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Abstract

We develop a practical way of addressing the Errors-In-Variables (EIV) problem

in the Generalized Method of Moments (GMM) framework. We focus on the settings

in which the variability of the EIV is a fraction of that of the mismeasured variables,

which is typical for empirical applications. For any initial set of moment conditions

our approach provides a “corrected” set of moment conditions that are robust to the

EIV. We show that the GMM estimator based on these moments is
√
n-consistent,

with the standard tests and confidence intervals providing valid inference. This is true

even when the EIV are so large that naive estimators (that ignore the EIV problem)

may be heavily biased with the confidence intervals having 0% coverage. Our approach

involves no nonparametric estimation, which is particularly important for applications

with multiple covariates, and settings with multivariate, serially correlated, or non-

classical EIV.
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1 Introduction

Measurement errors are a common problem for empirical studies. While the standard in-

strumental variables approach can be used to remove the Errors-In-Variables (EIV) bias in

linear models, as pointed out by Amemiya (1985), nonlinear models require more elaborate

strategies.1 Despite the fundamental theoretical progress in identification and estimation of

nonlinear models with EIV, the problem of EIV is still rarely addressed in empirical work

outside of linear specifications.

The goal of this paper is to develop a simple and practical approach to estimation of

general nonlinear moment condition models

E[g(X∗i , Si, θ)] = 0 iff θ = θ0, (1)

where g (·) is a vector of moment functions and θ0 is the parameter vector of interest. The

researcher has a random sample of {Xi, Si}ni=1, where scalar or vector Xi is a mismeasured

version of unobserved X∗i with measurement error εi:

Xi = X∗i + εi. (2)

The measurement error can be classical or non-classical. We will refer to g (·) as the original

moment function, since it would have been valid had the researcher observed X∗i . A naive

GMM estimator (that ignores the EIV and uses Xi in place of X∗i ) based on g (·) is biased

because E[g(Xi, Si, θ0)] 6= 0.2

The general moment condition model (1) encompasses a wide variety of semiparametric

models. Most of the existing literature on EIV focuses on the nonlinear regression (NLR)

model:

Example (NLR). Let Yi denote the scalar outcome, and let X∗i and Wi be the covariates.

Suppose

E [Yi|X∗i ,Wi] = ρ (X∗i ,Wi, θ0) (3)

for some function ρ known up to the parameter θ. For example, in the Logit model, Yi is

binary, ρ (x,w, θ) ≡ 1 /(1 + exp (− (θ′xx+ θ′ww))) , and θ ≡ (θ′x, θ
′
w)
′
.

Suppose the researcher has an instrumental variable Zi. Then, they can use

g (y, x, w, z; θ) ≡ (y − ρ (x,w, θ))h (x,w, z) as the original moment function, where

1See Hausman, Ichimura, Newey, and Powell (1991); Hausman, Newey, and Powell (1995); Newey (2001);
Schennach (2007); Li (2002); Schennach (2004); Chen, Hong, and Tamer (2005); Schennach (2007); Hu and
Schennach (2008); Schennach (2014); Wilhelm (2019), among others.

2Mismeasured variables Xi do not need to be covariates. In general nonlinear models, measurement errors
in any of the variables (including outcomes) may bias naive estimators.
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h (x,w, z) is a vector that, for example, includes powers of x, their interactions with z,

and w.3

To provide a practical estimation approach for such a general class of models, we focus on

the empirical settings in which the researcher believes the variability of the measurement error

to be at most a fraction of the variability of the mismeasured variable, i.e., the noise-to-signal

ratio τ ≡ σε/σX∗ to be moderate, e.g., τ . 0.5 (we later discuss how the appropriateness

of this assumption can be checked). The absolute magnitude of the measurement error

σε does not need to be small. Focusing on these settings allows us to isolate the most

important aspects of the problem and, as result, to develop a simple estimator, which does

not require any nonparametric estimation or simulation. Such simple estimation becomes

possible because in these settings we can obtain a simple approximation of the EIV bias of

the moment conditions as a function of θ.

We propose to bias correct the original moments g (·), which in turn removes the bias

of the corresponding estimator of θ0. This bias correction depends on some moments of

the distribution of the measurement errors that are unknown. Another difficulty is that the

estimators of some components of the bias correction themselves may need to be bias cor-

rected. To address these issues, we develop the corrected moment conditions, which depend

on θ and additional parameters γ that govern the bias correction. The true parameter value

γ0 is associated with (possibly conditional) low-order moments of εi. Despite some theo-

retical subtleties with the construction of the corrected moment conditions, their practical

implementation is straightforward and they can be automatically computed for any original

moment function g (·).
We introduce the Measurement Error Robust Moments (MERM) estimator, which is a

GMM estimator that uses the corrected moment conditions to jointly estimate parameters θ0

and γ0. The estimator can be computed using any standard software for GMM estimation.

Joint estimation of parameters θ0 and γ0 using the corrected moment conditions effectively

robustifies moment conditions g (·) against the impact of the measurement errors.

To make these ideas precise and to study the properties of the proposed estimators, we

develop an asymptotic theory using a nonstandard asymptotic approximation that models τ

as slowly shrinking with the sample size. Standard asymptotics considers τ to be constant,

which implies that as n → ∞ the bias of a naive estimator dwarfs its sampling variability:

the bias is constant while the standard errors shrink proportionally to 1/
√
n. As a result,

under the standard asymptotics, the problem of removing the EIV bias becomes central in

3Note that the moment condition (1) is stated in terms of the true (correctly measured) X∗i . Determin-
ing what functions g (·) (or h (·) in the NLR model) satisfy this moment condition does not involve any
consideration of the measurement errors and hence is straightforward.
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the analysis, with relatively little attention paid to the sampling variability of estimators.

However, this focus does not seem to be appropriate in many empirical applications, in which

the researcher does not expect the potential EIV bias to be several orders of magnitude larger

than the standard errors.4 By considering τ as drifting towards zero with the sample size,

our approach provides a better guidance on construction of EIV robust estimators with good

finite sample properties when τ is small or moderate.5

Using this approximation, we show that the proposed estimation approach indeed ad-

dresses the EIV problem. The MERM estimator is shown to be
√
n-consistent and asymptot-

ically normal and unbiased. The standard confidence intervals and tests for GMM estimators

are also valid for the MERM estimator. Additionally, the standard GMM arsenal of assess-

ment tools can be applied to the MERM estimator, allowing one to test model identification,

conduct valid inference, and perform model specification diagnostics.

The usefulness of a large sample theory is measured by its ability to approximate the

finite sample properties of the estimators and inference procedures. Thus, we study the

MERM estimators in a variety of simulation experiments. The results confirm that the

nonstandard asymptotic theory indeed provides a good approximation of the finite sample

properties of the estimators even in the settings with relatively large EIV. In some of the

simulation experiments, the EIV are so large that for the naive estimators’ standard 95%

confidence intervals have actual coverages of 0% in finite samples, due to the magnitude

of the EIV bias. At the same time, even in these settings the MERM estimators perform

well, removing the EIV bias and providing confidence intervals with the correct coverage.

In particular, the simulation results show that despite the simplicity of implementation, the

MERM estimators can compete with and outperform semi-nonparametric estimators.

The MERM estimator is structurally different from the existing approaches that require

nonparametric estimation of some nuisance parameters, for example, of the density fX∗i |W .

Avoiding nonparametric estimation has at least two advantages. First, since the majority of

empirical applications include at least a handful of additional covariates Wi, nonparametric

estimation is often infeasible due to the curse of dimensionality. Because the MERM esti-

mator does not involve any nonparametric estimation, it can be used in applications with a

4Such empirical settings appear to be widespread. Although the concerns about measurement errors are
often raised, the majority of applied work does not explicitly correct the EIV bias in nonlinear models, and
instead implicitly or explicitly argues or conjectures that the EIV bias is likely not to be too large. See also
the review of Bound, Brown, and Mathiowetz (2001).

5Nonstandard asymptotic approximations with drifting parameters are often used to obtain better ap-
proximations of the finite sample behavior of estimators and tests. For example, in the instrumental variable
regression settings, to consider the settings with relatively small first stage coefficients, Staiger and Stock
(1997) model them as shrinking with n. It is important to keep in mind that such nonstandard asymptotic
approximations are merely mathematical tools. One should not take them literally and think of parameters
somehow changing if more data is collected.
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relatively large number of additional covariates Wi, and remains feasible even in the more

complicated settings, including multi-equation and structural models, and applications with

multiple mismeasured variables Xi. Second, estimation of infinite-dimensional nuisance pa-

rameters is typically more demanding towards the sources of identification available in the

data, for example, requiring an instrumental variable with a large support (continuously

distributed). In contrast, having a discrete instrument is sufficient for the MERM approach

because the nuisance parameter γ0 is finite-dimensional.

The simplicity and practicality of the MERM approach do come at a cost: there is a limit

on the magnitude of the measurement errors it can handle. For example, one generally should

not expect the MERM approach to work well when τ > 1, i.e., when the noise dominates

the signal; in this case the researcher should seek an alternative estimation method.

We view the MERM approach as providing a bridge between the settings in which the

measurement errors are guaranteed to be absent or negligible, and the settings where the

measurement errors are so large that one has to use the relatively more complicated estima-

tors from the earlier literature (if they exist at all for the model of interest).

Related Literature Chen, Hong, and Nekipelov (2011), Schennach (2016), and Schennach

(2020) provide excellent overviews of the measurement error literature.

The existing semiparametric approaches to estimation and inference in models with EIV

involve nonparametric estimation of infinite-dimensional nuisance parameters (e.g., Chesher,

2000; Li, 2002; Schennach, 2004, 2007; Hu and Schennach, 2008; Schennach and Hu, 2013;

Song, 2015), simulation (e.g., Schennach, 2014), or both (e.g., Newey, 2001; Wang and Hsiao,

2011). The exceptions include models with linear and polynomial regression functions (see

Hausman et al., 1991, 1995), and Gaussian control variable models such as Probit and Tobit

with endogeneity (see Smith and Blundell, 1986; Rivers and Vuong, 1988).

To the best of our knowledge, this paper is the first to provide an approach for
√
n-

consistent and asymptotically normal and unbiased estimation of general GMM models with

EIV that does not require any nonparametric estimation (or simulation).

We are able to provide such an estimator because we focus on the models with moderate

measurement errors. Modeling the variance of the measurement error as shrinking to zero

with the sample size is a popular approach in Statistics. The method has been proposed

by Wolter and Fuller (1982), who used it to construct an approximate MLE estimator of

a nonlinear regression model with Gaussian errors. Following their approach, the Statis-

tics literature has mainly focused on the settings where the moments of the EIV needed to

bias correct the estimators are either known or can be directly estimated from the available

data such as repeated measurements (e.g., Carroll and Stefanski, 1990; Carroll, Ruppert,
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Stefanski, and Crainiceanu, 2006). In Economics, such data are relatively rare. The use of

approximations with shrinking variance of measurement errors in Econometrics literature

has been pioneered by Kadane (1971), Amemiya (1985), and Chesher (1991). Such approxi-

mations have been used to check the sensitivity of naive estimators to the EIV by considering

how the estimates change as the unknown moments of the measurement errors vary within

some set of plausible values, e.g., see Chesher and Schluter (2002), Chesher, Dumangane, and

Smith (2002), Battistin and Chesher (2014), Chesher (2017), and Hong and Tamer (2003).

This paper differs from the earlier literature in several ways. First, it presents a way

to estimate the unknown nuisance parameters (moments of the measurement errors) jointly

with the parameters of interest. As a result, the approach can, for example, use instrumental

variables as a source of identification. Second, the method applies to a very general class

of semiparametric models specified by moment conditions. Third, the MERM approach

allows the measurement errors to have larger magnitudes than most of the papers in the

earlier literature; this is achieved by the MERM approach recursively bias correcting the

bias correction terms. Fourth, our approach allows relaxing the assumption of classical

measurement errors.

The most widespread approach to identification of the EIV models in economic applica-

tions is to use instrumental variables, e.g., see Hausman et al. (1991); Newey (2001); Schen-

nach (2007); Wang and Hsiao (2011). In a recent paper, Hahn, Hausman, and Kim (2021)

reconsider the regression model in Amemiya (1990) using a bias correction similar to ours.

When proper excluded variables are not available, researchers have considered using higher

moments of Xi as instruments, e.g., see Reiersøl (1950); Lewbel (1997); Erickson and Whited

(2002); Schennach and Hu (2013); Ben-Moshe, D’Haultfœuille, and Lewbel (2017). When

available, repeated measurements can also be used to identify the model, e.g., see Hausman

et al. (1991); Li and Vuong (1998); Li (2002); Schennach (2004). The MERM estimator

accommodates these identification approaches within a unified estimation framework.

The power of the general MERM approach can be illustrated in the NLR model. For

example, when a candidate instrumental variable is available, the conditions it needs to

satisfy are much weaker than what is required by many existing approaches. Availability

of a discrete instrument is sufficient for identification; and the instrument is allowed to

have heterogeneous impact on covariates X∗i .6 One can also take a nonclassical, nonlinear

6The importance of heterogeneity of the effects of the instruments in empirical applications has been
widely recognized, e.g., see Imbens and Angrist (1994); Heckman and Vytlacil (1998); Imbens and Newey
(2009). Note that such heterogeneity is ruled out by the EIV-robust methods that rely on the additive
control variable assumption for identification, i.e., assume that X∗i = m (Zi) + Vi with the control variable
Vi independent from Zi. In contrast, in Section 4 we illustrate identification in a random coefficient first
stage model.
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(e.g., discretized or censored), or biased measurement of X∗i as an instrument in the MERM

approach. In Section 4, we study identification of the NLR model in the MERM framework,

and show that this model is nonparametrically identified.

Kitamura, Otsu, and Evdokimov (2013); Andrews, Gentzkow, and Shapiro (2017); Arm-

strong and Kolesár (2021); Bonhomme and Weidner (2022), among others, develop tools

for estimation and inference in GMM, which are robust to general perturbation or mis-

specification of the true data generating process. They focus on the settings in which these

perturbations are sufficiently small, so that naive estimators remain
√
n-consistent, and their

biases are of the same order of magnitude as their standard errors. In contrast, we focus

on more specific forms of data contamination due to the EIV. This allows the MERM ap-

proach to remain valid even in the settings with larger measurement errors, in which naive

estimators may have slower than
√
n rates of convergence.

The MERM approach also provides a useful foundation for dealing with EIV in more

complicated settings. Evdokimov and Zeleneev (2018) utilize the MERM framework to

address an issue of nonstandard inference, which turns out to arise generally when EIV

models are identified using instrumental variables. Evdokimov and Zeleneev (2019) extend

the analysis of this paper to long panel and network settings.

Organization of the paper Section 2 introduces the Moderate Measurement Error frame-

work and the proposed MERM estimator. Section 3 presents several Monte Carlo experi-

ments that illustrate finite sample properties of the MERM estimators. Section 4 establishes

nonparametric identification of the nonlinear regression in our setting and motivates the

MERM approach from a nonparametric perspective. Section 5 considers several extensions

of the framework.

2 Moderate Measurement Errors Framework

To present the main ideas we first consider the case of univariate X∗i and classical mea-

surement error εi. Later we consider multivariate X∗i and non-classical measurement errors

εi.

To develop a practical estimation approach for general moment condition models we

focus on the settings in which τ ≡ σε/σX∗ is small or moderate. We consider an asymptotic

approximation with τn ≡ τ → 0 as n→∞. Note that economically meaningful parameters

are usually invariant to rescaling of X∗i . Likewise, the extent of the EIV problem does not

change with such rescaling.

The magnitude of the EIV bias of such parameters is also invariant to the scaling; chang-
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ing the units of measurement of Xi does not meaningfully change the EIV problem. For

simplicity of exposition, it is convenient to assume that X∗i is scaled so that σX∗ is of order

one and, correspondingly, moments E[|εi|k] ∝ τ kn decrease with k when τn < 1. For exam-

ple, this could be ensured by normalizing observed Xi to have σX = 1. Let us stress that

this normalization is used only to simplify the exposition; as we show in Appendix D, the

proposed MERM estimator does not require any normalizations in practice. Following the

rest of the literature, we assume that E [εi] = 0.7

Special Case: Quadratic Expansion For clarity, we first consider a simple special case

of the general approach. Let us denote g
(k)
x (x, s, θ) ≡ ∂kg (x, s, θ) /∂xk. Since E[|εi|k] ∝

τ kn → 0 as n → ∞, under some regularity conditions, we can write the quadratic Taylor

expansion of function g(Xi, Si, θ) = g(X∗i + εi, Si, θ) around εi = 0 as

E[g(Xi, Si, θ)] = E
[
g(X∗i , Si, θ) + g(1)

x (X∗i , Si, θ)εi +
1

2
g(2)
x (X∗i , Si, θ)ε

2
i

]
+O(E[|εi|3])

= E[g(X∗i , Si, θ)] +
E[ε2

i ]

2
E[g(2)

x (X∗i , Si, θ)] +O(τ 3
n), (4)

where the second equality holds because because εi and (X∗i , Si) are independent, and E [εi] =

0.

This expansion implies that E[g(Xi, Si, θ0)] = O (σ2
ε) = O(τ 2

n). As a result, a naive

estimator that ignores the EIV and uses Xi in place of X∗i has EIV bias of order τ 2
n.8 Bias

of the naive estimator should be compared with its standard error, which is of order n−1/2.

Bias of the naive estimator is not negligible, unless the measurement error is rather small

(theoretically, unless τ 2
n = o

(
n−1/2

)
). In particular, tests and confidence intervals based on

the naive estimator are invalid and can provide highly misleading results. Moreover, if τ 2
n

shrinks at a rate slower than O
(
n−1/2

)
, the rate of convergence of the naive estimator is

slower than
√
n.

Suppose τn = o
(
n−1/6

)
. Then, O(τ 3

n) = o
(
n−1/2

)
and we can rearrange equation (4) as

E[g(X∗i , Si, θ)] = E[g(Xi, Si, θ)]−
E[ε2

i ]

2
E
[
g(2)
x (X∗i , Si, θ)

]
+ o(n−1/2). (5)

The left-hand side of this equation is exactly the moment condition (1) that we would like

to use for estimation of θ0. The first term on the right-hand side involves only observed

7A location normalization such as E [εi] = 0 is usually necessary because it is not possible to separately
identify the means E [X∗i ] and E [εi].

8For example, consider a linear regression with a scalar mismeasured regressor. The bias of the naive

OLS estimator of the slope parameter θ01 is −θ01 τ2
n

1+τ2
n

= −θ01τ2n +O
(
τ4n
)
.

8



variables, and can be estimated by the sample average g(θ) ≡ n−1
∑n

i=1 g(Xi, Si, θ). The

second term on the right-hand side can be thought of as a bias correction that removes the

EIV-bias from the expected moment function E[g(Xi, Si, θ)].

The idea of the MERM estimator we propose is to make use of expansions such as (5)

to bias correct the moment condition E[g(Xi, Si, θ)], which in turn removes the bias of the

estimator of the parameters of interest θ0. To perform the bias correction we need to estimate

two quantities: E[ε2
i ] and E[g

(2)
x (X∗i , Si, θ)].

First, we show that in equation (5) we can substitute E[g
(2)
x (X∗i , Si, θ)] with

E[g
(2)
x (Xi, Si, θ)], which in turn can be estimated by g(2)

x (θ) ≡ n−1
∑n

i=1 g
(2)
x (Xi, Si, θ). By the

Taylor expansion around εi = 0 similar to equation (4), we can show that E[g
(2)
x (X∗i , Si, θ)] =

E[g
(2)
x (Xi, Si, θ)] +O(τ 2

n) and hence

1

2
E[ε2

i ]
(
E
[
g(2)
x (X∗i , Si, θ)

]
− E

[
g(2)
x (Xi, Si, θ)

])
= E[ε2

i ]O
(
τ 2
n

)
= O

(
τ 4
n

)
. (6)

Here O (τ 4
n) = o

(
n−1/2

)
because we assume that τn = o

(
n−1/6

)
. The idea behind this

substitution is that the bias of order O(τ 2
n) in E[g

(2)
x (Xi, Si, θ)] can be ignored because it is

multiplied by E [ε2
i ] = O (τ 2

n).9 With the substitution, we can rearrange equation (5) and

write it as

E[g(X∗i , Si, θ)] = E
[
g(Xi, Si, θ)−

E[ε2
i ]

2
g(2)
x (Xi, Si, θ)

]
+ o(n−1/2). (7)

Second, we propose estimating the unknown E[ε2
i ] together with the parameter of interest

θ. Specifically, let γ02 ≡ E[ε2
i ]/2 denote the true value of parameter γ2, and consider the

following corrected moment function:

ψ(Xi, Si, θ, γ) ≡ g(Xi, Si, θ)− γ2g
(2)
x (Xi, Si, θ). (8)

Function ψ is a moment function parameterized by θ and γ, and

E[ψ(Xi, Si, θ0, γ02)] = E[g(X∗i , Si, θ0)] + o
(
n−1/2

)
= o

(
n−1/2

)
, (9)

where the first equality follows from equation (7) and the definition of γ02, and the second

equality follows from equation (1). Hence, the corrected moment conditions ψ can be used

to jointly estimate the true parameters θ0 and γ02 by a GMM estimator.10

9Such substitutions of X∗ with X have been used in other contexts, e.g., Chesher and Schluter (2002).
10In the moment condition settings, having o

(
n−1/2

)
is equivalent to having 0 on the right-hand side of

equation (9).
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Remark 1. If E[ε3
i ] = 0 (e.g., if the distribution of εi is symmetric), the remainder in

equation (4) is of a smaller order O(τ 4
n). Hence, the corrected moments (9) remain valid for

larger values of τn, requiring only the weaker condition τn = o(n−1/8). The bias of the naive

estimators in this case can be as large as o(n−1/4).

General Case: Expansion of order K The quadratic expansion of equation (4) can be

extended to general order K ≥ 2. Considering larger K theoretically allows τn converging

to zero at a slower rate. In finite samples this corresponds to the asymptotics providing

good approximations for larger values of τn, i.e., large measurement errors. Expanding

g(X∗i + εi, Si, θ) around εi = 0 we have,

E[g(Xi, Si, θ)] = E

[
g(X∗i , Si, θ) +

K∑
k=1

εki
k!
g(k)
x (X∗i , Si, θ)

]
+O

(
E
[
|εi|K+1

])
. (10)

The above special case of quadratic expansion corresponds to K = 2.

The approximation we consider is formalized by the following assumption.

Assumption MME. (Moderate Measurement Errors) (i) τn = o(n−1/(2K+2)) for some

integer K ≥ 2; and (ii) E[|εi|L] ≤ CσLε for some L ≥ K + 1 and C > 0.

Assumption MME (i) limits the magnitude of the measurement errors and implies that

τK+1
n = o

(
n−1/2

)
. Assumption MME (ii) implies that E[|εi|k] = O

(
σkε
)
, and requires the

tails of εi/σε to be sufficiently thin. Together, parts (i) and (ii) imply that E[|εi|K+1] =

O
(
τK+1
n

)
= o

(
n−1/2

)
, and hence ensure that the remainder in equation (10) is negligible.

Using E [εi|X∗i , Si] = 0 to further simplify this expansion and rearranging the terms we

obtain

E[g(X∗i , Si, θ)] = E[g(Xi, Si, θ)]−
K∑
k=2

E[εki ]

k!
E
[
g(k)
x (X∗i , Si, θ)

]
+ o(n−1/2). (11)

This equation is the general expansion analog of equation (5). The summation on the right

hand side is the bias correction term, which we use to construct the MERM estimator.

It turns out that for K ≥ 4, estimation of E[g
(k)
x (X∗i , Si, θ)] is more intricate than

in the case of K = 2, and the substitution we made in equation (7) no longer works.

Larger values of K allow for larger values of τn and hence larger EIV biases of naive

estimators n−1
∑n

i=1 g
(k)
x (Xi, Si, θ). The expansion of order K includes terms up to the

order τKn , with the asymptotically negligible remainder of order O
(
τK+1
n

)
. For K ≥ 4,

terms of order τ 4
n are not negligible. This implies that we cannot ignore the EIV bias

that would arise from substituting E[g
(2)
x (X∗i , Si, θ)] with E[g

(2)
x (Xi, Si, θ)] in equation (11),

10



because this bias is of order O (τ 4
n) according to equation (6). To address this problem,

we instead replace E[g
(2)
x (X∗i , Si, θ)] with the bias corrected expression E[g

(2)
x (Xi, Si, θ)] −

(E[ε2
i ]/2)E[g

(4)
x (Xi, Si, θ)]. Thus, for K ≥ 4, one needs to bias correct the estimator of the

bias correction term. Moreover, for larger K one needs to bias correct the bias correction of

the bias correction term and so on.

Fortunately, we show that these bias corrections can be constructed as linear combinations

of the expectations of the higher order derivatives of g
(k)
x (Xi, Si, θ). Let us define the following

corrected moment function:

ψ(Xi, Si, θ, γ) ≡ g(Xi, Si, θ)−
K∑
k=2

γkg
(k)
x (Xi, Si, θ), (12)

where γ = (γ2, . . . , γK)′ is a K−1 dimensional vector of parameters. Let γ0 ≡ (γ02, . . . , γ0K)′

denote the vector of true parameters γ0k, defined as

γ02 ≡
E [ε2

i ]

2
, γ03 ≡

E [ε3
i ]

6
, and γ0k ≡

E
[
εki
]

k!
−

k−2∑
`=2

E
[
εk−`i

]
(k − `)!

γ0` for k ≥ 4. (13)

We formalize this discussion below.

Assumption CME. εi is independent from (X∗i , Si) and E[εi] = 0.

Assumption CME is the classical measurement error assumption. We relax this assump-

tion later in Section 5.2. The following lemma establishes validity of the corrected moment

conditions under Assumptions MME, CME, and some mild regularity conditions provided

in Appendix A.

Lemma 1. Under Assumptions MME, CME and A.1 in Appendix A,

E[ψ(Xi, Si, θ0, γ0)] = E[g(X∗i , Si, θ0)] + o
(
n−1/2

)
= o

(
n−1/2

)
.

Lemma 1 implies that the corrected moment conditions ψ can be used to jointly es-

timate parameters θ0 and γ0. The total number of parameters to be estimated is now

dim (β) = dim (θ) + K − 1. Thus, joint estimation of θ0 and γ0 requires that dim (ψ) =

dim (g) ≥ dim (θ) + K − 1, i.e., that the original moment conditions g include sufficiently

many overidentifying restrictions.

Measurement Error Robust Moments (MERM) estimator The MERM estimator

jointly estimates the parameters θ0 and γ0 using moment conditions ψ. It is convenient to

11



define the joint vector of parameters

β ≡ (θ′, γ′)′, β0 ≡ (θ′0, γ
′
0)′, β̂ ≡ (θ̂

′
, γ̂′)′,

and the parameter space B ≡ Θ× Γ, where Θ and Γ are the parameter spaces for θ and γ.

Then, MERM estimator is the GMM estimator (Hansen, 1982):

β̂ ≡ argmin
β∈B

Q̂(β), Q̂(β) ≡ ψ(β)′Ξ̂ψ(β), (14)

where ψ(β) ≡ n−1
∑n

i=1 ψi(β), ψi(β) ≡ ψ (Xi, Si, β), Ξ̂ is a weighting matrix, and Q̂(β) is

the standard GMM objective function.

Under some regularity conditions, estimator β̂ behaves as a standard GMM-type estima-

tor: it is
√
n-consistent and asymptotically normal and unbiased. This result is formalized

by the following theorem.

Theorem 2 (Asymptotic Normality). Suppose that {(X∗i , S ′i, εi)}ni=1 are i.i.d.. Then, under

Assumptions MME, CME, and A.1-A.4 in Appendix A,

n1/2Σ−1/2(β̂ − β0)
d→ N(0, Idim(β)), where (15)

Σ ≡ (Ψ′ΞΨ)−1Ψ′ΞΩψψΞΨ(Ψ′ΞΨ)−1. (16)

Theorem 2 shows that the MERM approach addresses the EIV bias problem, and in

particular provides a
√
n-consistent asymptotically normal and unbiased estimator θ̂, which

can be used to conduct inference about the true parameters θ0. The asymptotic variance

Σ takes the standard sandwich form, with Ψ ≡ E [∇βψi(β0)], Ωψψ ≡ E [ψi (β0)ψ′i (β0)], and

Ξ̂→p Ξ.

Remark 2. Notice that the bias of naive estimators (such as a GMM estimator based on

the original moment conditions) is O(τ 2
n), so their rate of convergence is Op(τ

2
n + n−1/2).

The bias dominates sampling variability and naive estimators are not
√
n-consistent unless

τn = O(n−1/4), i.e., unless the magnitude of the measurement error is rather small. At the

same time, the MERM estimator remains
√
n-consistent for much larger values of τn, up to

τn = O(n−1/(2K+2)), whereas the rate of convergence of naive estimators is only Op(n
−1/(K+1))

in this case.

Once the corrected moment condition ψ is constructed, estimation of and inference about

parameters β0 can be performed using any standard software package for GMM estimation.

In other words, the proposed estimator can be simply treated as a standard GMM estimator

12



based on the corrected moment conditions ψ, and the conventional standard errors, tests,

and confidence intervals are valid.

Theorem 2 requires β0 to be identified and the Jacobian matrix Ψ to be full rank. No-

tably, the MERM framework encompasses many possible sources of identification at once,

including instrumental variables, repeated measurements, and nonlinearities of the functional

form. The identifying information is incorporated in the moment functions. Essentially, our

approach first characterizes in what directions the measurement errors can bias the moment

conditions E [g (Xi, Si, θ)], and then uses the moments orthogonal to those directions for

identification of θ0.

In Section 4 we focus on identification of the nonlinear regression model. We show that the

model is nonparametrically identified using a (possibly discrete) instrument. Moreover, we

show that the corrected moments and the corresponding semiparametric MERM estimator

naturally arise from the nonparametric characterization of the problem.

Remark 3. Researchers may be interested in average effects of the form µ0 ≡
E [h (X∗i , Si, θ0)]. In the NLR, one may be interested in the average partial effect x (i.e.,

µ0 ≡ E [∇xρ (X∗i , Si, θ0)]) or another covariate. The naive average partial effect esti-

mator µ̂Naive ≡ 1
n

∑n
i=1 h(Xi, Si, θ̂) suffers from the EIV bias, unless function h is lin-

ear in X∗i . Instead, one can use estimates γ̂ to construct the bias-corrected estimator

µ̂MERM ≡ 1
n

∑n
i=1

{
h(Xi, Si, θ̂)−

∑K
k=2 γ̂kh

(k)
x (Xi, Si, θ̂)

}
.

Remark 4. It is useful to get a sense of the magnitudes of the coefficients E
[
εki
]
/k! in

equation (11). Suppose εi ∼ N (0, σ2
ε), σε = 0.5, and σX∗ = 1, so τ = σε = 0.5. Then

the coefficients in front of g
(2)
x , g

(4)
x , and g

(6)
x are E [ε2

i ] /2! = 0.125, E [ε4
i ] /4! ≈ 0.008, and

E [ε6
i ] /6! ≈ 0.0003.

Remark 5. It is important to note that γ0k 6= E
[
εki
]

/k! for k ≥ 4, contrary to what

equation (11) might suggest. For example, γ04 = (E [ε4
i ]− 6σ4

ε) /24 is negative for many

distributions, including normal. For instance, in the example of Remark 4, γ04 ≈ −0.0026.

The reason that generally γ0k 6= E
[
εki
]

/k! is that the estimators of the correction terms

themselves need a correction, which is accounted for by the form of γ0k. Since there is a

one-to-one relationship between γ0 and the moments E
[
ε`i
]
, parameter space Γ for γ0 can

incorporate restrictions that the moments must satisfy (e.g., σ2
ε ≥ 0 and E [ε4

i ] ≥ σ4
ε). Such

restrictions can increase the efficiency of the estimator and the power of tests.

Remark 6. No parametric assumptions are imposed on the distribution of εi, i.e. the dis-

tribution of εi is treated nonparametrically. The regularity conditions restrict only the mag-

nitude of the moments of εi. The approach imposes no restrictions on the smoothness of
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the distributions of X∗i and εi, which are not even required to be continuous. Examples in

which this can be useful include individual wages (whose distributions may have point masses

at round numbers), and allowing the measurement error εi to have a point mass at zero (a

fraction of the population may have a zero measurement or recall error).

Remark 7. Considering larger K allows τn converging to zero at a slower rate, which

in finite samples corresponds to the asymptotics providing better approximations for larger

magnitudes of measurement errors. On the other hand, taking a larger K increases the

dimension of the nuisance parameter γ0 and thus typically increases the variance of θ̂.

Remark 8. The formulas of the derivatives g
(k)
x (·) are typically easy to compute analytically

or using symbolic algebra software. Alternatively, these derivatives can be computed using

numerical differentiation. In either way, the corrected set of moments can be automatically

produced for a generic moment function g(·) provided by the user.

Assessing model validity The standard J-test remains valid in the MERM settings,

and can be used to check the model specification. The J-test jointly tests the following

hypotheses: (i) K is sufficiently large to correct the EIV bias; (ii) assumptions on the EIV

are valid; and (iii) the original moment conditions g are correctly specified so equation (1)

holds, i.e., that the original economic model is correctly specified aside from the presence

of the EIV in Xi. Issue (i) can be address by taking a larger K. In Section 5 we extend

the framework to obtain corrected moments that are valid under weaker assumptions on the

EIV, which can help addressing issue (ii).

It is possible to obtain an explicit bound on the higher-order EIV bias of the MERM esti-

mator. Suppose the researcher is interested in estimating a linear combination of parameters

v′β0 for some non-zero v ∈ Rdim(β), e.g., the first component of θ0. Since β̂ is a standard

GMM estimator,

Bias(v′β̂) ≈ −v′(Ψ′ΞΨ)−1Ψ′Ξ E [ψ(Xi, Si, θ0, γ0n)] . (17)

Here E [ψ(Xi, Si, θ0, γ0n)] ≈ γ0KE[g
(K)
x (Xi, Si, θ0)] with K = K + 2 if K is even and εi is

symmetric, and K = K + 1 otherwise. Thus,

Bias(v′β̂) ≈ γ0Kbv,

where bv can be easily estimated. The unknown γ0K can be bounded using equation (13)

and some (a priori) bounds on the K-th moment of εi. Then the bias of v′β̂ is approximately

bounded between γ
0K
b̂v and γ0K b̂v, where γ

0K
and γ0K are the lower and upper bounds on
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γ0K .

The bounds on Bias(v′β̂) can also be used to assess the appropriateness of Assump-

tion MME and the reliability of the inference based on the normal approximation in equa-

tion (15). If the (worst case) bias of v′β̂ is substantial, relative to its standard error, the

researcher may want to account for this and consider choosing a higher K. Appendix C pro-

vides a further discussion of this issue and additional details on the calculation of Bias(v′β̂).

Finally, one can test the strength of identification of the model parameters or even conduct

identification-robust inference (e.g., Stock and Wright, 2000; Kleibergen, 2005; Guggenberger

and Smith, 2005; Guggenberger, Ramalho, and Smith, 2012; Andrews and Mikusheva, 2016;

Andrews, 2016; Andrews and Guggenberger, 2019).

3 Numerical Evidence

3.1 Comparison with a Semi-Nonparametric Estimation Ap-

proach

We compare MERM estimator with the state-of-the-art semiparametric estimator of Schen-

nach (2007, henceforth S07) for nonlinear regression models. The Monte Carlo designs are

taken from S07, and include a polynomial, rational fraction, and Probit nonlinear regression

models. Identification of the model is ensured by the availability of an instrument.

Yi = ρ(X∗i , θ0) + Ui, X∗i = Zi + Vi, Xi = X∗i + εi, (18)

(Zi, Vi, εi)
′ ∼ N ((0, 0, 0)′,Diag(1, 1/4, 1/4)) and n = 1000. The conditional expectation

function ρ, the true value of the parameter of interest θ0, and the conditional distribution of

the regression error Ui are design-specific and reported in Tables 1-3 below. In all designs,

τ = σε/σ
∗
X ≈ 0.45, so the measurement error is “fairly large” (Schennach, 2007).

We report simulation results for the MERM estimator considering correction schemes

with K = 2 and K = 4. The original moment function is

g(x, y, z, θ) = (y − ρ(x, θ))h(x, z),

where we use h(x, z) = (1, x, z, x2, z2, x3, z3)
′

for K = 2 and h(x, z) =

(1, x, z, x2, xz, z2, x3, x2z, xz2, z3)
′

for K = 4.

The finite sample properties of the MERM estimators (evaluated based on 5,000 replica-

tions) are reported in Tables 1-3 below. For comparison, we also provide the same statistics

for naive estimators (OLS/NLLS) and for the benchmark estimator of S07 (as reported in
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the original paper). For the polynomial model (Table 1), both K = 2 and K = 4 MERM

estimators effectively remove the EIV bias. Component-wise, the MERM estimators perform

similarly (for θ2 and θ4) or better (for θ1 and θ3) compared to the benchmark estimator of

S07. For the rational fraction model (Table 2), both the MERM estimators are vastly supe-

rior to the benchmark estimator both in terms of the bias and the standard deviation. For

the probit model (Table 3), the MERM estimator with K = 2 removes a large fraction of the

EIV bias compared to the NLLS estimator. However, the EIV bias remains non-negligible

when this simplest correction scheme is used. Employing a higher order correction scheme

with K = 4 completely eliminates the remaining EIV bias, while at the same time having

smaller standard deviations (than the benchmark estimator of S07) . Overall, in the con-

sidered designs, the MERM estimator with K = 4 consistently outperforms the benchmark

estimator. It also proves to be more effective in removing the EIV bias compared to the

K = 2 estimator, especially in the highly nonlinear settings of the considered probit design.

Table 1: Simulation results for the polynomial model of S07

Bias Std. Dev. RMSE

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 All

OLS -0.00 -0.43 0.00 0.21 0.07 0.13 0.06 0.04 0.07 0.45 0.06 0.22 0.51
S07 -0.05 -0.07 -0.02 0.05 0.17 0.19 0.24 0.05 0.17 0.20 0.24 0.07 0.36
K = 2 -0.00 0.10 0.00 0.00 0.10 0.23 0.10 0.08 0.10 0.25 0.10 0.08 0.29
K = 4 -0.00 0.00 0.00 0.02 0.09 0.21 0.10 0.08 0.09 0.21 0.10 0.08 0.27

The DGP is as in (18) with ρ(x, θ) = θ1 + θ2x+ θ3x
2 + θ4x

3, θ0 = (1, 1, 0,−0.5)′, and Ui ∼ N(0, 1/4). The
results are based on 5,000 replications.

Table 2: Simulation results for the rational fraction model of S07

Bias Std. Dev. RMSE

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 All

OLS 0.339 -0.167 -0.644 0.040 0.020 0.076 0.341 0.168 0.648 0.752
S07 0.107 0.117 -0.150 0.146 0.139 0.328 0.181 0.182 0.361 0.443
K = 2 -0.004 -0.018 0.014 0.062 0.026 0.139 0.062 0.032 0.139 0.156
K = 4 0.014 -0.002 -0.024 0.062 0.031 0.154 0.063 0.031 0.156 0.171

The DGP is as in (18) with ρ(x, θ) = θ1 + θ2x+ θ3
(1+x2)2 , θ0 = (1, 1, 2)′, and Ui ∼ N(0, 1/4). The results

are based on 5,000 replications.
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Table 3: Simulation results for the Probit model of S07

Bias Std. Dev. RMSE

θ1 θ2 θ1 θ2 θ1 θ2 All

NLLS 0.38 -0.97 0.06 0.08 0.39 0.98 1.05
S07 0.05 -0.06 0.39 0.53 0.39 0.53 0.69
K = 2 0.11 -0.31 0.18 0.34 0.21 0.46 0.51
K = 4 -0.01 -0.01 0.23 0.42 0.23 0.42 0.48

The DGP is as in (18) with ρ(x, θ) = 1
2 (1 + erf(θ1 + θ2x)), θ0 = (−1, 2)′, and Ui = 1 − ρ(X∗i , θ0) with

probability ρ(X∗i , θ0) and −ρ(X∗i , θ0) otherwise. The results are based on 5,000 replications.

3.2 Estimation and Inference in a Multinomial Choice Model

Consider the standard multinomial logit model, in which an agent chooses between 3 available

options. For an agent i with characteristics (X∗i ,Wi), the utility of option j is given by

Uij = θ0j1X
∗
i + θ0j2Wij + θ0j3 + εij for j ∈ {1, 2},

and Ui0 = εi0 for the outside option j = 0, where εij are i.i.d. (across i and j) draws from a

standard type-1 extreme value distribution. Let Yij be the observed binary outcome variable

indicating whether agent i chooses option j, i.e. Yij = 1 if and only if j = argmaxj′∈{0,1,2} Uij′ .

In addition,

X∗i = q(Zi, Vi), Xi = X∗i + εi, Wij = ρX∗i /σ
∗
X +

√
1− ρ2νij,

and (Zi, εi, νi1, νi2)′ ∼ N ((0, 0, 0, 0)′,Diag(σ2
Z , σ

2
ε, σ

2
ν , σ

2
ν)) ⊥ Vi. The researcher observes

{(Xi,Wi, Yi1, Yi2, Yi0)}ni=1. Note that the form of function q(z, v) is not known to the re-

searcher. We consider two specifications for function q(z, v) and the distribution of Vi. In

the first case, v is scalar and q(z, v) is additive,

Case A: q(Zi, Vi) = Zi + Vi, Vi ∼ N(0, σ2
V ). (19)

In the second case, q(z, v) is a random coefficient model and v is bivariate:

Case RC: q(Zi, Vi) = Vi1Zi + Vi0, Vi ≡ (Vi0, Vi1)′ ∼ N
(
(0, 1)′,Diag(σ2

V 0, σ
2
V 1)
)
, (20)

In all of the designs, we fix (θ011, θ012, θ013, θ021, θ022, θ023, ρ, σ
2
Z , σ

2
ν) = (1, 0, 0, 0, 0, 0, 0.7, 1, 1)

and n = 2000. We also fix σ2
V = 1 in Case A and (σ2

V 0, σ
2
V 1) = (1/2, 1/2) in Case RC; in

both cases σ2
X∗ = 2. We consider τ = σε/σX∗ ∈ {1/4, 1/2, 3/4}.
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Similarly to Section 3.1, we report results for the MERM estimators applying the same

correction scheme with K = 2 and K = 4 to the following original moment function

g(x,w, y, z, θ) = ((y1 − p1(x,w, θ))h1(x, z, w)′, (y2 − p2(x,w, θ))h2(x, z, w)′)
′
,

where

pj(x,w, θ) ≡ P(Yij = 1|X∗i = x,Wi = w; θ)

=
exp(θj1x+ θj2wj + θj3)

1 + exp(θ11x+ θ12w1 + θ13) + exp(θ21x+ θ22w2 + θ23)
,

and hj(x, z, w) = (1, x, z, x2, z2, x3, z3, wj)
′

for K = 2 and hj(x, z, w) =

(1, x, z, x2, xz, z2, x3, x2z, xz2, z3, wj)
′

for K = 4.

We report the results on estimation and inference on the partial derivatives of the con-

ditional choice probabilities pj(x,w1, w2) with respect to x, w1, and w2, evaluated at the

population means.

Tables 4 and 5 report the finite sample biases, standard deviations, and RMSE of the

MERM estimators, as well as the sizes of the corresponding t-tests with nominal size of 5%.

To illustrate the importance of dealing with EIV, we also report the same statistics for the

standard (naive) MLE estimator that ignores the presence of the measurement errors.

In all designs, the MLE estimator is biased, and the corresponding t-tests over-reject.

Note that failing to account for the EIV in the mismeasured variable X∗i generally biases

estimators of all of the parameter, including those corresponding to the correctly measured

variables Wi1 and Wi2. In particular, the t-tests may falsely reject true null hypotheses

∂pj/∂w` = 0 up to nearly 100% of the time.

As for the MERM estimators, the K = 2 estimator removes a large fraction of the EIV

bias in all of the designs. While this proves to be enough to achieve accurate size control

when the magnitude of the measurement error is moderate (τ = 1/4), the remaining EIV bias

may still result in size distortions of the t-tests with larger measurement errors, especially

τ = 3/4. Using the higher order correction scheme with K = 4 effectively removes the EIV

bias in all of the simulation designs for all of the parameters. Remarkably, the corresponding

finite sample null rejection probabilities remain close to the nominal 5% rate even when the

standard deviation of the measurement error is as large as 75% of the standard deviation of

the mismeasured X∗.

18



Table 4: Simulation results for the multinomial logit model, Case A

MLE K = 2 K = 4

bias, 10−2 std, 10−2 rmse, 10−2 size bias, 10−2 std, 10−2 rmse, 10−2 size bias, 10−2 std, 10−2 rmse, 10−2 size

τ = 1/4

∂p1/∂x -2.93 1.33 3.22 60.98 0.48 2.50 2.55 4.38 0.77 2.67 2.78 6.16
∂p1/∂w1 2.30 1.65 2.83 29.38 -0.04 2.35 2.35 5.00 -0.18 2.41 2.42 5.54
∂p1/∂w2 0.50 0.76 0.91 10.00 -0.00 0.87 0.87 5.16 -0.04 0.89 0.89 5.86
∂p2/∂x 1.80 1.18 2.15 35.04 -0.27 1.85 1.87 5.24 -0.44 1.95 2.00 6.40
∂p2/∂w1 -1.15 0.83 1.42 29.28 0.02 1.18 1.18 4.92 0.09 1.21 1.21 5.48
∂p2/∂w2 -0.99 1.50 1.80 10.06 0.01 1.75 1.75 5.20 0.08 1.79 1.79 5.88
∂p0/∂x 1.13 1.00 1.51 21.82 -0.21 1.35 1.37 4.88 -0.33 1.41 1.44 5.94
∂p0/∂w1 -1.15 0.82 1.42 29.30 0.02 1.18 1.18 4.98 0.09 1.21 1.21 5.50
∂p0/∂w2 0.49 0.75 0.89 10.04 -0.01 0.88 0.88 5.08 -0.04 0.90 0.90 5.84

τ = 1/2

∂p1/∂x -8.43 1.09 8.50 100.00 -1.48 2.49 2.90 11.14 0.57 2.81 2.87 5.28
∂p1/∂w1 6.66 1.55 6.84 99.32 1.28 2.43 2.74 11.06 -0.05 2.51 2.51 5.46
∂p1/∂w2 1.33 0.72 1.51 44.26 0.27 0.90 0.94 6.96 -0.01 0.94 0.94 5.52
∂p2/∂x 4.96 0.98 5.06 99.88 0.91 1.87 2.08 10.90 -0.33 2.10 2.12 6.42
∂p2/∂w1 -3.32 0.78 3.41 99.32 -0.64 1.22 1.37 11.04 0.02 1.26 1.26 5.38
∂p2/∂w2 -2.61 1.41 2.96 44.58 -0.54 1.79 1.87 7.02 0.03 1.88 1.88 5.60
∂p0/∂x 3.46 0.87 3.57 97.42 0.58 1.40 1.51 8.16 -0.24 1.53 1.55 5.60
∂p0/∂w1 -3.34 0.78 3.43 99.32 -0.64 1.22 1.37 10.98 0.02 1.26 1.26 5.40
∂p0/∂w2 1.28 0.69 1.45 44.68 0.27 0.89 0.93 7.02 -0.02 0.94 0.94 5.62

τ = 3/4

∂p1/∂x -12.85 0.87 12.88 100.00 -5.64 2.56 6.19 71.12 0.37 3.09 3.12 5.06
∂p1/∂w1 10.20 1.47 10.31 100.00 4.33 2.60 5.05 54.56 0.17 2.70 2.70 5.82
∂p1/∂w2 1.90 0.69 2.02 78.98 0.88 0.90 1.26 21.40 0.04 1.00 1.01 5.90
∂p2/∂x 7.26 0.80 7.31 100.00 3.35 1.86 3.83 56.54 -0.20 2.32 2.33 6.34
∂p2/∂w1 -5.08 0.75 5.13 100.00 -2.17 1.30 2.53 54.46 -0.08 1.35 1.35 5.76
∂p2/∂w2 -3.68 1.32 3.91 79.26 -1.74 1.78 2.49 22.06 -0.06 2.01 2.01 6.02
∂p0/∂x 5.59 0.74 5.63 100.00 2.29 1.43 2.70 45.98 -0.17 1.71 1.72 5.50
∂p0/∂w1 -5.12 0.75 5.18 100.00 -2.17 1.30 2.53 54.50 -0.08 1.35 1.35 5.74
∂p0/∂w2 1.78 0.64 1.89 79.40 0.86 0.88 1.23 22.22 0.03 1.01 1.01 5.88

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and the MERM estimators and the corresponding
t-tests for the partial derivatives ∂pj(x,w, θ0)/∂x, ∂pj(x,w, θ0)/∂w1, ∂pj(x,w, θ0)/∂w2 for j ∈ {1, 2, 0} evaluated at the population mean. The true
values of the marginal effects are (∂p1/∂x, ∂p2/∂x, ∂p0/∂x) = (0.222,−0.111,−0.111) and zeros for the rest. The results are based on 5,000 replications.
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Table 5: Simulation results for the multinomial logit model, Case RC

MLE K = 2 K = 4

bias, 10−2 std, 10−2 rmse, 10−2 size bias, 10−2 std, 10−2 rmse, 10−2 size bias, 10−2 std, 10−2 rmse, 10−2 size

τ = 1/4

∂p1/∂x -3.24 1.36 3.51 66.98 0.74 2.63 2.74 4.30 1.13 2.73 2.95 7.86
∂p1/∂w1 2.32 1.64 2.84 30.74 -0.11 2.30 2.30 4.82 -0.31 2.29 2.31 6.54
∂p1/∂w2 0.48 0.75 0.90 9.40 -0.04 0.87 0.87 4.82 -0.08 0.87 0.87 5.36
∂p2/∂x 1.96 1.17 2.28 39.44 -0.40 1.88 1.92 4.72 -0.63 1.93 2.03 6.74
∂p2/∂w1 -1.16 0.82 1.42 30.66 0.06 1.15 1.15 4.84 0.15 1.15 1.16 6.48
∂p2/∂w2 -0.96 1.50 1.78 9.48 0.09 1.74 1.74 4.98 0.17 1.74 1.75 5.44
∂p0/∂x 1.28 1.01 1.63 25.28 -0.34 1.43 1.47 5.08 -0.50 1.48 1.56 7.36
∂p0/∂w1 -1.16 0.82 1.42 30.60 0.06 1.15 1.15 4.82 0.15 1.15 1.16 6.46
∂p0/∂w2 0.48 0.74 0.88 9.46 -0.05 0.87 0.87 4.90 -0.09 0.87 0.88 5.32

τ = 1/2

∂p1/∂x -8.97 1.09 9.04 100.00 -1.69 2.60 3.10 9.84 0.97 2.89 3.05 6.04
∂p1/∂w1 6.44 1.53 6.62 98.96 1.39 2.44 2.81 12.14 -0.21 2.41 2.42 5.54
∂p1/∂w2 1.28 0.72 1.47 42.54 0.29 0.90 0.94 7.00 -0.06 0.92 0.92 5.00
∂p2/∂x 5.22 0.97 5.31 99.98 1.05 1.89 2.16 10.16 -0.53 2.08 2.15 6.14
∂p2/∂w1 -3.21 0.77 3.30 98.96 -0.69 1.22 1.40 12.10 0.10 1.21 1.21 5.52
∂p2/∂w2 -2.52 1.41 2.88 42.82 -0.56 1.79 1.87 7.20 0.13 1.84 1.84 4.98
∂p0/∂x 3.75 0.86 3.85 98.78 0.64 1.45 1.59 8.18 -0.44 1.59 1.65 6.50
∂p0/∂w1 -3.23 0.78 3.32 98.96 -0.70 1.22 1.41 12.06 0.10 1.21 1.21 5.48
∂p0/∂w2 1.23 0.69 1.41 42.90 0.28 0.89 0.93 7.20 -0.07 0.92 0.92 4.94

τ = 3/4

∂p1/∂x -13.35 0.86 13.38 100.00 -6.83 2.64 7.32 80.32 0.71 3.22 3.29 4.74
∂p1/∂w1 9.69 1.45 9.80 100.00 4.95 2.65 5.61 65.52 0.01 2.62 2.62 5.34
∂p1/∂w2 1.81 0.69 1.94 75.30 1.01 0.89 1.35 26.08 -0.01 0.98 0.98 5.24
∂p2/∂x 7.48 0.79 7.52 100.00 4.06 1.83 4.45 68.82 -0.37 2.32 2.35 5.74
∂p2/∂w1 -4.83 0.73 4.88 100.00 -2.47 1.32 2.81 65.46 -0.01 1.31 1.31 5.28
∂p2/∂w2 -3.51 1.33 3.76 75.60 -1.99 1.76 2.66 26.38 0.03 1.97 1.97 5.32
∂p0/∂x 5.87 0.73 5.92 100.00 2.77 1.47 3.14 56.28 -0.34 1.77 1.80 5.82
∂p0/∂w1 -4.87 0.75 4.93 100.00 -2.48 1.33 2.81 65.40 -0.01 1.31 1.31 5.32
∂p0/∂w2 1.70 0.64 1.82 75.76 0.98 0.87 1.31 26.50 -0.02 0.99 0.99 5.30

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and the MERM estimators and the corresponding
t-tests for the partial derivatives ∂pj(x,w, θ0)/∂x, ∂pj(x,w, θ0)/∂w1, ∂pj(x,w, θ0)/∂w2 for j ∈ {1, 2, 0} evaluated at the population mean. The true
values of the marginal effects are (∂p1/∂x, ∂p2/∂x, ∂p0/∂x) = (0.222,−0.111,−0.111) and zeros for the rest. The results are based on 5,000 replications.
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3.3 Empirical Illustration: Choice of Transportation Mode

In this section, we illustrate the finite sample properties of the MERM estimator in the

context of a classical multinomial choice application: choice of transportation mode (e.g.,

McFadden, 1974).

To calibrate the numerical experiment, we use the ModeCanada dataset, a survey of

business travelers for the Montreal-Toronto corridor. We focus on the subset of travelers

choosing between train, air, and car (n = 2769), and estimate the following specification of

the conditional logit model with traveler i’s utilities given in the table below.

Mode Utility

Air Ui1 = θ01 Income
∗
i + θ02 Urbani + θ03 + θ07 Pricei1 + θ08 InT imei1 + εi1

Car Ui2 = θ04 Income
∗
i + θ05 Urbani + θ06 + θ07 Pricei2 + θ08 InT imei2 + εi2

Train Ui0 = θ07 Pricei0 + θ08 InT imei0 + εi0

To generate the simulated samples, we randomly draw covariates from their joint empir-

ical distribution. To generate the simulated outcomes, we draw εij from the standard type-I

extreme value distribution. The true value of θ0 is set to be the MLE estimate based on the

original dataset. More details about this numerical experiment are given in Appendix H.

To evaluate the performance of the MERM estimator in these settings, we generate

mismeasured Incomei = Income∗i + εi. We focus on the individual income because it is

often mismeasured.We report the results for τ = σε/σIncome∗ ∈ {1/4, 1/2, 3/4}.
Table 6 reports the simulation results for the (naive) MLE estimator and for the MERM

estimators with K = 2 and K = 4. We focus on estimation of and inference on the income

elasticities (evaluated at the population mean of the covariates). The MLE estimator is

considerably biased for τ ∈ {1/2, 3/4}, which results in substantial size distortions of the

MLE based t-tests. The MERM estimator with K = 4 effectively eliminates the EIV bias

and the corresponding t-tests provide accurate size control in all of the considered designs.

The estimator with K = 2 is more precise, while successfully removing the EIV bias for

τ ≤ 1/2.

Overall, the MERM estimators perform well in the considered empirical context, provid-

ing a basis for estimation and inference even for quite large values of τ .
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Table 6: Simulation results for the empirically calibrated conditional logit model

MLE K = 2 K = 4

bias std rmse size bias std rmse size bias std rmse size

τ = 1/4

∂ ln p1/∂ ln I -0.07 0.12 0.14 9.00 0.01 0.14 0.14 5.68 0.02 0.19 0.19 7.02
∂ ln p2/∂ ln I 0.03 0.07 0.08 5.84 -0.00 0.08 0.08 5.68 -0.01 0.10 0.10 6.40
∂ ln p0/∂ ln I 0.05 0.13 0.13 6.10 0.00 0.14 0.14 5.42 -0.00 0.17 0.17 7.66

τ = 1/2

∂ ln p1/∂ ln I -0.24 0.11 0.27 61.84 -0.05 0.14 0.15 6.96 0.02 0.21 0.21 6.16
∂ ln p2/∂ ln I 0.09 0.07 0.11 24.76 0.02 0.09 0.09 5.96 -0.01 0.10 0.10 6.16
∂ ln p0/∂ ln I 0.16 0.12 0.20 25.36 0.04 0.15 0.15 6.06 -0.00 0.18 0.18 6.86

τ = 3/4

∂ ln p1/∂ ln I -0.43 0.09 0.44 99.50 -0.19 0.14 0.24 27.46 0.02 0.22 0.22 5.84
∂ ln p2/∂ ln I 0.16 0.06 0.17 71.88 0.07 0.08 0.11 13.78 -0.01 0.11 0.11 6.32
∂ ln p0/∂ ln I 0.29 0.11 0.31 73.20 0.12 0.15 0.19 13.40 0.00 0.19 0.19 6.32

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and
the MERM estimators and the corresponding t-tests for the income elasticities ∂ ln pj(I, w, θ0)/∂ ln I,
j ∈ {1, 2, 0}, evaluated at the population mean. The true values of the income elasticities are
(∂ ln p1/∂ ln I, ∂ ln p2/∂ ln I, ∂ ln p0/∂ ln I) = (1.11,−0.39,−0.82). The results are based on 5,000 repli-
cations.

4 Identification of the Nonlinear Regression Model

It is important to understand under what conditions the parameters of interest are iden-

tified in our settings. This section considers identification and estimation of the nonlinear

regression function ρ (x) ≡ E [Yi|X∗i = x]. To address the problem of EIV, the researcher has

an instrument Zi, which can be discrete or continuous. In this section, we do not impose

any functional form assumptions on the true regression function ρ (·), i.e., the analysis is

nonparametric.

Consider the model

Yi = ρ (X∗i ) + Ui, Xi = X∗i + εi. (21)

The joint distribution of observables (Yi, Xi, Zi) satisfies the following assumptions.

Assumption 4.1. E [Yi|X∗i , Zi] = E [Yi|X∗i ] .

Assumption 4.2. Functions ρ (·) and fX∗|Z (·|z) have at least p ≥ 3 bounded derivatives,

and E [|εi|p] ≤ Cτ p for some constant C.

Assumption 4.1 is a standard exclusion restriction on the instrument Zi. Assumption 4.2

collects some weak regularity conditions. We will study the properties of this model using

the approximation τ = o (1). The identification analysis views the unknown function ρ and
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the joint distribution of (Yi, X
∗
i , Zi) as fixed. Thus, the joint distribution of the observables

(Yi, Xi, Zi) is implicitly indexed by τ , but varies with τ only due to the changes in the

distribution of εi.

The naive population regression q (x) ≡ E [Yi|Xi = x] suffers from the EIV bias

E [Yi|Xi = x] = ρ (x) +O
(
τ 2
)
. (22)

Similar to the semiparametric case of Section 2, identifying σ2 or τ 2 allows dealing with this

bias.11

Let us define

q (x, z) ≡ E [Yi|Xi = x, Zi = z] , sX|Z (x|z) ≡
f ′X|Z (x|z)

fX|Z (x|z)
, sX∗|Z (x|z) ≡

f ′X∗|Z (x|z)

fX∗|Z (x|z)
.

(23)

Let SX∗ (z) ≡ {x : fX∗|Z (x|z) > 0}, so that sX∗|Z (x|z) is well-defined for all x ∈ SX∗ (z).

The following functions can be identified directly from the joint distribution of the ob-

served (Yi, Xi, Zi):

σ̃2 (x) ≡ q (x, z1)− q (x, z2)

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

] , (24)

ρ̃ (x, z, v) ≡ q (x, z)− ṽ
[
q′ (x) sX|Z (x|z) + 1

2
q′′ (x)

]
. (25)

Theorem 3. Suppose Assumptions CME, 4.1, 4.2 hold and either (i) p = 3 or (ii) E [ε3
i ] = 0

and p = 4. Suppose also that τ = o (1), and there exist z1, z2, and a point x ∈ SX∗ (z1) ∩
SX∗ (z2), such that ρ′ (x)

[
sX∗|Z (x|z1)− sX∗|Z (x|z2)

]
6= 0. Then

σ̃2 (x) ≡ σ2 +O (τ p) . (26)

Moreover, for any ṽ = σ2 +O (τ p) (including ṽ = σ̃2 (x)), any z, and any x ∈ SX∗ (z),

ρ̃ (x, z, ṽ) ≡ ρ (x) +O (τ p) for all x ∈ SX∗ (z) . (27)

Equation (26) shows that we can identify σ2 up to an error of a smaller order O (σp) =

O (τ p). As a consequence, ρ (·) is identified up to the same order O (τ p). Below we will

consider the implications of this theorem for estimation.

Theorem 3 requires the rank condition ρ′ (x)
[
sX∗|Z (x|z1)− sX∗|Z (x|z2)

]
6= 0 to hold for

some x. The key here is the instrument relevance condition that requires sX∗|Z (x|z) to vary

11Note that σ2 can be approximated by 0. However, to be meaningful, identification of σ2 needs to
characterize it up to an error of an order smaller than σ2 itself.
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with z. The proof of the theorem shows that

q (x, z) = ρ (x) + σ2ρ′ (x) sX∗|Z (x|z) + 1
2
σ2ρ′′ (x) +O (τ p) . (28)

This equation is used to identify σ2 by varying z, since only the second term on the

right-hand side depends on z. Note that for q (x, z) to vary with z we need the addi-

tional rank condition ρ′ (x) 6= 0. Requiring that there exists a point x with ρ′ (x) 6= 0

is a weak condition, since ρ′ (x) = 0 for all x means that ρ (x) is constant, in which case

EIV do not bias the naive regression estimator and q (x) = ρ (x).12,13 The rank condition

ρ′ (x)
[
sX∗|Z (x|z1)− sX∗|Z (x|z2)

]
6= 0 in Theorem 3 can be replaced by the condition that

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

]
is bounded away from zero, which is stated in terms of the

observables. Likewise, set SX∗ (z) above can be replaced with SX (z) ≡ {x : fX|Z (x|z) > Cf}
for any positive constant Cf .

The relevance condition imposed on the instrumental variable is weak. The equality

sX∗|Z (x|z1) = sX∗|Z (x|z2) can only hold for all x, z1, and z2 if X∗ and Z are independent.

Finally, consider the following example:

Example 4.1. Suppose X∗i follows a Gaussian random coefficient model:

X∗i = Π1i + Π2iZi, where

(
Π1i

Π2i

)
∼ N

((
π1

π2

)
,

(
ω2
π1 0

0 ω2
π2

))
,

and Zi ∈ {0, 1} is a binary instrument. In many applications the instruments are likely

to have heterogeneous effects on the covariate, e.g., Angrist, Graddy, and Imbens (2000)

and Heckman and Vytlacil (1998), which corresponds to ω2
π2 > 0. Then, X∗i |Zi = z ∼

N (µ (z) , ω2 (z)) with µ (z) = π1 + π2z and ω2 (z) = ω2
π1 + ω2

π2z
2. Thus, the instrument

is relevant unless π2 = ωπ2 = 0. Notably, the instrument is relevant even if π2 = 0 (so

corr (X∗i , Zi) = 0), as long as Zi has a heterogeneous effect on X∗i .

Importantly, in contrast to many approaches to EIV in nonlinear models, an instrument

itself can be mismeasured, and a variable that is caused by X∗i can serve as an instrument.

In particular, Zi can be a nonclassical second measurement of X∗i .

Remark 9. Note that σ2 is overidentified, which can be used to test the model assumptions.

To clarify the implications of Theorem 3 it is useful to consider nonparametric estimation

of the regression function ρ (x). The approach of Theorem 3 is constructive, and using

12See Evdokimov and Zeleneev (2018) for more details on the role of ρ′ (x) in the literature on measurement
errors.

13Equation (28) extends the calculation of the conditional expectation in equation (4.6) in Chesher (1991)
by introducing the instrumental variables and obtaining more precise bounds on the approximation error.
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equations (23)-(25) we can construct a nonparametric measurement error robust analog

estimator ρ̂MER (x). We compare such ρ̂MER (x) with the naive nonparametric regression

estimator ρ̂Naive (x) of E [Y |Xi = x], which ignores the presence of EIV in the data. Both

estimators can be implemented using standard nonparametric estimation methods (e.g.,

kernel or sieve estimators). In the following discussion assume that the tuning parameters

are chosen optimally for each of the estimators. For brevity we focus only on the case (ii) in

Theorem 3.

Proposition 4. Suppose the conditions of Theorem 3 hold, E [ε3
i ] = 0, functions ρ (·) and

fX∗|Z (·|z) have m ≥ 4 bounded derivatives, and Zi is discrete. Suppose τn = O
(
n−

1
4

m
2m+1

)
,

then

ρ̂MER (x)− ρ (x) = Op

(
n−

m
2m+1

)
,

ρ̂Naive (x)− ρ (x) = Op

(
n−

1
2

m
2m+1

)
.

The proposition provides a nonparametric analog of the semiparametric results in Sec-

tion 2. In particular, ρ̂MER generally has a faster rate of convergence than ρ̂Naive. For example,

if m = 4 the rates of convergence of ρ̂MER (x) and ρ̂Naive (x) are Op

(
n−4/9

)
and Op

(
n−2/9

)
,

respectively. Note that the rate of convergence of ρ̂MER (x) in Proposition 4 is optimal and

cannot be improved: even if had data on (Yi, X
∗
i ) without EIV, under the smoothness as-

sumptions of the proposition, function ρ (x) cannot be estimated nonparametrically at a rate

faster than Op

(
n−

m
2m+1

)
, see Stone (1980). Note also that for the models with large m, the

rates of convergence in the Proposition approach those in Remark 1.

Remark 10. Our identification analysis is fully nonparametric (we make no parametric

form assumptions on the regression function or the distributions, including the distributions

of the measurement errors). The identification result of Theorem 3 is also global: it shows

that joint distribution of the data allows distinguishing true function ρ from all other possible

(suitably smooth) functions up to an error of order O (τ p). However, our analysis is confined

to the approximations τ → 0, and in this is different from the nonparametric identification

approaches with “large” measurement errors.

Connection to the MERM Estimator for the Nonlinear Regression Model It

turns out that the above nonparametric identification analysis is directly connected to the

MERM estimator for the semiparametric nonlinear regression model. Suppose the family of
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regression functions is parameterized as ρ (x, θ), where θ is a finite dimensional parameter

of interest, and ρ (x) ≡ ρ (x, θ0). The standard original moment function for the nonlinear

regression is

g (x, y, z, θ) ≡ (ρ (x, θ)− y)h (x, z) (29)

for a vector of smooth functions h (x, z). The original moment condition

E [g (X∗i , Yi, Zi, θ0)] = 0 would have been satisfied at the true parameter value θ0 had we

observed X∗i .

Suppose Assumption MME holds with K = 2 and we use the corrected moment condi-

tions from Section 2 to deal with the EIV. For the original moment conditions (29), evaluated

at the true parameter values θ0 and γ02 = σ2/2, the corrected moment conditions satisfy

E [ψ(Xi, Yi, Zi, θ0, γ02)] (30)

= E
[
(ρ (Xi)− Yi)h (Xi, Zi)−

σ2

2

(
2ρx (Xi)hx (Xi, Zi) + ρ(2)

x (Xi)h (Xi, Zi)
)]

+O
(
τ 4
)

= o
(
n−1/2

)
,

where the first equality follows by equation (8) and the fact that

E
[
(ρ (Xi)− Yi) σ2

2
h

(2)
x (Xi, Zi)

]
= O (τ 4), and the second equality follows by Lemma 1.

Alternatively, we can consider developing a semiparametric estimator based directly on

Theorem 3 with ρ (x) ≡ ρ (x, θ0). We can restate equation (28) as

q (x, z) = ρ (x) + σ2ρx (x) sX|Z (x|z) + 1
2
σ2ρ(2)

x (x) + o
(
n−1/2

)
,

since σ2
(
sX|Z (x|z)− sX∗|Z (x|z)

)
= O (τ 4) = o

(
n−1/2

)
. By definition, q (x, z) =

E [Yi|Xi = x, Zi = z], so the above equation can be viewed as the conditional moment re-

striction

E
[
ν
(
Xi, Yi, Zi, θ0, σ

2
)
|Xi = x, Zi = z

]
= o

(
n−1/2

)
,

where

ν
(
x, y, z, θ0, σ

2
)
≡ ρ (x) + σ2ρx (x) sX|Z (x|z) +

σ2

2
ρ(2)
x (x)− y.

This conditional moment restriction cannot be directly used for estimation of θ0, because it

depends on function sX|Z (x|z). One could consider estimating function sX|Z nonparametri-

cally. However, it turns out that this is unnecessary.

Let us transform the conditional moment ν into an unconditional moment using the vector

of smooth functions h (x, z). Using generalized Stein’s lemma (or integration by parts) we
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obtain

E
[
ν
(
Xi, Zi, Yi, θ0, σ

2
)
h (Xi, Zi)

]
= E

[
(ρ (Xi)− Yi)h (Xi, Zi) + σ2

{
ρx (Xi)h (Xi, Zi) sX|Z (Xi|Zi) +

1

2
ρ(2)
x (Xi)h (Xi, Zi)

}]
= E

[
(ρ (Xi)− Yi)h (Xi, Zi) + σ2

{
−∇x {ρx (Xi)h (Xi, Zi)}+

1

2
ρ(2)
x (Xi)h (Xi, Zi)

}]
= E

[
(ρ (Xi)− Yi)h (Xi, Zi) + σ2

{
−ρx (Xi)hx (Xi, Zi)−

1

2
ρ(2)
x (Xi)h (Xi, Zi)

}]
= E

[
(ρ (Xi)− Yi)h (Xi, Zi)−

σ2

2

{
2ρx (Xi)hx (Xi, Zi) + ρ(2)

x (Xi)h (Xi, Zi)
}]

.

Notice that the unknown function sX|Z (x|z) has disappeared, and the last line of the equation

matches the corrected moment condition (30).

Thus, the MERM estimator for nonlinear regression can be viewed as a semiparamet-

ric implementation of the nonparametric characterization in equation (28) that avoids any

nonparametric estimation of the nuisance parameters.

5 Extensions

5.1 Multiple Mismeasured Variables

It is easy to use the MERM framework to deal with multiple mismeasured variables. This

is useful in many applications, including not only settings with multiple mismeasured co-

variates, but also settings with serially correlated measurement errors, settings where re-

peated measurements are available, and panel data models. Using the MERM approach is

particularly advantageous in such applications, since it avoids nonparametric estimation of

multivariate unobserved distributions.

Suppose X∗i , εi, and Xi are d× 1 vectors. Let τn ≡ maxj≤d σεj/σX∗j , where σεj and σX∗j

denote the standard deviations of the j-th components of εi and X∗i , so E
[
|εij|k

]
= O(τ kn)

for k ∈ {1, . . . , K}.
For a d× 1 vector of non-negative integers κ = (κ1, . . . , κd) ∈ Zd+, let

∂κ ≡
∂|κ|

∂x1
κ1 . . . ∂xdκd

, where |κ| ≡
d∑
j=1

κj.

Also, for a positive integer k, let Kk = {κ ∈ Zd+ : |κ| = k}. Then, we consider the following
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corrected moment function

ψ(x, s, θ, γ) = g(x, s, θ)−
K∑
k=2

∑
κ∈Kk

γκ∂κg(x, s, θ),

where, with some abuse of notation, γ is a collection of all γκ with κ ∈ Kk and k ∈ {2, . . . , K}.
Under mild smoothness conditions

E [ψ(Xi, Si, θ0, γ0)] = E [g(X∗i , Si, θ0)] +O(τK+1
n ) = o(n−1/2),

where the second equality holds provided that O(τK+1
n ) = o(n−1/2). Similarly to the

scalar case, components of γ0 are determined by the moments of εi. Specifically, let

µκ ≡ E [εκ1i1 . . . ε
κd
id ], then

γ0κ =
µκ
κ!
, for κ ∈ {K2,K3}, (31)

where κ! ≡ κ1! . . . κd!. For |κ| ≥ 4, the coefficients can be computed by the following

formulas. For example, for κ ∈ K4, let K2,κ = {κ̃ ∈ K2 : κ− κ̃ ∈ K2}. Then,

γ0κ =
µκ
κ!
−
∑
κ̃∈K2,κ

µκ−κ̃
(κ− κ̃)!

γ0κ̃, for κ ∈ K4.

More generally, for κ ∈ Kk with k ≥ 4, let K`,κ = {κ̃ ∈ K`, κ − κ̃ ∈ K|κ|−`} for ` ≤ |κ| − 2.

Then,

γ0κ =
µκ
κ!
−

k−2∑
`=2

∑
κ̃∈K`,κ

µκ−κ̃
(κ− κ̃)!

γ0κ̃.

Example (Bivariate X, K = 4).

Suppose X is bivariate (i.e., d = 2) and K = 4. For κ ∈ K2 = {(2, 0), (1, 1), (0, 2)} and

κ ∈ K3 = {(3, 0), (2, 1), (1, 2), (0, 3)}, γ0κ is given by (31). For κ ∈ K4, γ0κ is given by

κ γ0κ

(4,0) (E[ε4
i1]− 6E[ε2

i1]2) /24

(3,1) (E[ε3
i1εi2]− 6E[ε2

i1]E[εi1εi2]) /6

(2,2) (E[ε2
i1ε

2
i2]− 2E[ε2

i1]E[ε2
i2]− 4E[εi1εi2]2) /4

(1,3) (E[εi1ε
3
i2]− 6E[ε2

i2]E[εi1εi2]) /6

(0,4) (E[ε4
i2]− 6E[ε2

i2]2) /24

If in addition measurement errors εi1 and εi2 are independent, γ0κ = 0 for κ ∈
{(1, 1), (2, 1), (1, 2), (3, 1), (1, 3)}. In this case, the total number of the nuisance parameters

to be estimated is 6.
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5.2 Non-Classical Measurement Errors

In some applications, assuming that εi is independent from (X∗i , Si) may be too restrictive.

For example, the variance of the measurement error E [ε2
i |X∗i , Si] (and other moments) could

depend on X∗i and Si. In this section, we demonstrate how MERM framework can be used

to address this issue.

Suppose that E
[
|εi|k |X∗i , Si

]
= O(τ kn) for k ∈ {2, . . . , K}. For now, we will also adopt

the standard assumption (normalization) E [Xi|X∗i , Si] = X∗i , i.e., E [εi|X∗i , Si] = 0, which

we will later reconsider. Conditional on X∗i and Si, the moment function can be expanded

as

E[g(Xi, Si, θ)|X∗i , Si] = g(X∗i , Si, θ) +
K∑
k=2

E
[
εki |X∗i , Si

]
k!

g(k)
x (X∗i , Si, θ) +O(τK+1

n ). (32)

Suppose E
[
εki |X∗i , Si

]
= vk(X

∗
i , Si, ω0), k ∈ {2, . . . , K} where ω0 ∈ Rdim(ω) are unknown

parameters. Typically, functions vk are assumed to depend only on some of the components

of (X∗i , Si). For example, in the nonlinear regression (3), it may be natural for vk to depend

on X∗i and/or Wi, but not on Yi. Equation (32) then implies that

E [g(X∗i , Si, θ)] = E

[
g(Xi, Si, θ)−

K∑
k=2

vk(X
∗
i , Si, ω0)

k!
g(k)
x (X∗i , Si, θ)

]
+O(τK+1

n ). (33)

Equation (33) is an analog of equation (11), which motivates correcting the moment condi-

tions by estimating and subtracting the bias terms
vk(X∗i ,Si,ω0)

k!
g

(k)
x (X∗i , Si, θ). The corrected

moment function takes the form

ψ(Xi, Si, θ, ω) = g(Xi, Si, θ)−
K∑
k=2

fk(Xi, Si, θ, ω), (34)

where

f2(x, s, θ, ω) =
v2(x, s, ω)

2
g(2)
x (x, s, θ), f3(x, s, θ, ω) =

v3(x, s, ω)

6
g(3)
x (x, s, θ),

fk(x, s, θ, ω) =
vk(x, s, ω)

k!
g(k)
x (x, s, θ)−

k−2∑
`=2

vk−`(x, s, ω)

(k − `)!
∂k−`

∂xk−`
f`(x, s, θ, ω), for k ≥ 4.

Notice that for K ≤ 3 the corrected moment functions are similar to the classical EIV

case except for v2(x, s, ω) and v3(x, s, ω) taking the places of E [ε2
i ] and E [ε3

i ] respectively.

For K ≥ 4, we need to bias correct the bias correction terms such as f2(x, s, θ, ω) accounting
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for v2(Xi, Si, θ, ω) being evaluated at Xi instead of X∗i . Also, when the conditional moments

of εi do not depend on X∗i , the corrected moment function matches the classical EIV case

with vk(s, ω) replacing E
[
εki
]
.

Under the regularity conditions

E [ψ(Xi, Si, θ0, ω0)] = E [g(X∗i , Si, θ0)] +O(τK+1
n ) = o(n−1/2),

provided that O(τK+1
n ) = o(n−1/2).

Thus, the model can be estimated using GMM estimator with the corrected moment

function (34), where parameters θ0 and ω0 are estimated together, i.e., the estimator in

equation (14) with β ≡ (θ′, ω′)′. The following example provides a convenient parameteriza-

tion of functions v.

Example 5.1 (Exponential Specification, K = 4).

Suppose εi = exp(ω01X
∗
i )ζ i, where ζ i is mean zero and independent of (X∗i , Si). In this

case, E
[
εki |X∗i , S

]
= E

[
ζki
]

exp(kω01X
∗
i ). Then, we can take vk(x, s, ω) = ωk exp(kω1x),

k ∈ {2, . . . , 4}, with ω0 = (ω01,E
[
ζ2
i

]
,E
[
ζ3
i

]
,E
[
ζ4
i

]
)′. Functions fk in equation (34) are

f2(x, s, θ, ω) =
ω2 exp(2ω1x)

2
g(2)
x (x, s, θ), f3(x, s, θ, ω) =

ω3 exp(3ω1x)

6
g(3)
x (x, s, θ),

f4(x, s, θ, ω) = exp(4ω1x)

(
ω4 − 6ω2

2

24
g(4)
x (x, s, θ)− ω1ω

2
2g

(3)
x (x, s, θ)− ω2

1ω
2
2g

(2)
x (x, s, θ)

)
.

Identifiability of parameters ω0 depends on the specific model and moment conditions

g. For the nonlinear regression model with non-classical moderate EIV, Evdokimov and

Zeleneev (2022) establish nonparametric identification using instrumental variables.

Condition E [Xi|X∗i , Si] = X∗i

Since X∗i is not observed, in the absence of some a priori information about its distribution,

some assumptions or normalizations such as E [Xi|X∗i , Si] = X∗i appear to be necessary, and

are routinely imposed in the EIV literature. For example, see Hu and Schennach (2008), Hu

and Sasaki (2015), and Schennach (2021) for recent discussions of such assumptions in the

context of possibly nonclassical EIV.

Arguably, the condition E [Xi|X∗i , Si] = X∗i is weaker than it might appear. Suppose the

true covariate is denoted by X ∗i and is mismeasured according to the following model

Xi = α0 + α1X ∗i + Ei, E [Ei| X ∗i , Si] = 0, (35)
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so E [Xi| X ∗i ] = α0 + α1X ∗i for some unknown α0 and α1 > 0. Note that

E [Xi −X ∗i | X ∗i ] 6= 0.

For concreteness, consider the nonlinear regression model:

E [Yi|X ∗i ,Wi] = ρ (θ01 + θ0XX ∗i + θ′0WWi)

for some known function ρ. Since X ∗i is unobservable, we can write an observationally

equivalent model in terms of another unobservable X∗i defined as

X∗i ≡ α0 + α1X ∗i , (36)

E [Yi|X∗i ,Wi] = ρ
(
θ̃01 + θ̃0XX

∗
i + θ′0WWi

)
, (37)

where θ̃0X ≡ θ0X/α1, θ̃01 ≡ θ01 − θ̃0Xα0. Thus, parameters (θ01, θ0X ) and (α0, α1) are

not separately identified without additional information about the location and scale of X ∗i .

Note that neither instrumental variables nor multiple measurements of the form (35) provide

such information.

The definition (36) of X∗i and equation (35) imply that condition E [Xi|X∗i , Si] = X∗i

holds for the observationally equivalent model (37). Thus, setting α0 = 0 and α1 = 1 in

equation (35) may be viewed as a particular normalization.

Importantly, many parameters of interest are invariant to this normalization, because

they do not depend on the (unidentified) scale of X ∗i . First, parameters θ0W do not depend

on the normalization. Moreover, we have (X ∗i − µX ∗) /σX ∗ = (X∗i − µX∗) /σX∗ , and hence

the following average structural function

m(t, w) ≡ E [Yi|X ∗i = µX ∗ + tσX ∗ ,Wi = w]

is identified, since m(t, w) = E [Yi|X∗i = µX∗ + tσX∗ ,Wi = w] is identified. As a result, we

can identify marginal effects such as ∂
∂w

E [Yi|X ∗i = µX ∗ ,Wi = w] = ∂
∂w
m(0, w), or the ef-

fect of increasing X ∗i from µX ∗ to µX ∗ + λσX ∗ , i.e., m(λ,w) −m(0, w). The corresponding

marginal effects averaged with respect to the distribution of (X ∗i ,Wi) are also identified and

can be estimated following Remark 3. Thus, in this model, the MERM estimator with con-

dition E [Xi|X∗i , Si] = X∗i taken as a convenient normalization allows estimation of some

economically meaningful marginal effects, even when the true measurement model is given

by equation (35), and the measurement error Xi −X ∗i is non-classical.

At the same time, identification of the true values of θ01 and θ0X and some marginal
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effects such as ∂
∂κE [Yi|X ∗i = κ,Wi = w] requires identifying the true values of α0 and α1.

If the researcher has an additional validation dataset containing jointly
(
Xj,X ∗j

)
, it is

straightforward to estimate the parameters of interest θ0 together with α0 and α1. However,

the availability of such validation datasets is limited.

It can be easier to obtain information about only the marginal distribution of X ∗j such

as µX ∗ ≡ E
[
X ∗j
]

and σ2
X ∗ , e.g., from an administrative dataset.14,15 Then, instead of making

a normalization in equation (35), the MERM approach can be used to estimate α0 and

α1 together with parameters θ0. For any original moment condition E [g (X ∗, Si, θ0)] = 0

consider the augmented moment condition E [gA (X ∗i , Si, θ0)] = 0, where

gA (X ∗i , Si, θ0) ≡
(
g̃ (X ∗i , Si, θ0)′ ,X ∗i − µX ∗ , (X ∗i − µX ∗)

2 − σ2
X ∗
)′
.

Define X∗i ≡ α0 + α1X ∗i , θ̃0 ≡ (θ′0, α0, α1)
′
, and g̃A(X∗i , Si, θ̃0) ≡ gA ((X∗i − α0)/α1, Si, θ0).

Then one can take E[g̃A(X∗i , Si, θ̃0)] = 0 as the new “original” moment condition (1). Since

the condition E [Xi|X∗i , Si] = X∗i holds, θ̃0 can be estimated using the MERM approach and

the corrected moments (34) applied to g̃A in place of g.

Finite Sample Illustration

Consider the following simple Logit model

Yi = 1{θ01X
∗
i + θ02Wi + θ03 − ηi ≥ 0},

X∗i = Zi + Vi, Xi = X∗i + εi, εi = exp(ω01X
∗
i )ζ i, Wi = ρX∗i /σX∗ +

√
1− ρ2νi,

where ηi ∼ Logistic and (Zi, Vi, ζ i, νi)
′ ∼ N

(
(0, 0, 0, 0)′,Diag(σ2

Z , σ
2
V , σ

2
ζ , σ

2
ν)
)

are indepen-

dent from each other.

We fix (θ01, θ02, θ03, ω01, ρ, σ
2
Z , σ

2
V , σ

2
ν) = (1, 0, 2, 0.3, 0.7, 1, 1, 1) and n = 2000. By adjust-

ing σ2
ζ accordingly, we consider τ = σε/σX∗ ∈ {1/4, 1/2, 3/4}, where, as before, σε denotes

the (unconditional) standard deviation of εi.

We report results for the MERM estimator based on the corrected moment function (34)

with K = 2 and K = 4. The original moment function is

g(x,w, y, z, θ) = (y − Λ(θ1x+ θ2w + θ3))h(x, z, w),

where we use h(x, z, w) = (1, x, z, x2, z2, x3, z3, w)
′

for K = 2 and h(x, z, w) =

(1, x, z, x2, xz, z2, x3, x2z, xz2, z3, w)
′

for K = 4. The corrected moment function is as in

14It is important that X ∗j and (Xi, Si) are drawn from the same population.
15The knowledge of σ2

X∗ does not identify even the unconditional variance σ2
ε, since σ2

X = α2
1σ

2
X∗ + σ2

ε.
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Example 5.1, where we set ω3 = 0 (using E
[
ζ3
i

]
= 0).

Table 7 reports the simulation results. Both of the correction schemes effectively remove

the EIV bias for τ ∈ {1/4, 1/2}. However, employing the higher order correction scheme

with K = 4 is needed to achieve accurate size control for larger values of τ (τ = 3/4).

Table 7: Simulation results for the logit model with non-classical measurement error

MLE K = 2 K = 4

bias std rmse size bias std rmse size bias std rmse size

τ = 1/4

θ1 -0.062 0.073 0.096 14.20 0.041 0.113 0.120 3.50 0.065 0.120 0.137 5.82
θ2 0.063 0.090 0.110 10.86 -0.014 0.119 0.120 2.70 -0.027 0.125 0.128 3.96
∂x -0.006 0.007 0.010 16.10 0.001 0.010 0.010 2.92 0.002 0.010 0.011 4.08
∂w 0.007 0.009 0.012 10.74 -0.001 0.012 0.012 3.06 -0.003 0.012 0.013 4.36

τ = 1/2

θ1 -0.224 0.068 0.234 89.84 0.019 0.134 0.136 3.50 0.043 0.141 0.147 5.78
θ2 0.219 0.083 0.235 75.32 0.019 0.138 0.139 3.82 -0.003 0.141 0.141 4.10
∂x -0.022 0.006 0.023 91.66 -0.003 0.012 0.012 4.14 -0.001 0.012 0.012 4.52
∂w 0.024 0.009 0.025 74.86 0.002 0.014 0.014 3.82 -0.000 0.014 0.014 4.52

τ = 3/4

θ1 -0.419 0.058 0.423 100.00 -0.116 0.129 0.173 12.18 0.031 0.154 0.157 5.96
θ2 0.396 0.076 0.403 99.98 0.172 0.131 0.217 31.82 0.033 0.142 0.146 5.86
∂x -0.040 0.006 0.041 100.00 -0.017 0.011 0.020 40.72 -0.005 0.012 0.013 7.64
∂w 0.044 0.009 0.045 99.96 0.017 0.013 0.022 28.20 0.003 0.014 0.014 5.74

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and
the MERM estimators and the corresponding t-tests for θ01 and θ02, and the marginal effects associated
with X∗ and W evaluated at the population means. The true values of the considered parameters are
(θ01, θ02, ∂x, ∂w) = (1, 0, 0.105, 0). The results are based on 5,000 replications.
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A Regularity Conditions

Notation. Let X ⊆ R be some closed convex set containing the union of the supports of

X∗i and Xi, and S = supp (Si).

Assumption A.1. (Moment function) Suppose that the moment restrictions (1) are satis-

fied and the following conditions hold:

(i) For all s ∈ S and θ ∈ Θ, g
(K)
x (x, s, θ) exists and is continuous on X . Moreover, there

exist functions b1, b2 : X × S × Θ → R+ and integer M > K + 1 such that for all

x, x′ ∈ X , s ∈ S, and θ ∈ Θ,

∥∥g(K)
x (x′, s, θ)− g(K)

x (x, s, θ)
∥∥ 6 b1(x, s, θ)|x′ − x|+ b2(x, s, θ)|x′ − x|M−K ; (A.1)

(ii) Assumption MME holds with L >M ;

(iii) E
[
g

(k)
x (X∗i , Si, θ0)

]
, k ∈ {1, . . . , K}, and E [bj(X

∗
i , Si, θ0)], j ∈ {1, 2}, exist and are

bounded.

Assumption A.1 allows us to bound the remainder of the Taylor expansion of g(Xi, Si, θ)

around X∗i by a polynomial in |Xi −X∗i | = |εi|. Combined with Assumption MME (which

bounds the moments of εi), it ensures that this remainder is o(n−1/2), which is crucial for

establishing validity of the corrected moment function ψ (Lemma 1).

Notice that if X is compact, condition (A.1) is satisfied if g
(K+1)
x (x, s, θ) is bounded on

X (for all s ∈ S and θ ∈ Θ). If X is unbounded, condition (A.1) is satisfied if for some

J , such that K < J 6 M , supx∈X

∥∥∥g(J)
x (x, s, θ)

∥∥∥ 6 B(s, θ) for some function B(s, θ). Also

notice that condition (A.1) is stronger than the standard Lipschitz continuity because in

applications
∥∥∥g(K)

x (x, s, θ)
∥∥∥ may behave like a polynomial in x for large x.

Assumption A.2. (Parameter space)

(i) Θ ⊂ Rdim(θ) and Γ ⊂ RK−1 are compact, θ0 ∈ int (Θ) and γ0n ∈ Γ;

(ii) 0K−1 ∈ int (Γ).

Assumption A.3. (Regularity and smoothness conditions)

(i) For all s ∈ S, G
(K)
x (x, s, θ) exists and is continuous on X × Θ; moreover, there exist

functions bG1, bG2 : X × S × Θ → R+ and δ > 0 and for all x, x′ ∈ X , s ∈ S, and

θ ∈ Bδ(θ0)

∥∥G(K)
x (x′, s, θ)−G(K)

x (x, s, θ)
∥∥ 6 bG1(x, s, θ)|x′ − x|+ bG2(x, s, θ)|x′ − x|M−K
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(ii) E
[∥∥∥g(k)

x (X∗i , Si, θ0)
∥∥∥2
]

, E
[
supθ∈Θ

∥∥∥g(k)
x (X∗i , Si, θ)

∥∥∥], for k ∈ {0, . . . , K}, and

E
[
bj(X

∗
i , Si, θ0)2], E [supθ∈Θ bj(X

∗
i , Si, θ)], for j ∈ {1, 2}, are bounded;

(iii) for some δ > 0, E
[
supθ∈Bδ(θ0)

∥∥∥G(k)
x (X∗i , Si, θ)

∥∥∥], for k ∈ {0, . . . , K}, and

E
[
supθ∈Bδ(θ0) bGj(X

∗
i , Si, θ)

]
, for j ∈ {1, 2}, are bounded;

(iv) Ξ̂
p→ Ξ, where Ξ is a symmetric positive definite matrix;

(v) Assumption MME holds with L > 2M .

Assumption A.4. (Global and local identification)

(i) E [ψ(X∗i , Si, θ, γ)] = 0 iff θ = θ0 and γ = 0;

(ii) Ψ∗′ΞΨ∗ is invertible, where

Ψ∗ = E [Ψ(X∗i , Si, θ0, 0)] = E
[
G(X∗i , Si, θ0),−g(2)

x (X∗i , Si, θ0), . . . ,−g(K)
x (X∗i , Si, θ0)

]
.

Assumption A.2-A.4 is a collection of basic regularity conditions, which help to ensure
√
n-consistency and asymptotic normality of the suggested estimator θ̂. Specifically, As-

sumption A.3 (i) is a counterpart of Assumption A.1 (i) applied to the Jacobian function. It

ensures that the effect of the measurement error on the Jacobian is localized and allows us to

establish G→ G∗, so Ψ→ Ψ∗. As a result, the asymptotic properties of θ̂ are controlled by

G∗ (and Ψ∗), the Jacobian associated with the correctly measured variables. Assumptions

A.4 (i) and (ii) are the standard GMM global and local identification conditions applied to

the “limiting” moment function ψ(X∗i , Si, θ, γ).

Remark A.1. Assumption CME requires εi to be independent from X∗i and Si. This

requirement is stronger than needed and can be weakened to E
[
εki |X∗i , Si

]
= E

[
εki
]

for

k ∈ {1, . . . , K}, i.e., the first K conditional moments of εi need to be independent of

X∗i and Si. The higher moments of εi could depend on X∗i and Si but Assumption

MME (ii) needs to be adjusted as E
[
|εi|L |X∗i , Si

]
6 CσLε for some L > K + 1 and

C > 0 a.s. In this case, the statements of Lemma 1 and Theorem 2 remain correct,

and all the proofs provided in Appendix E remain nearly identical. For example, the ar-

gument provided in the proof of Lemma 1 combined with conditioning on X∗i and Si implies

E [ψ(Xi, Si, θ0, γ0)|X∗i , Si] = E [g(X∗i , Si, θ0)|X∗i , Si] + r(X∗i , Si), where the expected value of

the remainder can be explicitly bounded as E [‖r(X∗i , Si)‖] = O(τK+1
n ) = o(n−1/2). Then, the

statement of Lemma 1 follows from an application of the law of iterated expectations.
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Remark A.2. Assumption A.2 (ii) ensures that γ0 (which approaches 0 as n increases

under the considered asymptotics) is sufficiently far from the boundary of the parameter space

Γ. Without imposing this requirement, θ̂ still remains
√
n-consistent but is not necessarily

asymptotically normal.

At the same time, since γ0 is determined by the moments of εi, it might be desirable to

incorporate that relationship into construction of the parameter space Γ. For example, since

γ02 = E [ε2
i ] /2, it is natural to restrict γ2 > 0. Incorporation of such additional constraints

could improve efficiency of the estimators and informativeness of inference (see Evdokimov

and Zeleneev (2018) for a more detailed discussion).

B Proof of Lemma 1

To stress that in our asymptotic approximation the variance and the higher moments of εi

depend on n, we will use σ2
n ≡ E [ε2

i ], γ0n ≡ γ0.

Making use of Assumption A.1 (i) , we expand g(Xi, Si, θ0) around X∗i as

g(Xi, Si, θ0) =g(X∗i , Si, θ0) + g(1)
x (X∗i , Si, θ0)εi +

K∑
k=2

1

k!
g(k)
x (X∗i , Si, θ0)εki

+
1

K!

(
g(K)
x (X̃i, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εKi , (B.1)

where X̃i lies between X∗i and Xi (and hereafter X̃i is allowed to be component specific).

Similarly, for k′ ∈ {2, . . . , K}, we have

g(k)
x (Xi, Si, θ0) =g(k)

x (X∗i , Si, θ0) +
K∑

`=k+1

1

(`− k)!
g(`)
x (X∗i , Si, θ0)ε`i

+
1

(K − k)!

(
g(K)
x (X̃ki, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εK−ki , (B.2)

where X̃ki lies between X∗i and Xi. Hence, combining these expressions and rearranging the
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terms, we obtain

ψ(Xi, Si, θ0, γ) =g(Xi, Si, θ0)−
K∑
k=2

γkg
(k)
x (Xi, Si, θ0)

=g(X∗i , Si, θ0) + g(1)
x (X∗i , Si, θ0)εi +

K∑
k=2

g(k)
x (X∗i , Si, θ0)

(
1

k!
εki −

k∑
`=2

1

(k − `)!
εk−`i γ`

)
+

1

K!

(
g(K)
x (X̃i, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εKi

−
K∑
k=2

γk
(K − k)!

(
g(K)
x (X̃ki, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εK−ki . (B.3)

We want to show that for a properly chosen γ = γ0n, E [ψ(Xi, Si, θ0, γ0n)] = o(n−1/2). Note

that the first two terms in (B.3) are mean zero, i.e. we have

E [g(X∗i , Si, θ0)] = 0, (B.4)

E
[
g(1)
x (X∗i , Si, θ0)εi

]
= 0, (B.5)

where the latter is guaranteed by Assumptions CME.

Second, we argue that for a properly chosen γ = γ0n, we have

E

[
1

k!
εki −

k∑
`=2

1

(k − `)!
εk−`i γ0`n

]
= 0, (B.6)

for all k ∈ {2, . . . , K}. Let us reparameterize γ0n = (γ02n, . . . , γ0Kn)′ using γ0kn = σknakn.

Then, (B.6) can be rewritten as

E

[
1

k!
(εi/σn)k −

k∑
`=2

1

(k − `)!
(εi/σn)k−`a`n

]
= 0, (B.7)

which can also be represented as

Bnan = cn (B.8)
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where an = (a2n, . . . , aKn)′, and

Bn =



1 0 . . . 0 0

E[εi/σn] 1 . . . 0 0
...

...
. . .

...
...

E[(εi/σn)K−3]
(K−3)!

E[(εi/σn)K−4]
(K−4)!

. . . 1 0
E[(εi/σn)K−2]

(K−2)!
E[(εi/σn)K−3]

(K−3)!
. . . E[(εi/σn)] 1


, cn =



E[(εi/σn)2]/2!

E[(εi/σn)3]/3!
...

E[(εi/σn)K−1]/(K − 1)!

E[(εi/σn)K ]/K!


.

Since Bn is invertible, (B.8) has a unique solution an = B−1
n cn. Moreover, an is bounded

since both B−1
n and cn are bounded (Assumption MME). Hence, we conclude that (B.6)

has a unique solution γ0n =
(
σ2
na2n, . . . , σ

K
n aKn

)′
. Since (B.6) is satisfied, using Assumption

CME, we also conclude that

E

[
K∑
k=2

g(k)
x (X∗i , Si, θ0)

(
1

k!
εki −

k∑
`=2

1

(k − `)!
εk−`i γ0`n

)]
= 0. (B.9)

To complete the proof of E [ψ(Xi, Si, θ0, γ0n)] = on(n−1/2), it is sufficient to show that

E
[(
g(K)
x (X̃i, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εKi

]
= o(n−1/2), (B.10)

γ0knE
[(
g(K)
x (X̃ki, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εK−ki

]
= o(n−1/2) for k ∈ {2, . . . , K}. (B.11)

We start with (B.10). Using Assumption A.1 (i), we obtain∥∥∥(g(K)
x (X̃i, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εKi

∥∥∥ 6 b1(X∗i , Si, θ0) |εi|K+1 + b2(X∗i , Si, θ0) |εi|M .

(B.12)

Hence, using Assumption CME, and the fact
∣∣∣X̃i −X∗i

∣∣∣ 6 εi, we get

E
[(
g(K)
x (X̃i, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εKi

]
6 σK+1

n E [b1(X∗i , Si, θ0)]E
[
|εi/σn|K+1

]
+ σMn E [b2(X∗i , Si, θ0)]E

[
|εi/σn|M

]
.

Since (i) the expectations above are bounded (Assumptions MME, A.1 (ii), and A.1 (iii))

and (ii) σK+1
n = o(n−1/2) and σMn = o(n−1/2) (Assumption MME), this implies that (B.10)

holds. To inspect (B.11), recall that γ0kn = σknakn. As a result, using Assumptions A.1 (i)
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and CME, and
∣∣∣X̃ki −X∗i

∣∣∣ 6 εi again, we also have

γ0knE
[(
g(K)
x (X̃ki, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εK−ki

]
6 akn

(
σK+1
n E [b1(X∗i , Si, θ0)]E

[
|εi/σn|K+1−k

]
+ σMn E [b2(X∗i , Si, θ0)]E

[
|εi/σn|M−k

])
.

Since akn is bounded, we conclude that (B.11) holds analogously to (B.10).

Combining (B.3) with (B.4), (B.5), and (B.9)-(B.11), we conclude that

E [ψ(Xi, Si, θ0, γ0n)] = o(n−1/2).

Finally, we want to verify the recursive expressions for the components of γ0n. Note that

(B.6) can be represented as

Bγ
nγ0n = cγn, (B.13)

where γ0n = (γ02n, . . . , γ0Kn)′, and

Bγ
n =



1 0 . . . 0 0

E[εi] 1 . . . 0 0
...

...
. . .

...
...

E[εK−3
i ]

(K−3)!

E[εK−4
i ]

(K−4)!
. . . 1 0

E[εK−2
i ]

(K−2)!

E[εK−3
i ]

(K−3)!
. . . E[εi] 1


, cγn =



E[ε2
i ]/2!

E[ε3
i ]/3!
...

E[εK−1
i ]/(K − 1)!

E[εKi ]/K!


.

Notice that γ02n = E [ε2
i ] /2 and γ03n = E [ε3

i ] /6 (since E [εi] = 0). To recursively compute

γ0kn for k > 4, suppose that γ0`n are known for ` ∈ {2, . . . , k − 1}. Then γ0kn can be

recursively computed from the k − 1-th equation in (B.13), which takes the form of

k∑
`=2

E
[
εk−`i

]
(k − `)!

γ0`n =
E
[
εki
]

k!
.

Plugging E [εi] = 0 and rearranging the terms gives

γ0kn =
E
[
εki
]

k!
−

k−2∑
`=2

E
[
εk−`i

]
(k − `)!

γ0`n,

which completes the proof. Q.E.D.
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C Evaluating the remaining bias of the MERM esti-

mator

In this section, we provide additional details on the derivation of the (higher-order) bias of

the MERM estimator of v′β̂ and discuss potential implications for inference.

The derivation of the expression for Bias(v′β̂) provided in equation (17) is based on the

standard expansion of the GMM first order conditions around β0. Following the lines of the

proof of Lemma 1, we can consider a higher order expansion of ψ(Xi, Si, θ0, γ0n) to the order

o(τK), which implies

E [ψ(Xi, Si, θ0, γ0n)] ≈ γ0KE
[
g(K)
x (Xi, Si, θ0)

]
,

where K = K + 2 if K is even and εi is symmetric, and K = K + 1 otherwise. Hence,

Bias(v′β̂) ≈ −v′(Ψ′ΞΨ)−1Ψ′Ξ E
[
g(K)
x (Xi, Si, θ0)

]
γ0K . (C.1)

Notice that, except for γ0K , all the remaining elements on the right hand side of (C.1) are

either known or can be consistently estimated. The value of γ0K is given by the recursive

relationship (13) and is determined by the unknown E[εKi ] (and by the lower order moments

of εi, which can be recovered from γ̂ with a sufficient precision). Hence, the range of the

possible values of γ0K and, hence, the range of Bias(v′β̂) can be determined based on an

a priori range of possible values of E[εKi ] (or, equivalently, E[(εi/σε)
K ]) specified by the

researcher.

Example. (Evaluating the bias with K = 2)

Suppose the researcher uses the MERM estimator with K = 2, and believes that E [ε3
i ] = 0.

Then, the bound on the bias depends on the E [ε4
i ]. The variance σ2

ε is estimated by the

MERM estimator, hence it is convenient to bound the kurtosis of εi as E [ε4
i ] /σ

4
ε ∈ [1, κ]

for some κ. For example, one could take κ = 10 as a conservative bound for the kurtosis.16

Since γ̂ estimates γ0 = γ02 = σ2
ε/2, the range of possible values of γ04 can be approximately

bounded using

γ04 =
E [ε4

i ]− 6σ4
ε

24
∈
[
− 5

24
σ4
ε,
κ− 6

24
σ4
ε

]
=

[
−5

6
γ2

02,
κ− 6

6
γ2

02

]
.

16For Gaussian εi the kurtosis κ is 3. Student’s t(ν) distribution has κ < 10 for all ν ≥ 5 (the kurtosis
and the 4th moment do not exist for ν ≤ 4).
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Hence, the range of possible values of Bias(v′β̂) can be approximated as

Bias(v′β̂) ∈


[
−5bγ̂2/6, bγ̂2(κ− 6)/6

]
, if b ≥ 0,[

bγ̂2(κ− 6)/6, −5bγ̂2/6
]
, otherwise,

where

b ≡ −v′(Ψ̂′Ξ̂Ψ̂)−1Ψ̂′Ξ̂

(
1

n

n∑
i=1

g(4)
x (Xi, Si, θ̂)

)
.

Notice that if κ ≤ 6, we have γ04 ≤ 0, and the sign of Bias(v′β̂) becomes known.

If (the absolute value of the worst case) Bias(v′β̂) is sufficiently small relative to its

standard error

√
v′Σ̂v/n, the estimator v′β̂ is approximately unbiased and the inference on

v′β0 can be based on equation (15). Otherwise, the researcher could consider using a higher

K and/or possibly employing inference tools that take into account the remaining bias (e.g.,

Armstrong and Kolesár, 2021).
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Online Apendix

D MERM derivation when σε is not small

Note that τ can be small without σε being small in absolute magnitude. For example,

suppose σε = 10 and σX∗ = 100. Then τ = 0.1, so the measurement error is quite small

relative to σX∗ , and relying on the approximation τ → 0 is reasonable. At the same time,

approximation σε → 0 may not be suitable for this example.

In this Appendix we show that the corrected moment conditions and the MERM esti-

mator are valid without assuming that σε is small in absolute magnitude. In Section 2 we

used Taylor expansions in εi around εi = 0, with the remainder of order E
[
|εi|K+1

]
. When

σε > 1, term O
(
E
[
|εi|K+1

])
in equation (10) cannot be viewed as a negligible remainder,

because E
[
|εi|K+1

]
> 1 and, moreover, terms E

[
|εi|k

]
increase rather than decrease with k.

In Section 2, to simplify the exposition, we have assumed that X∗ is scaled so that σX∗

is of order one. This in particular ensures that E
[
|εi|k

]
decrease with k. We will now show

that this assumption about the scale of X∗ is not necessary, and that the procedure remains

valid without any such scaling.

We will show that by rescaling the Taylor expansions in Section 2 can be written in terms

of powers of τ k, which necessarily decrease with k when τ < 1.

Remember the model of Section 2:

E[g(X∗i , Si, θ0)] = 0, Xi = X∗i + εi, E[εi] = 0. (D.1)

Let ξi denote a random variable with E [ξi] = 0 and E
[
ξ2
i

]
= 1, E

[
|ξi|

L+1
]

is bounded, and

εi ≡ σεξi. Also, let us denote

τ ≡ σε/σX∗ , X̃i ≡ Xi/σX∗ , X̃∗i ≡ X∗i /σX∗ , g̃(x̃, s, θ) ≡ g(σX∗x̃, s, θ).

Then, we can rewrite equation (D.1) as

E[g̃(X̃∗i , Si, θ0)] = 0, X̃i = X̃∗i + τξi, E[ξi] = 0.

Expand g̃(X̃i, Si, θ) = g̃(X̃∗i + τξi, Si, θ) around τ = 0 to obtain

E[g̃(X̃i, Si, θ)] = E[g̃(X̃∗i , Si, θ)] +
K∑
k=2

τ kE
[
ξki
]

k!
E
[
g̃(k)
x (X̃∗i , Si, θ)

]
+O(τK+1),
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which is similar to equation (10), except E
[
εki
]

is replaced by τ kE
[
ξki
]
, and X̃i, X̃

∗
i , g̃ are

replaced by Xi, X
∗
i , g. Then, the corrected moment condition has the form

ψ̃(X̃i, Si, θ, γ̃) = g̃(X̃i, Si, θ)−
K∑
k=2

γ̃kg̃
(k)
x (X̃i, Si, θ), (D.2)

where true parameter values γ̃0 are γ̃02 = τ 2E
[
ξ2
i

]
/2 = τ 2/2, γ̃03 = τ 3E

[
ξ3
i

]
/6, and γ̃0k =

τkE[ξki ]
k!
−
∑k−2

`=2

τk−`E[ξk−`i ]
(k−`)! γ̃0` for k ≥ 4.

We will now show that

γ0k = σkX∗ γ̃0k for all k ≥ 2.

First, γ02 = E [ε2
i ] /2 = E

[
(σεξi)

2] /2 = σ2
X∗ γ̃02, γ03 = E [ε3

i ] /6 = σ3
X∗ γ̃03 by definition.

Then, for k ≥ 4, by induction we have

γ0k =
E
[
εki
]

k!
−

k−2∑
`=2

E
[
εk−`i

]
(k − `)!

γ0` = σkX∗

(
(σε/σX∗)

k E
[
ξki
]

k!
−

k−2∑
`=2

(σε/σX∗)
k−` E

[
ξk−`i

]
(k − `)!

γ0`

σ`X∗

)

= σkX∗

(
τ kE

[
ξki
]

k!
−

k−2∑
`=2

τ k−`E
[
ξk−`i

]
(k − `)!

γ̃0`

)
= σkX∗ γ̃0k.

Finally, let us now show that moment condition ψ̃ in equation (D.2) is numerically

identical to ψ in equation (12) with γk = σkX∗ γ̃k. Note that for x̃ = x/σX∗ we have

g̃
(k)
x̃ (x̃, s, θ) ≡ ∇k

x̃g(σX∗x̃, s, θ) = σkX∗g
(k)
a (a, s, θ)|a=σX∗ x̃ = σkX∗g

(k)
x (x, s, θ), and hence

ψ̃(X̃i, Si, θ, γ̃) = g(σX∗X̃i, Si, θ)−
K∑
k=2

(
γ̃kσ

k
X∗

)
g(k)
x (σX∗X̃i, Si, θ)

= g(Xi, Si, θ)−
K∑
k=2

(
γ̃kσ

k
X∗

)
g(k)
x (Xi, Si, θ)

= ψ(Xi, Si, θ, γ).

E Proof of Theorem 2

Notation. To stress that in our asymptotic approximation the variance and the higher

moments of εi depend on n, we will use σ2
n ≡ E [ε2

i ], γ0n ≡ γ0, and β0n ≡ β0 ≡ (θ′0, γ
′
0n)′.

All vectors are columns. For some generic parameter vector α and a vector (or matrix)

valued function a(x, s, α) and , let ai(β) ≡ a(Xi, Si, α), a(α) ≡ n−1
∑n

i=1 ai(α), a(α) ≡
E[ai(α)]. Similarly, we let a∗i (α) ≡ a(X∗i , Si, α), a∗(α) ≡ n−1

∑n
i=1 a

∗
i (α), a∗(α) ≡ E[a∗i (α)].

For the true value of the parameter α0, we often write ai ≡ a(α0), a ≡ a(α0), a ≡ a(α0),
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a∗i ≡ a(α0), a∗ ≡ a∗(α0), a∗ ≡ a∗(α0).

E.1 Auxiliary lemmas

Lemma E.1. Suppose that {(X∗i , S ′i, εi)}ni=1 are i.i.d.. Then, under Assumptions MME,

CME, A.1, A.2 (i), and A.3 (i)-(iii), we have

(i)

sup
θ∈Θ

∥∥g(k)
x (θ)− g(k)∗

x (θ)
∥∥ = op(1)

and g
(k)∗
x (θ) is continuous on Θ for k ∈ {0, . . . , K};

(ii) for some δ > 0,

sup
θ∈Bδ(θ0)

∥∥∥G(k)

x (θ)−G(k)∗
x (θ)

∥∥∥ = op(1),

and G
(k)∗
x (θ) is continuous on Bδ(θ0) for k ∈ {0, . . . , K}.

Proof of Lemma E.1. First, we show

sup
θ∈Θ
‖g(θ)− g∗(θ)‖ = op(1).

By the triangle inequality,

sup
θ∈Θ
‖g(θ)− g∗(θ)‖ 6 sup

θ∈Θ
‖g(θ)− g∗(θ)‖+ sup

θ∈Θ
‖g∗(θ)− g∗(θ)‖ .

Then, it is sufficient to show that both terms on the right hand side of the inequality above

are op(1). Expanding g(Xi, Si, θ0) around X∗i as in (B.1) and invoking Assumption A.1 (i),

sup
θ∈Θ
‖g(θ)− g∗(θ)‖ = sup

θ∈Θ

∥∥∥∥∥
K−1∑
k=1

1

k!

1

n

n∑
i=1

g(k)
x (X∗i , Si, θ)ε

k
i +

1

K!

1

n

n∑
i=1

g(K)
x (X̃∗i , Si, θ)ε

K
i

∥∥∥∥∥
6

K∑
k=1

1

k!

1

n

n∑
i=1

sup
θ∈Θ

∥∥g(k)
x (X∗i , Si, θ)

∥∥ |εi|k︸ ︷︷ ︸
op(1)

+
1

K!

1

n

n∑
i=1

sup
θ∈Θ

b1(X∗i , Si, θ)|εi|K+1

︸ ︷︷ ︸
op(1)

+
1

K!

1

n

n∑
i=1

sup
θ∈Θ

b2(X∗i , Si, θ)|εi|M︸ ︷︷ ︸
op(1)

,

where X̃i lies in between of X∗i and Xi. Now observe that all the terms following the

inequality sign are op(1). Indeed, this is guaranteed by Markov’s inequality paired with
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Assumptions MME, CME, and A.3 (ii). Hence, supθ∈Θ ‖g(θ)− g∗(θ)‖ = op(1), and we are

left to show supθ∈Θ ‖g∗(θ)− g∗(θ)‖ = op(1). This, in turn, follows from the standard ULLN

(e.g., Lemma 2.4 in Newey and McFadden, 1994), which also ensures continuity of g∗(θ) on

Θ. Hence, we conclude that the assertion of the lemma holds for g.

Applying nearly identical arguments, one can also establish the desired results for g
(k)
x

for k ∈ {1, . . . , K} and for G
(k)
x for k ∈ {0, . . . , K} (for the latter, Assumptions A.3 (i) and

(iii) take the places of Assumptions A.1 (i) and A.3 (ii), respectively). Q.E.D.

Lemma E.2. Suppose that the hypotheses of Lemma E.1 are satisfied. Then, g
(k)
x → g

(k)∗
x

and G
(k)
x → G

(k)∗
x for k ∈ {0, . . . , K}. Suppose also θ̂

p→ θ0. Then, g(k)
x (θ̂)

p→ g
(k)∗
x and

G
(k)

x (θ̂)
p→ G

(k)∗
x for k ∈ {0, . . . , K}.

Proof of Lemma E.2. First, we prove the assertions of the lemma for g
(k)
x . Note that, by the

standard expansion of g
(k)
x (Xi, Si, θ0) around X∗i (see Eq. (B.2) above), we have

∥∥g(k)
x − g(k)∗

x

∥∥ 6E
[∥∥g(Xi, Si, θ0)− g(k)

x (X∗i , Si, θ)
∥∥]

6
K∑

`=k+1

1

(`− k)!
E
[∥∥g(`)

x (X∗i , Si, θ0)
∥∥ |εi|`]

+
1

(K − k)!
E
[∥∥∥(g(K)

x (X̃i, Si, θ0)− g(K)
x (X∗i , Si, θ0)

)∥∥∥ |εi|K−k] .
By Assumptions MME, CME, and A.3 (ii), E

[∥∥∥g(`)
x (X∗i , Si, θ0)

∥∥∥ |εi|`] → 0 for all ` ∈
{1, . . . , K}. Next, using Assumptions A.1 (i) and CME,

E
[∥∥∥(g(K)

x (X̃i, Si, θ0)− g(K)
x (X∗i , Si, θ0)

)∥∥∥ |εi|K−k]
6 E [b1(X∗i , Si, θ0)]E

[
|εi|K+1−k

]
+ E [b2(X∗i , Si, θ0)]E

[
|εi|M−k

]
→ 0,

where the convergence follows from Assumptions MME, A.1 (ii) and A.3 (ii). Hence, we

conclude g
(k)
x → g

(k)∗
x .

Next, we show g(k)
x (θ̂)

p→ g
(k)∗
x . By the triangle inequality,∥∥∥g(k)

x (θ̂)− g(k)∗
x

∥∥∥ 6 sup
θ∈Bδ(θ0)

∥∥g(k)
x (θ)− g(k)∗

x (θ)
∥∥+

∥∥∥g(k)∗
x (θ̂)− g(k)∗

x (θ0)
∥∥∥ ,

where the inequality holds with probability approaching one since θ̂ ∈ Bδ(θ0) with probability

approaching one. Note that, By Lemma E.1, supθ∈Bδ(θ0)

∥∥∥g(k)
x (θ)− g(k)∗

x (θ)
∥∥∥ = op(1) and∥∥∥g(k)∗

x (θ̂)− g(k)∗
x (θ0)

∥∥∥ = op(1), where the second result follows from consistency of θ̂ and

continuity of g
(k)∗
x (θ). Hence, g(k)

x (θ̂)
p→ g

(k)∗
x , which completes the proof of the results for
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g
(k)
x for all k ∈ {0, . . . , K}.

A nearly identical argument, can be invoked to establish the same results for G
(k)
x for

k ∈ {0, . . . , K}, with Assumptions A.3 (i) and (iii) taking the places of Assumptions A.1 (i)

and A.3 (ii), respectively. Q.E.D.

Lemma E.3. Suppose that the hypotheses of Lemma E.1 are satisfied. Then, under addi-

tional Assumptions A.3 (iv) and A.4 (i), we have θ̂
p→ θ0, γ̂

p→ 0 and γ̂
p→ γ0n.

Proof of Lemma E.3. First, we argue that supβ∈B
∥∥ψ(β)− ψ∗(β)

∥∥ = op(1). Notice that, by

the triangle inequality,

sup
β∈B

∥∥ψ(β)− ψ∗(β)
∥∥ 6 sup

θ∈Θ
‖g(θ)− g∗(θ)‖+

K∑
k=2

|γk| sup
θ∈Θ

∥∥g(k)
x (θ)− g(k)∗

x (θ)
∥∥ = op(1), (E.1)

where the equality follows from Lemma E.1 (i) and boundedness of γ (Assumption A.2

(i)). Moreover, Lemma E.1 (i) also ensures that ψ∗(β) is continuous on compact B and,

consequently, is bounded.

Let Q̂(β) = ψ(β)′Ξ̂ψ(β) and Q∗(β) = ψ∗(β)′Ξψ∗(β). Notice that (E.1), boundedness

of ψ∗(β), and Assumption A.3 (iv) together guarantee that supβ∈B

∣∣∣Q̂(β)−Q∗(β)
∣∣∣ = op(1).

Next, recall that γ0n → 0K−1 (Lemma 1). Since Γ is compact and γ0n ∈ Γ (Assumption

A.2 (i)), 0K−1 ∈ Γ. Consequently, Assumptions A.4 (i) and A.3 (iv) together guarantee that

Q̂∗(β) is uniquely minimized at θ = θ0 and γ = 0K−1. Consequently, applying the standard

consistency argument (e.g., Theorem 2.1 of Newey and McFadden, 1994), we conclude that

θ̂ → θ0 and γ̂ → 0K−1. Finally, since γ0n → 0 (Lemma 1), we also have γ̂
p→ γ0n. Q.E.D.

Lemma E.4. Suppose that {(X∗i , S ′i, εi)}ni=1 are i.i.d.. Then, under Assumptions MME,

CME, A.1, and A.3 (ii) and (v), we have

n1/2ψ(β0n)
d→ N(0,Ω∗gg),

where Ω∗gg ≡ E [g(Xi, Si, θ0)g(Xi, Si, θ0)′].
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Proof of Lemma E.4. Using expansion (B.3), we obtain

n1/2ψ(β0n) =n−1/2

n∑
i=1

g(X∗i , Si, θ0) + n−1/2

n∑
i=1

g(1)
x (X∗i , Si, θ0)εi

+
K∑
k=2

n−1/2

n∑
i=1

g(k)
x (X∗i , Si, θ0)

(
1

k!
εki −

k∑
`=2

1

(k − `)!
εk−`i γ0kn

)

+
1

K!
n−1/2

n∑
i=1

(
g(K)
x (X̃i, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εKi

−
K∑
k=2

γ0kn

(K − k)!
n−1/2

n∑
i=1

(
g(K)
x (X̃ki, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εK−ki . (E.2)

First, note that, by the standard CLT, n−1/2
∑n

i=1 g(X∗i , Si, θ0)
d→ N(0,Ω∗gg). The rest of the

proof is to show that the remaining terms are op(1). By Assumptions MME, CME, A.3 (ii),

Chebyshev’s inequality guarantees

n−1/2

n∑
i=1

g(1)
x (X∗i , Si, θ0n)εi = op(1)

Next, (B.9) ensures that we can similarly apply Chebyshev’s inequality (combined with

Assumptions MME, CME, A.3 (ii) and (v)) to ensure that for k ∈ {2, . . . , K}

n−1/2

n∑
i=1

g(k)
x (X∗i , Si, θ0)

(
1

k!
εki −

k∑
`=2

1

(k − `)!
εk−`i γ0kn

)
= op(1).

Next, using (B.12),∥∥∥∥∥n−1/2

n∑
i=1

(
g(K)
x (X̃i, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εKi

∥∥∥∥∥
6 n−1/2

n∑
i=1

b1(X∗i , Si, θ0) |εi|K+1 + n−1/2

n∑
i=1

b2(X∗i , Si, θ0) |εi|M

6 n1/2σK+1
n︸ ︷︷ ︸

→0

(
n−1

n∑
i=1

b1(X∗i , Si, θ0) |εi/σn|K+1

)
︸ ︷︷ ︸

Op(1)

+n1/2σMn︸ ︷︷ ︸
→0

(
n−1

n∑
i=1

b2(X∗i , Si, θ0) |εi/σn|M
)

︸ ︷︷ ︸
Op(1)

= op(1),

where both n1/2σK+1
n and n1/2σMn converge to zero by Assumption MME, and the terms in

the brackets are Op(1) by Markov’s inequality (ensured by Assumptions MME, CME, A.1 (ii)
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and A.3 (ii)). Recall that in the proof of Lemma 1, we have demonstrated that γ0kn = σknakn,

where akn are bounded, for k ∈ {2, . . . , K}. Hence, similarly, we have∥∥∥∥∥γ0knn
−1/2

n∑
i=1

(
g(K)
x (X̃i, Si, θ0)− g(K)

x (X∗i , Si, θ0)
)
εK−ki

∥∥∥∥∥
6 aknσ

k
n

[
n−1/2

n∑
i=1

b1(X∗i , Si, θ0) |εi|K−k+1 + n−1/2

n∑
i=1

b2(X∗i , Si, θ0) |εi|M−k
]

6 akn

n1/2σK+1
n︸ ︷︷ ︸

→0

(
n−1

n∑
i=1

b1(X∗i , Si, θ0) |εi/σn|K−k+1

)
︸ ︷︷ ︸

Op(1)

+n1/2σMn︸ ︷︷ ︸
→0

(
n−1

n∑
i=1

b2(X∗i , Si, θ0) |εi/σn|M−k
)

︸ ︷︷ ︸
Op(1)


= op(1).

Hence, we have demonstrated that all the remaining terms in (E.2) are op(1), i.e. we have

n1/2ψ(β0n) =n−1/2

n∑
i=1

g(X∗i , Si, θ0) + op(1)

d→ N(0,Ω∗gg),

which completes the proof. Q.E.D.

E.2 Proof of Theorem 2

Equipped with Lemmas E.1-E.4, we are ready to prove Theorem 2.

Proof of Theorem 2. Since (i) θ̂ and γ̂ are consistent for θ0 and γ0n, respectively (Lemma E.3)

and (ii) both θ0 and γ0n → 0 (Assumption MME) are bounded away from the boundaries of

Θ and Γ respectively (Assumption A.2), the standard GMM FOC is satisfied with probability

approaching one, i.e., we have (with probability approaching one)

Ψ(β̂)′Ξ̂ψ(β̂) = 0.

Expanding ψ(β̂) around ψ(β0n) gives

Ψ(β̂)′Ξ̂
(
ψ(β0n) + Ψ(β̃)(β̂ − β0)

)
= 0, (E.3)

where β̃ lies between β0n and β̂ (and, consequently, θ̃
p→ θ0 and γ̃

p→ 0). Next, we argue
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that Ψ(β̂) = Ψ∗ + op(1). Observe

Ψ(β̂) =

[
G(θ̂)−

K∑
k=2

γ̂kG
(k)

x (θ̂),−g(2)
x (θ̂), . . . ,−g(K)

x (θ̂)

]
.

Since θ̂
p→ θ0 (Lemma E.3), we can invoke the result of Lemma E.2 to argue that g(k)

x (θ̂)
p→

g
(k)∗
x and G

(k)

x (θ̂)
p→ G

(k)∗
x for all k ∈ {0, . . . , K}. This, combined with γ̂ → 0 (Lemma E.3),

ensures that Ψ(β̂) = Ψ∗ + op(1) and, analogously, Ψ(β̃) = Ψ∗ + op(1). Coupling these result

with Assumption A.3 (iv), we conclude that Ψ(β̂)′Ξ̂Ψ(β̃)
p→ Ψ∗′ΞΨ∗, which is invertible by

Assumption A.4 (ii). Hence, (E.3) can be rearranged as (with probability approaching one)

n1/2(β̂ − β0n) = −
(

Ψ(β̂)′Ξ̂Ψ(β̃)
)−1

Ψ(β̂)′Ξ̂n1/2ψ(β0n)

= − (Ψ∗′ΞΨ∗)
−1

Ψ∗′Ξn1/2ψ(β0n) + op(1),

where, by Lemma E.4, n1/2ψ(β0n)
d→ N(0,Ω∗gg). Hence, we conclude

n1/2(β̂ − β0n)
d→ N(0,Σ∗),

where

Σ∗ = (Ψ∗′ΞΨ∗)
−1

Ψ∗′ΞΩ∗ggΨ
∗Ξ (Ψ∗′ΞΨ∗)

−1
.

To complete the proof, we need to show that Σ→ Σ∗. First, note that, by Lemma E.2 and

γ0n → 0 (Assumption MME)

Ψ =

[
G−

K∑
k=2

γ0knG
(k)
x ,−g(2)

x , . . . ,−g(K)
x

]
→
[
G∗,−g(2)∗

x , . . . ,−g(K)∗
x

]
= Ψ∗.

Next, we want to argue that Ωψψ → Ω∗gg. Observe that

Ωψψ = E

[(
gi −

K∑
k=2

γ0kng
(k)
xi

)(
gi −

K∑
k=2

γ0kng
(k)
xi

)′]
= E [gig

′
i] + o(1),

where the equality follows since (i) γ0kn → 0 for all k ∈ {2, . . . , K} (Assumption MME) and

(ii) E
[
g

(k)
xi

(
g

(k′)
xi

)′]
is bounded for all k, k′ ∈ {0, . . . , K}. In particular, (ii) can be inspected

by expanding g
(k)
x (Xi, Si, θ0) and g

(k′)
x (Xi, Si, θ0) around X∗i as in (B.2) and bounding the

expectations as in the proof of Lemma E.2 (using Assumptions MME, CME, A.1 (i), A.3

(ii), and A.3 (v)). Similarly, by expanding g(Xi, Si, θ0) around X∗i and bounding the residual
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terms as in the proof of Lemma E.2 (again, using Assumptions MME, CME, A.1 (i), A.3 (ii),

and A.3 (v)), we verify that E [gig
′
i]→ E [g∗i g

∗′
i ] = Ω∗gg. Hence, Ωψψ → Ω∗gg and, consequently,

we verified that Σ→ Σ∗. Finally, we conclude

n1/2Σ−1/2(β̂ − β0n)→ N(0, Idim(θ)+K−1),

which completes the proof. Q.E.D.

F Proofs of Results in Section 4

F.1 Proof of Theorem 3:

1. First, in parts 1-4 below, we prove the theorem in the case p = 3. Then, in part 5 of this

proof, we consider the case p = 4. The proof in the latter case is identical, except some of

the remainder terms are of smaller orders. In parts 1-4 of the proof, it will be convenient

to state the resulting bounds that depend on p in the general form using p, but to avoid

confusion, until reaching part 5 of the proof the reader should only consider the case p = 3.

Let us obtain some preliminary results about fX|Z (x|z) and fε|XZ (ε|x, z). Using As-

sumption CME, we obtain

fεX|Z (ε, x|z) = fε (ε) fX∗|Z (x− ε|z) ,

fε|XZ (ε|x, z) =
fεX|Z (ε, x|z)

fX|Z (x|z)
=
fε (ε) fX∗|Z (x− ε|z)

fX|Z (x|z)
,

fX|Z (x|z) =

∫
fε (ε) fX∗|Z (x− ε|z) dε.

Since fX∗|Z (x|z) has 3 bounded derivatives in x, fX|Z (x|z) also has 3 bounded derivatives

in x. Moreover,

fX|Z (x|z) =

∫ [
fX∗|Z (x|z)− εf ′X∗|Z (x|z) + ε2 1

2
f ′′X∗|Z (x|z)

]
fε (ε) dε+Rf |Z (x|z) , (F.1)

where Rf |Z ≡ − (1/6)E
[
ε3
i f
′′′
X∗|Z (x− ε̃ (εi)) |Zi = z

]
, ε̃ (εi) is a point between 0 and εi, and

∣∣Rf |Z (x|z)
∣∣ ≤ E

[
|εi|3

∣∣f ′′′X∗|Z (x− ε̃ (εi))
∣∣∣∣Zi = z

]
= O

(
E
[
|εi|3

])
= O

(
σ3
)

.
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Since E [εi] = 0 and E [ε2
i ] = σ2, we have

fX|Z (x|z) = fX∗|Z (x|z)− E [εi] f
′
X∗|Z (x|z) + E

[
ε2
i

]
1
2
f ′′X∗|Z (x|z) +O (σp)

= fX∗|Z (x|z) +
(
σ2/2

)
f ′′X∗|Z (x|z) +O (σp) . (F.2)

Since fX∗|Z (x|z) > C for some C > 0, and f ′′X∗|Z (x|z) is bounded, fX|Z (x|z) > C/2 for

small enough σ2. Thus,

fε|XZ (ε|x, z) =
fε (ε) fX∗|Z (x− ε|z)

fX∗|Z (x|z) + (σ2/2) f ′′X∗|Z (x|z) +O (σp)
. (F.3)

Similarly,

f ′X|Z (x|z) =

∫
fε (ε) f ′X∗|Z (x− ε|z) dε = f ′X∗|Z (x|z) +O

(
σ2
)
, (F.4)

f ′′X|Z (x|z) =

∫
fε (ε) f ′′X∗|Z (x− ε|z) dε = f ′′X∗|Z (x|z) +O

(
σp−2

)
. (F.5)

2. Consider any function a (x) that has 3 bounded derivatives. Since X∗i = Xi − εi,

E [a (X∗i ) |Xi = x, Zi = z]

= E [a (x− εi) |Xi = x, Zi = z]

= a (x)− a′ (x)E [εi|Xi = x, Zi = z] + 1
2
a′′ (x)E

[
ε2
i |Xi = x, Zi = z

]
+Ra|XZ , (F.6)

where Ra|XZ ≡ − (1/6)E [ε3
i a
′′′ (x− ε̃ (εi)) |Xi = x, Zi = z].

We now consider E
[
ε`i |Xi = x, Zi = z

]
for ` ∈ {1, 2}:

E [εi|Xi = x, Zi = z] =

∫
εfε|XZ (ε|x, z) dε =

∫
ε
fε (ε) fX∗|Z (x− ε|z)

fX|Z (x|z)
dε

=

∫
ε
{
fX∗|Z (x|z)− εf ′X∗|Z (x|z) + ε2 1

2
f ′′X∗|Z (x− ε̃ (ε) |z)

}
fε (ε) dε

fX∗|Z (x|z) +O (σ2)

= 0− σ2
f ′X∗|Z (x|z)

fX∗|Z (x|z) +O (σ2)
+O (σp) = −σ2sX∗|Z (x|z) +O (σp)

E
[
ε2
i |Xi = x, Zi = z

]
=

∫
ε2
{
fX∗|Z (x|z)− εf ′X∗|Z (x− ε̃ (ε) |z)

}
fε (ε) dε

fX∗|Z (x|z) +O (σ2)

= σ2 +O (σp) .
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E [|εpi | |Xi = x, Zi = z] =

∫
|εp| fX∗|Z (x− ε̃ (ε) |z) fε (ε) dε

fX∗|Z (x|z) +O (σ2)
= O (σp) (F.7)

and hence
∣∣Ra|XZ

∣∣ ≤ E [|ε3
i | |a′′′ (x− ε̃ (εi))| |Xi = x, Zi = z] = O (σ3) .

Combining these with equation (F.6), we obtain

E [a (X∗i ) |Xi = x, Zi = z] = a (x) + σ2a′ (x) sX∗|Z (x|z) +
(
σ2/2

)
a′′ (x) +O (σp) . (F.8)

3. Next, consider ∇`
xE [a (X∗i ) |Xi = x] for ` ∈ {1, 2}. We have

E [a (X∗i ) |Xi = x] =
1

fX (x)

∫
a (x− ε) fX∗ (x− ε) fε (ε) dε.

Let ϕ (x) and η (x) be any functions, possibly changing with σ, with 3 bounded deriva-

tives. Suppose η (x) ≥ C for some C > 0 for all small enough σ, and let ζ (x) ≡
1

η(x)

∫
ϕ (x− ε) fε (ε) dε. Then,

ζ ′ (x) =
1

η (x)

∫
ϕ′ (x− ε) fε (ε) dε− η′ (x)

(η (x))2

∫
ϕ (x− ε) fε (ε) dε

=
ϕ′ (x) +O (σ2)

η (x)
− η′ (x) (ϕ (x) +O (σ2))

(η (x))2 =
ϕ′ (x)

η (x)
− η′ (x)ϕ (x)

(η (x))2 +O
(
σ2
)
.

Taking ϕ (t) ≡ a (t) fX∗ (t) and η (x) ≡ fX (x), and using equations (F.2) and (F.4), we

obtain

∇xE [a (X∗i ) |Xi = x] = a′ (x) +O
(
σ2
)

.

Similarly,

ζ ′′ (x) =
ϕ′′ (x)

η (x)
− 2

η′ (x)ϕ′ (x)

(η (x))2 −

(
η′′ (x)

(η (x))2 −
2 (η′ (x))2

(η (x))3

)
ϕ (x) +O

(
σp−2

)
,

and using identical substitutions, and equations (F.2), (F.4), and (F.5), we obtain

∇2
xE [a (X∗i ) |Xi = x] = a′′ (x) +O

(
σp−2

)
.

4. Consider

q (x, z) = E [ρ (X∗i ) + Ui|Xi = x, Zi = z] = E [ρ (X∗i ) |Xi = x, Zi = z] .
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Part 2 of the proof shows that

q (x, z) = ρ (x) + σ2ρ′ (x) sX∗|Z (x|z) + 1
2
σ2ρ′′ (x) +O (σp) . (F.9)

Therefore,

q (x, z1)− q (x, z2) = σ2ρ′ (x)
[
sX∗|Z (x|z1)− sX∗|Z (x|z2)

]
+O (σp) . (F.10)

Part 1 implies that sX∗|Z (x|z) = sX|Z (x|z)+O (σ2). Let q (x) ≡ E [Yi|Xi = x]. Applying

part 3 with a (x) = q (x) we obtain q′ (x) = ρ′ (x) +O (σ2). Substituting these into equation

(F.10), we obtain

q (x, z1)− q (x, z2) = σ2q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

]
+O (σp) , (F.11)

and hence, for any x with q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

]
6= 0,

σ̃2 (x) = σ2 +O (σp) , where σ̃2 (x) ≡ q (x, z1)− q (x, z2)

q′ (x)
[
sX|Z (x|z1)− sX|Z (x|z2)

] ,
which identifies σ2 up to O (σp).

Next, from part 3 we also have q′′ (x) = ρ′′ (x) + O (σp−2). Thus, equation (F.9) implies

that

q (x, z) = ρ (x) + σ2q′ (x) sX|Z (x, z) + 1
2
σ2q′′ (x) +O (σp) ,

and hence we obtain

ρ̃ (x, z1) = ρ (x) +O (σp) , where ρ̃ (x, z) ≡ q (x, z)− σ̃2 (x)
[
q′ (x) sX|Z (x|z) + 1

2
q′′ (x)

]
,

which identifies ρ (x) up to O (σp). This completes the proof for the case p = 3.

Note that ρ̃ (x, z1) − ρ̃ (x, z2) = q (x, z1) − q (x, z2) −
σ̃2 (x)

[
q′ (x)

(
sX|Z (x|z1)− sX|Z (x|z2)

)]
= 0, i.e., ρ̃ (x, z1) = ρ̃ (x, z2).

5. When p = 4 and E [ε3
i ] = 0, the above Taylor expansions can be extended to the next

order, providing the corresponding improvements in the remainder terms.

For example, in part 1 of the proof, expansion (F.1) becomes

fX|Z (x|z) =

∫ [
fX∗|Z (x|z)− εf ′X∗|Z (x|z) + ε2 1

2
f ′′X∗|Z (x|z)− ε3 1

6
f ′′′X∗|Z (x|z)

]
fε (ε) dε+Rf |Z (x|z) ,

where Rf |Z(x|z) ≡ (1/24)E
[
ε4
i f
′′′′
X∗|Z (x− ε̃ (εi)) |Zi = z

]
, so

∣∣Rf |Z (x|z)
∣∣ = O (σ4). Combin-
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ing the expansion above with E [ε3
i ] = 0, we verify that (F.2) also holds with p = 4.

In addition to the calculations in part 2 of the proof, we also use

E
[
ε3
i |Xi = x, Zi = z

]
=

∫
ε3
{
fX∗|Z (x|z)− εf ′X∗|Z (x− ε̃ (ε) |z)

}
fε (ε) dε

fX∗|Z (x|z) +O (σ2)

= E
[
ε3
i

]
+O

(
σ4
)

= O
(
σ4
)
.

In parts 2 and 3 of the proof, we also require functions a(x), ϕ(x), and η(x) to have 4

bounded derivatives.

Then, the previous steps of the proof and the conclusions of the theorem hold with p = 4.

Q.E.D.

F.2 Proof of Proposition 4

The proof of Theorem 3 shows that q (x, z) and fX|Z (x|z) have m bounded derivatives.

Construct ρ̂MER (x) using equations (24)-(25) nonparametrically estimating q (x, z), q (x),

fX|Z (x|z), and their derivatives, e.g., using standard kernel or sieve estimators. If the

tuning parameters are chosen optimally, under the usual regularity conditions, the rates

of convergence of these estimators are q̂ (x, z) − q (x, z) = Op

(
n−

m
2m+1

)
, q̂ (x) − q (x) =

Op

(
n−

m
2m+1

)
, q̂′ (x)− q′ (x) = Op

(
n−

m−1
2m−1

)
, q̂′′ (x)− q′′ (x) = Op

(
n−

m−2
2m−3

)
, and ŝX|Z (x|z)−

sX|Z (x|z) = Op

(
n−

m−1
2m−1

)
for x ∈ SX∗ (z), where ŝX|Z (x|z) ≡ f̂ ′X|Z (x|z)

/
f̂X|Z (x|z). Note

also that by equation (F.9), q (x, z1)− q (x, z2) = O (τ 2
n).

Then, since for the analog estimator σ̂2 (x) of σ̃2 (x) we have

σ̂2 (x) = σ̃2 (x) +Op

(
n−

m
2m+1 + τ 2

nn
− m−1

2m−1

)
= σ̃2(x) +Op

(
n−

m
2m+1

)
= σ2 +Op

(
τ 4
n + n−

m
2m+1

)
= σ2 +Op

(
n−

m
2m+1

)
, (F.12)

where the first equality follows from equation (24), using â/b̂−a/b = (â− a) /b̂+a(1/b̂−1/b),

equation (F.11), and the rates of convergence listed above, the second equality holds because
m

2m+1
< 1

2
m

2m+1
+ m−1

2m−1
for m ≥ 2, and the third equality holds by equation (26) in Theorem 3.
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Next, consider the analog estimator ρ̂MER (x) of ρ (x) based on equation (25),

ρ̂MER (x) = q̂ (x, z)− σ̂2 (x)
[
q̂′ (x) ŝ (x, z) + 1

2
q̂′′ (x)

]
= ρ̃ (x) +Op

(
n−

m
2m+1 + τ 2

n

(
n−

m−1
2m−1 + n−

m−2
2m−3

))
= ρ (x) +Op

(
n−

m
2m+1 + τ 2

nn
− m−2

2m−3 + τ 4
n

)
= ρ (x) +Op

(
n−

m
2m+1

)
,

where the first equality is the definition of the analog estimator, the second equality follows

from the rates of convergence listed above and equation (F.12), the third equality holds by

equation (27) in Theorem 3, and the fourth equality holds because m
2(2m+1)

+ m−2
2m−3

> m
2m+1

for m ≥ 3.

The naive estimator is

ρ̂Naive (x) = q̂ (x) = ρ (x) +Op

(
τ 2
n + n−

m
2m+1

)
= ρ (x) +Op

(
n−

1
2

m
2m+1

)
,

where the second equality follows from equation (F.9). Q.E.D

G Some Implementation Details

Numerical Optimization. Since ψ (θ, γ) is a linear function of γ it can be profiled out

of the quadratic form Q̂(θ, γ). Thus, the criterion function only needs to be minimized

numerically over θ.

Choice of the weighting matrix Ξ̂. As for the standard GMM estimator, the optimal

weighting matrix can be estimated by

Ξ̂eff ≡ Ω̂−1
ψψ(θ̃, γ̃),

where θ̃ and γ̃ are some preliminary estimators of θ0 and γ0, and Ω̂ψψ(θ, γ) ≡
n−1

∑n
i=1 ψi(θ, γ)ψi(θ, γ)′. One example of such a preliminary estimator would be the 1-step

(GMM-)MERM estimator using Ξ̂GMM1 ≡ Ω̂−1
ψψ(θ̂Naive, 0) as the first-step GMM weighting

matrix, where θ̂Naive is a naive estimator of θ0 that ignores EIV. Note that Ω̂ψψ(θ̂Naive, 0) =

Ω̂gg

(
θ̂Naive

)
, where Ω̂gg(θ) ≡ n−1

∑n
i=1 gi(θ)gi(θ)

′.

One may also consider the regularized version of the efficient weighting matrix estimator

Ξ̂eff,R ≡ Ω̂−1
ψψ(θ̃, 0). Since γ0 → 0, using the regularized version Ξ̂eff,R does not lead to a loss

of efficiency. Moreover, our simulation studies suggest that using the regularized weighting
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matrix Ξ̂eff,R results in better finite sample performance of the MERM estimator and, hence,

is recommended in practice.

Although not indicated by the notation in equation (14), the weighting matrix Ξ̂ ≡ Ξ̂(θ, γ)

is allowed to be a function of θ and γ. For example, Continuously Updating GMM Estimator

(CUE) corresponds to taking Ξ̂CUE (θ, γ) ≡ Ω̂−1
ψψ(θ, γ). Similarly to Ξ̂eff,R, one may also

consider Ξ̂CUE,R (θ, γ) ≡ Ω̂−1
ψψ(θ, 0) without introducing any loss of efficiency. In contrast to

the criterion function of the CUE estimator, criterion function of Q̂CUE,R(θ, γ) is quadratic

in γ. This implies that γ can be profiled out analytically. This simplifies the numerical

optimization problem reducing it to minimizing Q̂CUE,R (θ, γ̂ (θ)) over θ ∈ Θ. Then, the

dimension of the optimization parameter θ for the corrected moment condition problem

remains the same as for the original (naive) estimation problem without the EIV correction.

Estimation of the asymptotic variance Σ. Theorem 2 shows that the MERM estimator

β̂ = (θ̂
′
, γ̂′)′ behaves like a standard GMM estimator based on the corrected moment function

ψ(θ, γ). The researcher can rely on the standard GMM inference procedures. The asymptotic

variance of β̂ can be consistently estimated by

Σ̂ ≡ (Ψ̂′Ξ̂Ψ̂)−1Ψ̂′Ξ̂Ω̂ψψΞ̂Ψ̂(Ψ̂′Ξ̂Ψ̂)−1,

where, Ξ̂ is the chosen weighting matrix, and Ψ̂ ≡ Ψ(θ̂, γ̂) = n−1
∑n

i=1 Ψi(θ̂, γ̂) and Ω̂ψψ =

Ω̂ψψ(θ̂, γ̂) are estimators of Ψ and Ωψψ.

H Implementation Details of the Empirical Illustration

In this section, we provide additional details on the implementation of the numerical exper-

iment in Section 3.3.

Data. The original dataset is the ModeCanada dataset supplied with the R package mlogit.

This dataset has been extensively used in transportation research. For a detailed description

of the dataset see, for example, Koppelman and Wen (2000), Wen and Koppelman (2001),

and Hansen (2022). As in Koppelman and Wen (2000), we use only the subset of travelers

who chose train, air, or car (and had all of those alternatives available for them), which

leaves n = 2769 observations.

Monte-Carlo design. We choose θ0 to be the MLE estimates using the considered dataset,

which are reported in the table bellow.
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θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Estimates 0.0355 0.2976 -2.0891 0.0079 -0.9900 1.8794 -0.0223 -0.0149

Std. Err. 0.0036 0.0844 0.4674 0.0036 0.0876 0.2037 0.0038 0.0008

To generate the simulated samples, we randomly draw the covariates (with replacement)

from their joint empirical distribution. To ensure identification of the model, we also generate

an instrumental variable Zi as

Zi = κ Income∗i /σIncome∗ +
√

1− κ2ζ i,

where σIncome∗ ≈ 17.5 is the standard deviation of Income∗, κ = 0.5, and ζ i are i.i.d.

draws from N(0, 1) (which are also independent from all the over variables). Note that the

instrument Zi is “caused by X∗i ”. For example, Zi can be some (noisy) measure of individual

consumption.

Moments. To simplify the notation, let X∗i ≡ Income∗i , Xi ≡ Incomei, Ri ≡ Urbani,

Rij ≡ (Priceij, InT imeij)
′ for j ∈ {0, 1, 2}, and Wi ≡ (Ri, R

′
i1, R

′
i2, R

′
i0)′. Also let Yij ≡

1{j = argmaxj′∈{0,1,2} Uij′} for j ∈ {0, 1, 2}, Yi ≡ (Yi1, Yi2, Yi0)′, and pj(x,w, θ) ≡ P(Yij =

1|X∗i = x,Wi = w; θ) with w ≡ (r, r′1, r
′
2, r
′
0), so

p1(x,w, θ) =
eθ1x+θ2r+θ3+(θ7,θ8)r1

eθ1x+θ2r+θ3+(θ7,θ8)r1 + eθ4x+θ5r+θ6+(θ7,θ8)r2 + e(θ7,θ8)r0
,

p2(x,w, θ) =
eθ4x+θ5r+θ6+(θ7,θ8)r2

eθ1x+θ2r+θ3+(θ7,θ8)r1 + eθ4x+θ5r+θ6+(θ7,θ8)r2 + e(θ7,θ8)r0
,

and p0(x,w, θ) = 1− p1(x,w, θ)− p2(x,w, θ). Then, the original moment function takes the

form of

g(x,w, y, z, θ) = ((y1 − p1(x,w, θ))h1(x, z, w)′, (y2 − p2(x,w, θ))h2(x, z, w)′)
′
.

and hj(x, z, w) = (1, x, z, x2, z2, x3, z3, r, (rj − r0)′)
′

for K = 2 and hj(x, z, w) =

(1, x, z, x2, xz, z2, x3, x2z, xz2, z3, r, (rj − r0)′)
′

for K = 4.

Income Elasticities. In Section 3.3, we focus on estimation of and inference on the income

elasticities

∂ ln pj
∂ lnx

(x,w, θ) =
x

pj(x,w, θ)

∂pj(x,w, θ)

∂x
.
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We report the results are for the income elasticities evaluated at the sample mean of X∗ and

W in the original sample.

Estimation of and Inference on the θ0. In Table 8 below, we also report the estimation

and inference results for the vector of parameters θ0 underlying the reported results about

elasticities.

Table 8: Simulation results for the empirically calibrated conditional logit model

MLE K = 2 K = 4

bias std rmse size bias std rmse size bias std rmse size

τ = 1/4

θ1 -0.0021 0.0035 0.0041 8.70 0.0001 0.0042 0.0042 5.48 0.0005 0.0057 0.0058 7.38
θ2 0.0047 0.0932 0.0933 5.10 0.0028 0.0957 0.0957 5.36 0.0022 0.0960 0.0960 5.40
θ3 0.1152 0.4452 0.4599 6.00 -0.0048 0.4821 0.4821 5.94 -0.0251 0.5336 0.5342 6.68
θ4 -0.0004 0.0031 0.0031 4.52 -0.0001 0.0034 0.0034 5.32 -0.0001 0.0036 0.0036 6.86
θ5 -0.0023 0.0894 0.0895 5.18 -0.0088 0.0918 0.0922 5.54 -0.0113 0.0922 0.0929 5.96
θ6 0.0232 0.1821 0.1836 4.64 0.0250 0.1982 0.1998 5.72 0.0329 0.2089 0.2115 6.74
θ7 -0.0001 0.0035 0.0035 5.58 -0.0002 0.0036 0.0036 6.24 -0.0003 0.0036 0.0037 6.04
θ8 -0.0001 0.0007 0.0007 4.82 -0.0001 0.0007 0.0007 5.48 -0.0002 0.0007 0.0007 5.58

τ = 1/2

θ1 -0.0073 0.0032 0.0080 60.08 -0.0016 0.0043 0.0046 6.86 0.0005 0.0061 0.0061 6.60
θ2 0.0109 0.0930 0.0936 5.18 0.0050 0.0959 0.0960 5.54 0.0026 0.0964 0.0965 5.36
θ3 0.4080 0.4452 0.6039 17.12 0.0936 0.4874 0.4963 6.58 -0.0263 0.5475 0.5481 6.38
θ4 -0.0012 0.0029 0.0031 6.46 -0.0003 0.0035 0.0035 5.22 -0.0002 0.0038 0.0038 6.52
θ5 -0.0006 0.0894 0.0894 5.16 -0.0083 0.0919 0.0923 5.52 -0.0110 0.0924 0.0930 5.92
θ6 0.0655 0.1752 0.1870 6.22 0.0348 0.2035 0.2064 5.86 0.0326 0.2158 0.2183 6.42
θ7 -0.0003 0.0035 0.0036 5.64 -0.0003 0.0036 0.0037 6.34 -0.0003 0.0037 0.0037 6.06
θ8 -0.0001 0.0007 0.0007 5.06 -0.0001 0.0007 0.0007 5.54 -0.0002 0.0007 0.0007 5.48

τ = 3/4

θ1 -0.0132 0.0029 0.0135 99.34 -0.0056 0.0043 0.0071 25.12 0.0003 0.0065 0.0065 6.06
θ2 0.0180 0.0923 0.0940 5.36 0.0102 0.0961 0.0966 5.76 0.0033 0.0973 0.0973 5.44
θ3 0.7336 0.4496 0.8604 41.66 0.3203 0.4859 0.5820 12.00 -0.0130 0.5666 0.5667 6.20
θ4 -0.0024 0.0026 0.0035 14.00 -0.0009 0.0035 0.0036 5.94 -0.0002 0.0041 0.0041 5.76
θ5 0.0021 0.0890 0.0891 5.08 -0.0071 0.0921 0.0924 5.68 -0.0109 0.0926 0.0932 5.82
θ6 0.1204 0.1654 0.2046 9.76 0.0648 0.2048 0.2148 6.56 0.0334 0.2294 0.2318 5.98
θ7 -0.0004 0.0036 0.0036 6.00 -0.0004 0.0036 0.0037 6.34 -0.0003 0.0037 0.0037 6.06
θ8 -0.0001 0.0007 0.0007 5.54 -0.0002 0.0007 0.0008 6.00 -0.0002 0.0007 0.0008 5.42

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and the
MERM estimators and the corresponding t-tests for the components of θ0. The true value of the parameters of
interest are θ0 = (0.0355, 0.2976,−2.0891, 0.0079,−0.9900, 1.8794,−0.0223,−0.0149)′. The results are based on
5,000 replications.
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