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Abstract

We propose a novel optimal transport-based version of the Generalized Method
of Moment (GMM). Instead of handling overidentified models by reweighting the data
until all moment conditions are satisfied (as in Generalized Empirical Likelihood meth-
ods), this method proceeds by introducing measurement error of the least mean square
magnitude necessary to simultaneously satisfy all moment conditions. This approach,
based on the notion of optimal transport, aims to address the problem of assigning
a logical interpretation to GMM results even when overidentification tests reject the
null, a situation that cannot always be avoided in applications. Our approach thus in-
troduces a practical alternative to standard GMM estimation to circumvent concerns
regarding overidentification test rejections.

1 Introduction

The Generalized Method of Moment (GMM) (Hansen (1982)) has long been the workhorse
of statistical modeling in economics and the social sciences. Its key distinguishing feature,
relative to the basic method of moments, is the presence of overidentifying restrictions that
enable the model’s validity to be tested (Newey and McFadden (1994)). With this ability to
test comes the obvious practical question of what one should do if an overidentified GMM
model fails overidentification tests, a situation that is not uncommon (as noted in Hall and
Inoue (2003), Hansen (2001), Masten and Poirier (2021), Conley, Hansen and Rossi (2012),
Andrews and Kwon (2019)), even for perfectly reasonable, economically grounded, models.

A popular approach has been to find the “pseudo-true” value of the model parameter
(Sawa (1978), White (1982)) that minimizes the distance or discrepancy between the data
and the moment constraints implied by the model. This approach has gained further support
since the introduction of Generalized Empirical Likelihoods (GEL) and Minimum Discrep-
ancy estimators (Owen (1988), Qin and Lawless (1994), Newey and Smith (2004)), all of

∗Support from NSF grants SES-1950969 and SES-2150003 is gratefully acknowledged. The authors would
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which provide more readily interpretable pseudo-true values (Imbens (1997), Kitamura and
Stutzer (1997), Schennach (2007)).

This approach, however, faces a conceptual limitation: It implicitly attributes the mis-
match in the moment conditions solely to an improper weighting of the data, i.e. a biased
sampling of the population. While this is a possible explanation, it is not the only reason a
valid model would fail overidentification tests, when taken to the data. Another natural pos-
sibility is the presence of measurement error (Aguiar and Kashaev (2021), Doraszelski and
Jaumandreu (2013), Schennach (2020)). In this work, we develop an alternative to GMM
that ensures, by construction, that overidentifying restrictions are satisfied by allowing for
possible measurement error in the variables instead of sampling bias. In the same spirit as
GEL, which does not require the form of the sampling bias to be explicitly specified, the
measurement error process does not need to be explicitly specified in our approach, but is
instead inferred from the requirement of satisfying the overidentifying constraints imposed
by the GMM model.1 Of course, the accuracy of the resulting estimated parameters will
depend on the identifying power of the overidentifying restrictions (with a larger degree of
overidentification being typically beneficial).

A fruitful way to accomplish this is to employ concepts from the general area of opti-
mal transport problems (e.g., Galichon (2016), Villani (2009), Carlier, Chernozhukov and
Galichon (2016), Chernozhukov et al. (2017), Gunsilius and Schennach (2021)). The idea is
to find the parameter value that minimizes the measurement error (for instance, in an L2

sense) needed to allow all moment conditions to be simultaneously satisfied. Formally, the
true iid data zi is assumed to satisfy E [g (zi, θ)] = 0, where E is the expectation operator,
for some θ and some given dg-dimensional vector g (zi, θ) of moment functions. However,
we instead observe a mismeasured counterpart xi of the true vector zi (both taking value in
Rdx). We seek to exploit the model’s over-identification to gain information regarding the
measurement error in xi. This setup suggests solving the following optimization problem:

min
{zi}

1

2
Ê
[
‖z − x‖2] (1)

subject to:
Ê [g (z, θ)] = 0, (2)

where ‖·‖ is the Euclidean norm (potentially weighted) and where Ê denotes sample averages
(i.e. Ê[a (x)] ≡ 1

n

∑n
i=1 a (xi), where n is sample size). It will be assumed throughout that

this optimization problem is feasible, i.e., the constraint (2) holds for at least one choice of
the zj for a given θ.

This optimization problem is then nested into an optimization over θ, which delivers
the estimated parameter value θ̂. We call this estimator an Optimally-Transported GMM
(OTGMM) estimator. The Euclidean norm is chosen here for computational convenience,
although one could imagine a whole class of related estimators obtained with different choices
of metric.

1In the case where the statistical properties of the measurement error are well known a priori, it would be
beneficial to impose such constraints using established methods (e.g. Schennach (2004), Schennach (2014)).
However, we consider here the alternative setting where little is a priori known regarding the measurement
error.
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Figure 1: Comparison between the sample points adjustments for (a) Generalized Empirical
Likelihood (GEL), where observation weights (shown by point size) are adjusted, and (b)
Optimal Transport GMM, where point positions are adjusted. The original sample is shown
in gray while the adjusted sample is shown in black. Both panels consider, for illustration,
the simple case of an overidentified (parameter-free) model defined by a moment condition
imposing no correlation between the two variables.

This type of optimization problem falls within the framework of optimal transport prob-
lems (Villani (2009), Galichon (2016), Carlier, Chernozhukov and Galichon (2016), Ekeland,
Galichon and Henry (2011)), because it seeks to minimize the cost ‖z − x‖2 of “transporting”
x to z. In other words, it minimizes the cost of “transporting” the observed distribution of
the data onto another distribution that satisfies the moment conditions exactly. Researchers
have the ability to indicate a priori information regarding the measurement error magnitude
through the norm ‖·‖, e.g., using a weighted Euclidean norm to indicate the relative ex-
pected magnitude of the measurement error along the different dimensions of x. Our focus
on Euclidean norms parallels the choice made in most common estimators (e.g. least squares
regressions, classical minimum distance and even GMM). We discuss the choice of suitable
weighted Euclidean norms ‖·‖ in Section 5.

Although one can recognize some similarity with GEL, in the sense that one minimizes
some concept of distance under a moment constraint, one should realize that the notion of
distance used is completely different. As shown in Figure 1, the distance here is measured
along the “observation values” axis rather than the “observation weights” axis (as it would
be in GEL). This feature arguably makes the method a hybrid between GEL and optimal
transport methods, since GEL’s goal of satisfying all the moment conditions is achieved
through optimal transport instead of through optimal reweighting.

The remainder of the paper is organized as follows. We first formally define and solve
the optimization problem defining our estimator, before considering the limit of small mea-
surement error (in the spirit of Chesher (1991)) to gain some intuition. We then derive the
resulting estimator’s asymptotic properties for the general, large error, case. In particular,
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we show asymptotic normality and root n consistency. We then contrast the method with
other approaches that have been proposed to deal with model misspecification and propose
some extensions. The empirical performance of the method is demonstrated through both
Monte Carlo experiments. All proofs can be found in Appendix B.3.

2 The estimator

We now turn to a more formal definition of our estimator, as well as a description of some
of the implementation aspects.

2.1 Definition

The Lagrangian associated with the constrained optimization problem defined in Equations
(1) and (2) is

1

2
Ê
[
‖z − x‖2]− λ′Ê [g (z, θ)] = 0.

where Ê[. . .] denotes a sample average and where λ is a Lagrange multiplier. The first-order
conditions of this dual problem with respect to θ, λ and zj, respectively, are then

Ê [∂2g
′(z, θ)]λ = 0 (3)

Ê [g(z, θ)] = 0 (4)

(zj − xj)− ∂1g
′(zj, θ)λ = 0 for j = 1, . . . , n (5)

where we let ∂k denote a partial derivative with respect to the kth function argument. We
shall use ∂k′ to denote a matrix of partial derivatives with respect to a transposed variable
(e.g., ∂2′g(z, θ) ≡ ∂g(z, θ)/∂θ′). This formulation of the problem assumes differentiability of
g (z, θ) to a sufficiently high order, as shall be explicit formalized in our asymptotic analysis.

2.2 Implementation

The nonlinear system (3)-(5) of equations can be solved numerically. To this effect, we
propose an iterative procedure to determine the zj, λ for a given θ. This yields an objective

function Q̂(θ) that can be maximized to estimate θ. Let ztj and λt denote the approximations
obtained after t steps. As shown in Appendix A.1, given tolerances ε, ε′ and a given θ, the
objective function Q̂(θ) can be determined as follows:

Algorithm 2.1 1. Start the iterations with z0
j = xj and t = 0.

2. Let

λt+1 =
(

Ê
[
H
(
zt, θ

)
H ′
(
zt, θ

)])−1 (
−Ê
[
g
(
zt, θ

)]
+ Ê

[
H
(
zt, θ

) (
zt − x

)])
zt+1
j = xj +H ′

(
ztj, θ

)
λt+1,

where H (z, θ) = ∂1′g (z, θ) = (∂1g
′ (z, θ))′.
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3. Increment t by 1 and repeat from step 2 until
∥∥zt+1

j − ztj
∥∥ ≤ ε and ‖λt+1 − λt‖ ≤ ε′.

4. The objective function is then:

Q̂(θ) =
1

2
(λt)′Ê

[
H
(
zt, θ

)
H ′
(
zt, θ

)]
λt.

This algorithm is obtained by substituting zj = xj +H ′ (zj, θ)λ obtained from Equation
(5) into Equation (4) and expanding the resulting expression to linear order in λ. This lin-
earized expression provides an improved approximation λt to the Lagrange multiplier which
can, in turn, yield an improved approximation ztj. The process is then iterated to conver-

gence. The expression for Q̂(θ) is obtained by re-expressing Ê
[
‖z − x‖2] using Equation (5).

Formal sufficient conditions for the convergence of this iterative procedure can be found in
Appendix A.2.

To gain some intuition regarding the estimator, it is useful to consider the limit of small
measurement error when solving Equations (1)-(2). In this limit, the estimator admits a
closed form with an intuitive interpretation, as shown by the following result, established in
Appendix B.1.

Proposition 2.2 To the first order in zi − xi (i = 1, . . . , n) the estimator is equivalent to
minimizing a GMM-like objective function with respect to θ with a non-standard weighting
matrix:

θ̂ = arg min
θ

Ê [g′ (x, θ)]
(

Ê [H (x, θ)H ′ (x, θ)]
)−1

Ê [g (x, θ)] . (6)

From this expression, it is clear that the estimator seeks to downweigh the moments that
are the most sensitive to errors in x, as measured by H (x, θ) ≡ ∂1′g (x, θ). This accomplishes
the desired goal of minimizing the effect of the measurement error, in a context where the
properties of the process generating the measurement error are completely unknown.

Although this weighting matrix appears suboptimal (for a correctly specified GMM es-
timator), one should realize that the method is designed to address misspecification issues,
in which case the notion of optimality is not clearly defined, since different estimators may
have different pseudo-true values. It is also entirely expected that a model that assumes the
absence of measurement error (GMM) would have a smaller variance than an estimator that
allows for measurement error.

2.3 Constrained estimator

In some applications, it is useful to be able to constrain the measurement error, for instance
to enforce the known fact that some variables are measured without error. The appropriate
optimization problem then amounts to minimizing Ê

[
‖z − x‖2] subject to

Ê [g (z, θ)] = 0 (7)

C (zi − xi) = 0 for i = 1, . . . , n (8)

for some known rectangular full row rank matrix C that selects the dimensions of the mea-
surement error vector xi− zi that should be constrained to be zero. Note that measurement
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error constraint is imposed for each observation, not in an average sense. The Lagrangian
for this problem is

1

2
Ê ‖z − x‖2 − λ′Ê [g (z, θ)]−

n∑
i=1

γ′iC (zi − xi) (9)

where λ and γi are Lagrange multipliers. As shown in Appendix B.2, the first order conditions
(3) and (4) are unchanged, while Equation (5) becomes:

(zj − xj)− PH ′ (x, θ)λ = 0 (10)

where P =
(
I − C ′ (CC ′)−1C

)
and H ′ (x, θ) ≡ ∂1g

′ (zj, θ). Thanks to linearity, the Lagrange
multipliers γi can be explicitly solved for and the dimensionality of the problem is not
increased. The only effect of the constraints is to “project out”, through the matrix P , the
dimensions where there is no measurement error.

The iterative Algorithm 2.1 can easily be adapted by replacing every instance of H ′ (zt, θ)
by PH ′ (zt, θ). Similarly the linearized estimator of Equation (6) becomes:

1

2
Ê [g′ (x, θ)]

(
Ê [H (x, θ)PH ′ (x, θ)]

)−1

Ê [g (x, θ)] .

3 Asymptotics

In this section, we show that, despite the estimator’s roots in the theory of optimal transport,
its large sample behavior remains amenable to standard asymptotic tools since our focus is
on an estimator of the parameter θ rather than on an estimator of a distribution. We
first consider the case of small errors, a limiting case that may be especially important
in the relatively common case of applications where overidentifying restrictions tests are
near the rejection region boundary. This limit also parallel the approach taken in the GEL
literature, where asymptotic properties are often derived in the case where the overidentifying
restrictions hold (e.g., Newey and Smith (2004)).

3.1 Small errors limit

Our small error results enable us to illustrate that there is little risk in using our estimator
instead of standard GMM when one is concerned about potential measurement error in the
data. If the data were to, in fact, satisfy the moment conditions, using our approach does
not sacrifice consistency, root n convergence or asymptotic normality. The only possible
drawback would be a suboptimal weighting of overidentifying moment conditions leading to
a small increase in variance if there happened to be no measurement error. Conversely, the
optimal weighting of efficient GMM is only valid under the assumption that the only reason
for not simultaneously satisfying all moment conditions is random sampling. If instead
measurement error is the culprit, then the GMM weighting is no longer optimal and the
priority becomes to minimize the effect of measurement error, which our approach seeks
to accomplish. Hence, in that sense, the method provides a complementary alternative to
standard GMM estimation.

Our consistency result requires a number of fairly standard primitive assumptions.

6
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Assumption 3.1 The random variables xi form an iid sequence and take value in X ⊂ Rdx.

Assumption 3.2 E[g(xi; θ0)] = 0, i.e. the observed data xi satisfy the moment conditions
and E[g(xi; θ)] 6= 0 for any other θ ∈ Θ, a compact set.

In other words, Assumption 3.2 indicates that we consider here the case where GMM
would be consistent.

Assumption 3.3 V[g(xi; θ0)] <∞, where V denotes the variance operator.

Assumption 3.4 g(x; ·) is almost surely continuous and ‖g(x; θ)|| ≤ h(x) for any θ ∈ Θ
and for some function h satisfying E [h (xi)] <∞.

Assumptions 3.1, 3.2, 3.3 and 3.4 directly parallel those needed to establish the asymp-
totic properties of a standard GMM estimator (e.g. Theorems 2.6 and 3.2 in Newey and
McFadden (1994)). However, given that our estimator, in the small error limit (Equation
(6)), contains a sample average involving derivative H (x, θ) ≡ ∂1′g (x, θ), we need to place
some constraints on the behavior of that quantity as well.

Assumption 3.5 g is differentiable in its first argument and the derivative satisfies E[‖∂1′g(xi; θ0)‖2]
<∞. Moreover, ‖∂1′g(xi; θ)‖ 6= 0 almost surely for all θ ∈ Θ.

Assumption 3.6 ∂1′g(x; θ0) is Hölder continuous in x.

Assumption 3.7 Third-order partial derivatives in the first argument of g have finite vari-
ance.

Assumption 3.8 E[∂1′g(xi; θ0)∂1g
′(xi; θ0)] <∞ is of full rank.

These assumptions ensure that the minimization problem defined by (1) and (2) is well-
behaved, i.e., small changes in the values of xi do not lead, with positive probability, to
jumps in the solution zi to the optimization problem. It is likely that these assumptions can
be relaxed using empirical processes techniques. However, here we favor simply imposing
more smoothness (compared to the standard GMM assumptions), because this leads to more
transparent assumptions. They can all be stated in terms of the basic function g(x; θ) that
defines the moment condition model, making them fairly primitive. We can then state our
first consistency result.

Theorem 3.9 Under assumptions 3.1-3.8, the OTGMM estimator is consistent for θ0 and
λ = Op(n

−1/2).

As a by-product, this theorem also secures a convergence rate on the Lagrange multiplier
λ which proves useful for establishing our distributional results. The conditions needed
to show asymptotic normality also closely mimic those of standard GMM estimators (e.g.
Theorem 3.2 in Newey and McFadden (1994)):

Assumption 3.10 θ0 ∈ Θ◦, the interior of Θ.

7
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Assumption 3.11 E[supθ∈η ||∂2′g(xi; θ)||] <∞ where η ⊂ Θ is a neighborhood of θ0.

Assumption 3.12
(
E[∂2g(xi; θ0)′] (E[∂1g(xi; θ0)∂1g(xi, θ0)′])−1 E[∂2g(xi; θ0)]

)
is invertible.

We can then provide an explicit expression of the asymptotic variance of the estimator.

Theorem 3.13 Under Assumptions 3.1-3.12, the OTGMM estimator is asymptotically nor-
mal with

√
n(θ̂OTGMM − θ0)→d N (0;V ), where

V =
(

E[G′2] (E[G1G
′
1])
−1 E[G2]

)−1

×

(E[G′2] (E[G1G
′
1])
−1 E[gg′] (E[G1G

′
1])
−1 E[G2])×(

E[G′2] (E[G1G
′
1])
−1 E[G2]

)−1

,

where Gj ≡ ∂j′g(xi; θ0) and g ≡ g(xi; θ0).

The variance has the expected “sandwich” form, since the reciprocal weights E[G1G
′
1]

differs from the moment variance E[gg′]. The asymptotic distribution under constraints on
the measurement error follows from a straightforward adaptation of the previous theorem.

Corollary 3.14 Theorem 3.13 holds under constraint (8), with all instances of E[G1G
′
1]

replaced by E[G1PG
′
1], for P =

(
I − C ′ (CC ′)−1C

)
.

3.2 Asymptotics under large errors

In some applications, it may be useful to relax the assumption of small measurement error for
the method to uniformly handle all cases, whether overidentifying restrictions are violated
or not. To handle this possibility more straightforwardly, it proves useful to observe the
following equivalence, demonstrated in Appendix B.3.

Theorem 3.15 If g (z, θ) is differentiable in its arguments, the OTGMM estimator is equiv-
alent to a just-identified GMM estimator expressed in terms of the modified moment function

g̃ (x, θ, λ) =

[
∂2g

′ (q (x, θ, λ) , θ) λ
g (q (x, θ, λ) , θ)

]
(11)

that is a function of the observed data x and the augmented parameter vector θ̃ ≡ (θ′, λ′)′

and where
q (x, θ, λ) ≡ arg min

z:z−∂1g′(z,θ)λ=x
‖z − x‖2 . (12)

Note that q (x, θ, λ) is essentially the inverse of the mapping z − ∂1g
′ (z, θ)λ = x (from

Equation (5)), augmented with a rule to select the appropriate branch in case the inverse is
multivalued.

The equivalence result of Theorem 3.15 implies that much of asymptotic technical tools
used in GMM-type estimators can be adapted to our setup, with the distinction that the
function q (x, θ, λ) is defined only implicitly. Hence, many of our efforts below seek to recast
necessary conditions on q (x, θ, λ) in terms of more primitive conditions on the moment
function g (z, θ) whenever possible.

We first start with a standard identification condition:
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Assumption 3.16 For some compact sets Θ and Λ, there exists a unique (θ0, λ0) ∈ Θ× Λ
solving E [g̃ (x, θ, λ)] = 0 for g̃ (x, θ, λ) defined in Theorem 3.15.

Our identification condition could also be stated in terms of uniqueness of the solution
of the primal optimization problem (Equations (1) and (2)), but the corresponding GMM
formulation of Equation (11) we employ in Assumption 3.16 makes it easier to conceptualize
the population limit (i.e. a continuum of observations).

Next, we consider standard continuity and dominance conditions that are used to estab-
lish uniform convergence of the GMM objective function. In a high-level form, this condition
would read:

Assumption 3.17 (i) g̃ (x, θ, λ) is continuous in θ and λ for (θ, λ) ∈ Θ×Λ with probability
one and (ii) E

[
sup(θ,λ)∈Θ×Λ ‖g̃ (x, θ, λ)‖

]
<∞.

Alternatively, Assumption 3.17 can be replaced by more primitive conditions on g (z, θ)
instead, as given below in Assumptions 3.18 and 3.19.

Assumption 3.18 (i) g (z, θ) and ∂1′g (z, θ) are differentiable in θ and (ii) ∂2′g (z, θ) is
continuous in both arguments.

This assumption parallels continuity assumptions typically made for GMM, but higher
order derivatives of g (z, θ) are needed because they enter the moment condition either di-
rectly or indirectly via the function q (x, θ, λ).

The next condition ensures that the function q (x, θ, λ) is well-behaved.

Assumption 3.19 ν̄λ̄ < 1 where λ̄ = maxλ∈Λ ‖λ‖ and ν̄ = supθ∈Θ supz∈X maxk∈{1,...,dg}
max eigval (∂11′gk (z, θ)), in which ∂11′gk (z, θ) exists for k = 1, . . . , dg and where eigval (M)
for some matrix M denotes the set of its eigenvalues.

The meaning of this assumption is perhaps best communicated through concepts drawn
from convex analysis and optimal transport (Galichon (2016)). The idea is that the first
order condition z − ∂1g

′ (z, θ)λ = x, which implicitly defines z = q (x, θ, λ), can be written
as

∂

∂z

(
z′z

2
− g′ (z, θ)λ

)
= x.

Hence, in analogy with the calculation of Brenier maps, we seek a point z such that the slope
of z′z

2
−g′ (z, θ)λ is x. A way to ensure that this point is unique and varies smoothly with x is

to impose that z′z
2
−g′ (z, θ)λ is strictly convex. This is implied by ensuring that the Hessian

of z′z
2
− g′ (z, θ)λ is positive definite, which is precisely what Assumption 3.19 requires. For

notational simplicity, Assumption 3.19 is phrased as a global convexity condition, but our
results would hold under a more local convexity condition.

In order to state our remaining regularity conditions, it is useful to introduce a notion of
(nonuniform) Lipschitz continuity, combined with some standard dominance conditions.

9
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Definition 3.20 Let L be the set of functions h (z, θ) such that (i) E [supθ∈Θ ‖h (x, θ)‖] <∞
and (ii) there exists a function h̄ (x, θ) satisfying

‖h (z, θ)− h (x, θ)‖ ≤ h̄ (x, θ) ‖z − x‖ for all x, z ∈ X (13)

E

[
sup
θ∈Θ

h̄ (x, θ) ‖∂1′g (x, θ)‖
]

< ∞. (14)

where g (x, θ) is the model’s vector of moment conditions.

A Lipschitz continuity-type assumption is made here because it ensures that the behavior
of the observed x and the underlying unobserved z will not differ to such an extent that mo-
ments of unobserved variables would be infinite, while the corresponding observed moments
are finite. Clearly, without such an assumption, observable moments would be essentially
uninformative. The idea underlying Definition 3.20 is that we want to define a property that
is akin to Lipschitz continuity but that allows for some heterogeneity (through the function
h̄ (x, θ) in Equation (13)). This heterogeneity proves particularly useful in the case where
X is not compact (for compact X , one can take h̄ (x, θ) to be constant in x with little loss
of generality). For a given function h (x, θ) that is finite for finite x, membership in L is
easy to check by inspecting the tail behavior (in x) of the given function h (x, θ). Polyno-
mial tails will suggest a polynomial form for h̄ (x, θ), for instance. Equation (14) strengthen
the dominance condition 3.20(i) to ensure that functions h (x, θ) in L also satisfy a domi-
nance condition when interacted with other quantities entering the optimization problem,
i.e. ∂1′g (x, θ)).

With this definition in hand, we can succinctly state a sufficient condition for g̃ (x, θ, λ)
to satisfy a dominance condition:

Assumption 3.21 g (·, ·) and each element of ∂2g
′ (·, ·) belong to L.

We are now ready to state our general consistency result.

Theorem 3.22 Under Assumptions 3.1, 3.16 and either Assumption 3.17 or Assumptions
3.18, 3.19, 3.21, the OTGMM estimator is consistent ((θ̂, λ̂)

p−→ (θ0, λ0)).

We now turn to asymptotic normality. We first need a conventional “interior solution”
assumption.

Assumption 3.23 (θ0, λ0) from Assumption 3.16 lies in the interior of Θ× Λ.

Next, as in any GMM estimator, we need finite variance of the moment functions and
their differentiability:

Assumption 3.24 (i) V [g̃ (x, θ0, λ0)] ≡ Ω exists and (ii) E [∂g̃ (x, θ, λ) /∂ (θ′, λ′)] ≡ G̃ exists
and is nonsingular.

Assumption 3.24(ii) can be expressed in a more primitive fashion using the explicit form
for G̃ provided in Theorem 3.27 below.

Next, we first state a high-level dominance condition that ensures uniform convergence
of the Jacobian term ∂g̃ (x, θ, λ) /∂ (θ′, λ′).

10
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Assumption 3.25 (i) g̃ (x, θ, λ) is continuously differentiable in (θ, λ); (ii) E[ sup(θ,λ)∈Θ×Λ

‖∂g̃ (x, θ, λ) /∂ (θ′, λ′)‖] <∞.

This assumption is implied by the following, more primitive, condition:

Assumption 3.26 (i) g (z, θ) and ∂2g (z, θ) are continuously differentiable in θ, (ii) all
elements of ∂2gk (z, θ) and ∂22′gk (z, θ) for k = 1, . . . , dg belong to L and (iii) Assumptions
3.18(i) and 3.19 hold.

Theorem 3.27 Let the assumptions of Theorem 3.22 hold as well as Assumptions 3.23,
3.24 and either Assumption 3.25 or 3.26. Then,

√
n

([
θ̂

λ̂

]
−
[
θ0

λ0

])
d−→ N

(
0,W−1

)
where W = G̃′Ω−1G̃, Ω = E [g̃g̃′],

g̃ ≡
[
∂2g

′ (zj, θ0)λ0

g (zj, θ0)

]
and G̃ =

[
G̃θθ G̃θλ

G̃λθ G̃λλ

]
in which

G̃θθ ≡ E [∂22′ (λ
′
0g (zj, θ0)) + ∂21′ (λ

′
0g (zj, θ0)) ∂2′q (xj, θ0, λ0)]

G̃λθ ≡ E [∂2′g (zj, θ0) + ∂1′g (zj, θ0) ∂2′q (xj, θ0, λ0)]

G̃θλ ≡ E [∂2 (g′ (zj, θ0)) + ∂21′ (λ
′
0g (zj, θ0)) ∂3′q (xj, θ0, λ0)]

G̃λλ ≡ E [∂1′g (zj, θ0) ∂3′q (xj, θ0, λ0)]

where ∂k`′ denote second derivatives with respect to the kth and `th functional arguments,
suitably transposed, and where zj solves xj = zj − ∂1g

′ (zj, θ)λ for given xj, θ, λ and where

∂2′q (x, θ, λ) =
[
(I − ∂11′ (λ

′g (z, θ)))
−1
∂12′ (λ

′g (z, θ))
]
z=q(x,θ,λ)

(15)

∂3′q (x, θ, λ) =
[
(I − ∂11′ (λ

′g (z, θ)))
−1
∂1g

′ (z, θ)
]
z=q(x,θ,λ)

. (16)

In particular, for θ, the partitioned inverse formula gives

√
n
(
θ̂ − θ0

)
d−→ N

(
0,
(
Wθθ −WθλW

−1
λλWλθ

)−1
)

where W is similarly partitioned as:

W =

[
Wθθ Wθλ

Wλθ Wλλ

]
The asymptotic variance stated in Theorem 3.27 takes the familiar form expected from

a just-identified GMM estimator (G̃′Ω−1G̃). The relatively lengthy expressions merely come
from explicitly computing the first derivative matrix G̃ in terms of its constituents. This
is accomplished by differentiating g̃ with respect to all parameters using the chain rule and
calculating the derivative of q (x, θ, λ) using the implicit function theorem.

11
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4 Discussion

Our approach should be contrasted with other proposals aimed at handling violations of
overidentifying restrictions.

Masten and Poirier (2021) propose to replace moment equalities E [g (x, θ)] = 0 by ap-
proximate moment equalities −ε ≤ E [g (x, θ)] ≤ ε (where the inequalities hold element-by-
element). They consider any model where the tolerance vector ε is such that the model is
not falsified and such that any tightening of the constraint would result in falsification. The
identified set for θ is then the union of all the identified sets obtained for each ε considered.
As this approach allows for “adjustments” of the values of the moments rather than of the
data points, it is mostly useful if the source of misspecification is an invalid instrument, but
less so if measurement error is the problem. Their method does not enforce that the tol-
erances on the different moments are all consistent with the same underlying measurement
error structure. As such, their approach and ours differ in the type of misspecification it
aims to address. Another difference is that our method transparently applies to any GMM
model while theirs is difficult to apply to models beyond linear IV (The authors note: “In
general, it is difficult to define a meaningful and tractable class of relaxations of one’s base-
line assumptions. In the linear model, however, there is a natural way to relax the exclusion
restriction.”). In a related vein, their method does not preserve optimal GMM’s invariance
to general linear transformation of the moment conditions,2 while ours maintains it. Fi-
nally, the two approaches demand completely different estimators and asymptotic analysis
techniques, since their method involves the concept of set-identification, while ours does not.

Conley, Hansen and Rossi (2012) also focus on linear IV and seek to relax strict moment
inequalities by letting E [g (x, θ)] = ε, where ε is given a prior distribution and inference on
θ is carried out through Bayesian methods. This method is useful to allow for violations
of exclusions restrictions, but less so if the main problem is measurement error, for the
same reason as the method of Masten and Poirier (2021). In recent work, Christensen and
Connault (2022) instead maintain the moment equalities, but incorporate misspecification
by allowing for deviations in the distribution used to evaluate the moments. The amount of
deviation is controlled placing a bound on a discrepancy, in the spirit of GEL estimation.
Once again, this approach is useful to handle generic misspecification, but is not specifically
designed to handle a measurement error structure. It also requires, as an input, a priori
information regarding the possible magnitude of the misspecification.

The problem of model misspecification has also been approached from the view point
of sensitivity analysis (Andrews, Gentzkow and Shapiro (2017), Bonhomme and Weidner
(2022)). However, this treatment is fundamentally limited to local misspecification (whose
magnitude decreases with sample size). It mainly provides diagnostic tools and can only
deliver a specific estimator (Bonhomme and Weidner (2022)), if one is willing to specify an
a priori bound on the misspecification magnitude.

The literature on moment inequality models has also focused on the issue of misspecifi-
cation (e.g. Andrews and Kwon (2019)), but the necessary methods differ significantly from
ours due to the set-identified nature of the problem. In addition, the treatment of misspeci-

2The tolerance vector ε is applied element-by-element and the shape of the allowed values of the moment
thus depends on the chosen coordinate system.
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fication specifically due to measurement error has, to our knowledge, not been considered.

5 Extensions

An important feature of our proposed method is that it lets researchers allow for measure-
ment error while remaining agnostic regarding its specific form. It could be classical or
nonclassical, correlated over time or not, etc. Of course, this may not be the optimal ap-
proach for all applications. For instance, if researchers do have specific knowledge regarding
the measurement error structure, then methods specifically designed for that purpose may
be preferable (e.g., see Schennach (2016), Schennach (2020) and references therein). Alter-
natively, generic methods for handling latent variables may be helpful (Ekeland, Galichon
and Henry (2010), Beresteanu, Molchanov and Molinari (2011), Schennach (2014)). Such
approaches would, for instance, enable researchers to force the measurement error to have
zero mean (perhaps conditionally on other variables). An even more interesting alternative
would be a hybrid method in which (i) the possibility of general forms of measurement errors
is accounted for with the current method by constructing the equivalent GMM formulation of
the model via Theorem 3.15 and (ii) additional restrictions on the form of the measurement
error are imposed via additional moment conditions involving some elements of z and x. This
could prove a useful middle ground when a priori information regarding the measurement
error is available for some, but not all, variables.

While we have mainly focused on the case where ‖·‖ is a standard Euclidean norm, a

weighted Euclidean norm ‖u‖ ≡ (u′Wu)1/2 could also be used to quantify the measurement
error. The weighting matrix W reflects the expected relative variances of the errors along
the different dimensions of x. (Note that the estimator is invariant to scaling all the weights
by the same constant — only the relative magnitude of the weights matter.) The choice of
weights is particularly important when the different dimensions have different units. How-
ever, simple rules can be used to naturally guide this choice. One possibility is to express all
variables on a logarithmic scale, adjusting the moment conditions accordingly, and use an
unweighted Euclidean norm. This approach effectively assumes multiplicative errors whose
magnitudes (expressed as a percentage) are similar along all dimensions. If one prefers to
maintain an additive error structure, one can simply scale all elements of x by their corre-
sponding standard deviation (or some other measure of scale), again adjusting the moment
conditions accordingly and using an unweighted norm. This approach then assumes that the
error magnitudes for each element of x are a similar fraction of that variable’s overall scale.
The idea underlying these suggestions is basically to ensure that x is either dimensionless
or contains elements expressed in comparable units. This being said, it is important to note
that, in the small error limit (i.e., when the overidentifying restrictions hold), the estimator
is consistent regardless of the choice of weight. This is entirely analogous to what happens
with GEL methods, which are consistent for any choice of tilting function if the overiden-
tifying restrictions hold, but have otherwise different pseudo-true values for different tilting
functions when overidentifying restrictions do not hold.

It is fruitful to observe that the proposed method assigns the source of overidentification
test failure entirely to measurement error, while standard GEL approaches would assign it
entirely to sampling bias. However, one could also consider intermediate situations. When

13
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our method is used with the constraint that measurement error is only present in some, but
not all, variables, then the overidentifying restrictions are not automatically satisfied. This
implies that there is still information to be extracted from the overidentifying restrictions and
would suggest a hybrid method where both measurement error, handled via our approach,
and re-weighting of the sample, handled via GEL, are simultaneously allowed.

6 Simulations

We conduct simulations to assess the performance of our estimator and compare it to efficient
GMM. We consider both the OTGMM estimator (Equations (1) and (2)) and the GMM
estimator obtained under the assumption of small errors (Equation (6)).

For a sample size of n = 100, we consider various moment conditions, underlying distri-
butions and signal-to-noise ratios. There is an underlying random variable zi which satisfies
the moment conditions, but the researcher observes xi = zi + σei with ei ∼ N (0, 1). We
consider different values for the measurement error scale σ in order to assess the impact of
magnitude of the measurement error on the performance of estimators that only use the
observed xi.

Specifically, we consider the following distributions for zi: zi ∼ N (1.5, 2) zi ∼ Unif[1, 2]
(uniform) zi ∼ B(5, 0.3) (binomial) and σ = 0, 0.5, 1, 1.5, 2, 2.5. The true parameter value is
θ0 = 1.5, as obtained by the following moment conditions:

E[zi − θ] = 0, E[ezi − 2

3
θE[ezi ]] = 0 (17)

E[zi − θ] = 0, E[
e2zi−3

1 + e2z−3
− 2

3
θ

e2zi−3

1 + e2z−3
] = 0 (18)

E[ezi − 2

3
θE[ezi ]] = 0, E[

e2zi−3

1 + e2z−3
− θe2zi−3

(1.5) (1 + e2z−3)
] = 0 (19)

Finally, we consider a last process: zi ∼ Exp(2
3
) with the moment conditions

E[zi − θ] = 0, E[zi
2 − 2θ2] = 0. (20)

In all cases, the model is correctly specified in the absence of measurement error (σ = 0)
but starts to fail overidentifying restrictions when there is measurement error (σ > 0 so that
x 6= z).

In Tables 1-4, we report the estimation error θ̂−θ0 and decompose it into its bias, standard
deviation and the root mean square error (RMSE). These quantities are evaluated using
averages over 5000 replications. We consider various estimators θ̂: the linear approximation
to OTGMM in the small-error limit (leftmost columns), OTGMM in the general large-
error case (middle columns) and efficient GMM ignoring the presence of measurement error
(rightmost columns).

It is clear that OTGMM is, in general, preferable to its linear approximation. The key
take-away from these simulations is that the OTGMM estimator exhibits the ability to
substantially reduce bias while not substantially increasing the variance relative to efficient
GMM. As a result, the overall RMSE criterion points in favor of OTGMM. This is exactly the
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type of behavior one would expect for an effective measurement error-correcting method. The
reduction in bias is especially important for inference and testing, as it significantly reduces
size distortion. In contrast, a small increase in variance does not affect inference validity,
as this variance can be straightforwardly accounted for in the asymptotics, unlike the bias,
which is generally unknown.

Table 1: Simulation results: Equation(17)

Bias
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal 0 -0.01 -0.05 -0.16 -0.5 -1.77 0 -0.01 -0.03 -0.05 -0.05 -0.05 -0.02 -0.03 -0.09 -0.18 -0.23 -0.26
Uniform 0 -0.23 -1.12 -3.58 -10.98 -37.34 0 -0.09 -0.12 -0.11 -0.09 -0.07 0 -0.13 -0.23 -0.27 -0.29 -0.29
Binomial 0 -0.02 -0.1 -0.33 -0.99 -3.31 0 -0.01 -0.04 -0.06 -0.06 -0.05 0 -0.04 -0.14 -0.21 -0.25 -0.27

Standard deviation
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal 0.15 0.15 0.16 0.23 1.09 9.14 0.15 0.15 0.17 0.2 0.25 0.29 0.17 0.16 0.16 0.19 0.24 0.29
Uniform 0.01 0.05 0.28 1.48 9.07 69.12 0.01 0.04 0.1 0.15 0.2 0.25 0.01 0.04 0.09 0.15 0.21 0.26
Binomial 0.1 0.1 0.13 0.24 1.1 7.5 0.1 0.11 0.14 0.18 0.22 0.27 0.1 0.1 0.13 0.17 0.23 0.28

RMSE
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal 0.15 0.15 0.17 0.28 1.2 9.31 0.15 0.15 0.17 0.21 0.25 0.29 0.17 0.16 0.19 0.26 0.33 0.39
Uniform 0.01 0.23 1.15 3.88 14.24 78.56 0.01 0.1 0.15 0.19 0.22 0.26 0.01 0.14 0.24 0.31 0.36 0.39
Binomial 0.1 0.11 0.16 0.41 1.48 8.2 0.1 0.11 0.14 0.19 0.23 0.28 0.1 0.11 0.19 0.27 0.34 0.39

Table 2: Simulation results: Equation(18)

Bias
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Uniform 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Binomial 0 0.01 0.01 0.02 0.02 0.02 0 0.01 0.02 0.03 0.03 0.04 -0.01 0.01 0.04 0.06 0.06 0.06

Standard deviation
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal 0.11 0.12 0.12 0.13 0.15 0.16 0.11 0.12 0.12 0.12 0.13 0.13 0.1 0.1 0.1 0.1 0.09 0.09
Uniform 0 0.04 0.15 0.29 0.44 0.6 0 0.05 0.1 0.12 0.12 0.13 0 0.04 0.09 0.1 0.09 0.09
Binomial 0.1 0.11 0.12 0.15 0.17 0.2 0.1 0.11 0.12 0.12 0.13 0.13 0.1 0.1 0.1 0.1 0.1 0.1

RMSE
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal 0.11 0.12 0.12 0.13 0.15 0.16 0.11 0.12 0.12 0.12 0.13 0.13 0.1 0.1 0.1 0.1 0.09 0.09
Uniform 0 0.04 0.15 0.29 0.44 0.6 0 0.05 0.1 0.12 0.12 0.13 0 0.04 0.09 0.1 0.09 0.09
Binomial 0.1 0.11 0.13 0.15 0.17 0.2 0.1 0.11 0.12 0.13 0.13 0.14 0.1 0.1 0.11 0.11 0.11 0.11
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Table 3: Simulation results: Equation(19)

Bias
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal -0.01 0 0.03 0.09 0.3 0.99 -0.01 0 0 0 0 0 -0.01 -0.01 -0.04 -0.07 -0.07 -0.07
Uniform 0 -0.13 -0.63 -2.03 -6.16 -20.38 0 -0.04 -0.04 -0.01 0 0 0 -0.12 -0.16 -0.15 -0.12 -0.09
Binomial 0 0.01 0.04 0.09 0.23 0.68 0 0.01 0.02 0.03 0.03 0.04 -0.01 -0.01 -0.05 -0.07 -0.06 -0.04

Standard deviation
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal 0.11 0.11 0.12 0.16 0.47 2.47 0.11 0.11 0.12 0.12 0.13 0.13 0.12 0.12 0.11 0.12 0.13 0.14
Uniform 0.04 0.06 0.27 1.1 5.05 31.07 0.04 0.06 0.09 0.11 0.12 0.13 0.04 0.06 0.09 0.11 0.13 0.13
Binomial 0.1 0.1 0.11 0.13 0.31 1.53 0.1 0.1 0.11 0.12 0.13 0.13 0.1 0.1 0.11 0.12 0.13 0.14

RMSE
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Normal 0.11 0.11 0.12 0.18 0.56 2.66 0.11 0.11 0.12 0.12 0.13 0.13 0.12 0.12 0.12 0.14 0.15 0.15
Uniform 0.04 0.14 0.69 2.31 7.96 37.15 0.04 0.08 0.1 0.11 0.12 0.13 0.04 0.13 0.19 0.19 0.17 0.16
Binomial 0.1 0.1 0.12 0.16 0.39 1.67 0.1 0.1 0.11 0.12 0.13 0.14 0.1 0.1 0.12 0.14 0.15 0.15

Table 4: Simulation results: Equation(20)

Bias
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Exponential -0.02 0.02 0.15 0.37 0.66 0.98 -0.02 0.02 0.13 0.26 0.42 0.57 -0.05 -0.02 0.09 0.28 0.49 0.7

Standard deviation
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Exponential 0.17 0.16 0.16 0.17 0.17 0.18 0.17 0.16 0.16 0.18 0.2 0.23 0.16 0.16 0.17 0.2 0.24 0.28

RMSE
Linear approximation OTGMM Efficient GMM

ME scale 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
Exponential 0.17 0.17 0.22 0.41 0.68 1 0.17 0.17 0.21 0.32 0.46 0.62 0.17 0.16 0.2 0.35 0.54 0.76

7 Conclusion

We have proposed a novel optimal transport-based version of the Generalized Method of
Moment (GMM) that fulfills, by construction, the overidentifying restrictions by introducing
the smallest amount of measurement error necessary to simultaneously satisfy all moment
conditions. This approach conceptually merges the Generalized Empirical Likelihood (GEL)
and optimal transport methodologies. It provides a theoretically motivated interpretation
to GMM results when standard overidentification tests reject the null. GEL approaches
handle model misspecification by re-weighting the data, which would be appropriate when
misspecification arise from improper sampling of the population. In contrast, our optimal
transport approach is appropriate when measurement error is the source of misspecification,
which is arguably a common situation in applications. As a by-product, our approach
provides insight into the measurement error structure of the variables.
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A Algorithms

A.1 Iterative solution

The first order condition (5) can be re-written as

(zj − xj) = ∂1g
′ (zj, θ)λ. (21)

We seek to construct a sequence ztj (t = 0, 1, . . .) that converges to zj, starting with ztj|t=0 =
xj. From the moment conditions and (21), we have:

0 =
1

n

n∑
i=1

g (zi, θ) =
1

n

n∑
i=1

g (xj + ∂1g
′ (zj, θ)λ, θ) .

Adding and subtracting ztj yields

0 =
1

n

n∑
i=1

g
(
ztj +

(
xj − ztj + ∂1g

′ (zj, θ)λ
)
, θ
)

≈ 1

n

n∑
i=1

g
(
ztj, θ

)
+

1

n

n∑
i=1

∂1′g
(
ztj, θ

) (
xj − ztj + ∂1g

′ (zj, θ)λ
)

where the expansion is justified from the fact that xj − ztj + ∂1g
′ (zj, θ)λ −→ 0 as ztj −→ zj.

In the same limit, ∂1g
′ (ztj, θ) −→ ∂1g

′ (zj, θ), so

0 ≈ 1

n

n∑
i=1

g
(
ztj, θ

)
+

1

n

n∑
i=1

∂1′g
(
ztj, θ

) (
xj − ztj + ∂1g

′ (ztj, θ)λ)
=

1

n

n∑
i=1

g
(
ztj, θ

)
+

1

n

n∑
i=1

∂1′g
(
ztj, θ

) (
xj − ztj

)
+

1

n

n∑
i=1

∂1′g
(
ztj, θ

)
∂1g

′ (ztj, θ)λ
= Ê

[
g
(
zt, θ

)]
+ Ê

[
H
(
zt, θ

) (
x− zt

)]
+ Ê

[
H
(
zt, θ

)
H ′
(
zt, θ

)]
λ.

Isolating λ gives the approximation to the Lagrange multiplier at step t+ 1:

λt+1 =
(

Ê
[
H
(
zt, θ

)
H ′
(
zt, θ

)])−1 (
−Ê
[
g
(
zt, θ

)]
+ Ê

[
H
(
zt, θ

) (
zt − x

)])
. (22)

From this, we can improve the approximation to zj to go to the next step, using (21):

zt+1
j = xj +H ′

(
zt, θ

)
λt+1. (23)

It can be directly verified that the values of zj and λ that satisfy the first order conditions are
indeed a fixed point of this iterative rule. In the next subsection we shall provide conditions
under which this fixed point is also attractive.

After iteration to convergence, the objective function can be written in term of the
converged values of z and λ:

Q̂(θ) =
1

2n

∑
j

‖zj − xj‖2 =
1

2n

∑
j

‖H ′ (zj, θ)λ‖2
=

1

2n

∑
j

λ′H (zj, θ)H
′ (zj, θ)λ

=
1

2
λ′Ê [H (z, θ)H ′ (z, θ)]λ.
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A.2 Iterative procedure convergence

Substituting (22) into (23) yields an iterative rule expressed solely in terms of ztj:

zt+1
j = xj +H ′

(
ztj, θ

) (
Ê
[
H
(
zt, θ

)
H ′
(
zt, θ

)])−1 (
−Ê
[
g
(
zt, θ

)]
+ Ê

[
H
(
zt, θ

) (
zt − x

)])
.

(24)
This is an iterative rule of the form zt+1 = f (zt), for zt = (zt′1 , . . . , z

t′
n)
′ ∈ Rndx with fixed

point denoted z∞. We then have the following result.

Assumption A.1 (i) g (z, θ) is twice continuously differentiable in z and (ii) Ê [H (z, θ)H ′ (z, θ)]
is nonsingular for z in a the closure of an open neighborhood η of the fixed point z∞.

Theorem A.2 Under Assumption A.1, for a given sample x1, . . . , xn, there exists a neigh-
borhood η of z∞, such that the iterative procedure defined by Equation (24) and starting at
any z0 ∈ η converges to the fixed point z∞, provided ‖λ‖ is sufficiently small (where λ solves
the first order condition (21)).

The condition that the initial point z0 should lie in a neighborhood of the solution is
standard — most Newton-Raphson-type iterative refinements have a similar requirement.
If necessary, this requirement can be met by simply attempting many different starting
points in search for one that yields a convergent sequence. The condition that λ be small
intuitively means that the measurement error should not be too large. This is a purely
numerical condition which has nothing to do with sample size, statistical significance of
specification tests. In particular, it does not mean that the measurement error magnitude
must decreases with sample size or that the effect of the errors should be small relative to
the estimator’s standard deviation. Typically, the constraint on λ is relaxed as the starting
point z0 is chosen closer to the solution z∞.
Proof of Theorem A.2. For a rule of the form zt+1 = f (zt), Banach’s Fixed Point Theo-
rem applied to a neighborhood of z∞ provides a simple sufficient condition for convergence:
(i) f must be continuously differentiable in a neighborhood of z∞ and (ii) all eigenvalues of
the matrix [∂f (z) /∂z′]z=z∞ must have a modulus strictly less than 1.

The smoothness condition (i) is trivially satisfied under Assumption A.1. Next, letting
zti,k denote one element of the vector zti , and H·k (zti , θ) denote the kth column of H (zti , θ),

we can express all blocks ∂zt+1
j /∂zti,k of the matrix of partial derivatives of f (z) :

∂zt+1
j

∂zti,k
=

[
∂

∂zti,k
H ′
(
zti , θ

) (
Ê
[
H
(
zt, θ

)
H ′
(
zt, θ

)])−1
](
−Ê
[
g
(
zt, θ

)]
+ Ê

[
H
(
zt, θ

) (
zt − x

)])
+H ′

(
zti , θ

) (
Ê
[
H
(
zt, θ

)
H ′
(
zt, θ

)])−1

×(
−n−1H·k

(
zti , θ

)
+ n−1H·k

(
zti , θ

)
+ n−1

[
∂

∂zti,k
H
(
zti , θ

)] (
zti − xi

))
,

where the two n−1H·k (zti , θ) terms cancel each other. At zt = z∞, Ê [g (z∞, θ)] = 0 and
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(z∞i − xi) = H ′ (z∞i , θ)λ and we have:

∂zt+1
j

∂zti,k
=

[
∂

∂z∞i,k
H ′ (z∞i , θ)

(
Ê [H (z∞, θ)H ′ (z∞, θ)]

)−1
]

Ê [H (z∞, θ)H ′ (z∞, θ)]λ

+H ′ (z∞i , θ)
(

Ê [H (z∞, θ)H ′ (z∞, θ)]
)−1

n−1

[
∂

∂z∞i,k
H (z∞i , θ)

]
H ′ (z∞i , θ)λ

This expression (once all derivatives of products are expanded) has the general form of a

product of λ with functions of z that contain terms of the form
(

Ê [H (z, θ)H ′ (z, θ)]
)−1

,

which is nonsingular for z ∈ η by Assumption A.1(ii), and derivatives of g (z, θ) up to order
2, which are bounded for z in the compact set {zj : (z1, . . . , zn) ∈ η and j = 1, . . . , n} by
Assumption A.1(i). Hence the elements ∂zt+1

j /∂zti,k are bounded by a constant times λ. It
follows that the eigenvalues of the matrix of partial derivatives of f (z) can be made strictly
less than 1 for λ sufficiently small.

B Proofs

For a being a vector or matrix, let ‖a‖ =
(∑

i,j ai,j

)1/2

.

B.1 Linearized estimator

Proof of proposition 2.2. In the following derivation, the approximation denoted by
“≈” are exact to first order in zj − xj. In that limit, ∂1g

′ (zj, θ) ≈ ∂1g
′ (xj, θ). Therefore:

zj − xj ≈ ∂1g
′ (xj, θ)λ

zj ≈ xj + ∂1g
′ (xj, θ)λ (25)

Substituting into the constraint:∑
j

g (xj + ∂1g
′ (xj, θ)λ, θ) ≈ 0

Using a Taylor expansion:∑
j

(g (xj, θ) + ∂1′g (xj, θ) ∂1g
′ (xj, θ)λ) ≈ 0

i.e.,

1

n

∑
j

g (xj, θ) +

(
1

n

∑
j

∂1′g (xj, θ) (∂1′g (xj, θ))
′

)
λ ≈ 0

or
Ê [g (x, θ)] +

(
Ê [H (x, θ)H ′ (x, θ)]

)
λ ≈ 0

where
H (x, θ) = ∂1′g (x, θ)
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and where the operator Ê denotes sample averages.
This implies that:

λ ≈ −
(

Ê [H (x, θ)H ′ (x, θ)]
)−1

Ê [g (x, θ)] (26)

Substituting (25) and (26) back into the objective function (1):

1

2n

∑
j

‖zj − xj‖2

≈ 1

2n

∑
j

‖xj +H ′ (xj, θ)λ− xj‖2

≈ 1

2n

∑
j

∥∥∥∥−H ′ (xj, θ)(Ê [H (x, θ)H ′ (x, θ)]
)−1

Ê [g (x, θ)]

∥∥∥∥2

=
1

2n

∑
j

Ê [g′ (x, θ)]
(

Ê [H (x, θ)H ′ (x, θ)]
)−1

H (xj, θ)H
′ (xj, θ)

(
Ê [H (x, θ)H ′ (x, θ)]

)−1

Ê [g (x, θ)]

=
1

2
Ê [g′ (x, θ)]

(
Ê [H (x, θ)H ′ (x, θ)]

)−1 (
Ê [H (x, θ)H ′ (x, θ)]

)(
Ê [H (x, θ)H ′ (x, θ)]

)−1

Ê [g (x, θ)]

=
1

2
Ê [g′ (x, θ)]

(
Ê [H (x, θ)H ′ (x, θ)]

)−1

Ê [g (x, θ)]

Therefore, for small errors the estimator is equivalent to minimizing:

Ê [g′ (x, θ)]
(

Ê [H (x, θ)H ′ (x, θ)]
)−1

Ê [g (x, θ)]

which is a GMM-like objective function but with a non-standard weighting matrix
(

Ê [H (x, θ)H ′ (x, θ)]
)−1

.

B.2 Constrained optimization

The first order conditions of the Lagrangian (9) with respect to zj is

(zj − xj)− ∂g′1 (zj, θ)λ− C ′γj = 0. (27)

Re-arranging and pre-multiplying both sides by the full column rank matrix C yields:

C (zj − xj)− CC ′γj = C∂g′1 (zj, θ)λ,

thus allowing us to solve for γj:

γj = − (CC ′)
−1
C∂g′1 (zj, θ)λ.

Upon substitution of γi into (27) and simple re-arrangements, we obtain

(zj − xj) =
(
I − C ′ (CC ′)−1

C
)
∂g′1 (zj, θ)λ

= PH (z, θ)λ

where P =
(
I − C ′ (CC ′)−1C

)
and H (z, θ) = ∂1′g (z, θ).
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B.3 Asymptotics

Proof of Theorem 3.9. We maximize 1
2

∑n
i=1 ||zi − xi||2 subject to

∑n
i=1 g(zi, θ) = 0.

First-order conditions read
zi − xi = ∂1g

′(zi; θ)λ (28)

n∑
i=1

g(zi; θ) = 0 (29)

It is first shown that there exists a sequence z∗i that matches the moment condition∑n
i=1 g(z∗i ; θ0) and converges uniformly to the xi’s, implying convergence of the zi’s by their

definition in the optimization problem.

We now discuss how to eliminate observations that are too close to a zero gradient.

For some η and δ let A be the set of all xi such that infy∈Bδ(xi) ‖∂1g(xi; θ0)‖ ≥ η. We
must have P[A] > 0 for some (η, δ) because otherwise {infy∈Bδ(xi) ‖∂1g(xi; θ0)‖ ≥ 1/n} has
probability 0 for all n, thus {infy∈Bδ(xi) ‖∂1g(xi; θ0)‖ > 0} has probability 0 for all δ by
continuity from below, contradicting assumption 3.6 with continuity of ∂1g.

We now consider such a pair (η, δ), fix the resulting set A, and let As be the observations
in sample that fall in it.

In order to get enough degrees of freedom to offset deviations of sample averages from 0,
we make group of observations. Let M ≡ dim(g(zi; θ0))/dim(zi), and assume for convenience
it is an integer that divides n− |Acs|3. Without loss, let the xi in Acs constitute the first |Acs|
observations and let z∗i = xi for all xi ∈ Acs. Then, for all k ∈ N (0 included) let mk ≡
{|Acs|+Mk, · · · , |Acs|+Mk+M − 1} and solve wpa1 for z∗i in

∑
i∈mk(g(z∗i ; θ0)− g(xi; θ)) =

−M n
|As|

1
n

∑n
i=1 g(xi; θ0). By the LLN 1

n

∑n
i=1 g(xi; θ0)→p 0 and |As|/n→p P[A] > 0 so that

a sequence z∗i with z∗i →p xi will exist by continuity.

We also get supi ‖z∗i − xi‖ →p 0 because supi ‖z∗i − xi‖ ≤
supi ‖g(z∗i ;θ)−g(xi;θ)‖

infy∈A ‖∂1g(y;θ)‖ ≤ ηop(1).

By definition of zi and the previous result, we have 1
n

∑n
i=1 ||zi − xi||2 ≤

1
n

∑n
i=1 ||z∗i −

xi||2 ≤ supi ||z∗i − xi||2 →p 0.

By properties of norms, Hölder continuity with exponent α ≤ 1, Cauchy-Schwartz, the
LLN, and the previous convergence result

3If not, it suffices to set the remaining (components of) z∗i to xi and re-scale appropriately in what follows.
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∥∥∥∥∥ 1

n

n∑
i=1

∂1g(zi; θ0)(zi − xi)

∥∥∥∥∥ ≤ 1

n

n∑
i=1

‖∂1g(zi; θ0)− ∂1g(xi; θ0)‖‖zi − xi‖

+
1

n

n∑
i=1

‖∂1g(xi; θ0)‖‖zi − xi‖

≤ C
1

n

n∑
i=1

‖zi − xi‖1+α

+

(
1

n

n∑
i=1

‖∂1g(xi; θ0)‖2

)1/2(
1

n

n∑
i=1

‖zi − xi‖2

)1/2

→p 0

Furthermore, proceeding component-wise with (k·) denoting the kth row of a matrix and
using assumption 3.7 together with previous results and proceeding as above for the term
1
n

∑n
i=1 ‖[∂1g(zi; θ0)]k·‖ ‖zi − xi‖α, we have

∥∥∥∥∥ 1

n

n∑
i=1

[∂1g(zi; θ0)]k·[∂1g(zi; θ0)]′j· −
1

n

n∑
i=1

[∂1g(xi; θ0)]k·[∂1g(xi; θ0)]′j·

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n

n∑
i=1

[∂1g(zi; θ0)]k·[∂1g(zi; θ0)]′j· − [∂1g(zi; θ0)]k·[∂1g(xi; θ0)]′j·

∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

[∂1g(zi; θ0)]k·[∂1g(xi; θ0)]′j· − [∂1g(xi; θ0)]k·[∂1g(xi; θ0)]′j·

∥∥∥∥∥
=

∥∥∥∥∥ 1

n

n∑
i=1

[∂1g(zi; θ0)]k·([∂1g(zi; θ0)]′j· − [∂1g(xi; θ0)]′j·

∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

([∂1g(zi; θ0)]k· − [∂1g(xi; θ0)]k·)[∂1g(xi; θ0)]′j·

∥∥∥∥∥
≤ C

1

n

n∑
i=1

‖[∂1g(zi; θ0)]k·‖ ‖zi − xi‖α

+ C

(
1

n

n∑
i=1

‖zi − xi‖2α

)1/2(
1

n

n∑
i=1

‖[∂1g(xi; θ0)]k·‖2

)1/2

→p 0 +
(
E[‖[∂1g(xi; θ0)]k·‖2]

)1/2
0 = 0

(30)

and thus
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‖λ‖ =

∥∥∥∥∥∥
(

1

n

n∑
i=1

∂1g(zi; θ0)∂1g(zi; θ0)

)−1
1

n

n∑
i=1

∂1g(zi; θ0)(zi − xi)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1

n

n∑
i=1

∂1g(zi; θ0)∂1g(zi; θ0)′

)−1
∥∥∥∥∥∥
∥∥∥∥∥ 1

n

n∑
i=1

∂1g(zi; θ0)(zi − xi)

∥∥∥∥∥
→p

∥∥∥(E[∂1g(xi; θ0)∂1g(xi; θ0)′])
−1
∥∥∥ 0 = 0

Now we derive a precise rate of convergence and the resulting asymptotic distribution for
λ.

Solving for zi in equation (28) yields zi(λ), which can be plugged in the second equation
to obtain

n∑
i=1

g(zi(λ); θ) = 0 (31)

By a Taylor expansion and assumption 3.8, we get

1

n

n∑
i=1

g(xi, θ) +
1

n

n∑
i=1

∂1g(xi; θ)∂1g
′(xi; θ)λ+O(||λ||2) = 0 (32)

Under assumptions 3.1, 3.3, and 3.5, 1√
n

∑n
i=1 g(xi; θ) converges in distribution to a nor-

mal random variables by the central limit theorem and thus the first term is Op(n
−1/2).

Under assumptions 3.1 and 3.6 1
n

∑n
i=1 ∂1g(xi; θ)∂1g(xi; θ)

′ →p E[∂1g(xi; θ)∂1g(xi; θ)
′] by

the LLN and thus the second term is O(λ). It follows that λ = Op(n
1/2) with an asymptot-

ically normal distribution.

Finally, we turn the situation where θ 6= θ0. By the uniform Law of Large Numbers,
using assumption 3.7, supθ∈Θ ‖ 1

n

∑n
i=1 g(xi; θ)− E[g(xi; θ)]‖ →p 0.

For any θ ∈ Bc
ε(θ0) we have by identification E[g(xi; θ)] ∈ Bc

γ(0) for some γ (otherwise,
we can find a sequence whose mapping converges to 0 and by compactness there would be a
convergent subsequence, implying existence of some θ∗ 6= θ0 that satisfies E[g(xi; θ

∗)] = 0).

With probability approaching one, we have by the mean value theorem and Cauchy-
Schwartz γ

2
≤ 1

n

∑n
i=1 ‖g(zi; θ)− g(xi; θ)‖ = 1

n

∑n
i=1 ‖g(zi; θ)(zi − xi)‖ ≤ ( 1

n

∑n
i=1 ‖g(zi; θ)‖2)1/2

( 1
n

∑n
i=1 ‖zi − xi‖

2)1/2. As a result, 1
n

∑n
i=1 ‖zi − xi‖

2 →p 0 (or a subsequence) would imply
1
n

∑n
i=1 ‖g(zi; θ)‖2 →p E[‖g(xi; θ)‖] as before and thus γ ≤ op(1), which is impossible. There-

fore,
∑n

i=1 ‖zi − xi‖2 > O(n) with probability approaching one, and the probability that θ̂
lives outside any neighborhood of θ0 decreases to 0.

Eventually, the first-order conditions read zi − xi = λ′∂1g(xi; θ0) + op(n
−1/2) and

1
n

∑n
i=1 g(zi; θ0) = 0 and the linearized version is asymptotically justified.
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Proof of Theorem 3.13. We have by the first-order conditions, previous convergence
results, assumption 3.11, and equation (32)

F ≡ 1

n

n∑
i=1

‖zi − xi‖2

= λ′
1

n

n∑
i=1

∂1g(zi; θ)∂1g(zi; θ)
′λ

= λ′
1

n

n∑
i=1

∂1g(xi; θ)∂1g(xi; θ)
′λ+ op(F )

=

( 1

n

n∑
i=1

∂1g(xi; θ)∂1g(xi; θ)
′

)−1
1

n

n∑
i=1

g(xi; θ)

′ 1

n

n∑
i=1

∂1g(xi; θ)∂1g(xi; θ)
′

( 1

n

n∑
i=1

∂1g(xi; θ)∂1g(xi; θ)
′

)−1
1

n

n∑
i=1

g(xi; θ)

+Op(‖λ‖3) +O(‖λ‖4) + op(F )

Ignoring lower order terms, we can eventually reframe the problem as minimizing stan-
dard GMM:∑n

i=1 g(xi; θ)
′(
∑n

i=1 ∂1g(xi; θ0)∂1g
′(xi, θ0))−1

∑n
i=1 g(xi; θ) to get the first-order conditions

n∑
i=1

∂2g(xi; θ)
′

(
n∑
i=1

∂1g(xi; θ0)∂1g
′(xi, θ0)

)−1 n∑
i=1

g(xi; θ) = 0 (33)

which are satisfied with probability approaching 1. By an expansion around θ0 we have

n∑
i=1

∂2g(xi; θ)
′

(
n∑
i=1

∂1g(xi; θ0)∂1g
′(xi, θ0)

)−1 n∑
i=1

[g(xi; θ0) + ∂2g(xi; θ)(θ − θ0)] = 0 (34)

so that the estimator takes the form

θ̂OTGMM − θ0 = −

 n∑
i=1

∂2g(xi; θ̂)
′

(
n∑
i=1

∂1g(xi; θ0)∂1g
′(xi, θ0)

)−1 n∑
i=1

∂2g(xi; θ)

−1

 n∑
i=1

∂2g(xi; θ̂)
′

(
n∑
i=1

∂1g(xi; θ0)∂1g
′(xi, θ0)

)−1 n∑
i=1

g(xi; θ0)


Noting that under assumptions 3.1, 3.3, and 3.5 1√

n

∑n
i=1 g(xi; θ) converges in distribution

to a normal random variables by the central limit theorem and that assumptions 3.10 and
3.12 together with consistency ensure convergence of sample averages to expectations, we
obtain the asymptotic normality of

√
n(θ̂OTGMM − θ0) by Slutsky with asymptotic variance

given in the theorem.
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Proof of Theorem 3.15. The first-order conditions with respect to the zj (Equation (5))
can be written as

xj = zj − ∂1g
′ (zj, θ)λ. (35)

Under our assumptions, Equation (35) defines a direct relationship between zj and xj,
and therefore an implicit reverse relationship between xj and zj. Since the latter may not
be unique, we observe that our original optimization problem seeks to minimize the distance
between xj and zj. Hence, in cases where (35) admits multiple solutions zj for a given xj,
we identify the unique4 solution that minimizes ‖zj − xj‖2. This is accomplished by defining
the mapping (12).

With this definition, the first order conditions (3) and (4) of the Lagrangian optimization
problem for θ and λ become, respectively,∑

i

∂2g
′ (q (xj, θ, λ) , θ)λ = 0∑

i

g (q (xj, θ, λ) , θ) = 0

This is a just-identified GMM estimator in terms of the modified moment function stated in
the Theorem.

Lemma B.1 Let h (·, ·, ·) be continuous in all of its arguments. Then, under Assumptions
3.18(i) and 3.19, h (q (x, θ, λ) , θ, λ) is continuous in (θ, λ).

Proof of Lemma B.1. Since h (z, θ, λ) is assumed to be continuous in all of its arguments,
there only remains to show that q (x, θ, λ) is continuous in (θ, λ). In fact, we can establish
the stronger statement that q (x, θ, λ) is differentiable in (θ, λ). Differentiability in θ can be
shown by the implicit function theorem

∂2′q (x, θ, λ) =

[(
∂

∂z′
(z − ∂1 (λ′g (z, θ)))

)−1
∂

∂θ′
∂1 (z − λ′g (z, θ))

]
z=q(x,θ,λ)

=
[
(I − ∂11′ (λ

′g (z, θ)))
−1
∂12′ (λ

′g (z, θ))
]
z=q(x,θ,λ)

since q (x, θ, λ) is the inverse of the mapping z 7→ z − ∂1 (λ′g (z, θ)). By the definition of λ̄,
ν̄, ∥∥∥(I − ∂11′ (λ

′g (z, θ)))
−1
∂12′ (λ

′g (z, θ))
∥∥∥ ≤ (1− λ̄ν̄)−1 ‖∂12′ (λ

′g (z, θ))‖ ,

at z = q (x, θ, λ), where λ̄ν̄ < 1 by Assumption 3.19 and where ∂12′ (λ
′g (z, θ)) exists by

Assumption 3.18. Thus h (q (x, θ, λ) , θ, λ) is continuous in θ.

4Having two solutions to the first order conditions that happen to have the same distance ‖zj − xj‖ is an
event of probability zero that can be safely neglected.
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By a similar reasoning, we can show that h (q (x, θ, λ) , θ, λ) is continuous in λ if we can
show that ∂3′q (x, θ, λ) exists:

‖∂3′q (x, θ, λ)‖ =

∥∥∥∥∥∥
[(

∂

∂z′
(z − ∂1 (λ′g (z, θ)))

)−1
∂

∂λ′
(∂1g

′ (z, θ)λ)

]
z=q(x,θ,λ)

∥∥∥∥∥∥
≤

(
1− λ̄ν̄

)−1
∥∥∥[∂1g

′ (z, θ)]z=q(x,θ,λ)

∥∥∥
where λ̄ν̄ < 1 by Assumption 3.19 and where ∂1g

′ (z, θ) exists by Assumption 3.18.

Lemma B.2 Under Assumptions 3.16 and 3.19, if h ∈ L, then

E

[
sup

(θ,λ)∈Θ×Λ

‖h (q (x, θ, λ) , θ)‖

]
<∞

for q (x, θ, λ) defined in Theorem 3.15.

Proof of Lemma B.2. By the triangle inequality and Definition 3.20, there exists h̄ (x, θ)
such that:

‖h (z, θ)‖ ≤ ‖h (x, θ)‖+ ‖h (z, θ)− h (x, θ)‖
= ‖h (x, θ)‖+ h̄ (x, θ) ‖z − x‖ , (36)

for z = q (x, θ, λ). Next, using the first order conditions (Equation (5)), we have, by a mean
value argument, the triangle inequality and the definitions of λ̄ and ν̄ from Assumption 3.19,

‖z − x‖ = ‖∂1 (λ′g (z, θ))‖
≤ ‖∂1 (λ′g (x, θ))‖+ ‖∂11′ (λ

′g (x̃, θ)) (z − x)‖ for some mean value x̃

≤ λ̄ ‖∂1′g (x, θ)‖+ λ̄ν̄ ‖z − x‖ . (37)

Re-arranging and using the fact that λ̄ν̄ < 1 by Assumption 3.19 and λ̄ <∞ by compactness
of Λ,

‖z − x‖ ≤ λ̄ ‖∂1′g (x, θ)‖(
1− λ̄ν̄

) . (38)

Combining (36) and (38) and noting that applying the E [supθ∈Θ . . .] operator does not alter
the inequalities, we have

E

[
sup
θ∈Θ
‖h (z, θ)‖

]
≤ E

[
sup
θ∈Θ
‖h (x, θ)‖

]
+

λ̄(
1− λ̄ν̄

)E

[
sup
θ∈Θ

h̄ (x, θ) ‖∂1′g (x, θ)‖
]

where the right-hand side quantities are finite by construction since h ∈ L.

Proof of Theorem 3.22. Assumptions 3.1-3.17 directly imply consistency of our GMM
estimator, by Theorem 2.6 in Newey and McFadden (1994). There remains to show that
Assumption 3.17 is implied by Assumptions 3.18,3.19,3.21.
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We first establish Assumption 3.17 (i): Continuity of g̃ (x, θ, λ) in (θ, λ). To show that
g (q (x, θ, λ) , θ) is continuous in (θ, λ), we can invoke Lemma B.1 for h (z, θ, λ) = g (z, θ),
under Assumptions 3.18(i) and 3.19. To show that ∂2g

′ (q (x, θ, λ) , θ)λ is continuous in
(θ, λ), we can similarly invoke Lemma B.1 for h (z, θ, λ) = ∂2g

′ (z, θ)λ, where ∂2g
′ (z, θ) is

continuous in both arguments by Assumption 3.18(ii).
We now establish Assumption 3.17 (ii): E

[
sup(θ,λ)∈Θ×Λ ‖g̃ (x, θ, λ)‖

]
<∞. Since g (·, ·) ∈

L by Assumption 3.21, it follows that E
[
sup(θ,λ)∈Θ×Λ ‖g (q (x, θ, λ) , θ)‖

]
< ∞, by Lemma

B.2. Next, we have, for (θ, λ) ∈ Θ×Λ, ‖∂2g
′ (q (x, θ, λ) , θ) λ‖ ≤ ‖∂2g

′ (q (x, θ, λ) , θ)‖ ‖λ‖ ≤
‖∂2g

′ (q (x, θ, λ) , θ)‖ λ̄ by Assumption 3.19 and compactness of Λ. By Assumption 3.21 and
Lemma B.2 we then also have that E

[
sup(θ,λ)∈Θ×Λ ‖∂2g

′ (q (x, θ, λ) , θ) λ‖
]
<∞.

Proof of Theorem 3.27. Theorem 3.22 implies consistency (θ, λ)
p−→ (θ0, λ0). This, in

addition to Assumptions 3.23, 3.24 and 3.25 directly implies the stated asymptotic normality
result, by Theorem 3.2 and Lemma 2.4 in Newey and McFadden (1994) and the Lindeberg-
Levy Central Limit Theorem. There remains to show that Assumption 3.25 is implied by
Assumption 3.26.

By Lemma B.1, Assumptions 3.26(i) and (iii) imply that both g (q (x, θ, λ) , λ) and
∂2g

′ (q (x, θ, λ) , λ)λ are continuously differentiable in (θ, λ), thus establishing Assumption
3.25(i).

By Lemma B.2, Assumptions 3.16, 3.26(ii) and (iii) imply Assumption 3.25(ii).
The asymptotic variance of the just-identified GMM estimator defined in Theorem 3.15

is then given by
(
G̃′Ω−1G̃

)−1

where

Ω = E [g̃ (xj, θ, λ) g̃′ (xj, θ, λ)]

G̃ = E [∂2′ g̃ (xj, θ, λ)] = E
[
∂2′ g̃ (xj, θ, λ) ∂3′ g̃ (xj, θ, λ)

]
≡
[
G̃θθ G̃θλ

G̃λθ G̃λλ

]
. (39)

where

G̃θθ = E [∂22′ (λ
′g (q (x, θ, λ) , θ)) + ∂21′ (λ

′g (q (x, θ, λ) , θ)) ∂2′q (x, θ, λ)]

G̃λθ = E [∂2′g (q (x, θ, λ) , θ) + ∂1′g (q (x, θ, λ) , θ) ∂2′q (x, θ, λ)]

G̃θλ = E [∂2 (g′ (q (x, θ, λ) , θ)) + ∂21′ (λ
′g (q (x, θ, λ) , θ)) ∂3′q (x, θ, λ)]

G̃λλ = E [∂1′g (q (x, θ, λ) , θ) ∂3′q (x, θ, λ)]

where expressions of the form ∂ij′ (λ
′g (q (x, θ, λ) , θ)) represent partial second derivatives of

the scalar-valued function λ′g (z, θ) with respect to its ith and jth argument evaluated at
z = q (x, θ, λ).

Finally, the explicit expressions for the derivatives of the function z = q (x, θ, λ) follow
from the implicit function theorem after noting that q (x, θ, λ) is the inverse of the mapping
z 7→ z−∂1 (λ′g (z, θ)). This can also be shown through an explicit calculation: To first order,
(35) implies, for a small change ∆θ in θ, a corresponding change ∆z in z while keeping x
and λ fixed, that:

0 = ∆z − ∂11′ (λ
′g (z, θ)) ∆z − ∂12′ (λ

′g (z, θ)) ∆θ.
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Thus,
∆z = (I − ∂11′ (λ

′g (z, θ)))
−1
∂12′ (λ

′g (z, θ)) ∆θ

and we have:
∂2′q (x, θ, λ) = (I − ∂11′ (λ

′g (z, θ)))
−1
∂12′ (λ

′g (z, θ)) (40)

evaluated at z = q (x, θ, λ). A similar reasoning for λ and exploiting the fact that ∂2(λ′g(z,θ))
∂z∂λ′

=
∂g′(z,θ)
∂z

, yields:

∂3′q (x, θ, λ) = (I − ∂11′ (λ
′g (z, θ)))

−1
∂1g

′ (z, θ) . (41)

Collecting (40), (41) (39) and its subblocks yields the expressions for G̃ in the statement of
the theorem.
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