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Abstract 
Central banks in most advanced economies have reacted similarly to the increase in inflation 
that started in 2021. They initially looked through the rising inflation by leaving monetary policy 
relatively unchanged. Then, after inflation continued to increase, central banks pivoted by 
quickly tightening monetary policy. The pivot was explained, at least in part, as aiming to anchor 
drifting inflation expectations. Why might central banks want to look through supply-driven 
inflation sometimes and pivot away at other times? When does a change in monetary policy 
stance help anchor expectations? When is a strong monetary policy tightening compatible with 
a soft landing? In this paper we present a simple environment that helps clarify these issues by 
offering an optimal policy perspective on recent central bank behaviour. In particular, we 
examine optimal policy in an environment where there is a risk of wage-price spirals and where 
the central bank views wage- and price-setters as having bounded rationality. We show how 
this can provide a coherent explanation of many aspects of recent central bank behaviour. 

Topics: Central bank research; Economic models; Inflation and prices; Monetary policy; 
Monetary policy and uncertainty; Monetary policy communications 
JEL codes: E12, E24, E31, E52, E58, E65 

Résumé 
Les banques centrales de la plupart des économies avancées ont réagi de façon similaire à la 
hausse de l’inflation qui a commencé en 2021. Elles ont d’abord fait abstraction de cette 
montée et décidé de ne pratiquement rien changer à leur politique monétaire. Puis, quand 
l’inflation a continué d’augmenter, elles ont modifié leur stratégie en resserrant rapidement 
leur politique monétaire. Elles ont justifié ce changement de cap, du moins en partie, par leur 
volonté d’ancrer les attentes d’inflation qui s’éloignaient de la cible. Pourquoi est-ce que les 
banques centrales voudraient tantôt faire abstraction de l’inflation portée par l’offre, et tantôt 
adopter une tactique différente? Dans quelles circonstances un changement d’orientation de 
la politique monétaire contribue-t-il à ancrer les attentes? Quand un fort resserrement de la 
politique monétaire est-il compatible avec un atterrissage en douceur? Dans cette étude, nous 
présentons un environnement simple qui aide à élucider ces questions en offrant une 
perspective de politique optimale sur le comportement récent des banques centrales. En 
particulier, nous examinons la politique optimale dans un contexte où il existe un risque de 
spirales salaires-prix et où la banque centrale considère que les agents qui fixent salaires et les 
prix ont une rationalité limitée. Nous montrons comment cette démarche peut fournir une 
explication cohérente de nombreux aspects du comportement récent des banques centrales. 

Sujets : Recherches menées par les banques centrales; Modèles économiques; Inflation et prix; 
Politique monétaire; Incertitude et politique monétaire; Communications sure la politique 
monétaire  
Codes JEL : E12, E24, E31, E52, E58, E65 



1 Introduction

Starting in mid-2021, as inflation started to rise globally, many central banks went through similar

sequences of responses. First, they looked through the shocks in the sense of not reacting to rising

inflation. This inert response was typically defended by pointing to the supply-side origins of the

inflation as well as the likelihood that high inflation would prove to be temporary.1 However,

when inflation shocks kept materializing, central banks pivoted to a much more aggressive policy

stance. Policy-makers then spent considerable effort defending the pivot as being necessary to

anchor expectations in order to avoid igniting a wage-price spiral.

The objective of this paper is to argue that a large part of recent central bank behaviour may be

better understood by adopting a bounded rationality perspective in an environment where wage-

price spirals are possible. In particular, we argue that the observed monetary policy responses

are hard to rationalize in environments where central banks view the public as being either fully

rational (i.e., having rational expectations) or as simply forming adaptive expectations. Instead,

we show that pivoting behaviour becomes optimal if central banks view agents as having bounded

rationality and, more precisely, as using level-k thinking.

To this end, we present a simple model of price and wage determination that allows us to focus

on the different ways in which agents can form expectations about inflation and the pricing decisions

of others, and how this influences the design of optimal monetary policy. The model builds on the

tractable framework first developed by Blanchard and Kiyotaki (1987), which we extend to capture

the possibility of wage-price spirals.

The model aims to capture the interplay between prices and wages by introducing a timing

structure that allows prices to adjust faster than wages in response to supply shocks. This feature

has two consequences. First, it allows supply shocks to potentially increase inflation even when

expectations are anchored and the economy is operating at its natural level.2 Second, it introduces

a potential wage-price spiral in the model, since wages are set based on expected inflation. Our

set-up purposely departs from the canonical New Keynesian model by not exhibiting a “divine

coincidence” whereby central banks can simultaneously keep inflation at target and output at its

natural level when responding to shifts in the prices of key imported inputs like oil, productivity

shocks, or other such supply shocks.

1Recent work in di Giovanni et al. (2022) provides empirical evidence for the significant role of supply shocks in
accounting for the recent inflation surges in the euro area and the United States.

2When referring to supply shocks we are not including mark-up shocks.
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Our model of expectation formation accommodates both rational and adaptive expectations as

special cases. We use the model to first show that under rational expectations, it is optimal for

central banks to always fully look through supply-driven inflation shocks when wages adjust more

slowly than prices. In contrast, under adaptive expectations, we show that a policy-maker should

never entirely look through inflation shocks. However, the optimal policy in this case does not

involve a pivot. Rather, it is optimal for policy-makers to react to inflation in a way that involves

a constant degree of look-through.

We then show that in the general case of boundedly rational agents forming expectations us-

ing level-k thinking, it becomes optimal for central banks to initially look through supply-driven

inflationary shocks but then pivot to an aggressive monetary policy response if inflation shocks

cumulate above a certain threshold. This prediction is in sharp contrast to those emerging under

rational and adaptive expectations and reproduces the recent behaviour of many central banks.

This is a key result of the paper.

Intuitively, level-k thinking makes inflation expectations a function of both past inflation and

how one thinks others will set wages and prices. Since inflation depends on, amongst other factors,

expected inflation, policy-makers face a trade-off: a “low look-through” policy that involves raising

the policy rate to fight inflation helps to stabilize inflation expectations but simultaneously extracts

an output and employment cost. In general, as we shall show, the solution to this trade-off depends

on how far inflation has deviated from the central bank’s target. For inflation below a threshold, we

show that it can be optimal for monetary policy to mainly look through supply shocks. However,

beyond the threshold it becomes optimal to pivot to a strong anti-inflation stance.

In contrast to much of the New Keynesian literature, in this model, we downplay the role of

multi-period nominal rigidities by assuming that prices and wages are pre-set for only one period.

This allows us to concentrate on the cross-sectional interdependence of wage and price decisions,

which is at the centre of wage-price spirals. Crucially, in our framework, wage-setters have to

form expectations of prices, which are then set by firms following a standard mark-up pricing rule.

Hence, forming expectations of prices amounts to forming expectations of the average wage which,

in turn, requires forming expectations of the wages set by others. For this reason, the set-up

embeds features of standard coordination games and thereby lends itself easily to an exploration

of the potential implications of bounded rationality.

Throughout most of the paper, we disregard the role of demand shocks to focus on the dilemma

associated with supply shocks. We adopt this focus despite the likelihood that demand forces played
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an important role in the recent inflation episode in many countries (as shown in di Giovanni et al.,

2022). This choice reflects the fact that our approach has nothing novel to contribute regarding the

demand side of the economy, as our framework shares the common property that optimal monetary

policy should fully offset demand shocks. Accordingly, one should view our results regarding the

monetary policy response to supply shocks as describing the central bank’s preferred monetary

stance over and above any policy adjustment that is required to offset demand shocks. We discuss

this in Section 5.

The issue of how to respond to supply-driven inflation shocks is not unique to recent times, nor

to industrial countries. Arguably, the question is of even greater and longer-standing importance in

emerging economies, where food and fuel expenditures comprise a much larger share of consumption

expenditure. Given that food and energy prices are volatile and often driven by local or global

supply shocks, inflation management becomes a much trickier exercise for central banks in these

countries. Questions related to whether a central bank should look through or react to inflation

movements that are driven by supply-side developments are thus recurrent and germane in emerging

economies.3

Our work is related to three distinct yet related strands of the macroeconomic literature. The

first is, of course, the voluminous literature on New Keynesian (NK) macroeconomic models with

nominal stickiness. In-depth and comprehensive summaries of the key implications of the NK

approach to monetary policy can be found in Gaĺı (2015) and Woodford (2004), amongst many

others.

The second literature focuses on bounded rationality and its implications for macroeconomics.

The problem of forecasting the forecasts of others and associated limits of deductive reasoning were

famously discussed in Keynes (1936) in the context of newspaper competitions to judge beauty

contests. Amongst others in the experimental game theory literature, Nagel (1995) and Costa-

Gomes et al. (2001) offer evidence of bounded rationality in the form of level-k thinking. In addition,

the implications of level-k thinking in terms of its ability to dampen the effects of monetary policy

have been shown in Farhi and Werning (2019). Relative to previous work, we believe our paper is

distinct in its focus on the implications of level-k thinking for optimal policy design in response to

supply shocks.4

3In the model, we subsume different types of supply shocks under the common rubric of productivity shocks. In
Appendix A.4, we formally show an equivalence between productivity shocks and oil price shocks, which are one of
the more volatile and frequent shocks that hit both emerging and advanced economies.

4Recent work by Garćıa-Schmidt and Woodford (2019) on reflective equilibria also explores the effects of relaxing
rational expectations in favour of bounded rationality.
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Our paper also contributes to a third, nascent literature on the origins of the current global

inflationary episode, along with its consequences and implications for policy. Reis (2022) provides an

excellent overview of the various hypotheses regarding the burst of inflation, the role of the inflation

anchor, and the associated policy challenges for central bankers. Evidence of the importance of

managing inflation expectations can be found in Reis (2021), which examines the role of unanchored

inflation expectations in driving the Great Inflation of the 1970s in the United States.

The rest of the paper is organized as follows: the next section presents the model; Section 3

formalizes the optimal policy problem and presents a few special cases of the problem which can be

solved analytically; Section 4 presents the fully dynamic policy problem and numerical simulations

of the optimal policy; Section 5 discusses demand shocks; the last section concludes. All proofs are

contained in the Appendix.

2 Environment

We consider an economy where wages are set before prices, with prices being more flexible in the

sense that they are allowed to react to current productivity developments while wages cannot. This

feature will be key in delivering inflation dynamics that are different from those in a canonical New

Keynesian model (see, for example, Gaĺı, 2015 or Woodford, 2004) and will help rationalize why

looking through the effects of supply shocks on inflation can sometimes be warranted. As will

be discussed in the Appendix, negative productivity changes in the model can be interpreted as

reflecting positive changes in the price of an imported input such as oil, which is the more relevant

interpretation in relation to recent events.

The model economy consists of a set of n infinitely lived private agents facing a demand for their

labour that is decreasing in the wage they set, along with a set of m monopolistically competitive

firms facing a demand for their goods that is decreasing in the price that they set. The agents and

firms both consider themselves too small to affect aggregate outcomes. The central bank chooses

monetary policy to minimize a weighted sum of squared deviations of output and inflation from

targets. We will refer to the outcome of this minimization as optimal monetary policy, even though

we are not deriving the central bank’s objective from the fundamentals of the model.

The set-up differs from the canonical New Keynesian model in that price and wage rigidities

last only one period. This allows the model to focus on the cross-sectional coordination problem

that arises among price- and wage-setters at each point in time, as opposed to the inter-temporal
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trade-offs in price setting that arise with multi-period price rigidities. In this sense, the model

can be seen as being closer in spirit to the environment first formalized in Blanchard and Kiyotaki

(1987).

An important element of our analysis will be to consider different processes for how central banks

may think private agents form their expectations, and how this affects optimal monetary policy

decisions. Accordingly, when using the expectation operator to write Et−1Xt as the expectation of

an endogenous variable Xt based on t − 1 information, we will not necessarily be referring to the

rational expectation of Xt.

2.1 Individuals

There are n individuals, each of whom maximizes their expected lifetime utility

E0

∞∑
t=0

βt [lnCit − ηNit] ,

where Cit is the number of final goods consumed by individual i at date t, and Nit denotes labour

supplied by individual i. Subscript t denotes time throughout the paper but will sometimes be

suppressed when it should be clear from context.

The final good is produced by combining a continuum of intermediate goods according to

Cit =

 m∑
j=1

C
γ−1
γ

ijt


γ
γ−1

, (2.1)

where Cijt indicates consumption of intermediate good j by individual i. There is a constant set

of m intermediate goods at every date.

The individual faces the periodic budget constraint

∑
PjtCijt +Bit+1 = WitNit +Dit + τit +Bit(1 + ιt),

where Bit+1 is the purchases of nominal bonds by individual i at date t, Pjt is the price of good j,

Wit is the nominal wage of individual i, Dit are dividends received by i from ownership of firms,

ιt is the nominal interest rate and τit are transfers received from the government by i. Prices,

dividends, interest rates and government transfers are taken as exogenous by the individual. In the
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following, it will be convenient to use the definition

Iit ≡WitNit +Dit + τit +Bit(1 + ιt). (2.2)

Individuals in this model make three decisions in each period t, choosing their allocation of

consumption spending across the various intermediate goods, the bond holdings that they plan

to carry into the next period, and the wage they request for employment in the next period.

This decision-making takes place in two stages. In the first stage, agents choose their optimal

allocation of total consumption spending Iit−Bit+1 across the different intermediate goods. In the

second stage, households make their consumption-savings decision and set their next-period wage

to maximize lifetime utility, taking into account the effect of these choices on Cit through their

impact on overall spending Iit −Bit+1.

The first-stage problem involves maximizing the expression on line 2.1, subject to the budget

constraint
∑

j PjtCijt ≤ Iit−Bit+1. Note that the agent chooses consumption after having observed

all relevant shocks for the period. This places optimal consumption demand for good j at

Cijt =

(
Pjt
Pt

)−γ (Iit −Bit+1

mPt

)
, (2.3)

where we have defined the price level as

Pt =

 1

m

m∑
j=1

P 1−γ
jt

 1
1−γ

. (2.4)

Equation 2.3 can be used to derive the optimal demand for the final composite good Cit as

Cit = m
1

γ−1

(
Iit −Bit+1

Pt

)
. (2.5)

The second stage problem for the agent is to choose Bit+1 and Wit+1 to solve the dynamic

problem represented by the value function

V

(
Bit
Pt
,
Wit

Pt

)
= max

{
lnCit − ηNit + βEtV

(
Bit+1

Pt+1
,
Wit+1

Pt+1

)}
, (2.6)

subject to equations 2.2 and 2.5 and the labour demand function facing the agent. We will solve

the wage-setting problem after deriving the labour demand from the firm’s problem below.
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The optimal consumption-savings decision leads to the standard Euler equation

1

PtCit
= βEt

(
1 + ιt+1

Pt+1Cit+1

)
. (2.7)

2.2 Firms

Firms in this economy produce intermediate goods using labour according to the production func-

tion

Yjt = θjt

(
n∑
i=1

N
ρ−1
ρ

ijt

) ρ
ρ−1

,

where θjt is the firm’s productivity. Productivity is stochastic and follows a process that is common

knowledge. In the following, we shall use the definition

Njt =

(
n∑
i=1

N
ρ−1
ρ

ijt

) ρ
ρ−1

.

Firms maximize profits by choosing labour and the price of their product. All firm decisions

are made after the firm observes wages and its own productivity for the period.

2.2.1 Labour demand

Firm j chooses its labour inputs to minimize its wage bill, subject to the production function. The

firm’s demand for labour is

Nijt = n
ρ

1−ρ

(
Wit

Wt

)−ρ Yjt
θjt

, (2.8)

where

Wt =

(
1

n

∑
i

W 1−ρ
it

) 1
1−ρ

denotes the aggregate wage index.

2.2.2 Price-setting rule

Firms are monopolistically competitive in output markets. They set prices to maximize profits.

Thus, firm j maximizes

Djt = PjtYjt −
n∑
i=1

WitNijt.
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This optimization is done subject to the following two constraints, along with the demand curve

given by equation 2.3:

Yjt =
∑
i

Cijt

n∑
i=1

WitNijt = n
1

1−ρWt
Yjt
θjt

.

Note that the total wage bill for firm j follows directly from equation 2.8.

This problem gives the optimal price as

Pjt =

(
γ

γ − 1

)
n

1
1−ρ

Wt

θjt
. (2.9)

This is a standard pricing rule involving a fixed mark-up over marginal cost. The expression also

shows the usual inverse relationship between a firm’s productivity and its price. As we shall show

below, this inverse relationship between firm productivity and firm prices induces a similar negative

relationship between aggregate inflation and aggregate productivity shocks.

2.3 Wage demands by households

Wages are set before the realization of productivity, prices and all aggregate outcomes. Households

set wages based on the expected values of these variables. Formally, individuals solve the problem

by choosing Wit to maximize the dynamic objective given by equation 2.6, subject to the constraints

given by equations 2.2 and 2.8. Note that from equation 2.8, the total demand for household i’s

labour is

Nit =

(
Wit

Wt

)−ρ Nt

n
, (2.10)

where we have used the definition

Nt ≡ n
1

1−ρ
∑
j

Yjt
θjt

.

Nt is the aggregate employment index.

This problem gives the optimal wage as

Wit+1 =

(
ρη

(ρ− 1)m
1

γ−1

)(
EtNt+1

Et(Nt+1/Pt+1Cit+1)

)
. (2.11)
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Note that equation 2.11 implies that the current period wage Wit is based on the information

set at date t− 1. This is a consequence of our modelling of nominal rigidities as taking the form of

wages being set a period in advance. This nominal stickiness is not persistent as wages are set for

just one period at a time.

If we take the log of equation 2.11, and disregard Jensen’s inequality by assuming that lnEX =

E lnX, we see that wages are increasing in expected prices and expected consumption:

lnWit = ln

[
ρη

(ρ− 1)m
1

γ−1

]
+ Et−1 lnPt + Et−1 lnCit,

where we have lagged the optimal wage expression in equation 2.11 by one period. This expression

illustrates the coordination problem faced by wage-setters. To set wages for the next period, indi-

viduals have to form expectations of the average price level for the next period. Since price-setters

follow a mark-up pricing rule, this implies that individual wage-setters have to form expectations

about the average wage, which requires forming expectations regarding the wage-setting behaviour

of others.

2.4 Aggregates

The only source of uncertainty in the model is firm productivity θjt. Given the cross-sectional

variation of productivity across firms, we define aggregate productivity as

θt =

 1

m

∑
j

θγ−1
jt

 1
γ−1

.

In the following, we shall make two simplifying5 assumptions about the productivity process:

Assumption 2.1. θjt = θt for all j

Assumption 2.2. ln θt = ln θt−1 + εt, where εt is an i.i.d. shock with mean zero and variance σ2
θ

These assumptions imply that there is only aggregate uncertainty regarding firm productivity,

with all firms receiving the aggregate productivity draw in each period. This is reasonable if we

want to allow productivity shocks to be interpreted as the negative of oil price shocks.6 Though

individuals are unaware of the aggregate productivity realization for the next period at the time

5Most of our results regarding optimal policy do not rely on the particular process for aggregate productivity.
6The equivalence between negative productivity shocks and positive oil price shocks is formally demonstrated in

Appendix A.4
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they set their wages, they know both the mean and variance of the innovation εt.

Using the solution for labour demand Ni from equation 2.10 gives us
∑

iWitNit = WtNt.

Individuals in this economy own the firms, hence they receive all the firm dividends. This implies

that ∑
i

Iit = PtYt,

where PtYt =
∑

j

∑
i PjtCijt is aggregate demand in the economy.

Since θjt = θt for all j, it follows from equation 2.9 that Pjt = Pt for all j. Using this in the

definition PtYt =
∑

j PjtYjt gives

Yt = n
1
ρ−1 θtNt,

where we have used the definition Nt ≡ n
1

1−ρ
∑

j Njt.

2.4.1 Natural level of employment

In the following, we derive an expression for the natural rate of employment in the model economy,

N̄t. To solve for it, note that the optimal wage of individual i when wages and prices are flexible

and determined simultaneously is given by

Wit =

(
ρη

ρ− 1

)
PtCit

m
1

γ−1

.

Summing this expression over i and noting that Wit = Wt = W̄t for all i in the symmetric case

gives

W̄t =

(
ρη

ρ− 1

)
PtYt.

Since PtYt = γ
γ−1W̄tN̄t, this expression for W̄t reduces to

N̄t =

(
γ − 1

γ

)(
ρ− 1

ρη

)
, (2.12)

making N̄t constant and, crucially, independent of θt. Denoting it N̄ herein, the natural level of

output at time t is given by

Ȳt = n
1
ρ−1 θtN̄ .

It follows that the output gap is given by ln
(
Nt
N̄

)
, since Yt

Ȳt
= n

1
ρ−1 θtNt

n
1
ρ−1 θtN̄

.
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2.4.2 Aggregate wages and inflation

To characterize the evolution of aggregate wages, it is useful to first note that in a symmetric

equilibrium we have Wit = Wt and Cit = Ct. Moreover, summing equation 2.5 over all i gives

PtCt

m
1

γ−1

= It = PtYt.

Substituting this expression into the solution for the optimal wage given by equation 2.11 and

taking logs gives

lnWt = ln

(
ρη

ρ− 1

)
+

(
1

ρ− 1

)
lnn+ Et−1 lnPt + Et−1 ln θt + Et−1 lnNt, (2.13)

where we have used Yt = n
1
ρ−1 θtNt. Note that in deriving equation 2.13 we have approximated

lnEX by E lnX, thereby ignoring Jensen’s inequality.7 We will repeatedly use this approximation

to get simple linear expressions. The subscript t− 1 on the expectation operators in the equation

indicate that the expectations are based on information available at the end of date t− 1 when the

wage decision for period t was taken. This timing of expectations arises because wages for period

t were set at the end of period t− 1, before the realization of θt.

Substituting equation 2.12 into the expression for lnWt above gives aggregate wages as

lnWt = Et−1 lnPt + Et−1 ln θt + Et−1 ln

(
Nt

N̄

)
+ ln

(
γ − 1

γ

)
+

(
1

ρ− 1

)
lnn. (2.14)

To derive the equilibrium aggregate price level, we can use the solution for the optimal price

and the expression for the aggregate price level (equations 2.9 and 2.4, respectively) to get

lnPt = ln

(
γ

γ − 1
n

1
1−ρ

)
+ lnWt − ln θt. (2.15)

Equation 2.15 gives the equilibrium expression for the aggregate price level. Define

ωt ≡ lnWt − lnPt−1 − ln

(
γ − 1

γ

)
−
(

1

ρ− 1

)
lnn

πt ≡ lnPt − lnPt−1.

Substituting these definitions into equations 2.14 and 2.15 and combining the resulting expres-

7This linear representation can alternatively be achieved by taking log-linear approximations.
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sions yields

πt − π∗ = Et−1(πt − π∗) + Et−1

(
lnNt − ln N̄

)
− (ln θt − Et−1 ln θt). (2.16)

Equation 2.16 is the Phillips curve that emerges from the model. It says that inflation depends

positively on inflation expectations and the expected output gap, and negatively on the productivity

shock. This inflationary effect of negative productivity shocks is the mapping in the model to the

inflationary effects of the negative supply shocks emphasized in the introduction.

This Phillips curve departs from the canonical Phillips curve of the New Keynesian literature in

a few important ways. First, in our set-up, inflation at date t is driven by expectations of inflation

formed at date t − 1, as opposed to expectations of future inflation. Second, this Phillips curve

does not imply a long-run trade-off between inflation and activity. Third, it is the expected output

gap that drives inflation, since it is these expectations that drive wage-setting decisions. Fourth,

productivity shocks have a direct effect on inflation even when expected inflation is on target and

there is no expected output gap.8

2.5 The Euler equation

By exploiting the symmetry Cit = Ct for all i, we can write the individual Euler equation in

equation 2.7 as

lnCt = Et lnCt+1 − [(ιt+1 − ῑ)− Et(πt+1 − π∗)],

where ῑ ≡ π∗ − lnβ. Substituting the market clearing condition Ct = m
1

γ−1Yt = m
1

γ−1n
1
ρ−1 θtNt

into this aggregate Euler equation then gives

ιt+1 − ῑ = Et(lnNt+1 − lnNt) + Et(πt+1 − π∗), (2.17)

where we have used the random walk property of θt.

2.6 Monetary policy rule

The aim of monetary policy is to minimize deviations of inflation and employment from pre-specified

targets. Since the monetary authority can control the interest rate ιt, we could immediately specify

8The goal of this paper is not to show that this Phillips curve fits the data better than a more standard Phillips
curve. Instead, our claim is that this Phillips curve captures important aspects of how many central banks perceive
the inflation process that are not reflected in the canonical New Keynesian Phillips curve.
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monetary policy in terms of a rate-setting rule and later optimize the parameters of that rule.

However, given our interest in the policy implications of different inflation expectation formation

processes, it is more convenient to think of monetary policy as directly aiming to control short-term

employment Nt. We can then find the potentially time-varying interest rate rule that implements

policy-makers’ preferred employment outcomes and explore how this rule depends on the expecta-

tion formation process assumed in the private sector.

In light of the above, we will think of monetary policy as choosing how best to set Nt as a

function of inflation, allowing the strength of this feedback to potentially vary over time. Allowing

the feedback rule to change over time will enable us to ask under what conditions (if any) policy-

makers would find it optimal to pivot in the sense of first not responding much to inflation pressures

and then switching to a much stronger reaction if inflation picks up substantially.

To this end, we will consider monetary policy as being set in order to engineer employment

outcomes in line with a feedback rule of the form

Nt = N̄

(
1 + πt
1 + π∗

)−φt
,

where πt = Pt
Pt−1

is the inflation rate, π∗ is the central bank’s target level of inflation, and N̄ is the

natural rate of employment. The parameter φt will govern the extent to which monetary policy is

contractionary in response to inflation. This rule can be written in log-linear form as

lnNt − ln N̄ = −φt(πt − π∗). (2.18)

Once we solve the equilibrium under this assumed rule for employment, we can then use the

Euler equation to find the interest rate rule that implements it. This rule will have to satisfy equa-

tion 2.17. As we shall show, under rational expectations, the optimal policy can be implemented

by a very simple time-invariant interest rate rule.9

In Appendix A.3 we are more explicit about how to generate the feedback rule for monetary

policy given in equation 2.18. In particular, we solve the Euler equation forward to express the

employment deviation N̂t as a negative function of the cumulated future deviations of the real

interest rate from the natural rate of interest. We define this cumulated path of all future interest

9This formulation of monetary policy amounts to directly modelling policy-makers as recognizing that their
policy response to deviations of inflation from target affects economic activity. The more aggressively they respond
to inflation deviations, the higher is φt. The higher φt is, the greater the fall in employment.
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deviations as the stance of monetary policy and allow monetary authorities to set this quantity as

a function of inflation.

To close the model, we need to specify the supply of bonds and any government transfers. We

will assume that the net supply of bonds is zero and therefore the government does not need to

raise any taxes to pay interest on bonds.

2.7 The equilibrium system

The equilibrium can be computed in recursive fashion by solving for equilibrium π̂ and N̂ from

the Phillips curve and monetary policy rule given by equations 2.16 and 2.18, respectively. The

interest rate rule that implements the equilibrium path for employment and inflation will then need

to satisfy equation 2.17.

3 Optimal Policy

We now consider the design of optimal monetary policy in this model economy. Specifically, we

want to address the following question: Given the structure of the economy, how aggressively should

policy-makers respond to deviations of inflation from the central bank’s target? In particular, how

does this response depend on the central bank’s perceptions about the process of expectation

formation?

Before going to optimal policy, it is helpful to first look at outcomes under different theories

of expectation formation for arbitrary sequences of values for the policy stance parameter φt. In

the following, we use the notation π̂t = πt − π∗,Et−1π̂t = Et−1(πt − π∗) , θ̂t = ln θt − Et−1 ln θt and

N̂t = lnNt − ln N̄ .

1. Rational expectations (RE): To determine the rational expectations outcome, we can take

the date t− 1 expectation of equation 2.16 to get Et−1N̂t = 0. Combining this with equation

2.18 gives Et−1π̂t = 0, assuming φt > 0. Equations 2.16 and 2.18 then give

π̂REt = − (ln θt − Et−1 ln θt) = −θ̂t

N̂RE
t = φt (ln θt − Et−1 ln θt) = φtθ̂t,

where π̂REt and N̂RE
t represent realizations of π̂ and N̂ under rational expectations. In this

case, inflation is above (below) the policy target when the productivity shock is negative
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(positive). Correspondingly, the expected inflation rate in the model equals the inflation

target under rational expectations for any φt > 0. In the limit where φt → 0, employment

would be stabilized and inflation would become an i.i.d. process.

2. Adaptive expectations (AE): Consider the simplest version of adaptive expectations,

wherein Et−1πt = πt−1 and Et−1Nt = Nt−1. Under these expectations, it is straightforward

to verify that

π̂AEt = π̂t−1 + N̂t−1 − θ̂t

N̂AE
t = −φt(π̂t−1 + N̂t−1 − θ̂t),

where π̂AEt and N̂AE
t represent realizations of π̂ and N̂ under adaptive expectations. In this

case, if monetary policy-makers decided to look through inflation pressures by setting φt = 0,

then inflation would become a random walk. This illustrates how the mapping between

policy and inflation outcomes can change drastically depending on one’s view of the inflation

expectation process.

3.1 Level-k thinking

Our goal in this paper is to examine the policy implications of a more general framework for

expectation formation that can accommodate rational and adaptive expectations within a broader

range of possibilities. In our departure from rational expectations, we choose to exploit the concept

of level-k thinking developed in the game theory literature. In the macroeconomics literature, this

concept was recently used by Farhi and Werning (2019) to study monetary policy.

Under level-k thinking, individuals respond to any deviation from a rational expectations equi-

librium by starting with an initial guess about the macroeconomic expectations of other agents and

computing the aggregate outcome under that guess. The guess about others’ expectations is then

updated to reflect the aggregate outcome under the previous guess and used as the initial guess of

a new iteration. This process is repeated recursively k times. The restriction to a finite number

k < ∞ of iterations reflects some bounded computing power on the part of individual agents on

account of limited resources or capacity for forecasting the future.

As we shall show, this expectation formation process converges to the rational expectations

outcome when the number of iterations k goes to infinity. On the other hand, when k = 0 and
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agents use last period’s outcomes as their initial guesses on the expectations of others, the model

reduces to one with adaptive expectations.

To illustrate the impact of level-k thinking on expectation formation in the context of our model,

recall that aggregate inflation and employment are given by

π̂t = Et−1π̂t + Et−1N̂t − θ̂t

N̂t = −φt[Et−1π̂t + Et−1N̂t − θ̂t].

Level-k thinking starts with some initial (level-0) expectations of π̂t and N̂t that are used to

generate the level-1 expectation of these variables. This process then continues recursively up to

some finite k. Using Et−1x̂
k
t to denote the expectation of variable x̂ that holds for iteration number

k, we can write

Et−1π̂
1
t = Et−1π̂

0
t + Et−1N̂

0
t

Et−1N̂
1
t = −φt[Et−1π̂

0
t + Et−1N̂

0
t ],

where we have assumed that level-k thinking does not impact agents’ expectations on exogenous

variables, so Et−1θ̂
k
t = 0. Repeating the recursion above k times and substituting the level-k

expectations into equations 2.16 and 2.18 gives

π̂t = (1− φt)k[Et−1π̂
0
t + Et−1N̂

0
t ]− θ̂t

N̂t = −φt
[
(1− φt)k

{
Et−1π̂

0
t + Et−1N̂

0
t

}
− θ̂t

]
.

We shall assume throughout the following analysis that Et−1π̂
0
t = π̂t−1 and Et−1N̂

0
t = N̂t−1,

i.e., the initial seeds for the level-k iteration on the private agent’s inflation and employment

expectations are the previous period values of these two variables. Under this assumption, the

equilibrium system becomes

π̂KLTt = (1− φt)k
[
π̂t−1 + N̂t−1

]
− θ̂t (3.19)

N̂KLT
t = −φt

[
(1− φt)k

{
π̂t−1 + N̂t−1

}
− θ̂t

]
, (3.20)

where π̂KLTt and N̂KLT
t represent realizations of π̂ and N̂ under level-k thinking. It is easy to check

that when k = 0, equations 3.19 and 3.20 reduce to the adaptive expectation case outlined above.
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Moreover, when k goes to infinity, π̂t = −θ̂t and N̂t = φtθ̂t, which are the rational expectations

solutions we described earlier. Thus, level-k thinking nests these two cases as two ends of the

iterative spectrum.

3.2 Optimal policy under three different theories of expectations

We now consider the optimal policy problem facing the policy-maker. We assume that a policy-

maker with a discount factor βG faces a dynamic problem of choosing φt to minimize the discounted

value of periodic losses that are quadratic in inflation and employment,

min
φt

∞∑
t=0

βtGEt−1

(
π̂t

2 + µN̂2
t

)
,

subject to equations 3.19 and 3.20. Importantly, the policy-maker chooses φt at date t before

observing the productivity shock θt for that period. Implicit in this formulation is a commitment

by the monetary authority to carry out the policy prescribed by φt even if it may not be optimal

to follow through once θt is realized.

The policy problem can be simplified by defining xt ≡ π̂t + N̂t. This allows the problem to be

restated in terms of only one state variable. This simplified problem reads as follows, where σ2
θ is

the variance of θ̂:

min
φt

∞∑
t=0

βtGE
[
(1 + µφ2

t )
(

(1− φt)2kx2
t−1 + σ2

θ

)]
,

subject to

xt = (1− φt)k+1xt−1 − (1− φt)θ̂t.

We can now look at the properties of φt under three cases: RE (k =∞), adaptive expectations

(k = 0) and level-k thinking (0 < k <∞).

3.2.1 Optimal policy under rational expectations (k =∞)

Our model coincides with rational expectations when k → ∞. In this case, the objective function

becomes

min
φt

∞∑
t=0

βtGE
[
(1 + µφ2

t )σ
2
θ

]
,

with xt = −(1− φt)θ̂t.
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The solution in this case is to set φt = 0, since the loss to the policy-maker is increasing in φ2
t .

10

Importantly, the rational expectations solution gives N̂t = 0.

The main takeaway from this result is that when expectations are rational, it is optimal for the

policy-maker to fully look through any deviations of inflation from target while setting monetary

policy. Intuitively, under rational expectations, private agents fully understand that all inflationary

shocks are temporary, so their inflation expectations are always anchored to the inflation target

π∗. This is true even if the economy is hit by a long sequence of negative supply shocks. Hence,

just knowing that the central bank is committed to keeping inflation at target is enough to keep

expected inflation at target.11

3.2.2 Optimal policy under adaptive expectations (k = 0)

The adaptive expectations case coincides with k = 0. In this case, the policy-maker’s problem can

be written as a dynamic optimization problem where the policy-maker’s value function is

V (xt−1) = min
φt

{
(1 + µφ2

t )(x
2
t−1 + σ2

θ) + βGEV ((1− φt)(xt−1 − θ̂t))
}
,

with xt = (1− φt)(xt−1 − θ̂t).

We solve this problem using a guess-and-verify approach. Specifically, we conjecture that V (x) =

a1x
2 + a2σ

2
θ where a1 and a2 are constants. The solution to this problem takes the form

φAEt =
βGa1

µ+ βGa1

a2 =
1 + µφ2

t + βGa1(1− φt)2

1− βG
,

where the positive constant a1 solves

a1 = 1 +
µβGa1

µ+ βGa1
.

10Given the points made in our earlier discussion of the fully rational case, we interpret this solution as one where
the central bank selects a vanishingly small value for φt.

11In terms of interest rates, this rational expectation solution implies that the central bank would need to keep the
nominal interest rate fixed in response to supply shocks (ιt+1 = ῑ). This is implied by the Euler equation. However, if
the central bank simply stated that it was fixing the nominal interest rate, the system would admit multiple solutions.
On the other hand, if, in addition to communicating a fixed interest rate rule, the central bank also communicated
that it was aiming to have N̂t = −φπ̂t with φ = 0, then this would remove the indeterminacy and leave only the one
solution where π̂t = −θ̂t and N̂t = 0. In effect, by stating the central bank’s policy in terms of desired real outcomes,
such a formulation eliminates many multiple equilibrium problems that can arise with other rules.
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Three features of the solution under adaptive expectations are noteworthy.12 First, the optimal

φAEt is constant over time. Second, φAEt lies between 0 and 1 for any βG > 0. This implies that

monetary policy would be viewed as more hawkish if monetary authorities believe agents have

adaptive expectations, relative to the fully rational case discussed above. Third, in the special case

of a completely myopic policy-maker with βG = 0, the optimal policy reduces to φAEt = 0, which

implies that the myopic policy-maker would completely look through any inflationary shocks and

would thus, as we have seen, cause inflation to become a random walk.

3.2.3 Optimal policy under level-k thinking (0 < k <∞)

We now turn to the general case of level-k thinking with 0 < k < ∞. The policy-maker’s value

function in this general case is

V (xt−1) = max
{

(1 + µφ2
t )
(

(1− φt)2kx2
t−1 + σ2

θ

)
+ βGEV (xt)

}
,

with the associated transition equation for x being

xt = (1− φt)k+1xt−1 − (1− φt)θ̂t.

This problem in general does not admit closed-form solutions, nor easy qualitative characteri-

zations. As a result, we proceed in two steps. First, we examine the problem when βG = 0 and

k = 1. This corresponds to a myopic policy-maker facing private agents who form expectations

using just one iteration to update their initial guesses. Although this is a very special case, it allows

us to derive important features of the optimal φt when viewed as a function of key parameters of

the model. As a second step, we then show in our next section that key properties of the optimal

solution when (βG, k) = (0, 1) carry over to cases where βG > 0 and k > 1. This involves solving

the full dynamic problem using numerical methods and allows us to show the robustness of the

qualitative results derived for the special case where βG = 0 and k = 1.

Special case: βG = 0, k = 1

12To derive the nominal interest rate policy that implements this outcome, it is not sufficient to only state how
people form expectations of next-period endogenous variables π̂t+1 and N̂t+1, as we have been doing until now. It
is necessary to specify how households form expectations of the entire future path for ι, π̂ and N̂ . Under rational
expectations, this is straightforward. However, once one departs from rational expectations, different ways can be
specified. To keep the focus of the paper, we do not pursue this implementation issue further here.
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In this special case, the first-order condition for the optimal choice of φt is

µφt
[
(1− φt)2x̃t−1 + 1

]
= (1 + µφ2

t )(1− φt)x̃t−1, (3.21)

where we have defined x̃t−1 ≡
x2t−1

σ2
θ

. Clearly, the solution for φt will be a function of x̃t−1. However,

the first-order condition illustrates the richness that is introduced to the policy problem under

level-k thinking. Specifically, even with k = 1, equation 3.21 represents a cubic function of φt. So,

in general, there will not be a unique solution to the equation. Rather, the solution can take the

form of a correspondence from the state variable x̃ to φ.

Let {φ̂jt} denote the set of all permissible solutions to equation 3.21 and Lt(φ̂
j
t ) denote the

policy-maker’s loss when φt = φ̂jt . All permissible solutions have to be feasible and satisfy both the

first- and second-order conditions. The optimal solution φ̂t will solve

min
φ̂jt

{
Lt(φ̂

j
t )
}
.

In other words, the solution to the optimal policy problem would involve first eliminating solu-

tions to equation 3.21 that do not satisfy the second-order condition. Then, from the remaining

permissible solutions, the optimal φt would be the one that generates the global minimum.

To understand the challenge associated with solving this problem, it is helpful to consider the

case where π̂t−1 6= 0 and N̂t−1 = 0. In this case, the expected squared deviation of inflation from

target is given by (1 − φ)2π̂2
t−1 + σ2

θ , while the expected squared deviation of employment from

target is given by φ2(1 − φ)2π̂2
t−1 + φ2σ2

θ . This problem is non-convex, and that is why the first-

order condition is not sufficient to describe the solution. The source of non-convexity that favours

a potentially discontinuous response comes from the term φ2(1 − φ)2π̂2
t−1; that is, it comes from

the role of policy in affecting employment through managing expectations. This term is minimized

at either φ = 0 or φ = 1, as opposed to having a unique minimizer. In contrast, (1− φ)2π̂2
t−1 + σ2

θ

is minimized with φ = 1, while φ2σ2
θ is minimized at φ = 0. As we shall show below, the term

φ2(1− φ)2π̂2
t−1 favours a jump from a low value of φ when π̂t−1 is small to a high value of φ when

π̂t−1 becomes sufficiently large.

We can now turn to looking at the optimal policy in steps. In what follows it will be helpful

to define dd ≡ (1− φt)(1 + µφ2
t )− µφt(1− φt)2 and note that the inverse relationship from φ to x̃
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implied by 3.21 is given by

x̃t−1 =
µφt

(1− φt)(1 + µφ2
t )− µφt(1− φt)2

=
µφt
dd

. (3.22)

To characterize the optimal solution φ̂t = φ̂(xt−1), it is useful to exploit equation 3.22, as it defines

a function (as opposed to a correspondence).

The derivative of the inverse function 3.22 with respect to φt is given by

∂x̃t−1

∂φt
=

µ− 3µ2φ2
t + 4µ2φ3

t

[(1− φt)(1 + µφ2
t )− µφt(1− φt)2]2

=
nn

dd2
. (3.23)

For convenience in notation, we will refer to the numerator of this derivative as nn, and the

denominator as dd2.

We characterize the optimal solution using a sequence of lemmas and propositions below. All

proofs are provided in the Appendix.

Lemma 3.1. 0 ≤ φ̂(x̃t−1) ≤ 1 for all x̃t−1 ≥ 0, with φ̂(0) = 0 and φ̂(∞) = 1.

Lemma 3.1 says that the optimal solution is always bounded between 0 and 1. Moreover, the

optimal φ goes to 0 when x̃ goes to zero, while it goes to 1 when x̃ goes to infinity.

Lemma 3.2. For µ < 8, dd is never zero on the interval [0,1[. For µ ≥ 8, there exists φa and φb

between 0 and 1, such that

1. φa = 1
4 − ( 1

16 −
1

2µ)
1
2 ;φb = 1

4 + ( 1
16 −

1
2µ)

1
2

2. dd = 0 when φt equals φa ∈ [0, 1[ or φb ∈ [0, 1[

3. dd < 0 for φt ∈ ]φa, φb[

Lemma 3.2 allows us to eliminate some candidate solutions. From equation 3.22 we know that

dd < 0 implies x̃ < 0. But this contradicts x̃ ≥ 0. It follows that any φ ∈ ]φa, φb[ cannot be optimal

since dd < 0 in this range.

The requirement that dd > 0 has important implications for the relationship between any

candidate optimal φt and the state variable x̃t−1. Totally differentiating the first-order condition

for φt and evaluating it around an optimum gives

dφt
dx̃t−1

=
dd

SOC
, (3.24)
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where SOC is the derivative of the first-order condition with respect to φt. Since SOC needs to be

positive, while dd > 0 from Lemma 3.2, it follows that any optimal function φ̂(x̃) must be increasing

in x̃.

Lemma 3.3. If µ ≤ 4, then nn ≥ 0 for φ in [0, 1]. If µ > 4, then there exists φc and φd between

0 and 1, such that nn ≥ 0 for φ ∈ [0, φc], nn < 0 for φ ∈]φc, φd[, and nn ≥ 0 for φ ∈ [φd, 1].

Moreover, when µ ≥ 8, nn > 0 when φ = φa and nn < 0 when φ = φb.

Lemma 3.3 characterizes the behaviour of the numerator of equation 3.23 for the entire permis-

sible range of φ. The key aspect to note is that the sign of the derivative ∂x̃t
∂φt−1

in equation 3.23

depends on the sign of nn since dd > 0 for permissible values of φ. Lemma 3.3 shows that the sign

of nn depends on µ. For µ > 4, nn switches sign twice in the interior of the range ]0, 1[ for φ, once

at φc and again at φd.

The implication of the change of sign of nn is that ∂x̃t
∂φt−1

> 0 for all φ < φc and φ > φd.

Correspondingly, ∂x̃t
∂φt−1

< 0 for all φ ∈ ]φc, φd[. But ∂x̃t
∂φt−1

< 0 implies a negative relationship

between φt and x̃t−1, which violates the requirement from equation 3.24 that any optimal φt must

co-move positively with x̃t−1. Hence, when µ > 4, any φ ∈ ]φc, φd[ cannot be optimal.

Lemmas 3.2 and 3.3 in conjunction with the requirement that all optimal solutions must reflect

a positive relationship between φt and x̃t−1 impose restrictions on the permissible values for φ. In

particular, any candidate optimal solution for φ must be consistent with dd > 0 and nn > 0.

Lemma 3.4. If µ ≤ 4, the first-order condition given by equation 3.21 implicitly defines a unique

φ(x̃) function that is increasing in x̃. φ̂(x̃) is therefore given by this implicitly defined function.

If µ > 4, then the first- and second-order conditions define two monotonically increasing and

continuous functions φ1(x̃) and φ2(x̃) that represent local optima, where φ1(·) is defined over x̃ ∈

(0, z1) and φ2(·) is defined over x̃ ∈ (z2,∞) with 0 < z2 < z1 (z1 can be ∞), and φ2(z2) > φ1(z1).

Intuitively, Lemma 3.4 uses the unique mapping from φ to x̃ in the inverse function 3.22 implied

by Lemmas 3.2 and 3.3 to characterize the mapping from x̃ to all permissible values of φ. For µ < 4,

the inverse function 3.22 is monotone and continuous. Consequently, there is a unique solution for

φt when µ < 4, and this solution is monotone in x̃t−1.

When 4 < µ < 8, the inverse function 3.22 is continuous but non-monotone. Since negative

relationships between x̃ and φ are not permissible, the range of feasible φ is discontinuous. Con-

sequently, the mapping from x̃ to the optimal φ defines two strictly increasing functions with an

overlapping range of x̃ values, but with one function lying strictly above the other.

We show the case 4 < µ < 8 graphically in Figure 1. The left-hand panel of the figure uses the
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inverse function in equation 3.22 to express x̃ as a function of φ, while the right-hand panel shows

the associated φ1 and φ2 functions that represent local optima.

Figure 1: Case 4 < µ < 8
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Notes: Panel (a) of this figure depicts the inverse function in equation 3.22 when 4 < µ < 8. Panel (b)
shows the associated φ1 and φ2 functions that represent local optima.

The case µ > 8 is similar to the case 4 < µ < 8 except that here, the inverse function is neither

continuous nor monotone. The inverse function from φ to x̃ and the associated local optima

functions are depicted graphically in Figure 2.

Figure 2: Case µ > 8
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Notes: Panel (a) of this figure depicts the inverse function in equation 3.22 when µ > 8. Panel (b) shows
the associated φ1 and φ2 functions that represent local optima.

Lemma 3.4 directly leads to the following proposition:

Proposition 3.1. The optimal policy is a function φ̂ (x̃t−1) that is monotonically increasing in x̃,

with φ(0) = 0 and φ(∞) = 1.
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The fact that for µ > 4 there are two strictly increasing functions φ1(x̃t−1) and φ2(x̃t−1)

representing local optima leaves the determination of the global optimum still unresolved. Moreover,

since the two functions have an overlapping range over which φ2(·) is consistently strictly greater

than φ1(·), it is possible for the globally optimal choice on φ to jump discretely. We address this

issue in the following lemma:

Lemma 3.5. Conditional on µ > 4, there exists a z3 ∈ (z2, z1) such that the φ̂(x̃t−1) function will

correspond to φ1(x̃t−1) for x̃t−1 ∈ (0, z3) and correspond to φ2(x̃t−1) for x ∈ (z3,∞).

The key result in Lemma 3.5 is that the optimal function jumps exactly once from φ1(x̃t−1) to

φ2(x̃t−1) at point z3. One can use this to state our second key result:

Proposition 3.2. If µ is sufficiently big, there exists a unique cutoff for x̃t−1, such that at this

cutoff, φ̂ (x̃t−1) jumps up discontinuously.

Proposition 3.2 shows that when the central bank cares enough about employment, the frame-

work generates a discontinuous shift in the aggressiveness with which the optimal policy responds

to inflation shocks. Specifically, for a range of realizations of the state variable x̃t−1, the optimal

policy is to look through shocks in the sense of keeping φt relatively low. However, once the shocks

cumulate up to a threshold level, the optimal policy pivots to an aggressive response encapsulated

in a discontinuously higher φt.

Figure 3 shows the optimal φ̂ representing the global optimum for the two cases 4 < µ < 8 and

µ > 8 where φ̂ jumps.

Figure 3: Policy pivot – jumps in φ̂
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Notes: Panel (a) of this figure depicts the global optimum φ̂ when 4 < µ < 8. Panel (b) shows the global

optimum φ̂ when µ > 8.
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To gain some intuition for Proposition 3.2, recall that xt−1 = π̂t−1+N̂t−1 = (1−φt)π̂t−1. Hence,

movements in x are largely driven by inflation outcomes. The proposition essentially reflects the

importance of managing inflation expectations. When inflation is close to target, it is optimal for

monetary policy not to respond aggressively to inflation shocks, as the employment cost of doing so

is relatively high while inflation expectations and inflationary pressures remain relatively modest.

However, once inflation goes above a threshold level, its persistent impact on inflation expectations

makes the cost of not fighting inflation too high. At this point, the optimal policy pivots to a much

more aggressive response to inflation shocks.

It is important to note that even if the pivot in policy stance may be quite drastic, the actual

effect on employment is unclear as the adjustment in inflation expectations induced by the change

in policy stance directly reduces inflation pressures and therefore reduces the amount of actual

tightening needed. This is reflected in the fact that the effect of the pivot on expected employment

is driven by the product −φ(1− φ). As shown in Proposition 3.3, a property of the optimal policy

is to have −φ(1 − φ) remain constant at the pivot point. In other words, the pivot is associated

with a change in policy stance that helps reduce inflation with no expected effect on employment.

This can be referred to as a “soft landing.” The pivot is in fact about talking tough in order to

modify expectations and thereby limit the actual amount of contraction in employment needed to

reduce inflation.

Now, if the optimally timed pivot is expected to allow for a soft landing, why wait to implement

it? The answer relates to the effect of the pivot on the variance of employment. As also indicated in

Proposition 3.3, when the policy stance pivots from less aggressive to more aggressive, the variance

of employment increases discontinuously, as the variance of employment is proportional to φ2, which

is increasing at the point of pivot. The cost of taking the aggressive policy stance relates to the

commitment to respond strongly to inflation, whether it be driven by higher expectations or shocks.

The change in stance implies that policy will stop looking through shocks and instead will react to

them strongly. This causes the variance of employment to increase. Hence, the change in policy

stance – when optimally timed – is effectively aimed at creating a “risky soft landing,” or a “narrow

soft landing,” in the sense of reducing inflation at the cost of more uncertain outcomes in terms of

employment.

Proposition 3.3. If φ and φ′ (φ′ > φ) represent the two stances of monetary policy at the point of

discontinuity of optimal policy (at the pivot point), then φ(1−φ) = φ′(1−φ′). This implies that at

the optimal point of pivot, inflation is expected to fall but employment is expected to stay constant.
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However, the variance of employment increases discontinuously at the pivot point.

4 Dynamic Model: Numerical Simulations

In the previous section, we provided conditions under which the model exhibits discontinuous jumps

or pivots in the optimal policy response to inflation shocks under level-k thinking. However, we

were able to derive these results only in the special case of βG = 0 and k = 1.

How robust is the policy pivot result to extending the model to a non-myopic policy-maker with

βG > 0 and/or to private agents who iterate more than once when forming expectations, i.e., when

k ∈ ]1,∞[? This section explores this question using numerical simulations of the model. Before

doing so, however, we provide a generalization of the Phillips curve relationship in the model to

allow its slope to be an arbitrary number that is not necessarily unity as in the baseline model. This

generalization is useful for both the interpretation of the numerical results as well as illustrating

its generality.

4.1 Generalization to case with an arbitrary slope of the Phillips curve

Recall that our assumed preference structure induced a Phillips curve given by

π̂t = Et−1π̂t + Et−1N̂t − θ̂t,

where there is a coefficient of exactly unity on Et−1N̂t. This implies a steep Phillips curve, which can

be seen as quite restrictive. In Section A.2 of the Appendix, we show that it is feasible to change

preferences to generate a more general Phillips curve, for example by using GHH preferences.

Specifically, we show that with a lifetime utility function of the GHH form

E
∞∑
t=0

βt ln
(
Cit − ηθtN1+λ

it

)
,

the associated Phillips curve becomes

π̂t = Et−1π̂t + λEt−1N̂t − θ̂t,

where λ ∈]0,∞[ .

It turns out that this extension of the model is in fact already embedded in the baseline case as

27



long as one reinterprets µ and φt appropriately for the case where λ 6= 1. To show this, first note

that when λ 6= 1, the system describing equilibrium outcomes becomes

π̂t = (1− λφt)k
[
π̂t−1 + λN̂t−1

]
− θ̂t

N̂t = −φt
[
(1− λφt)k

{
π̂t−1 + λN̂t−1

}
− θ̂t

]
.

Defining the new state variable xt = π̂t + λN̂t then gives the policy-maker’s problem in the

general case as

min
φt

∞∑
t=0

βtGE
[
(1 + µφ2

t )
(

(1− λφt)2kx2
t−1 + σ2

θ

)]
,

subject to

xt = (1− λφt)k+1xt−1 − (1− λφt)θ̂t.

Defining µ̃ ≡ µ
λ2

and φ̃t ≡ λφt allows us to rewrite this problem as

min
φ̃t

∞∑
t=0

βtGE
[
(1 + µ̃φ̃t

2
)
(

(1− φ̃t)2kx2
t−1 + σ2

θ

)]
,

subject to

xt = (1− φ̃t)k+1xt−1 − (1− φ̃t)θ̂t.

As can be seen, this is the exact same problem as before but with φ̃ and µ̃ replacing φ and µ. This

makes solving the general case of λ 6= 1 equivalent to solving the original problem with a modified

weight on employment in the central bank’s loss function, though one must be mindful to infer φt

via φ̃t = λφt.

This generalization is important for a few reasons. First, it shows that the qualitative properties

of the solution we derived above are not dependent on having λ = 1. Second, since the literature

generally favours parameter values for λ much less than one, it implies a significant widening in the

range of values for the “true weight” µ for which the pivoting behaviour described in Proposition 3.2

emerges in the special case (βG, k) = (0, 1). Third, it also associates pivots with wider swings in

the monetary stance parameter φt since φt = φ̃t/λ.

With these observations in mind, we now use the remainder of this section to explore the model’s

properties and implied potential for pivots outside the special case (βG, k) = (0, 1).
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4.2 Baseline parameterization and solution method

Given the model’s emphasis on wage-setting, coupled with its property that wages are sticky within

periods but fully flexible across periods, it is natural to identify model periods with years. We

therefore set policy-makers’ discount factor to βG = 1/1.005, aligning with the midpoint of Bank

of Canada staff’s current assessed range of 0 to 1% for the real neutral rate in Canada (Faucher

et al., 2022).

We also set the relative weight on employment in the central bank’s loss function to µ = 1, a

natural benchmark consistent with policy-makers placing equal weight on employment deviations

and deviations of inflation from target. In addition, we set the Phillips curve slope to λ = 0.092,

a value broadly in line with Djeutem et al. (2022) and Wagner et al. (2022), and assume k = 2

levels of thinking in the private sector, placing us roughly in the middle of the range of k = 1 to 4

considered in Farhi and Werning (2019). The only remaining parameter is then the productivity-

shock variance, σ2
θ , which we calibrate to match the variance of CPI inflation in Canada, computed

using a data sample that begins when the country’s current 2% inflation target first formally started

applying in the mid-1990s.

For a given set of parameters, we solve the model by value function iteration. Briefly, this

involves the following five steps:

1. Fix some grid XG of values for the state variable xt−1;

2. Make some guess on the value that the central bank’s value function takes at each xt−1 ∈ XG;

3. Use a fine grid search to find the central bank’s implied optimal choice on φ̃t at each xt−1 ∈

XG, evaluating any relevant expectations using a combination of Gauss-Hermite quadrature

and linear interpolation – i.e.,

φ̃∗t (xt−1) ∈ arg min
φ̃t∈Φ̃



[
1+
(
µ/λ2

)
φ̃2
t

] [(
1− φ̃t

)2k
x2
t−1 + σ2

θ

]

+βG
∑N

n=1 ωnV

[(
1− φ̃t

)k+1
xt−1 −

(
1− φ̃t

)
θ̂n

]

,

where Φ̃ is a fine grid; {ωn}Nn=1 and {θ̂n}Nn=1 respectively denote the weights and nodes of an

N -point quadrature rule; and V (·) denotes a linear interpolant constructed from our current

guesses on the central bank’s value function;
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4. For each xt−1 ∈ XG, use φ̃∗t (xt−1) from our previous step to update our guess on the value

that the central bank’s value function takes at the grid point in question;

5. Repeat steps three and four until successive guesses fall within some small tolerance of one

another.

Details on this algorithm and the accuracy of the solution it delivers are available on request.

4.3 Results

Results for the baseline parameterization. Motivated by the analytical results presented

earlier, our main numeric results concern the relationship between (i) the normalized monetary

stance parameter φ̃t ≡ λφt, for which higher values indicate a lower willingness among policy-

makers to look through periods of high inflation; and (ii) the state variable xt−1 ≡ π̂t−1 + λN̂t−1,

which we can interpret as a measure of the degree of overheating that occurred in the previous

period.

The top panel of Figure 4 plots the relationship between these two variables, holding all param-

eters at the baseline values described above. Results indicate that pivoting remains a key feature of

the central bank’s behaviour, with realizations of xt−1 above roughly 4% in absolute value trigger-

ing a sudden increase in φ̃t. This pivoting behaviour is further illustrated in the lower panel of the

figure, which focuses on the relationship between xt−1 and the central bank’s inflation expectations

at the time it sets φ̃t – i.e., EREt−1π̂t. As the panel clearly shows, pivoting is associated with a sharp

re-normalization of these expectations.

In Figure 5, we zoom in on the model’s behaviour around its positive pivot point, focusing on

inflation deviations (left-hand panel) and deviations of employment from its natural level (right-

hand panel). In each panel, a solid line reports expected outcomes before observing the productivity

shock θ̂t, while the surrounding bands report realized outcomes for a range of potential values of θ̂t.

Results indicate that many of the “risky soft landing” properties emphasized in Section 3 continue

to hold qualitatively outside the special case (βG, k) = (0, 1). For example, the change in expected

employment outcomes around the pivot point is relatively modest. As we explained in Section 3,

this reflects offsetting forces associated with the fact that shifting to a tighter policy stance induces

changes in inflation expectations that reduce the degree of actual economic slack needed to keep

inflation close to target.

However, since a tighter stance limits policy-makers’ ability to stabilize employment in response
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to shocks, pivoting also leads to an increase in the level of risk surrounding the employment outlook.

This pattern is illustrated by the sharp widening of the band in the right-hand panel of Figure 5.

Taken all together, the results in the figure thus suggest that pivoting in the numeric model is

compatible with a soft landing in expectation but also entails a significant risk of harder landings,

much as was the case when (βG, k) = (0, 1).

It should nevertheless be noted that even if the pivot does not cause much expected change in

employment, prior to the pivot, employment is depressed in our baseline parameterization. This

can be seen in Figure 5, where expected employment is more that 2% below target before and after

the pivot. This reflects the fact that when βG > 0 and k > 1, even during the “looking through”

phase, policy can become sufficiently restrictive to cause employment to be materially below target.

However, this pre-pivot policy stance is not sufficient to bring inflation back to target, and this is

what eventually requires a pivot. This is why we think it is appropriate to refer to the pre-pivot

monetary stance as a “looking-through” stance.

Impact of changing the central bank’s discount factor. With the points above in mind,

we now use the remainder of this section to explore the roles that key parameters play in driv-

ing and shaping the central bank’s pivoting behaviour. Figure 6 focuses on the role played by

policy-makers’ discount factor βG, comparing our baseline parameterization against an otherwise

comparable “myopic benchmark” under which we set βG = 0. For both these parameterizations,

the left-hand panel in the figure plots the relationship between φ̃t and the absolute value |xt−1|,

making use of the fact that the problem facing policy-makers is symmetric across positive and

negative values of xt−1. The right-hand panel then repeats, focusing on the relationship between

|xt−1| and the absolute expected inflation deviation |EREt−1π̂t|.

The results in Figure 6 clearly associate the myopic benchmark with a situation where the

central bank is willing to look through periods of off-target inflation for a much wider range of

values for xt−1. Put differently, shifting from myopia to a forward-looking policy approach “pulls

forward” the threshold around which the central bank is prepared to pivot in response to overheating

in the previous period. This is a natural consequence of the fact that a forward-looking central

bank internalizes the benefits that stabilizing inflation in the current period will generate in future

periods by helping to keep future inflation expectations close to target.

Impact of changing the sophistication of private-sector expectations. In Figure 7, we

turn our attention to the parameter k, which gives the levels of thinking in which the private sector
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Figure 4: Pivoting under the baseline parameterization

Figure 5: Risky soft landing under the baseline parameterization
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Figure 6: Impact of changing policy-makers’ discount factor, βG

engages when forming expectations. The figure reports policy functions for values of this parameter

in the range of k = 1 to 3, holding all other parameters constant at their baseline values. Results

indicate that pivots occur for all choices on k in the aforementioned range. However, higher k

values are associated with smoother and generally lower profiles for φ̃t, with smaller jumps around

pivot points. These patterns are consistent with our earlier observations that expectations become

rational as k → ∞, and in this case the central bank’s optimal policy is to fully look through

periods of off-target inflation in the sense of keeping φ̃t constant at zero. To further emphasize

these points, the figure also reports results for a case under which expectations are relatively close

to rational in the sense that k takes a very high value of 40, and in this case no pivoting occurs

even when xt−1 rises as high as 10%.

A useful way to understand the patterns in Figure 7 is to recognize that higher values for k

make inflation expectations more sensitive to a given change in the central bank’s policy stance. As

a result, central banks facing higher values for k can make do by increasing the stance parameter

φ̃t by smaller margins around pivot points. This is important because smaller jumps in φ̃t leave

policy-makers with more room to stabilize employment in response to shocks, suggesting that the

“risky soft landing” problem discussed earlier should be less of an issue when k is high.

To confirm this intuition, Figure 8 zooms in on the economy’s behaviour around its positive

pivot point, assuming the same k = 1 through k = 3 parameterizations described above. Both

panels of the figure were constructed along lines similar to Figure 5, with the exception that the

quantity on the horizontal axis has now been normalized so that pivoting occurs at a value of zero
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for all three of the parameterizations in question. This allows us to compare parameterizations in

terms of the widening in the range of potential employment outcomes that occurs around pivot

points. The fact that this widening is much less pronounced when k is high thus confirms our

intuition that higher values for k should help policy-makers mitigate the risk of a hard landing.

We interpret this finding as one with strong implications for central banks’ communication

strategies. Though k is a fixed parameter in the model, the cognitive frictions that it aims to

capture are likely to vary over time, rising in novel economic environments where the private sector

finds it more challenging to think through the full implications of different policy stances. To the

extent that clear, effective communication from policy-makers can aid and inform this reasoning

process, it should be associated with higher effective values for k, leading in turn to a lower risk of

hard landings.

Impact of changing policy-makers’ effective weight on employment deviations. In Fig-

ure 9, we finally turn our attention to µ̃ ≡ µ/λ2, the effective weight that policy-makers place on

minimizing deviations of employment from its natural level. The figure reports policy functions for

choices on this weight spanning three orders of magnitude, holding all other parameters in line with

our baseline calibration. Consistent with some of the insights emerging from our earlier analytical

work, the policy functions that obtain when µ̃ is very small are smooth, suggesting that µ̃ must

exceed some threshold in order for pivoting to occur. Moreover, conditional on being above this

threshold, higher values for µ̃ are associated with higher pivot points, reflecting a greater willing-

ness to look through periods of off-target inflation among central banks placing greater weight on

employment outcomes.

A related and important feature of Figure 9 is that when xt−1 reaches levels high enough to

trigger a pivot for a central bank with a very large µ̃, the margins by which both φ̃t and EREt−1π̂t

adjust are larger than is the case for smaller values of µ̃ – i.e., the pivot may come late, but it’s

also more dramatic. Mindful of this pattern, coupled with our previous finding that higher values

for µ̃ can equivalently be associated with higher values for the true weight µ or lower values for

the Phillips curve slope λ, we note that the recent pivots observed in advanced economies occurred

specifically at a time when (i) some central banks had recently announced framework changes

placing greater emphasis on employment outcomes; and when (ii) a wide range of studies suggested

that Phillips curves in advanced economies had flattened significantly. To the extent that both

factors contributed to a higher value for µ̃, they would have set the scene for a later but more
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Figure 7: Impact of changing the levels of private-sector thinking, k

Figure 8: Risky soft landing under different levels of private-sector thinking (k)

pronounced pivot when viewed through the lens of this modelling framework.

5 What about demand shocks?

Up to now, we have ignored demand shocks, despite the fact that they certainly played a role in

the recent inflation episode. It is simple to extend our framework to incorporate demand shocks. A

common way to think about demand shocks is to view them as shocks to the household’s discount

rate. The addition of this form of demand shocks simply adds a stochastic element in the Euler
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Figure 9: Impact of changing policy-makers’ effective weight on employment deviations, µ̃ ≡ µ/λ2

equation. In this case, if we denote the demand shock by dt (which can follow an arbitrary process),

the forward expansion of the Euler equation becomes:

lnNt − ln N̄ = −
∞∑
h=1

Et · ·Et+h−1[ιt+h − ῑ− (πt+h − π∗)] +
∞∑
h=1

Et · ·Et+h−1dt+h−1. (5.25)

In the absence of supply shocks, optimal policy would prescribe generating an expected path

for real interest rates such that

∞∑
h=1

Et · ·Et+h−1[ιt+h − ῑ− (πt+h − π∗)] =

∞∑
h=1

Et · ·Et+h−1dt+h−1.

If effectively implemented, this policy stance would stabilize both employment and inflation and

therefore would be optimal. In this sense, our framework exhibits a common property whereby

optimal policy should aim to fully offset demand shocks.

Accordingly, in the presence of demand shocks, the effective measure of monetary stimulus can

be thought of as the expected real interest rate path after netting out the part that is needed to

offset demand shocks. This would be given by

∞∑
h=1

Et · ·Et+h−1[ιt+h − ῑ− (πt+h − π∗)]−
∞∑
h=1

Et · ·Et+h−1dt+h−1.

Thus, in the model with demand shocks, we can still view the policy dilemma facing central

banks as an issue of determining how much stimulus to inject as a function of inflation, though
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stimulus must be properly redefined. In particular, the only required change involves specifying

policy as

φt(π̂t) =
∞∑
h=1

Et · ·Et+h−1[ιt+h − ῑ− (πt+h − π∗)]−
∞∑
h=1

Et · ·Et+h−1dt+h−1.

As can be easily seen, this reformulation does not change our optimal policy problem, as we still

have lnNt − ln N̄ = −φt(πt − π∗); it changes only how one would need to set interest rates to

implement the stimuli prescribed by φt(π̂t). In particular, the required nominal interest rates

would now depend not only on inflation but also on the path of dt.

Optimal monetary policy in response to both demand and supply shocks can therefore be

thought of as a two-stage process, first adjusting monetary policy to fully offset demand shocks,

and then deciding how long to look through supply shocks and when to pivot in favour of con-

trolling inflation expectations. However, if a central bank mistakenly interpreted some demand

shocks as supply shocks, or misjudged the strength of demand, this could cause it to adopt an

overly stimulative stance because it would be inappropriately looking through these shocks. This

type of error narrative behind the recent inflation episode could potentially be incorporated into

our analysis. However, this would require expanding the setting to introduce a signal extraction

problem, which we leave for future work.

6 Conclusion

The appropriate response to supply-driven inflation shocks is a question that has captured the

attention of many policy-makers and analysts around the world over the past several months. Most

monetary authorities initially resisted responding to the unfolding rise in inflation before pivoting

sharply into an accelerated tightening of monetary policy. The initial approach of looking through

the rising inflation numbers was justified by pointing to their predominantly supply-side origins,

while the subsequent pivot was explained as an attempt at anchoring inflation expectations. In

this paper, we have provided a framework to study supply-driven inflation. In doing so, our goals

are to both explain central bank behaviour as well as provide a rubric for studying the design of

optimal policy.

An important element in our modelling of the inflation process is allowing prices to be more

flexible than wages. This feature is key to understanding why looking through supply shocks may
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at times be desirable. It also gives rise to a Phillips curve that departs slightly from a canonical

New Keynesian Phillips curve in that the residual term becomes a supply shock instead of a mark-

up shock. In particular, the supply shock reflects the forecast errors made by wage-setters when

setting wages before seeing the prices set by firms.

Within our framework we have shown two main results. First, the type of pivoting behaviour

recently exhibited by many central banks should not arise if policy-makers view agents as either fully

rational or having simple adaptive inflation expectations. For example, under rational expectations,

the role of policy in anchoring expectations becomes easy, because private agents are able to see

through the supply-side origins of inflation, obviating the need to tighten in response to supply

shocks. In contrast, with adaptive expectations, central banks should tighten policy in response to

supply shocks, but the strength of this response should not change over time.

Our second main result is that when agents are not fully rational but instead form expectations

under bounded rationality in the form of level-k thinking, optimal policy can involve an initial

period of looking through inflation shocks, followed by a discontinuous jump into aggressive tight-

ening if shocks accumulate above a threshold. This prediction matches recently observed policy

behaviour in many economies.

A competing explanation for the abrupt policy pivots performed by many central banks is that

there was a belated recognition that some of the observed increase in inflation was due to demand

pressures rather than temporary supply shocks. While we do not include demand shocks in our

baseline model, we have shown that the optimal response to demand shocks in the model is to

tighten monetary policy, which is the standard prediction of most versions of the New Keynesian

model. More crucially, we also showed that the optimal monetary policy response to supply shocks

in our model can be easily reinterpreted as the policy stance net of the response to demand shocks.

Consequently, the existence of supply shocks would induce a policy pivot even after accounting for

a belated recognition of demand shocks. In this sense, our mechanism is complementary to the

“policy error” mechanism.

We believe our results are important not only in terms of explaining the recent experience in

industrial economies but also in terms of characterizing long-term policy challenges in emerging

economies. In these economies, policy-makers often have to manage inflation in the context of

volatile food and fuel prices driven by global factors and consumer expenditure baskets with very

high shares of food and fuel expenditures. Our results suggest that it is optimal for policy-makers

in such economies to look through moderate inflation shocks, but then respond aggressively if the
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shocks become very large. Indeed, not pivoting in such cases could induce long periods of high

inflation driven solely by persistent deviations of inflation expectations.
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A Appendix

A.1 Proofs

Lemma 3.1: 0 ≤ φ̂(x̃t−1) ≤ 1 for all x̃t−1 ≥ 0, with φ̂(0) = 0 and φ̂(∞) = 1.

Proof : First part: For any candidate φ > 1, φ = 1 dominates, since (1 + µ) < (1 + µφ2)(1 −

φ)2x̃ + (1 + µφ2) for all φ > 1. For any candidate φ < 0, φ = 0 dominates, since 1 + x̃ <

(1+µφ2)(1−φ)2x̃+(1+µφ2). Second part: If x̃ = 0, the minimization becomes min(1+µφ2), which

implies that φ = 0 is optimal, while for x̃ = ∞, the minimization becomes min(1 + µφ2)(1 − φ)2,

which implies that φ = 1 is optimal.

Lemma 3.2: For µ < 8, dd is never zero on the interval [0,1[. For µ ≥ 8, there exists φa and φb

between 0 and 1, such that

1. φa = 1
4 − ( 1

16 −
1

2µ)
1
2 ;φb = 1

4 + ( 1
16 −

1
2µ)

1
2

2. dd = 0 when φt equals φa ∈ [0, 1[ or φb ∈ [0, 1[

3. dd < 0 for φt ∈ ]φa, φb[

Proof : Since dd = (1−φ)[(1 +µφ2)−µφ(1−φ)], it has three roots, with φ = 1 always being a real

root. If µ ≥ 8, the two other roots are real and between 0 and 1, as they are given by 1
4−( 1

16−
1

2µ)
1
2

and 1
4 + ( 1

16 −
1

2µ)
1
2 . If µ < 8, the other two roots are imaginary and hence dd is always positive on

[0,1[.

Lemma 3.3: If µ ≤ 4, then nn ≥ 0 for φ in [0, 1]. If µ > 4, then there exists φc and φd between 0

and 1, such that nn ≥ 0 for φ ∈ [0, φc], nn < 0 for φ ∈]φc, φd[, and nn ≥ 0 for φ ∈ [φd, 1]. Moreover,

when µ ≥ 8, nn > 0 when φ = φa and nn < 0 when φ = φb.

Proof : This proof relies on understanding the shape of the cubic function nn = µ− 3µ2φ2 + 4µ2φ3

as a function of φ. First note that at φ = 0, nn = µ, and the derivative of the cubic at this point

is 0. On the other hand, at φ = 1, nn is again positive but now with a positive slope. Hence, this

cubic will have one real root that is negative, and will have two other real roots that are between

0 and 1 if the discriminant of this cubic is positive (note: the discriminant of a cubic of the form

az3 + bz2 + d is −4b3 − 27a2 ). Otherwise, it will have only one real root. For the discriminant

to be positive, we need µ ≥ 4. Accordingly, for µ ≤ 4, nn is always positive on the interval [0, 1].

If µ > 4, then nn ≥ 0 for φ ∈ [0, φc], nn < 0 for φ ∈]φc, φd[, and nn ≥ 0 for φ ∈ [φd, 1] where
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φc and φd are the two positive real roots of the cubic. The last part follows from replacing φ in

µ− 3µ2φ2 + 4µ2φ3 by either φ = 1
4 − ( 1

16 −
1

2µ)
1
2 or φ = 1

4 + ( 1
16 −

1
2µ)

1
2 .

Lemma 3.4: If µ ≤ 4, the first-order condition given by equation 3.21 implicitly defines a unique

φ(x̃) function that is increasing in x̃. φ̂(x̃) is therefore given by this implicitly defined function.

If µ > 4, then the first- and second-order conditions define two monotonically increasing and

continuous functions φ1(x̃) and φ2(x̃) that represent local optima, where φ1(·) is defined over

x̃ ∈ (0, z1) and φ2(·) is defined over x̃ ∈ (z2,∞) with 0 < z2 < z1 (z1 can be∞), and φ2(z2) > φ1(z1).

Proof : Lemmas 3.2 and 3.3 provide the key elements for a characterization of the inverse function

x̃t−1 = µφt
(1−φt)(1+µφ2t )−µφt(1−φt)2

. On the intervals where this function is positive and increasing, its

inverse offers candidate functions for φ̂(x̃t−1), since they will satisfy both the first-order condition

(FOC) and the second-order condition (SOC) on the relevant ranges.

If µ < 4, Lemmas 3.2 and 3.3 imply that the FOC defines a function φ(x̃t−1) that is continuous

and monotonically increasing on x̃t−1 ≥ 0, since the inverse function is monotonic and continuous

on the interval [0,1]. When µ ≥ 4, the inverse function x̃t−1 = µφt
(1−φt)(1+µφ2t )−µφt(1−φt)2

provides two

candidate functions φ1(x̃t−1) and φ2(x̃t−1) and their ranges, and these satisfy both the FOC and

SOC.

In the case where 4 < µ < 8, foregoing lemmas imply that the inverse function x̃t−1 =

µφt
(1−φt)(1+µφ2t )−µφt(1−φt)2

is continuous but not monotonic. In particular, on the interval [0,1], the

inverse function will first be increasing, then decreasing, and then increasing again. Hence the FOC

implies a correspondence between φt and x̃t−1 on a range for x̃t−1. This implies that the FOC and

the SOC together define two positively sloped relationships between x̃t−1 and φt that share a range

but do not cross. Using φc and φd defined in Lemma 3.3, we need to set z1 = µφc
(1−φc)(1+µφ2c)−µφc(1−φc)2

and z2 = µφd
(1−φd)(1+µφ2d)−µφd(1−φd)2

to define the intervals over which φ1(x̃t−1) and φ2(x̃t−1) are de-

fined.

Finally, if µ ≥ 8, then the inverse function is neither continuous nor monotonic. Instead, it will

have two points of discontinuity, and the sign of its slope (defined everywhere except at these two

points of discontinuity) will change (as in the case of 4 < µ < 8) exactly twice on the interval [0,1]

(again: first positive, then negative and then positive). In particular, this implies that the FOC and

SOC again define two monotonically increasing functions (for φ as a function of x̃t−1) that share

a range but do not cross. Moreover, one branch must start at (0, 0), while the other branch must

end at (∞, 1). Using previous lemmas, the lower branch will be defined over [0,∞[ (i.e., z1 =∞),
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while the higher branch will be defined over [z2,∞[ where z2 = µφd
(1−φd)(1+µφ2d)−µφd(1−φd)2

.

Lemma 3.5: Conditional on µ > 4, there exists a z3 ∈ (z2, z1) such that the φ̂(x̃t−1) function will

correspond to φ1(x̃t−1) for x̃t−1 ∈ (0, z3) and correspond to φ2(x̃t−1) for x̃ ∈ (z3,∞).

Proof : The optimal function φ̂(x̃t−1) is composed of segments of φ1(x̃t−1) and φ2(x̃t−1) as defined

in Lemma 3.4. It is clear that the optimal function has to jump at least once between φ1(x̃t−1) and

φ2(x̃t−1), since we know that φ̂(x̃t−1) needs to start at zero and goes to 1 as x̃t−1 goes from 0 to

∞. To prove that this is the only point at which jumping between branches can occur, define for

i = 1, 2,

Ui(x̃t−1) = (1 + µφi(x̃t−1)2)(1− φi(x̃t−1))2x̃t−1 + (1 + µφi(x̃t−1)2).

This function gives the social cost of inflation and employment deviations that arises when

following the policy rule defined by φi(x̃t−1) discussed in Lemma 3.4. Since previous lemmas imply

φ2(x̃t−1) > φ1(x̃t−1), this means that any positive value for x̃t−1 at which U1(x̃t−1) = U2(x̃t−1)

must satisfy (1 + µφ1(x̃t−1)2)(1 − φ1(x̃t−1))2 > (1 + µφ2(x̃t−1)2)(1 − φ2(x̃t−1))2. However, the

envelope theorem makes this last inequality equivalent to ∂U1(x̃t−1)
∂x̃t−1

> ∂U2(x̃t−1)
∂x̃t−1

. Conclude that any

point of intersection between the two functions must have the property that U1(x̃t−1) approaches

U2(x̃t−1) strictly from below, thus precluding multiple intersections.

Propositions 3.1 and 3.2 follow from Lemmas 3.4 and 3.5.

Proposition 3.3: If φ and φ′ represent the two stances of monetary policy at the pivot point,

then φ(1− φ) = φ′(1− φ′). This implies that at the optimal point of pivot, inflation is expected to

fall but employment is expected to stay constant. However, the variance of employment increases

discontinuously at the pivot point.

Proof : If there is a point of pivot at the value of x̃ = x̃′, which arises only if µ > 4, then the

following three equations must be satisfied:

1) The payoff must be the same at x̃′ whether the monetary stance is given by φ and φ′, that is

(1 + µφ2)(1− φ)2x̃′ + (1 + µφ2) = (1 + µφ′2)(1− φ′)2x̃′ + (1 + µφ′2).

2) Both φ and φ′ must satisfy the first-order condition (FOC), that is

[µφ(1− φ)2 − (1− φ)(1 + µφ2)]x̃′ + µφ = 0

[µφ′(1− φ′)2 − (1− φ′)(1 + µφ′2)]x̃′ + µφ′ = 0.
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Using the FOC for φ, we know that

x̃′ =
µφ

(1− φ)(1 + µφ2)− µφ(1− φ)2
.

This allows us to reduce these three equations to the following two equations in φ and φ′:

µφ(1 + µφ2)(1− φ)2

(1− φ)(1 + µφ2)− µφ(1− φ)2
+ (1 + µφ2) =

µφ(1 + µφ′2)(1− φ′)2

(1− φ)(1 + µφ2)− µφ(1− φ)2
+ (1 + µφ′2)

[µφ′(1− φ′)2 − (1− φ′)(1 + µφ′2)]µφ

(1− φ)(1 + µφ2)− µφ(1− φ)2
+ µφ′ = 0

It can be verified that φ = µ−(µ2−4µ).5

2µ and φ′ = µ+(µ2−4µ).5

2µ comprise a solution to these two

equations when µ > 4. Note that these values for φ and φ′ satisfy the relationship φ′ = 1 − φ.13

Moreover, since we previously proved that there can be at most one pivot, these values for φ and

φ′ characterize the unique solution.

Given that the change in expected employment at the point of pivot is proportional to −φ′(1−

φ′) + φ(1− φ), and given that we have shown that φ′ = 1− φ, the expected change in employment

at the pivot is zero. In contrast, the change in the variance of employment at the pivot point is

given by (φ′2 − φ2)σ2
θ , which experiences a jump at the pivot value x̃′ since φ′ > φ.

A.2 A more general Phillips curve

Under the log-linear preferences assumed in the main text, the Phillips curve generated by the

model is

π̂t = Et−1π̂t + Et−1N̂t − θ̂t.

As we noted in Section 4.1, this expression gives a coefficient of unity on Et−1N̂t, which implies a

very steep Phillips curve. This feature can be relaxed quite easily by changing preferences to GHH

preferences. Assume that expected lifetime utility of households is given by

E
∞∑
t=0

βt ln
(
Cit − ηθtN1+λ

t

)
.

13One way of seeing that these values for φ and φ′ satisfy the two equations is to begin by conjecturing that
φ′ = 1 − φ and use this to replace φ′. Then each of these two equations individually becomes a function of only
φ. Both of these two new equations in φ only then can be reduced to the same cubic function of φ given by
2µφ3 − 3µφ2 + (2 + µ)φ − 1 = 0. This cubic function can then be factored as (φ − .5)(2µφ2 − 2µφ + 2) = 0. The
postulated φ and φ′ are the roots of (2µφ2 − 2µφ+ 2) = 0, and these satisfy the conjecture.
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This maximization is done subject to the same budget constraint as before:

∑
PjtCijt +Bit+1 = WitNit +Dit + τit +Bit(1 + ιt).

As in the text, Wit is predetermined at date t. At every date, individuals choose consumption and

bond purchases as well as the nominal wage for the next period. The first-order conditions for this

problem are

1

Pt

(
Cit − ηθtN1+λ

it

) = βEt

 1 + ιt+1

Pt+1

(
Cit+1 − ηθtN1+λ

it+1

)
 (A.26)

Wit+1 =

(
(1 + λ)ρη

ρ− 1

) Et
[

θt+1N
1+λ
it+1

Cit+1−ηθtN1+λ
it+1

]
Et
[

Nit+1

Pt+1(Cit+1−ηθtN1+λ
it+1)

] . (A.27)

Equation A.26 is the Euler equation governing the saving decision, while equation A.27 is the

optimal wage set by individual i for period t+ 1.

Under a symmetric equilibrium, we have Cit = Ct, Nit = Nt
n and Wit = Wt for all i. Using this

and approximating lnE(x) ≈ E ln(x), we can rewrite equation A.27 as

lnWt = ln

(
ρ(1 + λ)η

ρ− 1

)
− λ lnn+ Et−1 lnPt + Et−1 ln θt + λEt−1Nt, (A.28)

where we have lagged the aggregate wage equation by one period. Equation A.28 is identical to the

corresponding expression in the log-linear utility case given by equation 2.13, except for constants

and the λ instead of one multiplying Et−1Nt.

To compute the natural level of employment in this case, suppose for a moment that wages

and prices are both flexible and determined simultaneously. In this case, equation A.27 should be

replaced with the following:

Wit =

(
(1 + λ)ρη

ρ− 1

)
PtθtN

λ
it.

Since PY = γ
γ−1WN and Y = n

1
ρ−1 θN , the above can be rewritten as

γ − 1

γ
n

1
ρ−1 =

(
(1 + λ)ρη

ρ− 1

)
P

(
N

n

)λ
.
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This gives the natural level of employment under GHH preferences as

N̄ =

[(
γ − 1

γ

)(
ρ− 1

ρη(1 + λ)

)
n

1
ρ−1

+λ
] 1
λ

. (A.29)

Using the expression for N̄ in equation A.29 to add and subtract λ ln N̄ from equation A.28

gives

lnWt = ln

(
γ − 1

γ

)
+

(
1

ρ− 1

)
lnn+ Et−1 lnPt + λEt−1N̂t + Et−1 ln θt. (A.30)

From the price-setting equation, we have

lnPt = ln

(
γ

γ − 1

)
+

(
1

1− ρ

)
lnn+ lnWt − ln θt.

Subtracting lnPt−1 from both sides and using equation A.30 to get lnWt − lnPt−1, we get

π̂t = Et−1π̂t + λEt−1N̂t − θ̂t. (A.31)

This is the same Phillips curve as before but with slope coefficient λ.

A.3 The Euler equation and the monetary policy rule

By exploiting the symmetry Cit = Ct for all i, we can write the individual Euler equation in

equation 2.7, after taking logs and making the usual approximations, as

lnCt = Et lnCt+1 − [(ιt+1 − ῑ)− Et(πt+1 − π∗)],

where ῑ ≡ π∗ − lnβ. Substituting the market clearing condition Ct = m
1

γ−1Yt = m
1

γ−1n
1
ρ−1 θtNt

into this aggregate Euler equation then gives

lnNt − ln N̄ = Et(lnNt+1 − ln N̄)− [ιt+1 − ῑ− Et(πt+1 − π∗)],

where πt = Pt
Pt−1

is the inflation rate, π∗ is the central bank’s target level of inflation and N̄ is the

natural rate of employment, and where we have used the random walk property of θt.

We can then iterate forward on this equation to get14

14Given that we consider departures from rational expectations, we are not imposing the law of iterated expecta-
tions in general. When we look at the case with rational expectations, this iteration reduces to Et

∑∞
h=1[ιt+h − ῑ −

(πt+h − π∗)].
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lnNt − ln N̄ = −
∞∑
h=1

Et · ·Et+h−1[ιt+h − ῑ− (πt+h − π∗)], (A.32)

where employment is now expressed as deviations of future expected real interest rates from the

natural real rate of interest. Equations 2.16 and A.32 represent the constraints on the central bank

regarding how monetary policy can affect inflation and employment. In fact,
∑∞

h=1 Et··Et+h−1[ιt+h−

ῑ− (πt+h− π∗)] can be viewed as the amount of monetary stimulus injected into the system at any

point in time, and equation A.32 represents how that monetary stimulus affects real activity.

We could complete this environment by specifying a class of policy rules for setting ιt+1. How-

ever, it will be more convenient to think of the central bank as setting policy with the aim of

controlling the stimulus path
∑∞

h=1 Et · ·Et+h−1[ιt+h − ῑ− (πt+h − π∗)]. Given the importance that

central banks associate with communicating a stance of monetary policy that goes beyond only the

current policy rate setting, this approach can be viewed as both more realistic and encompassing.

Accordingly, instead of thinking only of ιt+1 as being set as a function of inflation, as would be

typical with a Taylor rule, here we think of the central bank as setting an expected stimulus path

as a function of inflation according to

∞∑
h=1

Et · ·Et+h−1[ιt+h − ῑ− (πt+h − π∗)] = φt(πt − π∗), (A.33)

where φt captures the extent to which the central bank adds or removes stimulus depending on

current inflation. Combining equations A.32 and A.33 then gives

lnNt − ln N̄ = −φt(πt − π∗), (A.34)

which is the same as equation 2.18 that we derived in the main text.

With this perspective, the economy inherits a simple recursive structure whereby, for a given

policy stance captured by {φt}, equations 2.16 and A.34 determine inflation and employment. Once

the paths for inflation and employment are determined, one can use the Euler equation to find the

expected nominal interest rate process that would implement the outcome.

A.4 Oil price shocks as productivity shocks

One of the objectives of this paper has been to examine optimal monetary policy when an economy

faces supply-side shocks, with oil price shocks being one especially relevant example. However, in
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the model, the only source of aggregate uncertainty is a productivity shock. We now show the

mapping between oil price shocks and productivity shocks to the value-added production function

of an economy.

Let the gross output of the economy be given by

Qt = F (ZtNt, Ot), (A.35)

where F (·, ·) is a constant returns-to-scale (CRS) function in its two arguments, Zt is a labour-

augmenting productivity factor, Nt is labour and Ot is oil. The corresponding value-added function

is
Yt
Nt

= F

(
Zt,

Ot
Nt

)
− P ot

Ot
Nt
,

where P ot denotes the price of a unit of oil. Note that we have used the CRS property of F to write

the value-added function in per-worker terms.

The first-order condition governing optimal oil usage is

F2

(
Zt,

Ot
Nt

)
= P ot ,

where we use F2(·, ·) to denote the derivative of F with respect to its second argument. Since F is

CRS in its two arguments,

F2

(
Zt,

Ot
Nt

)
= F2

(
1,

Ot
ZtNt

)
= f ′

(
Ot
ZtNt

)
,

where f(·) ≡ F (1, ·), and thus f ′′(·) < 0. We can use this expression along with the first-order

condition to derive optimal oil demand as

Ot
Nt

= Zt(f
′)−1(P ot ). (A.36)

It is straightforward to verify that the demand for oil is decreasing in its price.

We can use the optimal demand for oil from equation A.36 in the value-added production

function to get

Yt = NtZth(P ot ),

where h(P ot ) ≡ f [(f ′)−1(P ot )]− P ot (f ′)−1(P ot ). Differentiating h with respect to P ot and evaluating
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it around the optimum gives

h′(P ot ) = −(f ′)−1(P ot ) < 0.

Defining θt ≡ Zth(P ot ), we get the value-added function to be

Yt = Ntθt, (A.37)

where labour productivity θt is a decreasing function of the oil price P ot .
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