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Abstract 

The low-frequency movements of many economic variables play a prominent role in policy analysis and 

decision-making. We develop a robust estimation approach for these slow-moving trend processes, which 

is guided by a judicious choice of priors and is characterized by sparsity. We present some novel stylized 

facts from longer-run survey expectations that inform the structure of the estimation procedure. The 

general version of the proposed Bayesian estimator with a slab-and-spike prior accounts explicitly for 

cyclical dynamics. The practical implementation of the method is discussed in detail, and we show that it 

performs well in simulations against some relevant benchmarks. We report empirical estimates of trend 

growth for U.S. output (and its components), productivity, and annual mean temperature. These estimates 

allow policymakers to assess shortfalls and overshoots in these variables from their economic and 

ecological targets. 
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1 Introduction

Quantifying and characterizing the low-frequency behavior of time series processes has a long tra-

dition in economics. The appeal of constructing accurate and robust estimates for the slow-moving

trend component of an economic series for informing policy analysis cannot be overstated. How-

ever, as the true low-frequency component is inherently unobserved, its extraction and validation for

guiding economic policy is fraught with difficulties arising from substantial underlying uncertainty.

The commonly employed state-space approach essentially assumes a particular parametric struc-

ture about the deterministic and stochastic trend components but it tends to exhibit fragilities to

potential misspecification and strong identification requirements. For example, it is often the case

that even a seemingly innocuous misspecification in the trend component could induce a severe

distortion in the estimated trend-cycle decomposition by erroneously attributing some of the low-

frequency persistence to the cyclical dynamics. On the other hand, adopting a more agnostic

approach by starting from an unrestricted set of nonparametric estimators may produce very wide

(highly uncertain) estimates that are of little practical relevance. This suggests that to achieve

more informative inference, one may need to impose discipline on the low-frequency movements via

prior information or restrictions that ensure sparsity.

To inform our approach to trend estimation, we present novel survey evidence on “longer-run”

forecasts – which offer a convenient way to define the low-frequency or trend component – of

main variables of interest in the U.S. In addition to the “slow-moving” trend that is embedded

in these forecasts, we also provide a new stylized fact, summarized by histograms for the first

and second difference of the forecast, that individual forecasters appear to change their long-run

forecasts only rarely. To accommodate these features – slowly-evolving and infrequently-changing

low-frequency component – we rely on sparsity and shrinkage through our choice of a slab-and-

spike prior. This prior information that we impose on the unobserved trend process is intuitive and

aligns with the beliefs of professional forecasters. To allow for high-frequency cyclical fluctuations,

we employ a stationary autoregressive process. We implement these ideas by resorting to the

Bayesian counterpart of generalized LASSO estimation with separate penalties on the long-run

and short-run components. Our method thus generalizes some existing procedures for robust trend

estimation (Kim, Koh, Boyd, and Gorinevsky (2009), Tibshirani (2014)), and Roualdes (2015))

with the aim of capturing the salient features of economic data.

Prominent contributions to the study of the low-frequency behavior of economic series include

Hodrick and Prescott (1980), Beveridge and Nelson (1981), Baxter and King (1999), Morley, Nelson,

and Zivot (2003), among many others. A primary motivation of this literature is to isolate the low-

frequency, slow-moving component of a series – which reflects the secular and structural factors

that underlie its dynamic behavior – from its high-frequency, possibly cyclical, variations. Potential

output, natural rate of unemployment, neutral real rate of interest, inflation expectations, and

common variation in real activity are only a few examples of such slow-moving latent processes that

are often denoted by and referred to as “stars.” There are numerous papers that have implemented

these methodologies in wide applications across economics and finance (see, for example, Laubach

and Williams (2003), Holston, Laubach, and Williams (2017), Del Negro, Giannone, Giannoni,
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and Tambalotti (2018), Crump, Eusepi, Giannoni, and Şahin (2019) among many others). The

theoretical literature continues to evolve with recent work such as Müller and Watson (2008),

Grant and Chan (2017), Hamilton (2018), Phillips and Shi (2020), and Lee, Liao, Seo, and Shin

(2021) among others (see Hodrick (2020) and Canova (2020) for comprehensive discussion).

The point of departure of this paper from the existing literature is to operationalize the “slow-

moving” trend assumption through an imposition of sparsity that is informed by survey evidence of

financial market participants. In particular, our contributions can be summarized as follows. First,

we provide novel evidence on individual survey forecasts of the trend component of key economic

variables. We utilize non-public data from the Survey of Primary Dealers which is the only survey

of professional forecasters which explicitly solicits longer-run forecasts on a consistent basis. Our

matched panel data allows us to characterize the distribution of adjustments to longer-run forecasts

over time. On the methodological side, we contribute to the literature on Bayesian sparse trend

estimation utilizing slab-and-spike priors and a serially correlated cycle component. The embedded

sparsity of our estimator offers an alternative statistical characterization of a “slow-moving” trend.

Furthermore, our Bayesian setup allows to incorporate uncertainty around our estimates in an

internally consistent manner.

Our main empirical application focuses on the estimation of the low-frequency trend in real GDP

growth. This is a perennial question in empirical macroeconomics with important implications for

monetary and fiscal policy (for recent contributions, see, e.g., Fernald, Hall, Stock, and Watson

(2017), Coibion, Gorodnichenko, and Ulate (2018) and Müller, Stock, and Watson (2020)). Our

estimates for 1947–2019 suggest that trend real GDP growth in the U.S. has been falling since

the 1960s and ends the sample at around 2%. Importantly, our method produces slow-moving

trend estimates which do not systematically co-vary with the cycle. We contrast our estimates

to those based on recently proposed estimators of Müller and Watson (2008), Grant and Chan

(2017), and Phillips and Shi (2020). We further provide a detailed analysis of the underlying trend

in the contributions to real GDP growth from its constituent components. Despite the fact that

these components generally exhibit different dynamic properties, we find that the individual trends

estimated for the GDP contributions can be aggregated and match closely the direct trend estimate

from headline real GDP growth. We also explore two other empirical applications: post-war total

factor productivity (TFP) growth and mean temperature changes in the U.S. over the last 140

years. These estimates facilitate policy makers’ efforts to assess shortfalls and overshoots in these

variables from their economic and ecological targets.

This paper is organized as follows. In Section 2, we provide heuristic motivation, based on

long-run survey forecasts, for our general estimation approach which is introduced in Section 3.

We first discuss the estimation methodology for a white noise cycle in Section 3.1 and its extension

to a general cycle component in Section 3.2. Our main empirical application on the trend in U.S.

real GDP growth is provided in Section 4. Section 5 assesses the finite-sample properties of the

method in a small simulation experiment. Section 6 concludes. Finally, the Appendix provides full

details on the implementation of our proposed methodology.
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2 Evidence on Survey-Based Trends

In this section, we present new stylized facts about longer-run survey forecasts of professional fore-

casters. This empirical evidence will serve as a motivation for the methodological approach that we

introduce later in the paper. To cement ideas, it is useful to discuss a convenient mathematical for-

mulation of an underlying trend (Beveridge and Nelson, 1981) of a variable yt as limh→∞ E[yt+h| Ft]
where Ft is the information set available at time t. Thus, this may be interpreted as a very long-run

forecast of the variable yt which aligns directly with our survey data.

We use non-public data from the Federal Reserve Bank of New York’s Survey of Primary Dealers

(SPD).1 The SPD is conducted by the Trading Desk of the New York Fed one to two weeks before

each regularly scheduled Federal Open Market Committee (FOMC) meeting and survey respondents

are primary dealers (at the time of the survey) to the Federal Reserve Bank of New York.2 Starting

in July 2012 the survey began asking respondents about their “longer-run” forecasts for relevant

economic variables. To our knowledge, the SPD is the only survey that solicits forecasts from

private-sector respondents on explicitly “longer-run” values of economic variables.3 This stands in

contrast to a number of surveys which request farther in the future forecasts for economic variables

with specific horizon. The SPD collects longer-run forecasts of real GDP growth, the unemployment

rate, the federal funds rate, and PCE inflation. We obtain an unbalanced panel of these forecasts

for the entire available sample starting in mid-2012 which comprises 77 survey observations. Our

sample includes 25 different primary dealers of which 16 primary dealers have forecasts for at least

70 of the 77 survey dates.4

Figure 1 presents the time series of different quantiles of the cross-sectional distribution of

forecasts for real GDP growth, the unemployment rate, the federal funds rate, and the real federal

funds rate. The latter is obtained by subtracting the longer-run PCE inflation forecast from the

nominal federal funds rate forecast. First, there appears to be clear commonality in the movement

of these longer-run forecasts with only modest disagreement across respondents. All four variables

exhibit a downward trend over our sample period reflecting the perceived decline in potential

output, the natural rate of unemployment, and the natural rate of interest (e.g., Crump, Eusepi,

and Moench (2018), Holston, Laubach, and Williams (2017), Del Negro, Giannone, Giannoni, and

Tambalotti (2018)). Notably, the longer-run forecasts appear remarkably stable even after the onset

of the COVID-19 pandemic.

Importantly, across all four variables, we can observe two key properties of these longer-run

forecasts that will later serve to motivate our theoretical approach. First, the longer-run values

of these economic variables are perceived to move over time but in a slow and deliberate fashion.

Second, there are distinct periods of unchanged forecasts along with periods where forecasts change

1See https://www.newyorkfed.org/markets/primarydealer_survey_questions.
2Further information is available here: https://www.newyorkfed.org/markets/primarydealers.
3The Survey of Economic Projections (SEP), conducted by the FOMC, also reports longer-run values for these

variables which is then mirrored by the SPD. In the SEP, “[l]onger-run projections represent each participants assess-
ment of the rate to which each variable would be expected to converge under appropriate monetary policy and in the
absence of further shocks to the economy.” See, for example, https://www.federalreserve.gov/monetarypolicy/
files/fomcprojtabl20220921.pdf.

4All of our empirical results are robust to excluding the 9 primary dealers who have shorter reporting periods.
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at a constant rate. This provides suggestive evidence that differences or second differences of

forecasts for longer-run variables regularly take on values of zero.

Figure 1. Time Series Properties of the Cross-Sectional Distribution of Forecasts. This figure shows the
cross-sectional median (solid line) and first and third quartiles (dashed lines) for the longer-run forecasts from the
Survey of Primary Dealers (SPD). The real federal funds rate longer-run forecast is constructed by subtracting the
individual longer-run PCE inflation forecast from the corresponding longer-run federal funds rate forecast. The
sample period is 2012m7–2022m3.
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We can demonstrate these properties by examining the empirical distribution of changes in

longer-run forecasts. Figure 2 shows histograms of the first- and second-differences of longer-run

forecasts from the SPD. Each chart presents two histograms. The first histogram pools all forecasts

across survey respondents and time periods. The second histogram is an optimal aggregator of the

histograms for each individual survey respondent. The weights are obtained by minimizing the

Hellinger distance between the pooled histogram and the optimal-weighted aggregator.5 The most

striking feature of Figure 2 is the disproportionate peak in each histogram at the bin centered at

zero. This pattern holds across all variables and for both first and second differences.6 Importantly,

this behavior is driven by exact zero values rather than very small values. In particular, all four

variables have between 80% and 85% of their first differences equal to zero and 66% to 74% of second

differences equal to zero. As we move away from zero, we tend to observe a relatively wide but

5For more details and an application of this aggregation approach to asset-pricing models, see Gospodinov and
Maasoumi (2021).

6In unreported results, we confirm that the same patterns hold at the individual forecaster level. These results
are omitted to comply with data confidentiality restrictions of the SPD.
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flat spread of observations. These histograms do not appear to be consistent with the behavior of

a standard continuous distribution like the Gaussian distribution. Instead, the disparate behavior

for small values relative to larger values (in magnitude) appears more consistent with a mixture

distribution. This is precisely the methodological approach we undertake in the next section.

5





3 Sparse Trend Methodology

3.1 Trend plus white noise

We begin with a description of the setup adopted throughout the paper. Suppose that we observe

the time series {yt}Tt=1. We will assume that yt may be decomposed as

yt = gt + εt, t = 1, . . . , T, (1)

for some “trend,” gt and corresponding deviation from trend εt. Without further assumptions we

cannot make any progress in separating gt from its deviation. To see this, note that we can set

ĝt = yt and fit the data with no error. To avoid such an outcome, a popular class of estimators of

the trend is of the form:

min
g1,...,gT

T∑
t=1

(yt − gt)2 + λg

T∑
t=1

`
(

∆kgt

)
, (2)

where ∆k denotes the k-th order difference operator for k ≥ 1 and `(·) is a penalty function with

penalty parameter λg. When `(z) = z2 and k = 1, then this is the likelihood function of the local

level model, where ∆gt = vt for some white noise process {vt}Tt=1. Similarly, when `(z) = z2 and

k = 2, we obtain the HP filter (Hodrick and Prescott 1980). Finally, for `(z) = |z| and a fixed k

we obtain the trend filter of Tibshirani (2014).

We appeal to the common assumption of a “slow moving” trend. This assumption is imple-

mented, in practice, almost exclusively by modeling the trend component as non-stationary with

a “small” innovation variance. In contrast, our approach is to instead induce the desired low-

frequency behavior through sparsity in changes in the estimated trend component. As a convenient

way to model the slow-moving trend and its associated estimation uncertainty, we develop our

methods within a Bayesian framework.

A natural starting place would be the trend filter as the frequentist version induces sparsity

since the estimation setup may be nested as a generalized LASSO problem. From a Bayesian

perspective, the trend filter can be motivated following Park and Casella (2008). Park and Casella

(2008) study the standard linear regression setting, where Y |X,β, σ2 ∼ N (Xβ, σ2IT ) and

p(β1, . . . , βp|σ2) =

p∏
j=1

1

2
√
σ2

exp

{
−λ |βj |√

σ2

}
. (3)

In its hierarchical form,7

β1, . . . , βp
∣∣σ2,κ1, . . . ,κp ∼ N

(
0, σ2 · diag (κ1, . . . ,κp)

)
, (4)

7The hierarchical form uses the representation of the Laplace distribution as a scale mixture of normals (with an
exponential mixing density). See Park and Casella (2008) for further discussion.
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p
(
κ1, . . . ,κp|σ2, λ

)
=

p∏
i=1

(
λ2

2

)
exp

{
−λ2κi

2

}
(5)

with

p(σ2) = 1/σ2. (6)

The Bayesian trend filter can then be obtained setting p = T , X = IT , gt = βt and the priors

applied to each of the ∆kgt (Roualdes 2015). A drawback to this approach is that frequentist

sparsity does not translate to Bayesian sparsity so that any individual draw of gt will have nonzero

changes with probability one. Consequently, so does the posterior median or other common sum-

mary objects of interest. To alleviate this issue, we instead utilize a spike-and-slab prior so that

individual draws possess the desired sparsity.

As a simple illustrative example for the spike-and-slab approach, consider the process as in

equation (1) with ∆gt = vt, where vt are i.i.d. which follow a mixture distribution with vt ∼ N (0, $)

with probability ξ and vt = 0 with probability 1− ξ. Intuitively, this mixture distribution weakens

the link between small movements and large movements in the random variable. This accommodates

slow-moving dynamics without compromising some occasional bursts of movement in the series (as

seen in Figure 1).

To transform this motivating example to a more general setup, suppose that the observed data

y = (y1, . . . , yT )′ satisfies

y | g, σ2 ∼ N (g, σ2IT ) (7)

and we propose the following prior (and hyperprior) distributions on the parameters. First, we

assume that g = (g1, . . . , gT )′ satisfies

g | σ2, ω ∼ N (0, σ2Σg), Σ−1g = D′kdiag(ω1, . . . , ωT−k)
−1Dk, (8)

whereDk is the (T−k)×T , k-difference matrix which maps a vector (x1, . . . , xT )′ to (∆kxk+1, . . . ,∆
kxT )′

and ωj are the mixing variables for the Laplace distribution. These mixing weights for g, {ωj : j =

1, . . . , T − k}, are conditionally independent with corresponding density

p (ωj | λg, λ0, θj) = (1− θj)
λ20
2

exp

{
−λ20ωj

2

}
+ θj

λ2g
2

exp

{
−λ2gωj

2

}
, (9)

where λ0 is fixed at a large number such that λ0 >> λg. This corresponds to the continuous spike-

and-slab setup (see Ročková and George (2018)), where θj can take on the value very close to 0 – the

“spike” – or the value of 1 – the “slab”, governed by λg. The parameter λg has the interpretation

of representing a signal-to-noise ratio, where the “signal” corresponds to the underlying trend, gt.

Further, it is assumed that θj are distributed as

θj ∼ Bernoulli(ξ) (10)
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with common parameter ξ, where

ξ ∼ Beta(a, b). (11)

Here, a and b are hyperparameters. In our implementation, we choose a = b = 1 which corresponds

to a uniform prior.8 Next, as in Park and Casella (2008), we place an uninformative prior on σ2 as

p(σ2) = 1/σ2. (12)

Finally, λg is distributed as

λg ∼ Γ(rg, δg) (13)

with hyperparameters rg and δg, where rg is the shape parameter, and δg is the rate parameter. In

principle, we could estimate λg via an empirical Bayes approach; however, we have found that a

diffuse gamma prior gives similar posterior median estimates but is more computationally efficient

and also allows us to accommodate the uncertainty from this parameter.

It is instructive to compare the prior assumptions underpinning the Bayesian LASSO (equations

3–6) to our slab-and-spike formulation. In the Bayesian LASSO, a single Laplace density is used to

draw from. In contrast, Figure 3 provides an example of the two Laplace densities that comprise

the the continuous spike-and-slab setup.9 The blue line represents the “spike” and the red line

represents the “slab”. We can observe the clear similarities in the implied mixture distribution of

Figure 3 and the survey data presented in Figure 2. In Appendix A.1, we fully operationalize our

model, choice of priors, and the individual steps of the Gibbs sampling procedure.

Figure 3. Spike and Slab Densities. This figure illustrates the roles of the two densities in the continuous spike
and slab setup.
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8In some situations, one may want to place much more informative priors on ξ.
9In practice, when we implement the “slab and spike” formulation, the difference between the two densities is even

more extreme but we diminish the differences in Figure 3 for presentation purposes.
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where ct now represents the “cycle” and is presumed to be serially correlated over time with degree

of persistence determined by a parameter vector γ. For parsimony, we assume ct = yt − gt follows

an AR(q) with

ct = γ1ct−1 + · · ·+ γqct−q + εt, t = 1, . . . , T, (15)

where γ = (γ1, . . . , γq)
′. In principle, one could use a more general ARMA specification but we do

not pursue this further. This approach for the cycle term leads to a more general form of equation

(2),

min
g1,...,gT

T∑
t=1

ε2t + λg

T∑
t=1

`
(

∆kgt

)
+ λγ

q∑
i=1

hi(γ), (16)

where hi(γ) represents a transformation of the autoregressive parameters and λγ is the associated

penalty parameter. Two natural choices for hi(·) are hi(γ) = γi and hi(γ) = ϕi, where ϕi is the

i-th partial autocorrelation coefficient (see Schmidt and Makalic (2013) for regularization of partial

autocorrelation coefficients when gt is constant over time). In this more general setup, λg again

represents the signal-to-noise ratio but comparing standard deviation of the trend innovation to

the cycle.

We now assume that the observed data y = (y1, . . . , yT )′ satisfies

y | g, γ, σ2 ∼ N (g, σ2 · Vγ), (17)

where Vγ denotes the variance-covariance matrix of a strictly stationary AR(q) process with σ2 = 1.

The trend, g = (g1, . . . , gT )′, satisfies

g | σ2, ω, γ ∼ N (0, σ2Vγ,11 · Σg), (18)

where Vγ,11 is the (1, 1) element of Vγ . This additional factor ensures that our approach is scale

invariant to yt.
11 The mixing weights for g, {ωj : j = 1, . . . , T − k}, remain conditionally indepen-

dent with corresponding density as in equation (9). Moreover, the remaining parameters, σ2, θj , ξ,

and λg have priors as in the previous section.

For the cycle component, c = (c1, . . . , cT )′, we assume that c ∼ N
(
0, σ2Vγ

)
and partition the

density as,

p
(
c| γ, σ2

)
= p
(
cq+1:T | c1:q, γ, σ2

)
p
(
c1:q | γ, σ2

)
, (19)

where c1:q are the first q observations of the cycle and cq+1:T are the last T − q observations and

p
(
cq+1:T | c1:q, γ, σ2

)
∝ 1

σ(T−q)
exp

{
−(c−Bc,qγ)′(c−Bc,qγ)

2σ2

}
(20)

11In some contexts, an alternative that does not scale Σg may be preferred (Moran, Ročková, and George (2019)).
In our empirical applications, we have found that the results are robust to the choice of scaling.
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with Bc,q denoting a (T −q)×q matrix with i-th row equal to (ci+q−1, ci+q−2 . . . , ci). For the initial

conditions we have,

p
(
c1:q | γ, σ2

)
∝ 1

det(σ2Vγ)1/2
exp

{
−
c′1:qV−1γ c1:q

2σ2

}
. (21)

Next, following a similar approach as for the trend, we impose12

γ | τ ∼ N (0,Σγ) (22)

where

Σγ = diag(τ1, . . . , τq) (23)

and the mixing weights τj are conditionally independent for j = 1, . . . , q with density

p (τj | λγ) =
(λγ)2j

2
exp

{
−(λγ)2jτj

2

}
. (24)

Finally, the additional penalty parameter λγ is distributed as,

λγ ∼ Γ(rγ , δγ), (25)

with hyperparameters rγ and δγ , where rγ is the shape parameter, and δγ is the rate parameter. In

our empirical implementation, we choose rγ and δγ that result in a relatively tight prior distribution

for λγ around a small value. As we have discussed, our motivation is a cyclical component around

a slow-moving trend which corresponds to little to no prior penalization on this term. Appendix

A.2 and Appendix A.3 provide operational details about the implementation of proposed method.

To illustrate the implementation of the method from this section, we apply our estimator with

and without a cycle to data on the annual mean temperature change in the United States obtained

from NASA, which cover the sample period 1880-2019.13 The data are expressed as a deviation

from the average temperature (in Celsius) over 1951–1980. Figure 5 presents these results. The top

row shows the estimated underlying trend for both k = 1 and k = 2 when a cycle is included and

when it is omitted. When k = 1, we observe that the underlying trend displays more pronounced

local movements whereas for k = 2, the results are much smoother. Nevertheless, both trend

estimates display a clear and strong upward trend since around 1980. The second row presents

again the estimated trends along with 95% posterior coverage intervals. We can observe that the

estimated trend is precisely estimated and we can comfortably reject the hypothesis that current

levels of the trend are consistent with the data observed up to 1980. Finally, we highlight that the

inclusion of a cycle term has little effect on all of these results. In the next section, we will provide

12The formulation using partial autocorrelation coefficients is omitted to conserve space and is available upon
request from the authors.

13Data are available at https://data.giss.nasa.gov/gistemp/graphs_v4/.
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empirical examples where the role of the cycle term is more prominent.

Figure 5. Trend Estimates of the Annual Mean Temperature Change in the United States. This
figure presents trend estimates of the annual mean temperature change in the United States. The charts in the top
row displays the annual mean temperature change along with the estimated trend for k = 1 and k = 2 based on the
methodology introduced in Section 3. The bottom row displays the estimated trend for k = 1 and k = 2, with and
without a possibly serially correlated cycle, along with the corresponding 95% posterior coverage interval. The
sample period is 1880–2019.
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4 Empirical Application: Real GDP Growth

As our main empirical application, we study the underlying trend in real GDP growth in the United

States in the post-war era. The estimate of the unobserved trend component in real GDP growth,

which is stripped of cyclical fluctuations, can inform policymakers of the long-run potential of the

U.S. economy. The data is quarterly (annualized) real GDP growth over the pre-pandemic period,

1947:Q2–2019:Q4, although we also use the observations from 2020:Q1 to 2022:Q2 to quantify the

output shortfall from potential during the pandemic. As an additional exercise, we also construct

a “bottom-up” estimate of the trend using the individual component contributions to real GDP

growth.14

14All series are available from https://fred.stlouisfed.org/: Personal Consumption Expenditures
(DPCERY2Q224SBEA); Change in Inventories (A014RY2Q224SBEA); Residential Investment (A011RY2Q224SBEA); Busi-
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The top row of Figure 6 presents the time series of real GDP growth along with the estimated

low frequency component for k = 1 (left column) and k = 2 (right column). As it is well known,

the first half of the sample period is characterized by more frequent recessions (denoted by the

shaded areas) and higher output growth volatility. Each chart compares estimates which allow

for a serially correlated cycle to those which do not. We can see immediately that for real GDP

growth, there is a clear role for a cyclical component. In the top left plot, for k = 1, there is a

large difference between the estimated trend with and without a cyclical component. This stands

in stark contrast to the results presented in Section 3.2 for annual temperature change which were

largely unchanged with the addition of a cyclical component. For k = 2, the estimated trend is

quite similar with and without a cyclical component.

In the bottom left chart of Figure 6, we report results only for the estimated trends with a

cyclical component, along with the pointwise 95% posterior coverage intervals. We can observe

that the estimated trend and coverage intervals are broadly similar for each choice of k. The

estimated trend has been declining over the sample and both choices produce an estimated trend

of about 2.25% at the end of the sample. This is somewhat higher than the corresponding estimate

available from surveys of professional forecasters, the CBO or the FOMC which are all closer to

1.9%. The corresponding uncertainty around these estimates is slightly higher for k = 2, reflecting

the modestly higher variability in the trend estimate. Furthermore, there are more pronounced

boundary effects when k = 2 which is reflected in the widening of the confidence intervals on either

end of the sample. This was also the case for TFP in Figure 4.

ness Fixed Investment (A008RY2Q224SBEA); Federal Government (A823RY2Q224SBEA); State & Local Government
(A829RY2Q224SBEA); Net Exports (A019RY2Q224SBEA).
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For comparison, we consider several alternative approaches commonly used in the economic lit-

erature for decomposing economic series into trend and cycle. The workhorse models for estimating

the trend and the cyclical component are the unobserved components (UC) models. The closest

UC model to our approach is that of Grant and Chan (2017) which specifies a random walk trend

in the growth rate of real GDP along with an additive ARMA cyclical component. The middle

right chart presents our trend estimates for both choices of k along with the UC model of Grant

and Chan (2017) with a choice of an AR(2) cycle. Although all three estimated trends broadly

co-move, we can observe that the trend estimate from the UC model is more volatile and displays

residual cyclical behavior, tending to achieve local minima in NBER recessions. This demonstrates

the advantages of our sparse modeling framework which produces trend estimates that do not

systematically co-vary with the cycle.

The literature has highlighted some fragilities in the estimation of UC models and, as a result,

flexible trend estimation approaches may be preferred due to their ostensible robustness properties.

By far, the most common technique for estimating low-frequency trends in economic time series is

the HP filter (Hodrick and Prescott (1980)).15 Recently, Phillips and Shi (2020) have refined the

original HP filter to produce a data-driven implementation with desirable theoretical properties. In

the bottom left chart of Figure 6, we present the estimated trend for real GDP growth rate, based

on an application of the original HP filter and the boosted HP filter of Phillips and Shi (2020). We

apply these procedures to the level of log real GDP as is the standard approach in practice. We can

see immediately that the estimated trend growth rate is far more volatile than that of our procedure.

Moreover, the recession shading illuminates that the variability of the two trend estimates appear to

be governed by the state of the business cycle. In particular, trend real GDP growth is adjudged to

be at its local minimum around recessions throughout the sample. Furthermore, during the Great

Recession, the HP-boosted estimate of trend growth falls below zero which would have suggested

far less slack in the economy. In contrast, our trend estimates do not exhibit any cyclical behavior

which is more akin to an HP filter with a very large choice of the penalty parameter (see, for

example, Coibion, Gorodnichenko, and Ulate (2018)). Finally, the bottom right graph provides a

comparison to another flexible approach to estimating the low-frequency component, introduced

by Müller and Watson (2008) (see also Müller and Watson (2020)). Similar to the HP filter, this

approach also produces an estimate which is more variable and cyclical than our method.

There is a natural commonality in all of the approaches to low frequency estimation as they

can accommodate different behavior with different choices for the tuning parameter. All of these

approaches, for a specific choice of tuning parameter, would produce trend estimates that are

similar to our method. However, it is important to emphasize that our tuning parameter selection

is conducted in a data-driven way and obviates the need for “rules of thumb” based on the frequency

of the data.

Our discussion thus far has focused on the trend estimate but the estimates for the cycle

component are also of interest. For our implementation, we choose q = 4, allowing for up to 4

15Grant and Chan (2017) show that the HP filter can be obtained as the posterior mean of their estimator under
the assumption of uncorrelated trend and white-noise cycle components, and the penalty parameter equal to the
inverse of the signal-to-noise ratio.
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lags in the cyclical component of real GDP growth. This appears to be more than sufficient as the

posterior distribution of the γ parameters is characterized by a cycle variable with only a moderate

degree of serial correlation. For example, the posterior median of the sum of the γ coefficients is

about 0.3 which suggests weak time-series dependence. The standard deviation of the innovation

to the cycle component has a 95% posterior coverage interval of 3.2% to 3.8%, which is consistent

with the slow-moving trend estimates presented in Figure 6.

The recent COVID pandemic coincided with a brief but dramatic decline in real output. Given

the rapid recovery, a natural question to ask is whether there still remains a shortfall relative to

the pre-pandemic baseline. The left chart of Figure 7 presents the cumulative shortfall during the

pandemic from our k = 2 estimate of log potential output as of 2022Q3. The sharp rebound in

economic activity in the latter half of 2020 and through 2021 had almost closed the gap relative

to the trend. In contrast, the right chart shows the corresponding path of cumulative real GDP

growth after the Great Financial Crisis (GFC). The pseudo real-time estimate of the trend of

real GDP growth using k = 2 was 2.7% prior to the GFC. The differential behavior of output

growth is striking. Whereas after the pandemic, the real GDP shortfall was nearly closed, no such

convergence occurred over a similar time span after GFC. By 2013, the gap was actually getting

larger.

Figure 7. Real GDP Shortfalls. This figure presents log real GDP before and after the onset of the COVID
pandemic (left chart) and Great Financial Crisis (right chart) along with the counterfactual path based on the
estimated trend for k = 2 (red dashed line) and using the methodology introduced in Section 3.
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Although trend estimates of real output are relatively common in the literature, the underlying

components generally receive scant attention. A bottom-up approach to trend estimation may

reveal differential properties then using aggregate output as the target series. In Figure 8, we apply

our methodology to the underlying contributions to real GDP growth from personal consumption

expenditures, residential investment, business fixed investment, federal government expenditures,

state and local government expenditures, net exports and the change in inventories. The charts in

Figure 8 show the realized series along with the trend estimates using k = 1 and k = 2.
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Figure 8. Trend Estimates of Component Contributions to Real GDP Growth. This figure presents
trend estimates of component contributions to real GDP growth: personal consumption expenditures, residential
investment, business fixed investment, federal government expenditures, state and local government expenditures,
net exports and the change in inventories. All charts display the estimated trend for k = 1 and k = 2, with a
serially correlated cycle, based on the methodology introduced in Section 3. The sample period is 1947Q2–2019Q4.
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First, several features of the data are worth noting. A few series display outsized volatility

at the beginning of the sample, likely representing the transition into a post-war economy. The

so-called Great Moderation – a decline in the variability in real GDP growth starting in the mid

1980s – is only reflected in the underlying behavior of a subset of series. In particular, residential

investment, federal government expenditures, and the change in inventories exhibit pronounced

reductions in volatility in the second half of the sample. Finally, the different sub-components of

real GDP growth appear to display different serial correlation properties around a time-varying

central tendency.

Figure 8 shows that across most of the components, we estimate relatively slow-moving trends

for both k = 1 and k = 2. For example, the trend growth rate of personal consumption expenditures

(which represents the dominant component of U.S. GDP) largely follows similar dynamics as for

real GDP growth with a global peak in the mid-1960s at about 2.5% (k = 2) and a sharp drop from

2.3% in the late 1990s to a local trough of 1.3% in 2011. At the end of the sample, both k = 1 and

k = 2 suggest a trend growth of 1.6%.

Residential investment and federal government expenditures are the two sub-components that

display the largest differences between the trend estimates using k = 1 versus k = 2. For residential

investment, we observe modestly more volatility in the trend estimate using k = 1 relative to that

of k = 2; however, the trend estimate for k = 1 is still slow-moving with relative variability far less

than the actual series. In contrast, there is a marked difference in the trend estimate for federal

government expenditures using k = 1 versus k = 2. This is primarily driven by the very large

contributions to real GDP growth arising from elevated military spending related to the Korean

and Vietnam Wars. This results in heterogenous dynamics in the series such as different volatility

regimes, changes in persistence, or more pronounced non-Gaussian features. When k = 1, we are

necessarily assuming less smoothness in the trend and so the estimator may be more sensitive to

these types of features of the data. On the other hand, the trend estimate for k = 2 is robust to

extreme observations and highly persistent cyclical components. In general, we would recommend

reporting both k = 1 and k = 2 as differences can be informative about the underlying trend

behavior and the time series properties of the variables.

Figure 9 compares the “top-down” and “bottom-up” trend estimates using our methodology

for k = 1 and k = 2. By “top-down” we refer to trend estimation based on aggregate real GDP

growth as reported in Figure 6 and “bottom-up” refers to adding up the trend estimates of the

sub-components reported in Figure 8. For k = 2 (right plot), we can observe that there is essentially

no difference between the two approaches with an average absolute deviation of less than 5 basis

points. While for k = 1 (left plot) there is substantial deviation in the first half of the sample

– driven exclusively by the estimated trend in federal government expenditures, this difference is

largely eliminated by the mid 1970s with an average absolute deviation of 13 basis points.

Using real GDP growth as a benchmark application, we show both the benefits and the flex-

ibility of our new methodology. We use the underlying contributions to real GDP as a pseudo

“out-of-sample” metric to investigate the robustness properties of our approach. In this respect,

we exploit the richness of the GDP data to “stress-test” trend estimation procedures. The under-
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Figure 9. Real GDP Growth Trend Estimates: Top-Down and Bottom-Up. This figure presents trend
estimates of real GDP growth based on the aggregate series (“Top-Down”) and the component contributions
(“Bottom-Up”). The trend estimates are for k = 1 and k = 2 with a serially correlated cycle. The sample period is
1947Q2–2019Q4.
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lying contributions display heterogeneous dynamics and other features which allow us to assess the

robustness properties of our method. We find that when the data are homogenous, the choice of

k = 1 is preferred and performs well as shown by Figure 6; however, in the presence of outliers,

volatility clustering, and other characteristics, k = 2 produces a more robust slow-moving trend

estimate. Indeed, we saw in Figure 9, that the bottom-up and top-down estimates were nearly

indistinguishable for k = 2.

5 Simulation Evidence

In this section, we present results of a small simulation experiment that evaluates the performance

of our proposed estimator and compares it to the HP-boosting estimator (Phillips and Shi (2020))

from the previous section. The HP-boosting estimator has a data-driven implementation based

on an information-criterion rule. This makes it a natural comparison to our methodology for a

simulation experiment.

For our data-generating process, we purposefully simulate data with a slow-moving trend and

allow for both a serially uncorrelated and serially correlated cycle component. For the trend, y1,t,

we choose

y1,t = y1,t−1 + ηt, (26)

where ηt ∼ N (0, 0.052) with probability p1 and ηt ∼ N (0, 0.052 + 0.152) with probability 1 − p1.
We set p1 to 5% to obtain a generally slow-moving trend which features infrequent sharp moves to

align with the empirical evidence presented in Section 2. For the cycle component, y2,t, we employ

a first-order autoregression,

y2,t = ρ · y2,t−1 +
√

(1− ρ2)νt (27)
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where νt ∼ N (0, 1). The observed data is then yt = y1,t + y2,t. We consider two choices of ρ, ρ = 0

and ρ = 0.4. The simulation results are based on a sample size of T = 150 and S = 500 replications.

We simulate the trend component S times only and then generate the cycle component for each

of ρ = 0 and ρ = 0.4. This ensures comparability of the results across the two data-generating

processes. To provide supporting evidence that we have calibrated our DGP to the type of data

encountered in previous sections, Figure 10 presents a representative realization for each choice of

ρ. Despite the simple data generating process, it is evident from this figure that the simulated data

mimic the key features of the data sets we have used throughout the paper.

Figure 10. Simulated Data. This figure presents two draws from the data generating process described by
equations (26) and (27) for T = 150. The left and right charts represent simulated data for the series (yt) and the
underlying trend (y1,t) when ρ = 0 or ρ = 0.4, respectively.
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Tables 1 and 2 present the results for five different estimators: our sparse trend estimators for

k = 1 and k = 2, with and without a serially-correlated cycle component, and the HP boosting

estimator.16 To evaluate the performance, we use the root mean-square error (RMSE) and mean

absolute error (MAE) between the estimate and the true trend. In particular, each table reports the

minimum and maximum along with the 10th, 25th, 50th, 75th, and 90th quantiles of the realized

RMSE and MAE across simulations. To implement the procedures introduced in Section 3, we

follow the same approach as in the empirical applications (summarized in Appendices A.1 and

A.2). For specifications with a serially correlated cycle component, we choose q = 4. Relative to

the true DGP, we are comfortably overparameterized, but this allows us to assess what the costs

of this flexibility are in practice.

The results in both tables confirm the appealing properties of our trend estimator demonstrated

in the empirical applications. When ρ = 0, shown in Table 1, all four of our trend estimators

outperform uniformly the HP boosting procedure across simulations. For example, the median

RMSE/MAE of HP boosting exceeds by more than 20% the RMSE/MAE of the k = 2 with a

serially correlated cycle. We should expect the method using k = 1 without a cycle to perform the

16Following Phillips and Shi (2020), we implement the HP boosting estimator using an initial value of λ = 1600
and a maximum of 30 boosting iterations.
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best within our group of estimators and this is indeed the case. However, for either k = 1 and k = 2

with a serially-correlated cycle, there is very little deterioration in performance. This suggests that

the cost of being more agnostic about the true DGP is relatively low for our method and aligns

with the empirical evidence presented earlier. Moreover, there is little difference in performance

between choosing k = 1 and k = 2. This is because the data-generating process produces relatively

homogenous dynamics even though it features time-varying volatility.

Table 1. White-Noise Cycle. This table reports results from data generated as in equations (26) and (27) with
ρ = 0 for T = 150. Results are based on 500 simulations.

Quantiles of Root Mean-Square error (RMSE)

min 10% 25% 50% 75% 90% max

k = 1, no cycle 0.0860 0.1288 0.1517 0.1765 0.2081 0.2406 0.3264

k = 2, no cycle 0.0919 0.1325 0.1572 0.1849 0.2132 0.2455 0.3365

k = 1, w/cycle 0.0904 0.1296 0.1519 0.1791 0.2098 0.2417 0.3244

k = 2, w/cycle 0.0870 0.1332 0.1564 0.1859 0.2147 0.2459 0.3305

HP Boosting 0.1103 0.1697 0.1925 0.2240 0.2579 0.2931 0.3833

Quantiles of Mean Absolute Error (MAE)

min 10% 25% 50% 75% 90% max

k = 1, no cycle 0.0698 0.1036 0.1214 0.1430 0.1701 0.1985 0.2860

k = 2, no cycle 0.0744 0.1069 0.1257 0.1500 0.1755 0.2031 0.2905

k = 1, w/cycle 0.0744 0.1042 0.1216 0.1453 0.1721 0.2001 0.2776

k = 2, w/cycle 0.0700 0.1075 0.1263 0.1497 0.1759 0.2035 0.2863

HP Boosting 0.0883 0.1347 0.1541 0.1799 0.2097 0.2405 0.3101

In Table 2 we report our performance metrics for the DGP with ρ = 0.4. The presence of

a serially correlated cycle presents a more challenging environment for differentiating the trend

component. Consistent with this observation, we observe that both MSE and MAE are larger

than their counterparts in Table 1. Perhaps unsurprisingly, the sparse trend estimators without a

serially correlated cycle, uniformly underperform their counterparts that feature a dependent cycle

component. In this specification the estimators can attribute movements in the cycle to the trend

as we saw in the case of k = 1 in Figure 6. Combined with the results in Table 1, it becomes clear

that a simple and robust approach is to always utilize the estimators with a dependent cycle as

there is little cost when the errors are white noise while there are substantial benefits otherwise.

These latter estimators uniformly outperform the HP boosting procedure across simulations. For

example, the median RMSE/MAE of HP boosting exceeds by more than 30% the RMSE/MAE

of the k = 2 with a serially correlated cycle. Finally, in unreported results, we also calculated

RMSE and MAE for both Table 1 and 2 by omitting the first 10 and last 10 observations to ensure

that boundary effects were not disproportionately affecting the results. We draw exactly the same

conclusions from the trimmed results as from those above.
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Table 2. Serially-Correlated Cycle. This table reports results from data generated as in equations (26) and
(27) with ρ = 0.4 for T = 150. Results are based on 500 simulations.

Quantiles of Root Mean-Square error (RMSE)

min 10% 25% 50% 75% 90% max

k = 1, no cycle 0.1332 0.2108 0.2648 0.3499 0.4608 0.5576 0.8849

k = 2, no cycle 0.1012 0.1785 0.2126 0.2623 0.3245 0.3904 0.6031

k = 1, w/cycle 0.1007 0.1520 0.1791 0.2251 0.2742 0.3272 0.5389

k = 2, w/cycle 0.0939 0.1591 0.1949 0.2405 0.2883 0.3411 0.4695

HP Boosting 0.1388 0.2414 0.2742 0.3259 0.3815 0.4387 0.5780

Quantiles of Mean Absolute Error (MAE)

min 10% 25% 50% 75% 90% max

k = 1, no cycle 0.1031 0.1702 0.2149 0.2832 0.3727 0.4470 0.7080

k = 2, no cycle 0.0802 0.1429 0.1714 0.2138 0.2643 0.3259 0.4782

k = 1, w/cycle 0.0839 0.1245 0.1467 0.1861 0.2299 0.2725 0.4523

k = 2, w/cycle 0.0743 0.1287 0.1582 0.1943 0.2357 0.2844 0.4112

HP Boosting 0.1122 0.1924 0.2229 0.2640 0.3137 0.3592 0.4684

6 Conclusion

Many variables of interest in economics and finance are obtained by decomposing observable pro-

cesses into unobserved components. This is innately a challenging problem as assumptions are

necessary to reliably separate the contributions from each component. In this paper, we adopt

an approach motivated by the frequently used notion that the economic trend of interest is “slow-

moving.” Using novel survey data, we show that perceptions of slow-moving trends are characterized

by sparse adjustments. We incorporate this observation to inform the priors in a general Bayesian

framework for trend estimation. We combine “slab and spike” priors on changes in the underlying

trend with a setup where the deviation from trend is allowed to be serially correlated. This en-

sures that our estimated trend features sparse adjustments and that it can capture the dynamics

of commonly used series in economics. We illustrate in simulations that our method performs well.

We apply our method in three different empirical settings: post-war total factor productivity

(TFP) growth, mean temperature changes in the U.S. over the last 140 years, and post-war real

GDP growth and its sub-components. For TFP growth, our trend estimates confirm the suspected

slowdown in trend productivity growth since the early 2000s. At the eve of the COVID pandemic,

our estimates suggest that trend TFP growth is between 0.5% and 0.7%. In our climate application,

we estimate a clearly upward underlying trend with an inflection point around 1980. Since then, the

underlying trend in temperature has risen by about 1.0◦ C (Celsius) with a 95% posterior coverage

interval of (0.7, 1.4)◦ C. The trend estimates at the end of our sample are consistent with a rise in

temperatures of between 0.2 and 0.3◦ C over the next ten years. In our primary application, we

estimate that trend real GDP growth in the U.S. has been falling since the 1960s and now stands
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slightly above 2%. While we show that trend estimates from other popular procedures appear to

inherit some residual business cycle cyclicality, our method produces slow-moving trend estimates

which do not systematically co-vary with the cycle. We further analyze the underlying trend in the

contributions to real GDP growth from its constituent components which generally exhibit very

different dynamic properties. Despite that, we find that the individual trends estimated by these

components can be aggregated to match closely the direct trend estimate from headline real GDP

growth.

Our method can be readily extended to a multivariate setting. We saw in the SPD data that

the longer-run forecasts appear to co-move across different economic variables, suggesting that

they could be modeled jointly. Moreover, this could be beneficial as using external information or a

multivariate model to impose economic restrictions (e.g., Phillips curve, Okun’s law, etc.) is likely

to sharpen identification and inference (e.g., see Müller, Stock, and Watson (2020)). Our method

is also applicable in settings – for example, impulse responses in local projection models – that may

require flexible de-trending of the data prior to the analysis. These extensions are currently under

investigation by the authors.
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Appendix A: Desription of the Gibbs Sampling Algorithm

This Appendix provides detailed steps on how to implement the estimation procedure introduced
in Section 3. Section A.1 provides steps for the case of a white-noise cycle whereas Section A.2
generalizes to the case of a serially-correlated cycle. For further details underlying each individual
step, see Appendix A.3.

A.1 Trend Plus Noise

Throughout, we use the same notation as introduced in Section 3.1. In addition, define S :=∑T−k
j=1 θj . The steps of the Gibbs sampler are as follows:

1. Draw (λg | g, θ) ∼ Γ
(
S + rg, δg +

∑ θj |(Dkg)j |√
σ2

)
.

2. Draw (σ2 | y, g, γ) ∼ Inverse-Gamma
(
T − k

2 ,
1
2

(
(y − g)′(y − g) + g′Σ−1g g

))
.

3. Draw (g | y, σ2, γ, ω) ∼ N
((
IT + Σ−1g

)−1
y, σ2

(
I−1T + Σ−1g

)−1)
.

4. Draw (ξ | θ) ∼ Beta(S + a, T − k − S + b).

5. Draw each (θj | g, σ2, λg, λ0, ξ) as an independent Bernoulli random variable with

P (θj = 0) =
(1− ξ)λ0e

−
√
λ20(Dkg)

2
j/σ

2

(1− ξ)λ0e
−
√
λ20(Dkg)

2
j/σ

2

+ ξλge
−
√
λ2g(Dkg)

2
j/σ

2
,

P (θj = 1) =
ξλge

−
√
λ2g(Dkg)

2
j/σ

2

(1− ξ)λ0e
−
√
λ20(Dkg)

2
j/σ

2

+ ξλge
−
√
λ2g(Dkg)

2
j/σ

2
,

for j = 1, . . . , T − k.

6. Draw each ( 1
ωj
| g, θj , λg) ∼ Inverse-Gaussian

(√(
(1−θj)λ20+θjλ2g

)
σ2

|(Dkg)j |2
, (1− θj)λ20 + θjλ

2
g

)
independently for j = 1, . . . , T − k.

In our empirical implementations, we choose λ0 = 100, (rg, δg) = (0.25, 2.5) for k = 1, and λ0 =
4, 000, (rg, δg) = (0.0075, 2.25) for k = 2.

A.2 Trend Plus Cycle

Throughout, we use the same notation as introduced in Section 3.2. In addition, define vsc(γ) =
σ2 · Vγ,11. Note that the Metropolis-Hastings step (Step 8 below) is required to draw γ in the
Gibbs sampler because (1) we assume a strictly stationary autoregressive process and (2) the
prior variance of the trend g is a function of Vγ . However, we follow the approach of Del Negro,
Giannone, Giannoni, and Tambalotti (2019) but tailored to our setting, and use the conditional
distribution of the LASSO estimator (conditional on the q initial conditions of c = y − g) as
our candidate distribution. This results in a simple accept-reject rule which performs well in
practice. Consequently, our Gibbs sampler remains computationally efficient with standard software
implementation.17 The steps of the Gibbs sampler are as follows:

17In our simulations and empirical exercises, we use MATLAB.
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1. Draw (λg | g, γ, σ2, θ, rg, δg) ∼ Γ

(
S + rg, δg +

∑T−k
j=1

θj |(Dkg)j |√
vsc(γ)

)
.

2. Draw (σ2 | y, g, γ) ∼ Inverse-Gamma
(
T − k

2 ,
1
2

(
(y − g)′V−1γ (y − g) + 1

Vγ,11 g
′Σ−1g g

))
.

3. Draw (ξ | θ) ∼ Beta(S + a, T − k − S + b).

4. Draw each (θj | g, σ2, λg, λ0, ξ) as an independent Bernoulli random variable with

P (θj = 0) =
(1− ξ)λ0e

−
√
λ20(Dkg)

2
j/σ

2

(1− ξ)λ0e
−
√
λ20(Dkg)

2
j/σ

2

+ ξλge
−
√
λ2g(Dkg)

2
j/σ

2
,

P (θj = 1) =
ξλge

−
√
λ2g(Dkg)

2
j/σ

2

(1− ξ)λ0e
−
√
λ20(Dkg)

2
j/σ

2

+ ξλge
−
√
λ2g(Dkg)

2
j/σ

2
.

for j = 1, . . . , T − k.

5. Draw each ( 1
ωj
| g, θj , λg) ∼ Inverse-Gaussian

(√(
(1−θj)λ20+θjλ2g

)
σ2

|(Dkg)j |2
, (1− θj)λ20 + θjλ

2
g

)
independently for j = 1, . . . , T − k.

6. Draw (g | y, σ2, γ, ω) ∼ N
((
V−1γ + σ2

vsc(γ)
Σ−1g

)−1
V−1γ y, σ2

(
V−1γ + σ2

vsc(γ)
Σ−1g

)−1)
.

7. Draw (λγ | γ, rγ , δγ) ∼ Γ
(
q + rγ , δγ +

∑q
j=1 |γj |

)
.

8. Given the values in Steps 1–7, jointly draw (γ,Σγ) through the following steps:

(a) Draw each ( 1
τoj

) ∼ Inverse-Gaussian
(∣∣∣λγγj ∣∣∣ , λ2γ) independently for j = 1, . . . , q. Set

Σo
γ = diag(τo1 , . . . , τ

o
q ).

(b) Draw γo ∼ N
(
CB′c,qcq+1:T , σ

2C
)
, where C = (B′c,qBc,q + σ2

(
Σo
γ

)−1
)−1 and cq+1:T is

the vector comprised of the last T − q elements of c.

(c) Let γ(t) denote the previous Gibbs draw of γ. If γo implies a stationary cycle component,
set (γ,Σγ) = (γo,Σo

γ) with probability

min


(
vsc(γ

(t))T−k|Vγ(t) |
vsc(γo)T−k|Vγo |

)1/2

exp

c
′
1:q

(
V−1
γ(t)
− V−1γo

)
c1:q

2σ2
+
g′Σ−1g g

2σ2

(
1

vsc(γ(t))
− 1

vsc(γo)

) , 1


and set (γ,Σγ) =

(
γ(t),Σ

(t)
γ

)
otherwise.

In our empirical implementations, we choose (rγ , δγ) = (0.5, 0.25).
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A.3 Details of Gibbs Sampler Steps

In this section, we provide some additional detail on the derivation of the Gibbs sampler for the
trend plus cycle specification (Appendix A.2). The results apply readily to the simpler trend plus
noise specification (Appendix A.1).

Detail for Steps 1–3

Drawing λg : In the text, we utilize the representation of the Laplace distribution as a scale
mixture of normals with an exponential mixing density as in Park and Casella (2008) (i.e., equations
(9) and (18)). We may write the conditional density of (Dkg)i directly as,

p
(
(Dkg)i | γ, σ2, θi, λg, λ0

)
= (1−θj)

λ0

2
√
vsc(γ)

exp

{
−λ0
|(Dkg)i|√
vsc(γ)

}
+θj

λg

2
√
vsc(γ)

exp

{
−λg
|(Dkg)i|√
vsc(γ)

}
.

The conditional distribution of λg is then

p
(
λg | g, γ, σ2, θ, rg, δg

)
∝ p

(
g | γ, σ2, λg, θ, rg, δg

)
· p (λg | rg, δg)

∝

 ∏
j|θj=1

λg

2
√
vsc(γ)

exp

{
−λg
|(Dkg)j |√
vsc(γ)

} · (λg)rg−1 exp{−δgλg}.

Thus, as in Step 1, we have

(
λg | g, γ, σ2, θ, rg, δg

)
∼ Γ

(
S + rg, δg +

∑ θj |(Dkg)j |√
vsc(γ)

)
.

Drawing σ2 : Writing out the full joint density and using the prior for σ2 in equation (12), we
obtain

p(y, g, ω, λg, γ, τ, λγ , σ
2) ∝ 1

σT
exp

{
−

(y − g)′V−1γ (y − g)

2σ2

}
1

σT−k
exp

{
−
g′Σ−1g g

2vsc(γ)

}
1

σ2

∝ 1

σ2T+2−k exp

{
−

(y − g)′V−1γ (y − g) + 1
Vγ,11 g

′Σ−1g g

2σ2

}
.

Thus, as in Step 2, we obtain

(
σ2 | y, g, γ

)
∼ Inverse-Gamma

(
T − k

2
,

1

2

(
(y − g)′V−1γ (y − g) +

1

Vγ,11
g′Σ−1g g

))
.

Drawing ξ : Using the priors introduced in equations (10) and (11) we obtain,

p(ξ | θ, a, b) ∝ p(θ | ξ) · p(ξ | a, b) ∝ (1− ξ)T−k−S+b−1ξS+a−1.

Thus, as in Step 3, we obtain

(ξ | θ, a, b) ∼ Beta(S + a, T − k − S + b).
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Detail for Steps 4–5

Our method for sampling from the joint distribution of ωj and θj is to first sample θj from its
marginal distribution and then sample ωj from its corresponding conditional distribution. We first
derive the joint distribution of ωj and θj :

p(ωj , θj | g, γ, σ2, λg, λ0, ξ) ∝ p(g | ωj , θj , γ, σ2) · p(ωj | λg, λ0, θj) · p(θj | ξ)

∝

(
(1− θj)(1− ξ)

λ20
2

exp

{
−λ20ωj

2

}
+ θjξ

λ2g
2

exp

{
−λ2gωj

2

})

× 1

ω
1/2
j

exp

{
−
ω−1j (Dkg)2j

2σ2

}
.

This last equation can be rewritten as:

p(ωj , θj | g, γ, σ2, λg, λ0, ξ) ∝ (1− θj)
(1− ξ)λ20
ω
1/2
j

exp

{
−
ω−1j (Dkg)2j

2σ2
− λ20ωj

2

}

+ θj
ξλ2g

ω
1/2
j

exp

{
−
ω−1j (Dkg)2j

2σ2
−
λ2gωj

2

}
. (A.1)

Drawing θj : We first rewrite equation (A.1) as

p(ωj , θj | g, γ, σ2, λg, λ0, ξ) ∝ (1− θj)
C0
ω
1/2
j

exp
{
−Aω−1j − B0ωj

}
+ θj

C1
ω
1/2
j

exp
{
−Aω−1j − B1ωj

}

with A =
(Dkg)

2
j

2σ2 , B0 =
λ20
2 , B1 =

λ2g
2 , C0 = (1− ξ)λ20, C1 = ξλ2g. We now can integrate over ωj to get

the marginal distribution of θj

p(θj | g, γ, σ2, λg, λ0, ξ) =

∫ ∞
0

p(ωj , θj | g, γ, σ2, λg, λ0, ξ) dωj

∝
∫ ∞
0

[
(1− θj)

C0
ω
1/2
j

exp
{
−Aω−1j − B0ωj

}
+ θj

C1
ω
1/2
j

exp
{
−Aω−1j − B1ωj

}]
dωj

∝ (1− θj)(1− ξ)λ0e
−
√
λ20(Dkg)

2
j/σ

2

+ θjξλge
−
√
λ2g(Dkg)

2
j/σ

2

.

The last step follows since the antiderivative of∫ ∞
0

C
ω
1/2
j

exp

{
−A
ωj
− Bωj

}
dωj

is

C
√
π

2
√
B

(
e2
√
ABerf

(√
A+

√
Bωj√

ωj

)
− e−2

√
ABerf

(√
A−

√
Bωj√

ωj

))
,
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where erf(x) is defined as erf(x) = 2√
π

∫ x
0 e
−t2 dt. Consequently,

∫ ∞
0

C
ω
1/2
j

exp

{
−A
ωj
− Bωj

}
dωj =

C
√
π√
B
e−2
√
AB.

Consequently, θj is a Bernoulli Random variable with

P (θj = 0) =
(1− ξ)λ0e

−
√
λ20(Dkg)

2
j/σ

2

(1− ξ)λ0e
−
√
λ20(Dkg)

2
j/σ

2

+ ξλge
−
√
λ2g(Dkg)

2
j/σ

2
,

P (θj = 1) =
ξλge

−
√
λ2g(Dkg)

2
j/σ

2

(1− ξ)λ0e
−
√
λ20(Dkg)

2
j/σ

2

+ ξλge
−
√
λ2g(Dkg)

2
j/σ

2
.

Drawing ωj : We now derive the conditional distribution of ωj given θj :

p(ωj | g, γ, σ2, λg, λ0, θj) ∝ p(g | ωj , γ, σ2) · p(ωj | λg, λ0, θj)

∝ 1

|Σg|1/2
exp

{
−
g′Σ−1g g

2σ2

}(
(1− θj)

λ20
2

exp

{
−λ20ωj

2

}
+ θj

λ2g
2

exp

{
−λ2gωj

2

})

∝ 1

|Σg|1/2
exp

{
−(Dkg)′diag(ω1, . . . , ωT−k)Dkg

2σ2

}
exp

{
−
(
(1− θj)λ20 + θjλ

2
g

)
ωj

2

}
.

The last step follows because θj only takes on the values of 0 or 1; in particular, only for these two
values will the last two lines be proportional as a function of ωj (their quotient is independent of
ωj , but dependent upon θj and λ0, λg). Thus,

p(ωj | g, γ, σ2, λg, λ0, θj) ∝
1

ω
1/2
j

exp

{
−
∑T−k

i=1 ω−1i (Dkg)2i
2σ2

}
exp

{
−
(
(1− θj)λ20 + θjλ

2
g

)
ωj

2

}
.

Using the change of variables, ηj = 1
ωj

, we obtain

p(ηj | g, γ, σ2, λg, λ0, θj) ∝
1

η
3/2
j

exp


−ηj(Dkg)2j −

(
(1−θj)λ20+θjλ2g

)
σ2

ηj

2σ2

 .

Thus, as in Step 5, we obtain,

1/ωj ∼ Inverse-Gaussian

√((1− θj)λ20 + θjλ2g
)
σ2

|(Dkg)j |2
, (1− θj)λ20 + θjλ

2
g

 .

31



Detail for Steps 6–7

Drawing g : This follows directly from equations (17) and (18) as

p(g | y, σ2, γ, ω) ∝ p
(
y | g, σ2, γ

)
· p
(
g | σ2, γ, ω

)
∝ exp

{
−

(y − g)′V−1γ (y − g)

2σ2

}
exp

{
−
g′Σ−1g g

2vsc(γ)

}
.

Thus, as in Step 6, we obtain that

(
g | y, σ2, γ, ω

)
∼ N

((
V−1γ +

σ2

vsc(γ)
Σ−1g

)−1
V−1γ y, σ2

(
V−1γ +

σ2

vsc(γ)
Σ−1g

)−1)
.

Drawing λγ : We will make use of equations (24) and (25) along with

p(γ,Σγ) ∝ 1γ · det(Σγ)−
1
2 exp

{
−1

2
γ′Σ−1γ γ

}
p(Σγ), (A.2)

where 1γ = 1 indicates a strictly stationary cycle. Assuming 1γ = 1, integrating out Σγ simplifies
the prior for γ to

p
(
γ | λγ

)
=

q∏
j=1

(
λγ
2

exp {−λγ |γj |}
)
,

so that

p (λγ | γ, rγ , δγ) ∝ p (γ | λγ , rγ , δγ) · p (λγ | r, δ)

∝

 q∏
j=1

λγ
2

exp {−λγ |γj |}

 · λrγ−1γ exp{−δγλγ}.

Thus, as in Step 7, we obtain

(λγ | γ, rγ , δγ) ∼ Γ

q + rγ , δγ +

q∑
j=1

|γj |

 .

Detail for Step 8

Drawing Σo
γ | γo : This step consists of jointly drawing all τj and follows by similar steps as for

ωj . We have,

p(τj | γ) ∝ det(Σγ)−
1
2 exp

{
−1

2
γ′Σ−1γ γ

}
p(Σγ).

Using the change of variables, ψj = 1
τj

, we obtain

p(ψj | γ) ∝ 1

ψ
3/2
j

exp

{
−
ψjγ

2
j − (λγ)2jψ

−1
j

2

}
.
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Thus, we obtain

1/τoj ∼ Inverse-Gaussian

(∣∣∣∣(λγ)j
γj

∣∣∣∣ , (λγ)2j

)
.

Drawing γo | Σo
γ : Equations (20) and (21) imply that

p(γ | c, g,Σ−1g ,Σ−1γ , σ2) ∝ p
(
c | γ, g, σ2

)
· p
(
γ | g,Σ−1g ,Σ−1γ , σ2

)
∝ p

(
cq+1:T | c1:q, γ, σ2

)
· p
(
c1:q | γ, σ2

)
· p
(
g | γ,Σ−1g , σ2

)
· p
(
γ | Σ−1γ

)
∝ exp

{
−

(CB′c,qcq+1:T − γ)′C−1(CB′c,qcq+1:T − γ)

2σ2

}

× 1

(Vγ,11)(T−k)/2|Vγ |1/2
exp

{
−
c′1:qV−1γ c1:q

2σ2

}
exp

{
−
g′Σ−1g g

2vsc(γ)

}
.

(A.3)

We cannot directly sample from equation (A.3). However, following Del Negro, Giannone, Giannoni,
and Tambalotti (2019), we can use a Metropolis-Hastings step utilizing N

(
CB′c,qcq+1:T , σ

2C
)

as

the candidate distribution. Let p̃(γ, c, g,Σ−1g ,Σ−1γ , σ2) be its corresponding pdf. Starting at γ(t),
we draw a candidate γo from the candidate distribution and calculate the acceptance probability

α = min

{
p
(
γo|c(t+1), . . . , (σ2)(t+1)

)
p
(
γ(t)|c(t+1), . . . , (σ2)(t+1)

) p̃ (γ(t), c(t+1), . . . , (σ2)(t+1)
)

p̃
(
γo, c(t+1), . . . , (σ2)(t+1)

) , 1

}

= min


(
vsc(γ

(t))T−k|Vγ(t) |
vsc(γo)T−k|Vγo |

)1/2

exp

c
′
1:q

(
V−1
γ(t)
− V−1γo

)
c1:q

2σ2
+
g′Σ−1g g

2σ2

(
1

(vsc(γ(t))
− 1

vsc(γo)

) , 1

 .

Our second accept-reject step is to take our candidate draw of (γo,Σo
γ) (drawn using the above

procedure) and accept with probability α = 1γo , where 1γo is an indicator for whether γo produces
a stationary cycle.
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