they overlap with windows of suspensions due to accidents in the original county. This

construction can apply to both treated and comparison counties. We exploit variations in coal

mining only due to mandated suspensions after severe accidents out of the concern that local en-

forcement may be weak and very short-lived for geographically extended suspensions. We then

drop overlapping observations that are affected by the expanded suspension window as described

in Section A2.1.1.

29We input key words such as “suspension” or “ratification”, and the locality and date of accidents in internet
search engines (Baidu, Google, or Bing) to collect the information on geographical range of a suspension.
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Appendix A3: Data documentation

The data used in this study come from seven sources. First, we collect the location (county),

date, number of deaths, and cause of all the coal mining accidents in China from January 2003 to

December 2015 from the website of the State Administration of Work Safety of China. Second,

we collect daily aerosol optical depth (AOD) at a pixel size of 3 km × 3 km from the Moderate

Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua satellites. AOD

is a remotely sensed measure of particulate matter that reflects the fraction of incoming light from

the air column before reaching the ground. To calculate the daily county-level AOD, we keep only

the pixels with valid AOD values for at least 30 days in each year. We then calculate the daily

average AOD for each county using all pixels within the geographic boundary of each county.

Third, we collect daily SO2 at a spatial resolution of 0.25◦×0.25◦ from the Level-3 Aura/OMI

Global OMSO2e Data Products from NASA. This variable measures vertical column density of SO2

in Dobson Units (1 DU = 2.69×1016 molecules/cm2), which is suitable for analyzing near-surface

pollution. Since the spatial resolution of remote-sensed SO2 data is a little coarse, we construct

SO2 at the county by day levels using an inverse-distance weighting method. For each county, we

draw a circle with a radius of 100 km from the county’s center and calculate the weighted average

daily SO2 using all grids within that circle. The weight we use is the inverse of the distance between

the center of the county and that of each grid.

Fourth, we collect weather data from the China Meteorological Data Sharing Service System

(CMDSSS) that provides the daily average temperature, relative humidity, wind speed, precipita-

tion, and atmospheric pressure for around 700 weather stations in China. Since many counties do

not have any weather stations, we construct daily county-level weather variables from station-level

weather records using an inverse-distance weighting method. Specifically, for each county, we draw

a circle with a radius of 100 km from its center and calculate the weighted average daily weather

variables using all stations within the circle. We use the inverse of the distance between the county’s

center and each station as the weight.

Fifth, we collect the total industrial output value and the output values of sectors including the

electricity, coal, metallic minerals, and nonmetallic minerals from the Annual Survey of Industrial

Enterprises of China (ASIEC) that is a large-scale enterprise survey conducted by the Chinese
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National Bureau of Statistics (NBS). Leveraging the input-output table available from the Chinese

NBS, We also compute the value of coal consumption for enterprises in major coal-consuming

sectors which we define as the sectors of electricity, metallic minerals, and nonmetallic minerals.

We aggregate the enterprise-level industrial activity data and coal consumption data at the county

level.

Sixth, we calculate the county-level population using the 2010 census data for China, which is a

0.35% random sample of the whole census. We calculate the population for each county and divide

it by 0.35% to get the estimated county-level population. All the relevant variables in the six data

sources mentioned above are open access in our online appendix.

Seventh, we access cause-specific daily mortality data for each Chinese county via an online data

platform constructed by the Disease Surveillance Point (DSP) System of the Chinese Center for

Disease Control and Prevention (CCDC). CCDC collects records of individual deaths through the

DSP System and validates the data quality including the cause of death. For this research purpose,

they then calculate the numbers of deaths due to cardiovascular (CVD) diseases, respiratory (RES)

diseases, and non-CVD non-RES diseases. Interested individuals should submit an application for

accessing the relevant data for replication to CCDC and access these variables on the online data

platform of CCDC. All the other variables in the other five data sources can also be found on the

online data platform of CCDC.
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