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Abstract

Shape restrictions have played a central role in economics as both testable impli-
cations of theory and sufficient conditions for obtaining informative counterfactual
predictions. In this paper we provide a general procedure for inference under shape
restrictions in identified and partially identified models defined by conditional mo-
ment restrictions. Our test statistics and proposed inference methods are based
on the minimum of the generalized method of moments (GMM) objective function
with and without shape restrictions. Uniformly valid critical values are obtained
through a bootstrap procedure that approximates a subset of the true local param-
eter space. In an empirical analysis of the effect of childbearing on female labor
supply, we show that employing shape restrictions in linear instrumental variables
(IV) models can lead to shorter confidence regions for both local and average treat-
ment effects. Other applications we discuss include inference for the variability of
quantile IV treatment effects and for bounds on average equivalent variation in a de-
mand model with general heterogeneity. We find in Monte Carlo examples that the
critical values are conservatively accurate and that tests about objects of interest

have good power relative to unrestricted GMM.
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1 Introduction

Shape restrictions have played a central role in economics as both testable implications of
classical theory and sufficient conditions for obtaining informative counterfactual predic-
tions (Topkis, 1998). A long tradition in applied and theoretical econometrics has as a re-
sult studied shape restrictions, their ability to aid in identification, estimation, and infer-
ence, and the possibility of testing for their validity (Matzkin, 1994; Chetverikov et al.,
2018). A canonical example of this interplay between theory and practice is con-
sumer demand analysis, where theoretical predictions such as Slutsky conditions have
been extensively tested for and employed in estimation (Hausman and Newey, 1995,
2016; Blundell et al., 2012; Dette et al., 2016). The empirical analysis of shape re-
strictions, however, goes well beyond this important application with recent examples
including studies into the monotonicity of the state price density (Jackwerth, 2000;
Ait-Sahalia and Duarte, 2003), the presence of ramp-up and start-up costs (Wolak,
2007; Reguant, 2014), and the existence of complementarities in demand (Gentzkow,
2007) and organizational design (Athey and Stern, 1998; Kretschmer et al., 2012).

Shape restrictions are often equivalent to inequality restrictions on parameters of in-
terest and on certain unknown functions. For example, Slutsky negative semi-definiteness
and monotonicity require that certain functions satisfy inequality restrictions. Infer-
ence with inequality restrictions is difficult. Such restrictions lead to discontinuities in
(pointwise) limiting distributions where the inequality restrictions are “close” to binding,
which makes inference challenging due to non-pivotal and potentially unreliable point-
wise asymptotic approximations (Andrews, 2000, 2001). Limit discontinuities further

make it difficult to construct confidence intervals with uniform coverage.

We address these challenges by obtaining critical values through a bootstrap proce-
dure that uniformly approximates a subset of the local parameter space. The proposed
critical values simultaneously deliver uniformly valid inference and pointwise limiting
rejection probabilities that equal the nominal level of the test in many applications.
Our results apply to a class of conditional moment restriction models (Ai and Chen,
2007, 2012) that encompasses parametric (Hansen, 1982), semiparametric (Ai and Chen,
2003), and nonparametric (Newey and Powell, 2003) instrumental variable (IV) models,
as well as panel data applications (Chamberlain, 1992), and the study of plug-in func-
tionals. For parametric IV our results deliver novel uniformly valid tests of inequality
and equality restrictions as well as confidence intervals for parameters of interest in the

presence of inequality restrictions in both identified and partially identified models.

Our test statistics and proposed inference methods are based on the difference of
the minimum of a generalized method of moments (GMM) objective function with and
without inequality restrictions. The value of the test statistic increases when more

binding constraints are imposed. To ensure uniform validity, critical values are obtained



through a bootstrap procedure that acknowledges that some inequalities that do not
bind in the sample could have bound under a different draw of the sample. Intuitively,
in the bootstrap, we impose the inequalities that are within a region of the boundary
that shrinks slightly slower than the convergence rate of the shape restricted estimator.
The bootstrap procedure can further be set to ignore inequalities that are outside this
shrinking region, leading to pointwise rejection probabilities that equal the nominal level
in many applications. As always, uniformity is essential for confidence intervals to be
asymptotically valid over a set of unknown parameter values. The resulting inference is
powerful in exploiting the large amount of information that inequality restrictions can

provide in many cases relevant for applications.

Our tests and confidence intervals remain valid under partial identification. In this
setting, the tests and confidence intervals give an accurate and computationally feasible
method of doing inference for a subvector of parameters under partial identification.
Indeed, these methods have already been used by Torgovitsky (2019) to construct infor-
mative confidence intervals for various partially identified state dependence parameters
in the presence of unobserved heterogeneity. Also, Kline and Walters (2021) used these
methods to test shape constraints implied by a model of callback probabilities for em-
ployment applications. By incorporating nuisance parameters into the definition of the
parameter space, our results can further be applied to partially identified semi(non)-

parametric models defined by conditional moment inequalities.

We demonstrate the usefulness of this approach in an empirical application. Specif-
ically, we conduct inference on the causal effect of childbearing on female labor force
participation by relying on the instrumental variables approach of Angrist and Evans
(1998). We find that monotonicity of the local average treatment effect (LATE) in ed-
ucation is not rejected by the data and neither is monotonicity and negativity — these
restrictions were discussed, but not formally tested, by Angrist and Evans (1998). We
further find that imposing these shape restrictions yields narrower confidence intervals
for the LATE at different schooling levels. Finally, we obtain similar results for the
partially identified average treatment effect (ATE), though the data is less informative

about the ATE because of the low proportion of compliers.

The inequalities associated with nonparametric shape restrictions necessitate con-
sideration of parameter spaces that are sufficiently general yet endowed with enough
structure to ensure a fruitful asymptotic analysis. An important theoretical insight of
this paper is that this simultaneous flexibility and structure is possessed by sets defined
by inequality restrictions on Abstract M (AM) spaces; i.e. Banach lattices whose norm
obeys a condition discussed in Section 3. We also introduce potentially regularized ap-
proximations to the local parameter spaces in order to account for the curvature present
in nonlinear constraints. While aspects of our analysis are specific to models defined by

conditional moment restrictions, the role of the local parameter space is solely dictated



by the shape restrictions. As such, we expect the insights of the set up here to be appli-
cable to the study of shape restrictions in alternative models as well. The critical values
are shown to be uniformly asymptotically valid by developing strong approximations to
both the test and bootstrap statistics. Sufficient conditions are provided by adapting
the coupling of Koltchinskii (1994). Our coupling arguments and the use of AM spaces
are key features of the theory that enable us to show that inference is uniformly valid

and that partial identification is permitted.

We illustrate the general applicability of our analysis by obtaining novel uniformly
valid inference results in a variety of problems. Specifically, we: (i) Conduct inference
about partially identified sets of average equivalent variation and other objects of interest
in demand estimation with general heterogeneity and smooth demand functions; (ii)
Test and impose shape restrictions on structural functions identified through quantile
conditional moment restrictions; and (iii) Impose the Slutsky restrictions to conduct
inference in a linear conditional moment restriction model. Additionally, while we do
not pursue further examples in detail for conciseness, we note our results may be applied

to conduct tests of homogeneity, supermodularity, and economies of scale or scope.

In a small Monte Carlo study, we examine instrumental variables estimation of a
nonlinear structural function and consider the power of imposing monotonicity and/or
convexity on the structural function. We find rejection frequencies for our test that are
conservatively accurate when testing a point null hypothesis about the value or derivative
of the structural function. In addition, we find that imposing shape restrictions leads to
large increases in power relative to employing an unrestricted estimator, in moderately
large samples. Our Monte Carlo analysis further examines the performance of our test
in a partially identified parametric IV model with discrete data. In that context, we
find that shape restrictions have substantial identifying power and that our test provides
valid inference on the value of a function at a point. A similar partially identified IV
setting was previously studied by Freyberger and Horowitz (2015), who also provide an
inference procedure. However, their procedure is based on limiting distributions that

are discontinuous in true parameters leading to nonuniform inference.

Our paper contributes to an extensive literature studying semiparametric and non-
parametric models under partial identification (Manski, 2003; Molinari, 2020). When
specialized to finite dimensional models, our results enable us to conduct inference on
functionals of the identified set in models defined by moment (in)equalities (Canay and Shaikh,
2017; Ho and Rosen, 2017). In that context, our results are complementary to those of
Bugni et al. (2017) and Kaido et al. (2019), who provide uniformly valid procedures for
subvector inference. Their analysis is focused on convex models and can thus be in-
valid or conservative when conducting inference on nonlinear functionals or imposing
non-convex restrictions — we emphasize, however, that their analysis is also motivated

by a different set of models than the ones we consider. Our analysis is further related



to Hong (2017), Santos (2012), Tao (2014), and Chen et al. (2011) who study inference
on functionals of potentially partially identified structural functions, but do not allow

for shape constraints as we do.

Following the original version of this paper, Zhu (2019) and Fang and Seo (2019)
have proposed inference methods for convex restrictions which, while applicable to an
important class of problems, rule out inference on nonlinear functionals or tests of cer-
tain shape restrictions. Also related is Freyberger and Reeves (2018) who have more
recently developed uniform inference for functionals under shape restrictions while im-
posing point identification. Our paper is of course related to a large literature on shape
restrictions; see Samworth and Sen (2018) and Chetverikov et al. (2018) for recent re-
views. We highlight here an important literature on linear Gaussian models focused on
adaptivity (which we do not establish), but not applicable to many of the models that
motivate us (Dumbgen and Spokoiny, 2001; Cai et al., 2013; Armstrong, 2015).

The results here are also highly complementary to Chetverikov and Wilhelm (2017)
in providing inference for nonparametric IV under shape restrictions while they showed
that imposing monotonicity can greatly improve the convergence rate of the estimator
— an observation that additionally motivates our use of test statistics based on shape
constrained (instead of unconstrained) estimators. Finally, we note that our results do
not lend themselves computationally for the construction of uniform confidence bands
for shape restricted functions — a problem that has been addressed in different contexts
by Chernozhukov et al. (2009) and Horowitz and Lee (2017).

The remainder of the paper is organized as follows. In Section 2 we show how to
implement our tests in a linear instrumental variables model with inequality restrictions
under both point and partial identification. Section 2 further illustrates our results by
revisiting the analysis of Angrist and Evans (1998). Section 3 contains our main the-
oretical results, while Section 4 applies them to conduct inference in the heterogenous
demand model of Hausman and Newey (2016). Finally, Section 5 contains a brief sim-
ulation study. All mathematical derivations are included in a series of appendices; see
in particular Appendix A.2 for applications of our general results and Appendix S.6 for
coupling results based on Koltchinskii (1994).

2 Application for Linear Instrumental Variables

To fix ideas, we first describe our test in a linear instrumental variables model and
illustrate its implementation by revisiting the analysis of Angrist and Evans (1998). We

reserve until later the full mathematical framework and focus here on implementation.



2.1 Linear Instrumental Variables

As perhaps the simplest possible example, we first consider a linear instrumental variable
model in which 8 € © C R% is identified through the moment conditions

Ep|(Y —W'0)Z] =0,

where Y is a scalar, W and Z are vectors, and P denotes the distribution of V =

(Y, W, Z). We are interested in testing whether 6y belongs to a set R characterized by
R={0cR¥:F9=f GO<yg}, (1)

for known matrices F' and G and known vectors f and g.

We consider tests based on minimizing the norm of the weighted sample moments
as in Sargan (1958) and Hansen (1982). To this end, we define the criterion

Qn(®) = 50 S (% = WO Z} . &)
i=1

where || - |2 is the standard Euclidean norm and ,, is consistent for (E[ZZ'U?])~/? for

U=Y — W#y. Our analysis then enables us to employ tests based on the statistics

I(R) = min +/nQpn(0) I,,(©) = min vnQn(0); 3)

0cONR 0O

e.g., we may consider a test that rejects for large values of I,(R) — I,(©). In what
follows it will also be helpful to let 6,, and éz denote the minimizers of @, over © N R

and © respectively — i.e. 6, and 633 are the constrained and unconstrained estimators.

We construct critical values by relying on the multiplier bootstrap (Ledoux and Talagrand,
1988). Specifically, let b € {1,..., B} index a bootstrap draw, {w?}? ; be i.i.d. indepen-
dent of the data with w? ~ N(0,1), and for any § € R% define
1 « 1 —
b — b
Wa0) = = ;wi{<m —Wi0)Zi — — > (Y; = Wi0)Z;},

Jj=1

which is a simulated draw of the true (centered) moment functions.! We also require an

estimator of the derivative of the moment conditions, and to this end we set

. 1 &
Dy [h) = —— > ZiWih.
=1

"We follow previous work (Lewbel, 1995; Hansen, 1996) in considering Gaussian weights {w;}7,
because it simplifies the proofs of our main results in Section 3. We expect our analysis extends to alter-
native specifications for the distribution of {w;}j—; — e.g., for w; following an exponential distribution,
which results in a version of the Bayesian bootstrap advocated by Chamberlain and Imbens (2003).



Here, we can think of h as a local parameter, representing the possible values that the

random variable /n{f, — 6y} may take (recall 6, is the minimizer of Q,, over © N R).

Finally, we need to enforce the inequality constraints in the bootstrap in a way that
delivers a uniformly valid critical value. To this end, we account for the variation in
Gjén — g; for each j, where G is the 4t row of G and g; the 4t coordinate of g. That
is, we account for the likelihood that a constraint will bind at the restricted estimator

0,, when computing I,(R) = \/ﬁQn(én) For this purpose we introduce the set
V0, R) = {h € R% : Fh =0, G;h < /nmax{0, —(r, + G;6,, — g;)} for all j}, (4)

where 7, > 0 is a slackness parameter whose choice we discuss shortly. The set Vn(én, R)
can be thought of as a local version of R, approximating the set of values h that could
equal \/n{, — 6y}. Our bootstrap approximations to I,,(R) and I,,(©) are then

UN(R)=  min |3, {W5(0,) + Dy [hl}2 (5)
heVn(0n,R)

U(©) = min [|S,{W5(05) + Dp[hl} 2. (6)
heR%

Thus, we may obtain a level «a test by rejecting whenever the test statistic I,,(R) —
I1,(©) exceeds the 1 — o quantile of UP(R) — U%(©) across the B bootstrap draws. The
main assumption required for the test to be asymptotically valid is that 6y be strongly

identified — i.e. 6y can be consistently estimated uniformly in P.

The critical value depends on the choice of r,,. When applied to linear instrumental
variables, our asymptotic theory requires that r, tend to zero slower than the conver-
gence rate of the restricted estimator, which is 1/y/n. Heuristically, when r,, tends to
zero any constraint that is not binding at 6y will also not be binding in the bootstrap
with probability approaching one (under pointwise in P asymptotics). Consequently
inference is not asymptotically conservative for a fixed data generating process. Setting
rn — 0 while satisfying r,\/n — oo leads to uniformly valid inference with constraints
only being conservatively enforced when they are within order 1/y/n of binding at 6.
Setting r, = +oo is always theoretically valid, but it may be conservative and result in
a loss of power. Other, smaller choices of r,, can lead to smaller, valid critical values and

so may result in more powerful tests and tighter confidence intervals than r,, = 4o00.

Intuitively, r, is meant to quantify the sampling uncertainty in G{én — 6g}. Since
the distribution of §, cannot be uniformly consistently estimated, we suggest linking
rn, to the degree of sampling uncertainty in G{éz — 0y} instead. Specifically, for ég* a

“bootstrap” analogue of 633 and some vy, — 0, we recommend setting r,, to satisfy

P(max G {02 — 62} < rp|Data) = 1 — . (7)
J



This approach changes the problem of selecting r, into the problem of selecting ~,.
However, ~, is more interpretable: If we employed Vn(éﬁ,R) in place of Vn(én,R) in
(5), then a Bonferroni bound implies that the test that rejects whenever I,,(R) — I,,(©)
exceeds the 1—a quantile of U?(R)—U?%(©) has asymptotic size at most v+, even if 7,
is fixed with n.? In particular, if we employed the 1 — a -+, quantile of U(R) — U%(©)
as a critical value instead, then the resulting test would have asymptotic size at most
a (even if ~, is fixed). In simulations, however, we find the described bound to be
pessimistic in that, when setting r,, according to (7), our test has a rejection probability

under the null hypothesis of at most « for a wide range of choices of ~,,.

Remark 2.1. Our results may be employed to obtain confidence regions for a coordinate
of fy while imposing restrictions of the form Gy < g on 6y (e.g., sign or monotonicity

restrictions on w — w'6y). For example, for ) the k" coordinate of § € R% let

Ry={0ecR¥% :0, =\ GO<g},

which is a special case of (1). We may then obtain a confidence region for the k"

coordinate of 0y by conducting test inversion in A employing the test based on I,,(R)) —

I,,(©); see also Remark 3.1 for alternative constructions based on our analysis. B

Remark 2.2. In certain applications it may be desirable to studentize the constraints in
our bootstrap approximation — i.e. replace G; and g; by G;/6; and g;/6; everywhere in
(4) (and in (7) if employed). In the empirical analysis below we proceed in this manner

} . ~92 . } . . A
by setting 65 to be an estimate of the asymptotic variance of VnGi{0} —6}. m

2.1.1 Fertility and Labor Supply: LATE

We illustrate the preceding discussion by revisiting the study by Angrist and Evans
(1998) on the causal effect of childbearing on female labor force participation. Like
Angrist and Evans (1998), we employ the 1980 Census Public Use Micro Sample re-
stricted to mothers aged 21-35 with at least two children, and set: (i) D € {0,1} to
indicate whether a mother has more than two children (the treatment); (ii) Y € {0,1}
to indicate whether a mother is employed (the outcome of interest); and (iii) Z € {0,1}
to indicate whether the first two children are of the same sex (the instrument). We
further adopt the heterogeneous treatment effects model of Imbens and Angrist (1994)
and let Yy denote the potential outcome under treatment status d € {0,1} and employ

“C,” “NT,” and “AT” to denote compliers, never takers, and always takers.

Angrist and Evans (1998) document that the impact of childbearing on labor force

participation depends on observable characteristics. In particular, their two stage least

2Whjle we may replace Vn(ém R) with Vn(é,““ R) in identified models, in partially identified models we
employ V, (0, R) due to the identified set potentially not being a subset of R under the null hypothesis.
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Figure 1: First Panel: Unconstrained and shape restricted LATE estimates (imposing
monotonicty or monotonicity and negativity yield the same estimates). Second and
Third Panels: 95% Confidence intervals for LATE at different education levels.

squares (2SLS) estimates suggest a negative impact of childbearing on labor force par-
ticipation across different levels of schooling, but that the magnitude of the impact
decreases with schooling — a phenomenon that may reflect that more educated moth-
ers have a stronger attachment to the labor force. To formally examine this claim, we
introduce dummy variables S for each year of schooling between 9 and 16 and for the

categories “less than 9” and “more than 16.” Defining the local average treatment effects
LATE(S) = E[Yl — Y()’S, C]

we then test whether: (i) LATE(:) is increasing in schooling, and (ii) LATE(-) is in-
creasing in schooling and nonpositive. Both hypotheses fall within the framework of the
preceding section because LATE(+) is identified through linear moment restrictions and

the hypothesized restrictions are linear in LATE(+). Employing five thousand bootstrap



replications and setting r,, = +00 or 7, as suggested in (7) with 7, = 0.05 yields in this
case equal p-values that fail to reject either null hypothesis. The p-values for LATE(-)

being nondecreasing is 0.21 and for it being nondecreasing and nonpositive is 0.394.

In Figure 1 we study the values of LATE(S) at different schooling levels S. The
first panel displays the unconstrained 2SLS estimates and their monotonicity restricted
counterparts — the latter are negative and hence additionally demanding nonpositivity
does not change the estimates. Unfortunately, two sided confidence regions based on
the (pointwise in P) asymptotic distribution of the shape-restricted 2SLS estimator can
asymptotically undercover the true parameter. In the second panel of Figure 1 we instead
proceed as in Remark 2.1 to obtain 95% confidence intervals while imposing monotonic-
ity and again selecting r, by setting 7, = 0.05 in (7). Employing the monotonicity
restriction in this manner yields confidence intervals that are sometimes substantially
shorter than their 2SLS counterparts. Notably, we observe lower upper ends for the
restricted confidence intervals at the lower education levels and higher lower ends at
higher education levels. As shown in the third panel of Figure 1, additionally imposing
that LATE(-) be nonpositive mostly reduces the upper bound of our confidence intervals

at higher education levels.

2.2 Partial Identification

We next illustrate the implementation of our results in a partially identified setting.
With an eye towards extending the preceding empirical analysis to study average treat-

ment effects (ATEs), we maintain that the parameter of interest fy € © C R% satisfies
Epl(Y = W'80)2] =0, ®)

but no longer assume 6y is identified by (8). Instead, we define the identified set
©={0e€0:Ep[(Y -W')Z] =0} 9)

and consider the problem of testing whether the intersection of ©g and R is nonempty
(i.e. ©®9 N R # (). Such hypotheses can be employed, for instance, to build confidence

regions for functionals of the identified set; see Remark 2.3 below. We also now set
R={0cR% :Yp(0) =0, GO < g}, (10)

for Tp a known possibly nonlinear function — e.g., Yp(0) = F — f recovers (1).

We continue to rely on the statistics I,(R) and I,,(©) (as in (3)) for inference.
However, since in many settings in which 6y fails to be identified by (8) we will have

that the dimension of Z is smaller than that of W, in what follows we assume for ease



of exposition that I,,(©) = 0 (almost surely); see Section 3.2.2 for a general discussion.
Another distinction relative to Section 2.1 is that the choice of ¥, (as in (2)) may need
to be modified in settings in which U =Y — W', cannot be consistently estimated due

to 6y being partially identified. In such instances we may, for example, set
n
S = (3 22U = WD),
n — 1 7'n

where we now interpret HAE as the minimum norm minimizer of @, over ©. While the
choice of 3, has an impact on how local power is directed, we note that the test has

correct asymptotic size provided ) converges in probability to a non-stochastic limit.

Our bootstrap procedure requires two modifications relative to our preceding dis-

cussion. First, because in (10) we consider nonlinear equality constraints, we now set

. h

Vo(0,R)={h e R% : Yp(0+ %) =0, Gjh < vnmax{0, —(r, + G;0 — g;)} for all j}
(notice that if Yp(#) = FO — f, then we recover (4)). A distinction with Section 2.1
is that if one aims to employ (7) to select r,, then an alternative to an unrestricted
estimator éz may be necessary; see Section 2.2.1 for an example. Second, our bootstrap

approximation employs an estimator (:)f1 for ©®g N R. To this end, we set

O, ={0€ONR:Qu(0) < inf Qu(0)+ 7}
where 7, > 0 is a bandwidth whose choice we discuss shortly — i.e. (:)fl is the set of

“near” minimizers of @, over © N R. Our bootstrap approximation to I,,(R) then equals

Up(R) = min  min |8, {W;,(6) + Dy [h]}]|2.
0e6r heVn (6,R)
Thus, to obtain a level « test we reject the null hypothesis whenever I,,(R) exceeds the
1 — a quantile of ﬁg(R) across bootstrap draws. Paralleling Section 2.1, a principal

assumption for the test to be asymptotically valid is that ©¢ be strongly identified.

When specialized to the current setting, our asymptotic theory requires that 7,, tend
to zero. It is theoretically valid to set 7, = 0, which simplifies the computation of our
bootstrap statistic — e.g., let @; = {én} for any 6, minimizing @, over © N R to recover
(5). However, setting 7, = 0 can result in lower power in applications for which the
corresponding @; is not consistent for ©p N R (in the Hausdorff metric) — to ensure
consistency, 7, must in addition satisfy 7,v/n — oo. For applications in which it is

desirable to set 7, > 0, we propose a procedure inspired by Romano and Shaikh (2010).

10



Specifically, for any set K C © N R we define the quantile ¢, (K) according to
P(;‘l[lz Hi}nwn(‘g)”Z < gn(K)[Data) =1 -,
€

where 7, € (0,1). Letting S; = © N R, we then inductively define S;1; ={# € ©NR:
VnQn(0) < ¢,(S;)} noting that by construction S;41 € Sj. To select 7,, we proceed
inductively until we find S; = (), in which case we set 7, = 0, or Sj11 = S; # 0, in
which case we set 7, = §,(5;). Heuristically, under such a choice of 7,,, the set (:); may
be interpreted as a 1 — -, confidence region for ©g N R. While power considerations
suggest setting v, to tend to zero, for practical considerations we suggest simply setting

1 — 7, to be a high quantile fixed with n (e.g., 1 — v, = 0.8).

Remark 2.3. The introduced test can be employed to obtain confidence regions for
functionals of the identified set satisfying the coverage requirement advocated by Imbens and Manski

(2004). Specifically, given a functional Y : © — R we may set
Ry={0cR% :YTp(0) =)\G0 < g}

and obtain the desired confidence region by conducting test inversion in A of the null

hypothesis that the set ©g N Ry is not empty. m

2.2.1 Fertility and Labor Supply: ATE

Returning to our analysis of the causal impact of fertility on female labor force partic-
ipation, we next turn to estimating the average treatment effect at different education
levels S (denoted ATE(S)). Following the literature, we decompose ATE(S) into

LATE(S)P(C|S) + E[Y1 — Yy|S,AT|P(AT|S) + E[Y1 — Yu|NT, S]P(NT|S), (11)

bY A4

where recall C, AT, and NT denote “compliers,
With the exception of E[Yy|AT,S] and E[Y1|NT,S], all terms in (11) can be identified

through linear moment restrictions.” Because S has ten support points, we obtain sixty

always takers,” and “never takers.”

moments and eighty parameters so that I,,(©) = 0 almost surely.

Following our analysis of LATE(S) we conduct inference on ATE(S) under three
increasingly stringent set of (linear) restrictions: (i) The logical bounds implied by
Yy € {0,1}; (ii) Adding to (i) that the average treatment effect be increasing in schooling
among all types (i.e. C, NT, and AT); (iii) Adding to (ii) that average treatment effects

be nonpositive for all levels of education and types. Figure 2 reports the resulting

3Technically, the moment equations have the structure Ep[(Y, — W,00)Z,] = 0 with the instruments
Z, not being common across all 1 < 3 < J equations. The bootstrap implementation in this case,
formally studied in Section 3, is identical with only W,, and D,, being modified in the natural way.
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Figure 2: 95% Confidence intervals for ATE at different education levels. “Unr.” uses
bounds implied by Y; € {0,1}; “Mon. Restr.” adds that average treatment effects be
increasing in education for all types; “Mon.+Neg. Restr.” also requires they be negative.

95% confidence regions obtained through the approach described in Remark 2.3 — here,
the restriction GO < ¢ imposes the described shape constraints while the nonlinear
restriction Tg(0) = 0 corresponds to imposing a hypothesized value for ATE(S) through
(11). In our bootstrap approximation, we set 7, = 0 and selected r,, according to (7) with
vn = 0.05 and where, when necessary, we used the distribution of estimators of identified

4 We do not report estimates of

parameters for their partially identified counterparts.
the identified sets for ATE(S) as they are very close to the obtained confidence intervals:
On average the bounds of the confidence intervals exceed the bounds of estimates of the
identified set by 0.011. Nonetheless, the unrestricted confidence intervals are large as
the estimates for the identified set are themselves large — a result driven by the low
proportion of compliers (5% on average across schooling levels). Imposing monotonicity
across types carries identifying information on the upper end of the identified set at low
levels of education and on the lower end of the identified set at high levels of education.
Additionally imposing nonpositivity sharpens the upper bound of the identified set at
all schooling levels. The resulting confidence regions sign ATE(S) at all education levels

(weakly) smaller than 12 as strictly negative, though very close to zero.

Finally, as a preview of our general analysis in Section 3, in Table 1 we employ the
same shape restrictions to report estimates and 95% confidence intervals for the iden-
tified sets of the average treatment effects for: High School Dropouts (edu € [9,12)),
College Dropouts (edu € [13,15)), College Graduates (edu > 16) and the overall aver-
age treatment effect. These confidence regions are obtained through test inversion after
noting that a hypothesized value for the average treatment effect of a subgroup can be
written as a nonlinear moment restriction in 6y through (11) — nonlinear moment re-

strictions fall within our general framework but outside the scope of Section 2.2. Overall

“E.g., for the constraint E[Y1|NT, S] < 1 we substituted the corresponding G {2 — 62"} term in (7)
with a mean zero normal distribution with the variance of the estimator for E[Y,|NT, S].
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Unrestricted Mon. Restr. Mon.+Neg Restr.

Subgroup Estimate 95% CI Estimate 95% CI Estimate 95% CI
HS Drop [ -0.520,0.426] [-0.526,0.432] |-0.489,0.346] [-0.500,0.356] [-0.489,-0.008] [-0.501,-0.003]
Coll. Drop  [-0.561,0.380] [-0.566,0.385] [-0.447,0.325] [-0.460,0.337] [-0.447.-0.004]  [-0.462,0.000]
Coll. Grad [-0.579,0.375] [-0.586,0.382] [-0.446,0.328] [-0.462,0.339] [-0.446,-0.002]  [-0.464,0.000]
All [0.545,0.305] [-0.547,0.398] [-0.467,0.328] [-0.477,0.338] [-0.467,-0.008] [-0.478,-0.003]

Table 1: Point Estimates and 95% confidence intervals for the average treatment effect
at different groups defined by schooling levels under different shape restrictions.

the impact of imposing shape restrictions parallels the results in Figure 2.

3 General Analysis

We next develop a general inferential framework that encompasses the tests discussed in
Section 2. The class of models we consider are those in which the parameter of interest

0 € O satisfies a finite number J of conditional moment restrictions
Eplp)(X,00)|Z)) =0for 1 <)< T

with p, : X x© = R, X € X, and Z, € Z,. For notational simplicity, we also let
Z=(Z1,....,27)and V = (X, Z) with V ~ P € P. In some of the applications that

motivate us, the parameter 6y is not identified. We therefore define the identified set
©y={0€O:Eplp,(X,0)|Z]=0for 1 <3< T}

and employ it as the basis of our statistical analysis — we emphasize that Oy depends on
P, but leave such dependence implicit to simplify notation. For a set R of parameters

satisfying a conjectured restriction, we develop a test for the hypothesis
Ho:@oﬂR#@ Hli@oﬂsz; (12)

i.e. we devise a test of whether at least one element of the identified set satisfies the
posited constraint. In what follows, we denote the set of distributions P € P satisfying
the null hypothesis in (12) by Py. We also note that in an identified model, a test of
(12) is equivalent to a test of whether 6 itself satisfies the hypothesized constraint.

The defining elements determining the type of applications encompassed by (12) are
the choices of © and R. In imposing restrictions on © and R we therefore aim to allow
for a general framework while simultaneously ensuring enough structure for a fruitful

asymptotic analysis. To this end, we require © to be a subset of a complete vector space

13



B with norm || - || (i.e. (B, ]| -||B) is @ Banach space) and consider sets R satisfying
R={0eB:Tp(0)=0and T(0) <0}, (13)

where Trp: B — F and Tg : B — G are known maps. Our first assumption formalizes
the basic structure of the hypothesis testing problem we study.

Assumption 3.1. (i) {V;}I is i.i.d. with V ~ P € P; (i) © C B, where (B, || -|B)
is a Banach space; (iii)) Yp: B — F and T¢ : B — G, where (F,| - ||lr) is a Banach
space and (G, || - ||c) is an AM space with order unit 1g.

Through Assumption 3.1(i) we focus on the i.i.d. setting, though extensions to other
sampling frameworks are feasible. Assumption 3.1(ii) allows us to address parametric,
semiparametric, and nonparametric models, while Assumption 3.1(iii) allows Yr to
impose both finite dimensional or infinite dimensional equality restrictions. Assumption
3.1(iii) further requires that YT take values in an AM space G — we provide an overview
of AM spaces in the supplemental appendix. Heuristically, the key properties of G are:
(i) G is a vector space equipped with a partial order “<”; (ii) The partial order and
the vector space operations interact in the same manner they do on R (e.g. if 6; < 65,
then 61 + 603 < 62+ 03); and (iii) The order unit 1g € G is an element such that for any
6 € G there exists a scalar A > 0 satisfying |§] < A1g (e.g. when G = R? we may set
1g = (1,...,1) € RY). These properties of an AM space will prove instrumental in our
analysis. In particular, the order unit 1g will provide a crucial link between the partial
order “<”, the norm || - ||g, and (through smoothness of T¢) allow us to leverage a rate

of convergence in B to build a suitable sample analogue to the local parameter space.

3.1 Main Results

Our analysis centers around a statistic I,(R) that constitutes a “building block” for
different tests of (12) — e.g., it may be employed to implement a generalization of the J-
test of Sargan (1958) and Hansen (1982) or the incremental J-test of Eichenbaum et al.
(1988). In this section we first introduce I,,(R), obtain an approximation to its finite
sample distribution, and devise a bootstrap procedure for estimating its quantiles. To-

gether, these results allow us to establish the asymptotic validity of different tests.

3.1.1 The Building Block

We first introduce the statistic I,,(R) that we employ to build different tests. To this
end, for each instrument Z, we consider transformations {qkd}z’;i and let qf"”(z]) =
(q1,(29), -+ Qkn,5(2;)) - Recalling that Z = (Z1,..., Z7), we further set k,, = 237:1 En.;,
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¢ (2) = (q]f"’l(zl)’, . ,qf;"’J(zJ)')', p(z,0) = (p1(x,0),...,p7(x,0)), and let

kn
p1(Xi, 0)q,™" (Zi1)

p(X;,0) * ¢"(Z;) = : ;
km
p7(Xi,0)q7(Zi7)

i.e. for each 6 we take the product of each “residual” p,(X, ) with the transformations

of its respective instrument Z,. For a k, x k, matrix ﬁ)n, we then define
1 n
_ kn
Qu(0) = 1= " p(X:,0) + 4 (Z)s,
i=1

where |[allg = |Znall, and || - ||, is the p-norm on R¥» for any p > 2 — i.e. [al, =

(L, [a®D )P for any a = (aV),...,a@) € R™ Letting ©,NR be a finite dimensional

subset of © N R that grows dense in © N R (Chen, 2007), we then define I,,(R) to equal
I,(R)= inf /nQu(9).

0€O,NR

We note that setting p = 2 is often computationally attractive. However, we allow for
p > 2 because higher values of p enable us to establish distributional approximations

under weaker conditions on the number of unconditional moments k,,.

Heuristically, /n@, should diverge to infinity when evaluated at any 6 ¢ Oy and
remain “stable” when evaluated at a 6 € ©g. Thus, examining the minimum of /nQ,
over R should reveal whether there is a 6 that simultaneously makes /nQ@,(0) “stable”
(0 € ©¢) and satisfies the conjectured restriction (# € R). This intuition suggests I,,(R)
may be employed as a test statistic that is similar in spirit to the J-statistic of Hansen

(1982). Alternatively, we may build a test by considering the recentered test statistic
In(R) — 1,(©),

which aims power in a different direction than I,,(R) (Chen and Santos, 2018). Con-
ceptually, it is important to note that I,,(©) is a special case of I,,(R) (i.e. set R = ©).
We refer to I,(R) as a “building block” in the sense that, together with closely related

variants like I,,(©), it may be employed to obtain a variety of different tests.

3.1.2 Strong Approximation

We first obtain a strong approximation to statistics of the form I,,(R). Before proceeding,

we introduce some additional notation. First, we define the class

Fo=A{p,(-,0):0 €O, NRand 1 <3< J}. (14)
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The “size” of F,, plays a crucial role, and we control it through the bracketing integral

d
T Facll - lr) = [T+ Tog Ny (e Fo - Ir2)de

where HfH%D’2 = Ep[f*(V)] and Njj(e, Fn, | - | p2) is the smallest number of e-brackets

(under || - || p2) required to cover F,. Finally, we denote the empirical process by
Gn(0) = NP2 Z{p(Xz, 0)  ¢""(Z;) — Ep[p(X. ) * " (2)]}.

Our next assumptions imposes requirements on ©,, N R and the transformation ¢~ (7).

Assumption 3.2. (i) maxi< <y maxi<k<i,, |Gk llcc < Bn with B, > 1; (ii) The
eigenvalues of Ep[qf"’](Z )qf"](Z )] are bounded uniformly in k,, and P € P; (iii)
Fn has envelope Fy, suppep [[Fullp2 < 00, and suppep Ji)([Fullp2, Fos |l - [P2) < Jn

with J, < oo.

Assumption 3.3. (i) supgcg, g |Gn(0) = Wp(0)|, = op(a,) uniformly in P € P for
some an, = o(1) and Gaussian Wp satisfying E[Wp(0)] = 0 and Cov{Wp(0), Wp(0')} =
Covp{G,(0),Gn(¢)}; (i) There is a norm || - ||g, &k, > 0, and K, < oo such that
Eplllp(X,61) — p(X,02)]3] < K3H91 - 92||i3ﬁp for all 01,62 € ©, N R and P € P.

Assumptions 3.2(i)(ii) impose standard requirements on the transformations g*» —
e.g., Assumption 3.2(i) holds with B, = 1 for trigonometric series and B, < vk,
for normalized B-splines. Assumption 3.2(iii) controls the “size” of F,,. We allow
Jp, to depend on n to accommodate non-compact parameter spaces (Chen and Pouzo,
2012, 2015). Assumption 3.3(i) requires that the empirical process be approximately
Gaussian. The sequence {ay}22; denotes a bound on the rate of coupling, which in turn
characterizes the rate of convergence of our strong approximation. In the appendix, we
verify Assumption 3.3(i) by relying on existing results (Yurinskii, 1977; Zhai, 2018) or
a novel extension of Koltchinskii (1994). Assumption 3.3(ii) imposes a mild restriction

on the moment functions that ensures Wp is equicontinuous with respect to || - | g

In establishing our strong approximation to I,,(R), it is helpful to derive the rate of
convergence of the minimizer of @Q,, over ©, N R. To this end, we follow the literature
on set estimation (Chernozhukov et al., 2007; Beresteanu and Molinari, 2008; Santos,
2011; Kaido and Santos, 2014) and for any sets A and B we define

d (A, B,|| - [ls) = sup inf [la — b
#(A4 B, |- [s) = sup inf fla = blle,

which is known as the directed Hausdorff distance. For each 6§ € © N R, we further let
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11,0 denote its approximation on ©, N R and denote the approximation to ©¢ N R by
on = {110 : 0 € ©gN R}. (15)

Our next assumption enables us to obtain a rate of convergence (under || - ||g) to ©g,.

Assumption 3.4. There are V,(P) C ©, N R and a sequence constants {vn} with
0 < v, ! =0(1) such that (i) For any 6 € V,,(P) it holds that

v d 10,05, - ) < sup [ Ep[(p(X,0) = p(X,0)) % ¢"(2)]ll2p p;
feer,,

(ii) There is a 0, € Vo(P) satisfying Qn(6y,) < infgeo, nr Qn(0) + o(an//n) with prob-
ability tending to one uniformly in P € Py.

Assumption 3.4(ii) requires that an approximate minimum of @, over 0, N R be
attained at a point 6, in a set Vn(P) with high probability. Typically, V,(P) may
be taken to equal the entire sieve in convex models, or it may be taken to equal a
local neighborhood of ©y,, after establishing the consistency of 6, through standard
arguments; see, e.g., Lemma S.1.1 in the appendix. Assumption 3.4(i) introduces a
local identification condition on V,(P) by requiring that the moments “change” at a
rate v, 1 as § moves away from ©} . The parameter v, ', which implicitly depends on
ky, and the choice of sieve ©,,N R, is conceptually related to sieve measure of ill-posedness
(Blundell et al., 2007).

By employing Assumption 3.4, we are able to show that with arbitrarily high prob-

ability, 6, is contained in a || - ||g-neighborhood of ©f,, that shrinks at a rate

ki/?\/log(1 + k) Jn Bn
Ry = Vn{ \/ﬁ }’ (16)

where recall B,, and J,, where introduced in Assumption 3.2. Under assumptions on the

(Hausdorff) distance between ©f,, and ©g N R, the triangle inequality can yield a rate
of convergence of 6,, to ©y N R. Heuristically, we focus on convergence to Of,, (instead

of ®p N R) because our strong approximation will rely on undersmoothing.

In our final assumptions, we follow the literature and accommodate non-differentiable
moment functions by requiring that their conditional expectations be differentiable
(Chen and Pouzo, 2009, 2012). Specifically, for each 1 < 3 < 7 and 6 € © we set

mp,(0)(Z,) = Ep|p,(X,0)|Z));

i.e. mp, maps each 6 € © to a square integrable function of Z,. Letting B,, denote the

vector subspace generated by ©,, N R, we then impose the following:
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Assumption 3.5. There is a norm | - || on By, linear maps Vmp, () : B — L%,
and constants € > 0 and K,,, M < oo such that for all P € P, h € B, and elements
01,00 € {# € ©,NR : 71{(9,@{)”,“ “|lg) < €} we have: (i) ||mp,(01) — mpy(62) —
Vmp,(02)[01—02]||p2 < Kml|61—02|L||61—02([&; (i) [|[Vmp,(01)[A]=Vmp,(62)[h]] p2 <
Km||6h = O2|Ll|hlle; (i) [[Vmp,(62)[h]]lp2 < M||h[e.

Assumption 3.6. (i) ka/? 10g(1 + kn) B suppep Jjj(Rn’ Fu, || - lp2) = o(an); (ii)
Suppep, SUPgecoy, VillEp[p(X,0) x ¢*(Z)]|lzp p = 0(an).

Assumption 3.7. (i) For each P € P there is a k, X ky, matric Xp > 0 such that

12 = 2pllop = op(1 /\an{kyl/p\/log(l + k) BnJy } 1) uniformly in P € P; (i) |Sp o,
and | S5 |op are uniformly bounded in ky, and P € P.

Assumption 3.5(i) ensures mp, is approximated by linear maps Vmp, with an ap-
proximation error that is controlled by || - ||g and a potentially stronger norm || - ||,. In
turn, Assumptions 3.5(ii)(iil) impose continuity conditions on Vmp , — these assumptions
are not used in this section, but will be needed for our bootstrap results. Assumption
3.6 contains our key rate restrictions. Assumption 3.6(i) ensures the rate of convergence
R, (as in (16)) is sufficiently fast to overcome an asymptotic loss of equicontinuity
— a requirement that can hold even when R, is slower than the traditional o(n~/4)
rate employed to linearize nonlinear models.Assumption 3.6(ii) is an undersmoothing
assumption, which ensures that I,,(R) is properly centered under the null hypothesis.
Finally, Assumption 3.7 requires 3, to converge to an invertible matrix > p at a suitable

rate — here, || - ||,, denotes the operator norm when R*" is endowed with | - ||,

The introduced assumptions suffice for obtaining a strong approximation through a

local reparametrization. Formally, we denote the local deviations from 6 € ©, N R by

h h
Vo0, Ri()={heB,: 0+ —=€0O,NRand |—|g < {}.
(0.F10) = (h € B+ 0+ 7 € 0, R and || s < £}

Recall B,, denotes the vector subspace generated by @, N R and for any h € B,, set
Dp(0)[h] = Ep[Vmp(0)[h)(Z) * ¢*(2)),

where Vmp(0)[h](Z) = (Vmp1(0)|h|(Z1),...,Vmpg(0)[h](Z7)). For any given se-

quence £, we then define a sequence of random variables Up(R|¢;,,) to be given by

Up(R|t,) = inf inf Wp(8) +Dp(0)h . 17
PRIG)= o [We(0) + De0)ly (17
As a final piece of notation, for any two norms || - ||a, and || - ||a, defined on B,,, we set
b
Sn(A1, Az) = sup H HAI,
beB, [1blla,
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which we note depends on the sample size n only through the choice of sieve ©,, N R.

The next result establishes the relation between Up(R|(,,) and I,(R). It is helpful
to recall here that the norm || - ||, and constants K,,, introduced in Assumption 3.5,

control the linearization of the moments and that K,, = 0 for linear models.

Theorem 3.1. Let Assumptions 5.1(i), 3.2, 3.3, 3.4, 3.5(i), 3.0, and 3.7 hold. Then:

(i) For any ¢, | O satisfying k,ll/p\/log(l + k) By X suppep Ji)(6n", Fo, || - || p2) = olan)
and K, 02 x Sp(L,E) = o(a,n~?) it follows uniformly in P € Py that:

In(R) < UP(an) + Op(an).

(ii) If in addition K, R2 x S, (L, E) = o(a,n~1?), then €, may be additionally chosen
to satisfy Ry, = o(€y), in which case it follows uniformly in P € Py that:

In(R) = UP(RMn) + Op(an).

Theorem 3.1 is perhaps best understood as establishing the validity of a family (in-
dexed by {¢,,}) of strong approximations that differ on the size of the local neighborhoods

of ©j,, that they employ. Its proof crucially relies on the linearization

h
Dp(9)[h] = vVr{Ep[p(X, 0 + %) *q""(2)] = Ep[p(X,0) x ¢*(2)]}, (18)
which holds for nonlinear moments (K,, # 0) when h/\/n is sufficiently small. In
particular, if the infimum defining I,,(R) is attained at a point 6,, that converges to 05,
sufficiently fast, then we may apply (18) to establish Theorem 3.1(ii). Regrettably, in
certain models the rate of convergence of 0., may be too slow to apply the approximation

n (18) to 0, In such instances, we may instead rely on the inequality
h
vn

and successfully couple the right hand side of (19) by restricting attention to sequences

L(R)= inf \/iQu(6) < nf V(O + ) (19)

0€0,NR = (6,h)€(OF,,,Va(6,R|tn

¢y, for which (18) is accurate. Thus, by regularizing the local parameter space through
a norm bound, we obtain in Theorem 3.1(i) a distributional approximation that, while

potentially conservative, holds under weaker requirements on the rate of convergence.

3.1.3 Bootstrap Approximation

Theorem 3.1 shows that the distribution of Up(R|¢,) is a suitable approximation for
the distribution of I,(R). We next develop a bootstrap procedure for estimating the
distribution of Up(R|¢,,) with the goal of obtaining valid critical values.
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We estimate the distribution of Up(R|¢,) by replacing population parameters with
suitable sample analogues. The key ingredients are: (i) A random variable W,, whose
distribution conditional on the data is consistent for the distribution of Wp; (ii) An
estimator Dy, () for Dp(0); (iii) An estimator % for ©%, (as in (15)); and (iv) A sample
analogue Vn(ﬂ,RMn) for the local parameter space V, (6, R|¢,). We then approximate
the distribution of Up(R|¢,) by the distribution (conditional on the data) of

Un(Rlty) = inf  inf  [[W,(0) +Du(0)[M]lg,,
001 heVin(0,R|ln) "

For concreteness, we employ the following sample analogues in our construction.

Gaussian Distribution: We estimate the distribution of Wp with the multiplier boot-
strap. Specifically, for i.i.d. {w;}}'; with w; ~ N(0,1) independent of {V;}I' | we let

A~

Wa(0) = <= Do wdp(Xi,0) 1 g () = = 3 plX,.0) x4 (2}
i—1 j=1

We focus on the multiplier bootstrap due to its theoretical tractability, though we note

that alternative bootstrap approaches can also be valid. m

The Derivative: We estimate Dp(6) by employing a construction that is applicable to
non-differentiable moments. Specifically, for any 0 € ©,, N R and h € B,, we set

D,(0)H] == S ((Xi8 + =) = (X0 0)) £ (20
=1

We employ ]f)n(H) due to its general applicability, though alternative approaches may be

preferable in some applications. In particular, if moments are differentiabile, then using

% N Von(Xi, 0)[h] * ¢ (Z:)
=1

as an estimator for Dp(#)[h] leads to a computationally simpler bootstrap statistic. m

The Identified Set: We estimate the identified set by employing the set of (approxi-
mate) minimizers of @, on 0, N R. Formally, for a sequence 7, | 0, we let
O ={0ecO,NR:Qu0) < inf Qn) +7n}. (20)
0€0,NR
We may set 7, = 0 in identified models, in which case O reduces to the minimizer of
Q. In partially identified models, (:)fl can be shown to asymptotically lie in a shrinking
neighborhood of ©g,, provided 7, — 0. In order for (:);"L to additionally be Hausdorff

consistent for ©g,,, however, 7,, must not tend to zero too fast; see Lemma S.1.1. m
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Local Parameter Space: We account for the role inequality constraints play in deter-
mining the local parameter space by estimating “binding” sets in analogy to approaches
pursued in the moment inequalities literature (Chernozhukov et al., 2007; Andrews and Soares,

2010). Specifically, for a sequence r, and any 6 € ©,, N R we define
h
Vn

where recall 1g is the order unit in G and g; V go represents the supremum of any

Gul8) = {h € By : T(0 + —=) < (T (0) - Kgrnn%nBlG) V(~rale)},

91,92 € G. The constant K,, formally introduced in Assumption 3.8 below, is related

to the curvature of Y and equals zero for linear Y. For any ¢,, we then define
V(9R|€)—{h€B :h € Gp(0) T(H—l—i)—O d||i\| </} (21)
n\Y, n) = n: n\Y), LF \/ﬁ =Uan \/ﬁ B > ftny,

i.e. in comparison to V,, (6, R|¢,) we: (i) Replace Yg(6 + h/\/n) <0 by h € G,,(0); (ii)
Retain Tr(0 + h/y/n) = 0; and (iii) Substitute ||h/y/n|lg < £, with [|h/\/n|B < ¢,. B

Before establishing the asymptotic validity of the proposed bootstrap procedure, we

require some additional notation. For any set A C B,,, we denote its e-neighborhood by
(A)f={0 € B, : inf ||a — 0| < €}.
acA

We further denote the closure of the linear span of Tr(B,,) by F,,, and for any linear
map I on B we let N(T") = {h € B : I'(h) = 0} denote its null space. In the assumptions
that follow, it is helpful to recall that ©f,, is implicitly a function of P.

Assumption 3.8. For some Ky, M < 0o, € >0 and all n, P € Py, 01,05 € (0,,) (i)
Y is Fréchet differentiable with | Y ¢ (01)—Y¢(02)— VY (01)[61—02]la < K,||61—02]%;
(i) [VTa(01) = VTG(02)llo < Kgll6h — 0ol (idi) [VYa(01)llo < M.

Assumption 3.9. For some Ky, M < 0o, € >0 and all n, P € Py, 01,05 € (©g,) (i)
Y r is Fréchet differentiable with ||Y p(01)—Y p(02)— VY r(01)[01—02]||r < K¢l|61—02]%;
(1) VT 0(01) — VTw(B)ll0 < Kol — 2l (i) [T w(80)]l0 < M (i) VXR(61)
B, — F,, admits a right inverse VY p(01)” with K¢|[VYp(61)" ||o < M.

Assumption 3.10. Either (i) Tp : B — F is affine, or (ii) There are constants € > 0,
M < oo such that for every P € Py, n, and 0 € O, there exists a h € B, NN (VY p(6))
satisfying Ya(0) + VYg(0)[h] < —€elg and ||h|B < M.

Assumption 3.8 imposes that T be Fréchet differentiable. The constant K, em-
ployed in the construction of Vn(ﬂ, R|¢,,), may be interpreted as a bound on the second
derivative of T and equals zero when Y is linear. Assumptions 3.9 and 3.10 mark
an important difference between hypotheses in which Yz is linear and those in which

T is nonlinear — note linear T p automatically satisfy Assumptions 3.9 and 3.10. This
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distinction reflects that when YT g is linear its impact on the local parameter space is
known and need not be estimated.” Thus, while Assumptions 3.9(i)-(iii) impose con-
ditions analogous to those required of T, Assumption 3.9(iv) additionally demands
that VY () posses a norm bounded right inverse on (6f,,)¢ — the existence of a right
inverse is equivalent to a classical rank condition.® Finally, for nonlinear Y g, Assump-
tion 3.10(ii) requires the existence of a local perturbation to any 6 € ©y,, that relaxes

“active” inequality constraints without a first order effect on the equality restrictions.

We impose a final set of assumptions in order to couple our bootstrap statistic.

Assumption 3.11. supycg, r |W,.(8) — W5 ()|, = op(an) uniformly in ® x P with
P € P for ® the standard normal distribution, a, = o(1), and W} independent of

{Vi}?, and having the same distribution as Wp.

Assumption 3.12. (i) For some M < oo, ||h|lg < M||h||B for all h € By,; (ii) There
is an € > 0 such that P((O)¢ C ©,,) tends to one uniformly in P € Py; (iii) For V,(P)
as in Assumption 3./, P(OF C V,(P)) tends to one uniformly in P € Py.

Assumption 3.13. (i) Either Y and Y are affine or (Ry, +vnTn) X Sp(B, E) = o(1);
(i1) The sequences Uy, T, satisfy kP V1og(1 + k) By, X suppep "V (UnTn)™, F, || -
1p2) = 0(an), Kmln(bn+Rn+vnTn) xSn(L, E) = o(ann™'2), and £, (£ +{Rn+vnTn} X
Su(B,E)1{K; > 0} = o(a,n~1/2); (iii) The sequence r,, satisfies limsup,,_,., 1{K, >
0} /rn < 1/2 and (Ry, + vpTn) X Sp(B,E) = o(ry,).

Assumption 3.11 demands that W,, be coupled with a Gaussian W7}, independent
of {V;}?_,. This condition implies the multiplier bootstrap is valid in our potentially
non-Donsker setting; see Appendix S.7 for sufficient conditions. More generally, we note
that our analysis remains valid if the multiplier bootstrap is replaced with any other re-
sampling scheme (e.g., nonparametric bootstrap) satisfying a coupling requirement like
Assumption 3.11. Assumption 3.12(i) ensures that |- ||g is (weakly) stronger than || ||g.
Assumption 3.12(ii) demands that ©7, be asymptotically contained in the interior of ©,,.
This requirement does not rule out that parameter space restrictions be binding at ©5,,
— instead, Assumption 3.12(ii) requires that all such restrictions be stated through R.
Together with Assumption 3.4(i), Assumption 3.12(iii) enables us to obtain a rate of

convergence for (:)fl and may be verified in the same manner as Assumption 3.4(ii).

Assumption 3.13 contains our main rate requirements. In particular, Assumption
3.13(i) ensures the one sided Hausdorff convergence of ©% to ©F, under || - || when-

ever Yp or T are nonlinear. The main conditions on #,,, employed in constructing

SFor linear Y r, the requirement Y #(0 4+ h/+/n) = 0 is equivalent to Y (k) = 0 for any 6 € R.

5Recall for a linear map ' : B, — F,, its right inverseisamap '™ : F, — By such that ITT~(h) = h
for any h € B,,. The right inverse I'” need not be unique if I" is not bijective, in which case Assumption
3.9(iv) is satisfied as long as it holds for some right inverse of VY r(6) : By, = F,.
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V(0, R|,), are contained in Assumption 3.13(ii). These conditions ensure the con-
sistency of Dn(e)[h], the applicability of Theorem 3.1, and that Vn(ﬁ,an) be well
approximated by the true local parameter space. Heuristically, whenever the rate of
convergence R, is too slow, regularizing the local parameter space by selecting a small
£, can ensure the asymptotic validity of the test. As in Section 2, however, we note
that whenever the rate of convergence R,, is sufficiently fast such regularization is un-
necessary and it is possible to set ¢, = +oo — in such applications, setting ¢,, to be too
small can lead to a loss of power. In turn, Assumption 3.13(iii) requires that r, not
decrease to zero faster than the || - ||g-rate of convergence of OF. Assumption 3.13(iii) is
always satisfied if r, = +o00, though setting r,, — 0 can improve power against certain
alternatives. Similarly, we note that the requirements on 7, imposed by Assumption
3.13 can always be satisfied by setting 7,, = 0, but such a choice can lead to a loss of

power in certain partially identified models (recall the discussion in Section 2.2).

Our next result provides a coupling result for our bootstrap statistic. In its state-

ment, U5 (R|{y,) is defined identically to Up(R|¢),) but with W% in place of Wp.

Theorem 3.2. If Assumptions 3.1, 5.2, 3.3, 3.4(i), 3.5, 3.6(ii), 3.7, 3.8, 3.9, 3.10,
5.11, 5.12, 3.13 hold, then there is €, < {,, so that uniformly in P € Py

Un(R|£,) > US(R|,) + op(an).

Theorem 3.2 shows that with unconditional probability tending to one uniformly on
P € Pg our bootstrap statistic is bounded from below by a random variable that is
independent of the data. The significance of this result lies in that the lower bound is
equal in distribution to the coupling to I,,(R) obtained in Theorem 3.1. Thus, Theorems
3.1 and 3.2 provide the basis for constructing tests that employ increasing functions of
I(R) as a test statistic and the analogous bootstrap quantiles of U, (R|¢,) as critical
values. The resulting tests may be conservative, however, whenever the inequalities in
Theorems 3.1 and 3.2 are not “sharp.” In particular, in order for the pointwise (in P)
rejection probability to equal the nominal level of the test under the null hypothesis we
require: (i) The rate of convergence R,, must be sufficiently fast for Theorem 3.1(ii) to
apply (in which case setting ¢,, = 400 is often valid); (ii) We should select 7, to tend to
zero with the sample size; and (iii) In partially identified settings, 7, must tend to zero

sufficiently slowly so that (:)fl is Hausdorff consistent for OF,,.

3.2 The Tests

We next employ the theoretical results of Section 3.1 to establish the asymptotic validity
of different tests of the null hypothesis defined in (12). In what follows, for any statistic
T, that is a function of {V;}7_, and the bootstrap weights {w;}?,, we let G, (T},,) denote
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its conditional 7 quantile given {V;}I ;. For example, we have that

d1-a(Un(RI6,)) = inf{u : P(U(Rl6,) < ul{Vi}iy) > 1 - a}.

3.2.1 Tests Based on I,(R)

We first examine a test that employs I,,(R) as a test statistic and a bootstrap quantile of
ﬁn(R\ﬁn) as a critical value. As has been shown in the literature, uniform consistent esti-
mation of approximating distributions is not sufficient for characterizing the asymptotic
size of a test (Romano and Shaikh, 2012). Heuristically, to establish the asymptotic va-
lidity of a test the approximating distributions must additionally be suitably uniformly

continuous. Our next assumption suffices for verifying this final requirement.

Assumption 3.14. There is 1 > 0 and 9, = o(a; ') such that for é, = G1—a(Un(R|l,))
and any by, =< €y: (i) P(I(R) > é,) = P(I,(R) > é, V1) + o(1) uniformly in P € Py,
and (i) suppep, SUP4e (n—ap,+00) P(|Up(R|6,) —t| <€) < on(e A1)+ o(1).

Assumption 3.14(i) trivially holds with 1 = 0 since both I,,(R) and U,(R|¢,) are
(weakly) positive almost surely. However, in some applications it is possible to verify
Assumption 3.14(i) in fact holds with n > 0 by arguing that the bootstrap quantiles of
Un(R|€n) are suitably bounded away from zero when I,,(R) is strictly positive. Estab-
lishing Assumption 3.14(i) holds with > 0 eases the verification of Assumption 3.14(ii),
which intuitively requires that Up(R|/,) be continuously distributed on (1 — a,,400)
with a density bounded by a, possibly diverging, o0,,. Because U p(R\Zn) is a functional
of the Gaussian measure Wp, Assumption 3.14(ii) can in some applications be veri-
fied using available results in the literature (Davydov et al., 1998). For instance, when
Up(R|ly,) is a convex function of Wp, as in the application of Section 2.1.1, the distribu-
tion of Up(R|/,,) can readily be shown to be continuous in (0,400). We refer the reader
to Chernozhukov et al. (2014) for further discussion and motivation of conditions such

as Assumption 3.14(ii), called anti-concentration conditions.

The next result establishes the asymptotic validity of a test based on I,,(R).

Corollary 3.1. Let Assumption 3.1/ hold and the conditions of Theorem 3.1(i) and
Theorem 3.2 be satisfied. If é, = G1—a(Un(R|y)), then it follows that:

limsup sup P([,(R) > é,) < au.

n—oo PePy

In Algorithm 1 below we describe how to obtain p-values for the test described in
Corollary 3.1 when the moments are differentiable. We note that if there are no in-
equality constraints, then it is possible to show that the test in Corollary 3.1 is similar

and its asymptotic size equals the nominal level a whenever the conditions of Theorem
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3.1(i1) are satisfied. The consistency of the test against any P € P \ Py for which
max, ||Ep[p,(X,0)|Z,]||p2 is bounded away from zero (in # € © N R) is also straight-
forward to establish under suitable conditions. Finally, we also note that if we instead
employ the critical value ¢, = (jl,a+5(f]n(R\€n)) + ¢ for any 0 > 0, then the conclusion
of Corollary 3.1 holds without needing to impose Assumption 3.14; see Corollary S.3.1.
This modification to the critical value was originally proposed in a different context by
Andrews and Shi (2013), who suggest setting § = 1075.

Algorithm 1 Computing p-values for test based on I,,(R)
Require: Oy, Tr, Ta, {p(Xi,0) 4" (Z)}y, Sn, o, o, In

> Compute the Test Statistic

L Qn(f) Hi]n{% S (X, 0) % g5 (Z) Y, > Criterion function
2 R+ {0:Tp(0)=0,Tg(0) <0} > Constraint Set
3: I,(R) < mingeo, vVnQn(0) s.t. 6 € R > Test Statistic
> Prepare variables for bootstrap problem
D,,(0)[R] LS Vop(Xi, 0)[h] = g™ (Z;) > Moments Derivative
O {0 O, NR:Qu0) < I,(R)/Vn+Tn} > Boot Constraint

Gn(0) < {h:Ta(0+h/vn) < (Ya() — Kgralh/vnllBla) V (=rala)}
Vo(0,R|4y,) < {h € Gp(0) : Yrp(0+ h/\/n) =0, k|l < €ny/n} > Boot Constraint h

> Compute B bootstrap statistics and obtain p-value
8 for b=1to B do

9: {f*)zl') ? | < Generate i.i.d. sample of N(0,1) variables

10: WR(0) « o= iy wi{p(Xi,0) + 4" (Zi) — 5 3071 p(X5,0) * ¢ (Z))}

11 E2(0,h) < |2, {W2(0) + D, (0)[h]} ], > Boot Criterion
12: Boot[b] < ming;, F°(0,h) s.t. 0 € O, h € Vu(6, R|(y) > Boot Statistic
13: end for

14: pval « % Zle 1{I,(R) < Boot[b]} > Compute p-value

Remark 3.1. Suppose 6y is identified, we aim to test whether Y r(6y) = 0, and we are
confident 6y satisfies T (6p) < 0. We could then set R to equal Ry or R, where

Ry = {9 eB: Tg(e) <0 and TF(H) = 0}
RQZ{HEB:TF(H):O}.

The power functions of the corresponding tests are not necessarily ranked. As a re-
sult, it can be desirable to combine both tests by, for instance, using the test statis-
tic T,, = max{Fi(I,(R1)), F>(I,(R2))} for Fi, F; increasing functions, and the quan-
tiles of max{F} (U (R1|0n)), Fo(Un(Ra|ly))} as critical values — e.g., F; may be c.d.f. of
(A]n(ijn) conditional on the data. The asymptotic validity of such a test follows from

Theorems 3.1 and 3.2 under a suitable modification of Assumption 3.14. m

25



3.2.2 Tests Based on I,(R) — I,,(©)

We next establish the asymptotic validity of a test based on I,(R) —I,,(©) by also relying
on Theorems 3.1 and 3.2. In what follows, we signify parameters associated with setting
R =0 by a “u” superscript — e.g. F is understood to be as in (14) but with R = ©.

In order to obtain a distributional approximation to the recentered statistic, we may
simply apply Theorem 3.1(i) to I,,(R) and Theorem 3.1(ii) to I,(©) to conclude that

I(R) — I,(0) < Up(R|ty) — Up(O") + op(an). (22)

Moreover, by Theorem 3.2 we may approximate the distribution of Up(R|¢,) by using
Un(R|(,). Similarly, to obtain a bootstrap approximation to Up (6| + o), we define

= : < i S
Oh ={0 € 0n: Qu(0) < inf Qu(0) +73};

i.e. ©! is simply the set estimator in (20) applied with © = R. For B! the closed linear
span of O, we then approximate the law of Up(©|(}) by employing

Un(©] + o0) = inf inf ||[W,(0)+ D, (0)[h]

9céy heBy Is..»

i.e. the bootstrap approximation equals that of Theorem 3.2, with the local parameter

space being unconstrained due to the absence of equality or inequality restrictions.

The preceding discussion suggests that the quantiles of Uy, (R|(,) — Un(©] + o)
conditional on the data provide valid critical values for the recentered statistic. Our

next result formally establishes that the resulting test is indeed asymptotically valid.

Corollary 3.2. Let the conditions of Theorems 5.1(i) and 3.2 hold with R as in (13),
the conditions of Theorems 3.1(ii) and 3.2 hold with R = ©, and Assumption 3.1/ hold
with I,(R) —1,(©), Un(R|ly) —Un(©]400), and Up(R|,)—Up(O%) in place of I,(R),
Un(R|0y), and Up(R|e,) with €% satisfying RY: = o(f*) and Assumption 3.13(ii) with
R=0. Ift} | 0 satisfies J;Bnkﬂ/p\/m =o(7}) and V272 xSH(B,E) = o(1),
then, for én = G1—a(Un(Rly) — Upn(©| 4+ 00)) it follows that

limsup sup P([,(R) —I,(©) > é¢,) < a.

n—oo PePy o

It is worth emphasizing that in coupling I,(0©) we must rely on Theorem 3.1(ii)
instead of Theorem 3.1(i) in order to ensure that (22) holds. As a result, whenever mo-
ments are nonlinear, Corollary 3.2 requires the rate of convergence of the unconstrained
estimator to be sufficiently fast for Theorem 3.1(ii) to apply. Similarly, in coupling
U, (O] + o) it is important that ©F be consistent in the Hausdorff metric. Thus, while

we may set 7, = 0 in identified models, in partially identified models we require that 7,

26



not tend to zero too fast; see Theorem S.1.1. Finally, we note that in identified models,
it is possible to employ either W, (6,) or W,(A%) in constructing both U,(R|¢,) and

U, (0|4 00) — a change that results in an asymptotically equivalent coupling but ensures
that the bootstrap statistic U, (R|(,) — U, (O] + o0) is (weakly) positive.

4 Heterogeneity and Demand Analysis

For our final example, we illustrate how to conduct inference in the heterogeneous
demand model of Hausman and Newey (2016) — alternative models of demand under
conditional moment restrictions include the analysis in Hausman and Newey (1995),
Blundell et al. (2012), and Chen and Christensen (2018). Specifically, for Y € [0, 1]
equal to the expenditure share on a commodity, W € W a vector of prices, income, and

covariates, and 7 representing unobserved individual heterogeneity we suppose
Y = g(W,n) (23)

where g is a known function of (W, 7). The unobserved heterogeneity 7 can potentially
be infinite dimensional. For instance, Hausman and Newey (2016) set n = {8;}32; to

be a random variable in the sequence space ¢* = {{a; 1520122, a? < 0o}, and let

g(Wym) =Y 0 (W)B;, (24)
Jj=1

where {¢;}22, is a known basis satisfying >, ¢J2(W) < oo almost surely (in W).

If the covariates W are independent of 7, then for any ¢ € R it follows that
P(Y < elV) = PlgWon) < W) = [ Ha(Won) < cho(a) (25)

where g denotes the unknown distribution of 1. Result (25) restricts the possible
values of pg and hence the identified set for functionals of ug, such as average exact
consumer surplus or average share. Specifically, for W(g,n) an object of interest for
preferences denoted by 7, such as equivalent variation, Hausman and Newey (2016)

study functionals

/ W(g,n)uo(dn), (26)

which is the average across individuals. By evaluating the set of values of (26) which can

J
]:17

(2016) provide estimates of the identified set for the functional of interest. We further
note bounds on the distribution of ¥(g,7n) under uo can be obtained by replacing ¥(g,n)

be generated by a distribution pq satisfying (25) at a grid {c,} Hausman and Newey

in (26) with an indicator that U(g,n) be less than or equal to some number.
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In what follows, we apply our results to conduct inference on functionals as in (26).
To this end, we let Fp(c)|W) = P(Y < ¢|W) for a given grid {03}37:1. To define
B, we suppose 1 € () for some known Hausdorff space €2, set B to be the Borel o-
algebra on 2, let M be the space of regular signed Borel measures on €2, and let || - ||y
denote the total variation norm. Assuming Fp(c|-) € Cp(W) for Cp(W) the space
of continuous and bounded functions on W, we set B = ( }7:1 Cp(W)) x M, for any

({F (e )}rs 1) = 0 € Blet |16l = 337 I (el )lloo + llpallrv, and set
_ 7 _ :
O = {({F(¢])}j=1,n) =0 € B: max 1E(¢s] )0 <2}, (27)

where the “2” norm bound is simply selected to ensure O is in the interior of ©.

Letting X = (Y, W) and setting Z, = W for every 1 < 73 < J we then define
pJ(X’a) = 1{Y < C]} - F(CJ|W)a (28)

which yields conditional moment restrictions that identify Fp(c)|W) — note, however,
that g is potentially partially identified. For a grid {wl}le C W we test whether a
hypothesized value A belongs to the identified set for the functional in (26) by setting

R={({FNLm) 0@ = 1 w(B) = 0 forall B e B, [ (g nuldn) =,

and F(¢)|w;) = /1{g(wl,77) <c¢tu(dn) forall 1 <)< J,1<1< E}. (29)
Thus, the null hypothesis that ©®3 N R be nonempty corresponds to requiring that there
exist a distribution p for 7 satisfying the restrictions in (25) at the points (¢;,w;) and
yielding a value for the functional in (26) of A\. By conducting test inversion in A we can
obtain a confidence region for the desired functional. To map R into the framework of

Section 3, we set G = ¢°°(B) for £>°(B) the set of bounded functions on B and for any
{F(¢)) ;7:1,”) =0 e Blet Tg: B — (°°(B) be given by

Finally, we set Tp : B — R7%%2 to equal T () = (TE,?)(H), T%ﬂ) ), Tg) (0)), where

TO(60) = {F(eyfur) — / Hg(uwnn) < e, buldn)heye razice
TE(0) = () 1

T3 (0) =/\If(g,n)u(dn) - A (31)

Given these definitions, we may then map R (as introduced in (29)) into the framework
of Section 3 by noting that R = {0 € B: Tr(f) =0 and Y(0) < 0}.
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As in Hausman and Newey (2016), we can impose utility maximization by requiring
that the support 2 consist only of n such that g(-,n) satisfies the Slutsky conditions.
One may sample from ) by drawing randomly from sets of 1 that satisfy Slutsky sym-
metry and only keeping those where the compensated price effects matrix is negative
semidefinite on a grid. This is the procedure followed in Hausman and Newey (2016) for
two goods. Importantly, we emphasize that because the utility maximization restrictions
are imposed through 2, they do not affect the basic structure of Yp and YT —ie., Tp
and YT remain linear maps satisfying Assumptions 3.8-3.10. In this sense, as long as
they are imposed through the support €2 of 7, our procedure allows us to accommodate

a wide array of shape restrictions on individual demand g(-, ).
Given a collection of orthogonal probability measures {d5}:"; € M we employ
Sn
={peM:p= Zasés for some {a,}i", € R}
s=1

as a sieve for M. Employing orthogonal measures, such as distinct Dirac measures, is

computationally attractive as it simplifies imposing the nonnegativity Constraint on any

€ M,. As asieve for {Fp(c| )}J 1, we employ approximating functions {p] . In
particular, setting p/»(w) = (p1(w),...,pj, (w))’, we set as our sieve

= {5} aok) € My and s 75, < 2).
Similarly, for a sequence {Qk}k , and k, X k, positive definite matrices {E]n} S1s We

set ¢" (w) = (q1(w), ..., qr, (w))" and for any ({F (¢l )}] 1, 1t) = 6 define

= {Z ||— Z HY; < e} = Fle)|Wa)g™ (Wi)llg, 32 (32)

=1

The statistics I,,(R) and I,,(©) then equal the minimums of v/nQ@,, over ©,, N R and O,,.

Our next set of assumptions enable us to couple I,,(R) and I,,(R) — 1,(©).

Assumption 4.1. (i) {Y;, W;}1", is i.i.d. with (Y,W) ~ P € P; (ii) sup,, ||[p" (w)||2 <
Vin; (i) Ep[p’»(W)pin(W)'] has eigenvalues bounded away from zero and infinity uni-
formly in P € P and j,; (iv) For each P € Py and 6 € ©g N R, there exists a 11,0 =
(B ) s i) € B R such that S [ Ep[(Fu(c,W) = Fo(c[W)g ()]s =
O((nlog(n))~'?) uniformly in P € Py and 6 € ©g N R.

Assumption 4.2. (i) maxi<g<k, ||klloo < VEn; (i) Eplgi»(W)gk» (W)'] has eigenval-
ues bounded uniformly in P € P and ky; (iii) Ep[q® (W)pin(W)'] has singular values
bounded away from zero uniformly in P € P and (kn,jn); (i) k2jnlog3(n) = o(n'/?).

Assumption 4.3. For all 1 < 3 < J: (i) |20 — Z,pllo2 = 0p(1/kny/Tn log?(n))
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uniformly in P € P; (i) The k, X k, matrices ¥, p are invertible and [|3, pllo2 and
HEJ_}DHO,Q are bounded uniformly in P € P and k.

Assumptions 4.1(ii)-(iv) state the conditions on ©,,, with Assumptions 4.1(ii)(iii) be-
ing satisfied by standard choices such as B-Splines or wavelets. Assumption 4.1(iv) is an
asymptotic unbiasedness requirement — a condition that is eased by noting no require-
ments are imposed on the approximating space for ug. The requirements on {Qk}llzil are
imposed in Assumption 4.2(i)(iii) and are again satisfied by standard choices. Assump-
tion 4.2(iv) states a rate condition that suffices for verifying the coupling requirements

of Theorem 3.1. Assumption 4.3 imposes the requirements on the weighting matrices.

Our next result employs Theorem 3.1(ii) to obtain strong approximations.

Theorem 4.1. Let Assumptions /.1, /.2, 4.9 hold, a, = (log(n))~'/2, and for any
0 = ({F(c )N 1m) € B let [0l = X suppep | F(cl)Ipa- I sl 1 0 satisfy
BT 1082 (m) (6 V £2) = 0(1), F/T 1og(n) v/ = 0(€u AL), then uniformly in P € Po:

In(R) = UP(RMn) + Op(an)
Io(R) = I(©) = Up(R|ln) — Up(O|¢%) + op(an).

In order to conduct inference, we next aim to estimate the distributions of Up(R|¢;,)
and Up(©[¢}). To this end, we note that ©g, (as in (15)) is potentially non-singleton
and we therefore employ a set estimator O} (as in (20)) to estimate the distribution
of Up(R|€ ). In contrast, since Up(©|¢}) only depends on the identified component
{Fp(c,|)} 51, for the unconstrained problem we employ any minimizer 0" of Q, over

©,. With regards to the local parameter space, we note that in this application

Gn(0) = {({P"" By}l n) = pn(B) = Vnmin{r, — u(B),0} for all B € B} (33)

for any 6 = ({F(c,|-)}~ s_1,#). Computationally, since any y, i, € My, has the structure
po= > as0s and pp, = Y ot agpds it follows that the constraints in (33) reduce to
asp, > min{r, —ag, 0} for all 1 < s <'s,, whenever {J,}:", are orthogonal. Furthermore,

since moments and restrictions are linear, we may let ¢,, = 400 and set

Va(0, R+ 00) = {({p"' By n L1, 1n) + h € Gu(9), Tr(h) =0} (34)
For each 6 € ©,,, we denote the bootstrap process for the 7** conditional moment by

W) (0 sz{/’J Xi,0)q" (W, __ij X;,0)q" (W;)}.
Similarly, we set D) u[h] = = 321, ¢* (Wi)p (W;)' B, /n for any b = ({p"'B,n}51 pn)-
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Thus, the estimators of the strong approximations obtained in Theorem 4.1 equal

Un(R| 4 00) = inf inf W, ,,(6) + D, n[h]]¢ 1/2
(B[ +00) R {;H n pnlhllls, , o}

J
Un(©] 4 00) = mf{> W, (0) + Dylhllls, , o}/
1=1

Before stating our final assumption, we need an auxiliary result. To this end, define
T, 0)={ieM,:0={F(| )}] 1, 1) satisfies Tr(0) = 0, Tg(6) < 0} (35)

for any 0 = ({F(c,|-)}~ S_1, 1) — Le. T'p(0) is the set of distributions of 7 that agree with
the restrictions implied by {F(c,|- )} . Our next result bounds the | - ||7v-Hausdorff
distance between I'y,(61) and T, (62), Wthh we denote by dg (T (61),Tn(602), || - [|l7v)-

Lemma 4.1. If the probability measures {d}:", are orthogonal, then for every n there

exists a constant ¢, < oo independent of P such that

J
dpr (T (61), T (B2), || - l7v) < Go D IF1(el) = Faley) oo

J=1

for any ({F1(c)|- )}] L) =01 € ©,N R and ({Fa(cl- )}] 1L H2) =62 € ©,NR.

We introduce our final assumption to show the validity of our bootstrap procedure.

Assumption 4.4. (i) ¥(g,-) is bounded on Q; (ii) The probability measures {3}
are orthogonal; (iii) kkj5log®(n)/n = o(1); (i) 1,0 = ({F.(c|- )}J 1> ln) satisfies
| F ey )= Fp(cy|)|loo = o(1) uniformly in 6 € ©oNR and P € Po; (v) kny/Gn log?(n)7, =
0(1)7 and Cn(knjn log(n)/\/ﬁ + \/j_nTN) - O(Tn)'

The boundedness of ¥(g,-) on  ensures T;f) (as in (31)) is continuous, while As-
sumption 4.4(ii) allows us to apply Lemma 4.1. Assumption 4.4(iii) is a low level suf-
ficient condition for verifying the bootstrap coupling requirement of Assumption 3.11.
These rate requirements could be improved under smoothness conditions on Fp(c,|-).
Finally, Assumption 4.4(iv) imposes a mild requirement on the sieve, while Assumption
4.4(v) states conditions on 7, and r, — note 7, = 0 and r, = 400 are always valid,

though such choices can lead to lower local power against certain alternatives.

Our final result obtains a coupling for our bootstrap approximations.

Theorem 4.2. Let the conditions of Theorem 4.1 hold and Assumption 4./ be satis-
fied. Then: there are sequences €y, 2 | 0 satisfying knv/jnlog(n)/v/mn = o(by A L2) and
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kn/Gn log?(n) (£, V %) = o(1) such that uniformly in P € Py

Un(R| + 00) > Up(R|ln) + op(an)
Un(R| + 00) — Un(©| + 00) > UL (R|tn) — Ub(O|€2) + op(an).

In particular, since the conditions on ¢,, and ¢}, imposed in Theorems 4.1 and 4.2 are
the same, it follows that we may employ the quantiles of U, (R|+ co) and U,,(R| + co) —

A

Un(©] + o0) conditional on the data as critical values for I,,(R) and I,,(R) — I,(©).

5 Simulation Evidence

To conclude, we study the finite sample performance of our inference procedure by

revisiting the simulation design in Chetverikov and Wilhelm (2017).

5.1 Identified Model

We first consider a nonparametric instrumental variable model in which, for some un-
known function g, the distribution of (Y, W, Z) € R3 satisfies the restriction

Y =0o(W)+e  Ele|Z] =0; (36)

see Appendix A.2 for a formal study of this model. Following Chetverikov and Wilhelm
(2017), we set fp(w) = 0.2w +w? and for (e, (,v) independent standard normal random
variables we let Z = ®(¢), W = ®(0.3¢++/1 — (0.3)2¢), and £ = (0.3¢++/1 — (0.3)2v)/2
for ® the cumulative distribution function of a standard normal. All reported results

are based on five thousand replications employing five hundred bootstrap draws each.

In what follows, we utilize the restriction Yr(6p) = 0 to impose a hypothesized
value on the the level or the derivative of 8y at the point wy = 0.5 and use T(0y) < 0
to impose that 6y be either monotonically increasing or monotonically increasing and
convex. We employ the test statistic I,(R) — I,,(©) with p = 2 and %, an estimate
of the optimal weighting matrix based on a first stage unconstrained estimator. The
implementation of the test is similar to that of the linear model of Section 2.1, with
the difference that we must select the sieve ©,, = {p//3 : 3 € RI»} and ¢*~. We fol-
low Chetverikov and Wilhelm (2017) in employing continuously differentiable piecewise

quadratic splines with equally spaced knots for both p/» and ¢*».

In computing critical values we set £, = +00 since the model is linear and 7, = 0
since the model is identified. We select r, by proceeding as in Section 2.1. Specifically,

the choice of sieve implies that, for any # = p/»' 3, the restriction T (#) < 0 is equivalent
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Imposed: Mon. Imposed: Mon.+ Conv.

Level Derivative Level Derivative

Tn/(jn7 kn) (4a4) (4a6) (4a4) (476) (474) (476) (474) (476)

s 1.90 1.72 1.88 2.02 144 152 274 2.84

95% 1.74 1.68 1.90 2.08 146 154 268 284

n = 500 50% 1.74 1.70 1.90 2.10 146 154 268 284
5% 2.18 2.90 2.20 2.96 1.52 182 2.74 298

0 530 5.10 4.62 4.48 5.42 536 5.08 4.84

0 1.56 1.82 168 1.94 140 154 226 2.32

95% 1.52 1.84 1.64 1.86 1.36 144 2.04 2.26

n = 1000 50% 1.52 1.8 1.64 1.86 1.36 144 2.04 2.26
5% 2.02 2.84 2.06 3.06 144 186 2.14 2.38

0 4.54 456 4.58 4.68 4.62 4.78 4.38 4.20

00 1.34 1.58 1.26 1.52 1.04 136 1.36 1.58

95% 1.40 150 1.32 1.62 1.06 142 136 1.62

n = 5000 50% 142 1.52 1.32 1.62 1.06 142 136 1.62
5% 220 3.62 236 3.36 142 238 146 1.86

0 3.98 456 4.68 4.50 4.10 4.74 398 4.06

Table 2: Empirical rejection probabilities for 5%-level tests based on I,(R) — I,(©).
Value of r, set to a percentile corresponds to choice of 1 — 7, in (37).

to GB < 0 for a known matrix G. For p/»/3" the minimizer of I,(©) and p/»/35* its

score bootstrap analogue (Kline and Santos, 2012), we therefore set r,, to satisfy
P(max Gi{BY = B} <ral{ViYie) = 1= (37)

where v, € (0,1) and the vectors G; € R/" depend on the shape restriction being
imposed. We emphasize that the sequence 7, must tend to zero in order for r, to satisfy
our assumptions. Finally, we employ the minimizer of I,,(R) in obtaining bootstrap
draws for both U, (R| + c0) and U, (O] + c0); see discussion following Corollary 3.2.

Table 2 reports empirical rejection probabilities under the null hypothesis for 5%-
level tests on the derivative and level of 6y at wy = 0.5 under different shape restrictions.
With regards to r,, we examine the extreme possible values (0 and oo) and choices
corresponding to (37) for different 7,. In accord to theory, which requires 7, | 0, we
find that the rejection probability is no larger than the nominal level except for very
small values of 1 —~,. Overall, we find the general lack of sensitivity to different choices

of bandwidths to be reassuring for empirical practice.

In Figure 3 we report power curves for different 5%-level tests concerning the value
of Ay and its derivative at wy = 0.5. For conciseness, we focus on the sample sizes
n € {1000,5000} and r, chosen as in (37) with 1 — v, = 0.95. The curves labeled
“Mon” and “Mon+Conv” correspond to tests based on I,,(R) — I,,(©) with R imposing

monotonicity and monotonicity and convexity while changing the conjectured value of
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Power Curve for Level: (j,, k) = (4,4), n = 1000 Power Curve for Level: (j,, k,) = (4,6), n = 1000
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Figure 3: Rejection probabilities for 5%-level tests on conjectured value of 6y(0.5) (true
value 0.35) and 6(,(0.5) (true value 1.2). Tests implemented with 1 —~,, = 0.05 in (37).

fp and its derivative at wg = 0.5. The curve labeled “Unres.” corresponds to a Wald
test based on the unrestricted estimator. For all designs we find that imposing shape
restrictions can improve power. The effect of imposing shape restrictions, however,
depend on both the sampling uncertainty and how “close” the shape restrictions are to
binding (Chetverikov et al., 2018). Since our design is fixed with n and 6 is strictly
increasing and convex, in our simulations we see the advantages of imposing shape
restrictions decrease with n as sample uncertainty decreases. Similarly, since estimating
the derivative is a harder than estimating the level, we observe larger power gains when

imposing shape restrictions in the former problem.
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5.2 Partially Identified Model

We next examine the performance of our test in a partially identified setting by dis-
cretizing the simulation design in Chetverikov and Wilhelm (2017). Concretely, we gen-
erate (W, Z,¢) € [0,1)2 x R as in Section 5.1, divide [0,1] into S, and S, equally
spaced segments, and generate dummy variables D,, and D, for the segment to which
W and Z belong — e.g. if (Sy,S,) = (3,2), then D, (W) = (1{W € [0,1/3]}, {W €
(1/3,2/3]}, 1{W € (2/3,1]}) and D.(Z) = (1{Z € [0,1/2]},1{Z € (1/2,1]})’. The
outcome Y is generated according to (36) but employing D,, in place of W.

The discretized design is characterized by S, linear unconditional moment restric-
tions in S, unknowns. For conciseness, we focus on imposing that 6y be monotoni-
cally increasing and convex while conducting inference on the value of 6y at the point
do = Dy (0.5) — e.g, if S, = 3, then dy = (0,1,0). The parameter 6y(dy) is generi-
cally not identified whenever S,, > S, but, as we report in Table 3, imposing a shape
restriction on 6y partially identifies 6y(dp). A similar setting was previously studied by
Freyberger and Horowitz (2015) who develop confidence regions for parameters such as
0o(dp). Their leading procedure is computationally simpler than ours, but can suffer

from size distortions, for example, when the identified set for 6y(dy) is “small.”

(Sw, S2)
Restriction on 6 (3,2) (4,2) (3,2)
Mon.+Convex [0.059, 0.252] [0.100, 0.412] [0.310, 0.388]
No Restriction (=00, +00) (=00, +00) (—00, +00)

Table 3: Identified sets for 0y(dp) with and without shape restrictions.

We test whether a value A belongs to the identified set for 6y (dy) by setting Y ¢(0) =
0(dy) — A and employ the constraint Y () < 0 to impose that 6 be monotonically
increasing and convex. We base inference on I,,(R) with p = 2, 2, the sample analogue
to E[D,D.], all moment restrictions (k, = S.), and a saturated model for 6y (j, =
Sw)- To compute critical values we set ¢, = +oo and 7,, = 0 — though note @; need
not be a singleton when 7, = 0 because j, > k,. We select r, by modifying the
approach employed in Section 5.1. Specifically, we note that the constraint Y¢(6) < 0
may be written as G6 < 0 for some matrix G, and for % and 6Y the minimizer and
maximizers of 6(dy) over the set of 6 that are monotonically increasing, convex, and

minimize || Y 7 | (Y; — (Dywi))Dzi/n|loc, We set r, according to

P(maxmax{G; (0" —07), G (6, —;))} < rul{Vi}iy) = 1 = 7, (38)
J

where éﬁ* and éf{ * are again computed employing the score bootstrap. As in our previous

analysis, =, must tend to zero with n in order for r,, to satisfy our assumptions.
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Lower Endpoint Midpoint Upper Endpoint

(SUHSZ) (SUHSZ) (SUHSZ)
T'n (32) (42) (43) (32) (42) (43) (32) (42) (43)
00 1.96 3.34 148 0.10 0.02 1.48 1.88 3.10 2.00

95% 3.64 470 1.46 0.10 0.02 1.46 226 312 1.98
n =500 50% 5.34 524 1.46 0.50 0.06 1.50 5.22  5.02 2.04

5% 5.36 5.24 3.56 0.50 0.06 3.44 5.24 5.02 3.54
0 5.34 526 4.64 0.50 0.06 4.48 5.24 516 4.60
00 1.84 3.06 1.12 0.00 0.00 1.10 1.96 290 1.34

95% 498 484 1.12 0.02 0.00 1.08 298 290 134
n = 1000 50% 5.10 4.88 1.20 0.12 0.00 1.14 5.00 4.86 1.44

5% 5.10 4.88 3.48 0.12 0.00 3.12 5.00 4.86 2.78

0 5.28 4.88 4.42 0.08 0.00 4.14 5.10 4.86 3.82

00 1.98 440 1.34 0.00 0.00 1.22 1.98 280 1.36

95% 5.08 6.76 1.34 0.00 0.00 1.26 4.56 486 1.34

n = 5000 50% 5.08 830 1.48 0.00 0.00 1.44 4.58 484 1.52
5% 5.08 9.00 4.28 0.00 0.00 4.14 4.58 484 3.58

0 496 884 4.70 0.00 0.00 4.38 4.64 5.02 4.46

Table 4: Empirical rejection probabilities for 5%-level tests based on I,,(R) for different
points in the null hypothesis. Lower and upper endpoints correspond to Table 3.

Table 4 reports empirical rejection rates for testing whether A belongs to the identi-
fied set, with the lower and upper endpoint columns corresponding to setting A to equal
the lower and upper endpoints in Table 3. All tests are conducted at a 5% nominal
level. Across designs, we find that setting 7, = 400 always delivers tests with rejection
probabilities below their nominal level. Setting 7, according to (38) with 1 —~,, = 0.95
also delivers adequate size control, with the exception of n = 5000 and (S, S.) = (4,2)
where we see a modest over-rejection at the lower endpoint of the identified set. Overall,

the degree of sensitivity to the choice of r,, is similar to that found in Section 5.1.
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A.1 AM Spaces

We provide a brief introduction to AM spaces and refer the reader to Chapters 8 and 9
of Aliprantis and Border (2006) for a more detailed exposition. Before proceeding, we

first recall the definitions of a partially ordered set and a lattice.

Definition A.1.1. A partially ordered set (G,>) is a set G with a partial order rela-
tionship > defined on it —i.e. > is a transitive (x > y and y > z implies z > z), reflexive

(x > z), and antisymmetric (x > y implies the negation of y > x) relation. m

Definition A.1.2. A lattice is a partially ordered set (G, >) such that any pair z,y € G
has a least upper bound (denoted = V y) and a greatest lower bound (denoted x A y). ®

Whenever G is both a vector space and a lattice, it is possible to define objects that
depend on both the vector space and lattice operations. In particular, for x € G we
define the positive part 27 = z Vv 0, the negative part = = (—x) V 0, and the absolute
value |x| = x V (—x). It is also natural to demand that the order relation > interact

with the algebraic operations in a manner analogous to that of R — i.e. to have

x > y implies x + z > y + z for each z € G (A1)

x > y implies ax > ay foreach 0 < a € R . (A.2)

A complete normed vector space that shares these familiar properties of R under a given

order relation > is referred to as a Banach lattice. Formally, we define:

Definition A.1.3. A Banach space G with norm || - ||g is a Banach lattice if (i) G is
a lattice under >, (ii) ||z]lg < ||yl when |z| < |y|, (iii) (A.1) and (A.2) hold. m

An AM space is a Banach lattice in which the maximum of the norms of any two

positive elements is equal to the norm of the maximums of the two elements.

Definition A.1.4. A Banach lattice G is called an AM space if for any elements 0 <
z,y € G it follows that ||z V y||c = max{||z|q, ||ly||c}. ®

In certain Banach lattices there may exist an element 1g > 0 called an order unit

such that for any = € G there exists a 0 < A € R for which |z| < A1g — for example, in

R¢ the vector (1,...,1) is an order unit. The order unit 1g can be used to define
|z]|oo = inf{A > 0: |z| < A\1g}, (A.3)
which is a norm on G. In principle, || - ||« need not be related to the original norm

|- [|c. However, if G is an AM space, then || - ||g and || - ||« are equivalent in that they
generate the same topology. Hence, we refer to G as an AM space with unit 1g if: (i)

G is an AM space, (ii) 1g is an order unit in G, and (iii) The norm of G equals || - ||oo-
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A.2 Tllustrative Examples

In this Section, we examine special cases of our general analysis and illustrate both how

to implement our procedure and verify the assumptions in the main text.

A.2.1 Generalized Method of Moments

Our first example concerns the generalized method of moments (GMM) model of Hansen

(1982). We assume the parameter of interest 6y is identified as the unique solution to
Ep[p(X,00)] = 0, (A4)

where X € X is distributed according to P € P and p : X x © — RY. This model
maps into our general framework by letting Z, = 1 for all 1 < 3 < J. Moreover, since

we have assumed 6 is identified, the hypothesis testing problem simplifies to

Hy:0peR H1190¢R.

The set R is, as in the main text, defined by equality and inequality restrictions. In

particular, for known functions Tp : R% — R and T¢ : R% — R% we set
R={0cR¥% :Yp(h) =0 and Yg(f) <0}. (A.5)

To verify Assumptions 3.1(ii)(iii), note R? is a Banach space under any norm | - ||, with
1 < p < o0, so for concreteness we set B=R% F=R%» and |-|g=|" llr =" |2

The space R? is in addition a lattice under the standard pointwise partial order
a <bifand only if a; < b; forall 1 <i¢<d (A.6)
for any (ay,...,aq) = a and (by,...,by)" = bin RY, while the least upper bound equals
a Vb= (max{ay, b1 },..., max{aq,bq})"

The vector (1,...,1)" is an order unit in R? under the partial order in (A.6). As discussed

in Section A.1 of this Supplemental Appendix, the order unit induces the norm

{infA>0:a| <A(1,...,1)'} = max |a,,

1<i<d
which corresponds to the usual || - [l norm on R Hence, by setting G = R%,
'l = || lloo, and 1g = (1,...,1)" we verify the requirements of Assumption 3.1(ii)(iii).

Since the parameter space O is finite dimensional and all moment restrictions are
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unconditional, we may set ©,, = © and k, = J for all n. We base our test statistic on

quadratic forms in the moments (p = 2), which implies @, (6) is given by
1 n
Qn(0) = Hzn{ﬁ > p(Xi,60)} |2
i=1

In what follows, we consider tests based on both the un-centered statistic I,,(R) and the

re-centered statistic I,,(R) — I,,(©). To this end, we impose the following:

Assumption A.2.1. (i) {X;} is i.4.d. with X; ~ P € P; (ii) For each P € Py there

exists a unique Oy € © solving (A.4); (iii) © is convex and compact.

Assumption A.2.2. (i) The function p(z,-) : © — R is twice differentiable for all

x; (i) Eplsupgee lp(X,0)|[3], Er[supgee [ Vor(X,0)lI22), Erlsupgee [IV50,(X, 0)[155]
are finite and bounded uniformly in P € P for some § > 0.

Assumption A.2.3. (l) infpepo infge@:||9_90||226 HEP[[)(X, 6)]”2 > 0 for all e > 0O; (M)
The singular values of Ep[Vep(X,0p)] are bounded away from zero in P € Py.

Assumption A.2.4. (i) |%, — plo2 = Op(n=2) uniformly in P € P; (i) Xp is
invertible and |2 p|lo2 and |Ept|02 are bounded uniformly in P € P.

In Assumption A.2.2 we focus on differentiable moments for simplicity. Assumption
A.2.3 essentially imposes strong identification of fy and hence guarantees that 6y can
be consistently estimated uniformly in P € Py — recall that 6y depends on P through
(A.4), though the dependence is left implicit in the notation. Finally, Assumption A.2.4

states the requirements on the J x J weighting matrix 3,,.

In what follows, we set the local parameter spaces V,,(6, R|¢) and V,,(0, ©|¢) to equal

Va0, RI() ={h e R¥ : 0+ h/\/n e ©NR and |h/\/n|jz < £}
Vn(0,010) ={h e R% : 0+ h/\/n € © and ||h/v/n|2 < ¢}.

Setting Dp(0g)[h] = Ep[Vep(X,6p)]h and letting Wp(6y) ~ N(0, Varp{p(X,6p)}) we
then denote the variables to which I,,(R) and I,,(©) will be coupled to by

Up(R|Y,) = inf Wp (6 Dp(8g)[h
PRIG)= it W) + Dp00) Al
Up(B|t,) =

inf Wp(6 Dp(6y)lh .
hevﬂz&elzn)\l p(0o) +Dp(o)[h]sp 2

Our distributional approximations follow immediately from Theorem 3.1(ii).

Theorem A.2.1. Let Assumptions A.2.1, A.2.2, A.2.3, and A.2.J hold, Tr and Y¢g
1
be continuous, and set a, = +/log(n)/n™+3% . Then: For any l,, 0 | O satisfying
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(U V £2)\/Tog(1/0, V €3) = o(ay) and n~Y% = o(L, V %) we have uniformly in P € Py

In(R) = UP(RMn) + Op(an)
Io(R) — [,(©) = Up(R|f) — Up(O|£%) + op(an).

The rate of coupling a, = +/log(n) /nm obtained in Theorem A.2.1 suffices
for both the empirical process and bootstrap coupling; see Lemmas S.4.12 and S.4.13
in Supplemental Appendix II. While the rate is adequate for our purposes, it can be
improved under additional moment restrictions. Here, we rely in Yurinskii (1977) both to
illustrate the diversity of coupling arguments that can be employed to verify Assumption

3.3(i) and to impose only the weak third moment restriction of Assumption A.2.2(ii).

Our next goal is to obtain bootstrap approximations to the distributions of Up(R|¢;,)
and Up(©|€3). To this end, we write Tr(0) = (Tr1(0),...,Trq.(0)) and Yq(0) =
(Ye1(0),---,Tg,a.(0)), for any e > 0 we define B = Jpcp {0 : |0 —boll2 < €} (where
recall 0y implicitly depends on P through (A.4)), and impose:

Assumption A.2.5. For some € > 0: (i) B C ©; (i) Tp and Y are twice differen-
tiable on B¢; (iii) |[VY r(0)|lo.2 and [[VYc(0)|lo2 are bounded on B; (iv) [|[V*Y 5;(0)]|0.2
is bounded on B for 1 < j <dp; (v) |[V?Y,;(0)]|o2 is bounded on B¢ for 1 < j < dg;
(vi) VY (0) has full row-rank on B€.

Assumption A.2.6. Either (i) Tr : R% — R is affine, or (ii) There is an ¢ > 0 and
M < oo such that the singular values of VY (0) are bounded away from zero uniformly
in 6 € B, and for every P € Py there is an h € N (VY (0y)) with ||h|la < M satisfying
Ya,i(0o) +VYq;(0o)h] < —€ foralll <j<dg.

In order to describe our bootstrap procedure in this application, we let 6,, and ég
denote the minimizers of @),, over ©® N R and © respectively. Employing 6,, and HAE we

obtain estimators for the distribution of Wp(6y) and for Dp(6p) by evaluating

W, (0) = % S wilp(X:0) ~ -3 p(X;,0)) (A7)
i=1 j=1

Ba(6) =~ > Vap(X;,0), (A.8)

i=1

at 6 = 6, and 6 = 0", where recall {w;}?_, is an i.i.d. sample independent of {X;}7_,
with w; ~ N(0,1). We note that because moments are differentiable, we employ an

analytical derivative in (A.8) instead of the numerical derivative studied in Section 3.

With regards to the local parameter space, we note that the construction of Vn(ﬁ, RJ?)

requires the bound K, on the second derivative of Y (as specified in Assumption 3.8).

45



In particular, Assumption A.2.5(v) implies Assumption 3.8 is satisfied with

Ky = max sup IV5c5(0)]lo,2

(see Lemma S.4.14). If an a-priory bound on the second derivative is not available, then

it is also possible to simply substitute K, with the data driven choice

K, = max sup IV5Yc,5(0) 0,2,
1<j<da 0€0:(|0—0,||2<rn

where we discuss the choice of 7, below. Given K, (or Kg), we set G, (6) to equal

h ) < max{Y;(0) -

h
—= Kgrn|l—=ll2,
\/ﬁ g,r”\/ﬁ‘b

In this application we may additionally specify £,, to be infinite, and hence we set

Gn(0) ={h e R : Y, (0 + —rp} for all j}

Vo(0,R|+00) ={h e R% : h € G, (0) and Tp(6 + %) = 0}.

The approximations to the distributions of I,,(R) and I,,(©) are then given by the
laws of Uy, (R| + oo) and U, (0| 4 co) conditional on the data, where

Un(R|+00)=  inf Wi () + ]ﬁ)n(én)[h]”zn,z
heVi (0n,R|+00)

Un(©] +00) = inf W, (607) +Dn(03) (1], »
heR%0

The validity of these distributional approximations follows from Theorem 3.2.

Theorem A.2.2. Let Assumptzons A 9 1, A.2.2, A.2.3, A.2./, A.2.5, and A.2.6 hold,
set an = \/W/n 1°+5d0 and let n=/* = o(rn) Then: there are sequences £y, £y | 0
satisfying (£n V £2)24/log( 1/ (bn VL)) = o(apn™ 2), by, = o(ry), and n"z = oy, NCY)
for which it follows uniformly in P € Py that

ﬁn(R\ +00) >
Up(R| + 00) — Upn(©] + o0) >

Up(R|n) + op(an)
Up(R|tn) — Up(O[£) + op(an).

Crucially, note that any sequences ¢, and ¢}, satisfying the conditions of Theorem
A.2.2 also satisfy the conditions of Theorem A.2.1. Therefore, Theorems A.2.2 and A.2.1
together establish the validity of employing the laws of U,(R| + 00) and U,(0] + c0)
conditional on the data to approximate the laws of I,,(R) and [,,(©). In particular, for

a level a test we may compare the test statistic I,,(R) to the critical value

G1-a(Un(R| +00)) = inf{c: P(Un(R| + 00) < c{Xi}1y) 2 1~ a}.
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Similarly, for the re-centered statistic I,,(R) — 1,,(©), valid critical values are given by:

G1-a(Un(R| 4 00) — Un (8] + 00))
= inf{c: P(Up(R| + 00) — Up(©] + 0) < c[{X;};) > 1 —a}.

These approximations are valid under the requirement that r, satisfy r,/n — oco.
Intuitively, the bandwidth 7,, is meant to reflect a bound on the distance between én
and 6y. For a data driven choice of r, we may therefore employ a bootstrap estimate
of an upper quantile of the distribution of the unconstrained estimator. Specifically, for

633* the bootstrapped version of HAE, we may set 7, to be given by
P = inf{c: P(|0p* = Ol < cl{Xi}i)} > 1=

for 7, — 0 as the sample size n tends to infinity, and employ 7, in place of 7.

A.2.2 Consumer Demand

We base our next example on a long-standing literature aiming to replace paramet-
ric assumptions with shape restrictions implied by economic theory (Matzkin, 1994).

Specifically, suppose that quantity demanded by individual ¢, denoted Q);, satisfies
Qi = 90(S:, Ys) + Wio + Ui,

where S; € R, denotes price, ¥; € R, denotes income, and W; € R% is a set of

covariates. In addition, we assume there is an instrument Z; yielding the restriction
Ep|Q — 90(S,Y) = W'x|Z] = 0. (A.9)

For instance, under exogeneity of prices we may let Z = (S, Y, W’)" as in Blundell et al.
(2012). Alternatively, if there is a concern that prices are endogenous, then we may set
Z = (1,Y,W') for I an instrument for S, as in Blundell et al. (2017).

Our goal is to conduct inference on the level of demand at particular price income

pair (so,yo) while imposing that the function gy satisfies the Slutsky restriction

0 0
_ + — <0. A.
8890(3731) go(say)aygo(&y) <0 (A.10)

To map this problem into our framework, we assume that for some set 2, (S,Y) € Q C

Ri with probability one for all P € P and impose that gy € C5(f2), where

CE() ={g9: Q2= Rst [|gllme <00} [|gllmeo = sup sup [V(s,y)l.
0<a<m (s,y)eQ
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Since 6y = (go,Y0) with 70 € R%, we set B = CL(Q) x R% and for any (¢,7) =6 € B
let |08 = max{||g||1,00, [|7]]2}. We also note that X = (Q,S,Y,W) and

p(X, 6) =Q— g(S7Y) - WIV' (A'll)

We will assume 6y = (go,70) is identified by (A.9). Hence, we can think of 6y as a

function of P through (A.9), though we leave such dependence implicit in the notation.

In order to impose the Slutsky restriction in (A.10) we let G = C%(Q) and || - [|g =
|| - lloo, where with some abuse of notation we write || - || in place of || - ||o,co. The space

C%(9) is a Banach lattice under the standard pointwise ordering given by
a < b if and only if a(s,y) < b(s,y) for all (s,y) € Q (A.12)

for any a,b € C%(2). The constant function ¢ € C%(Q) satisfying c(s,y) = 1 for all

(s,y) € Q is an order unit under the partial ordering in (A.12). Its induced norm is

{infA >0:|a| < Ac} = sup la(s,y)l,
(s,y)e

which coincides with the norm ||+ || on C%(€2), and we therefore set 1g = ¢. To encode

the Slutsky restriction in (A.10) we then let the map T : B — G equal

Tc(0)(s,y) = %g(s,y) + g(s7y)a%g(s7y) (A.13)

for any 0 = (g,7v) € B. Finally, to test whether the level of demand at a prescribed

price sg and income yy equals a hypothesized value ¢, we set F =R, || - ||r = |- |, and
Yr(0) = g(s0,50) — co (A.14)

for any 0 = (g,7) € B. By setting R = {# € B : T¢(0) < 0and Yp(d) = 0} and

conducting test inversion (over different values of ¢g) of the null hypothesis
Hy:0p€ R H1290¢R

we may obtain a confidence region for the level of demand at price sy and income .

We set the parameter space to be a ball in B under || - ||g by letting © be equal to
O = {(9.7) € CH(Q) x R™ : |lg|l1,00 < Cp and |72 < Co} (A.15)

for some Cy < co. Given a sequence of approximating functions {pj}g’;l, we then let

P’ (s,y) = (p1(s,v), ..., pj.(s,y)) and set the sieve ©,, to equal

On = {(P"'B,7) : |IP""Bll1,00 < Co and ||7]l2 < Co}-
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Similarly, for a sequence {qzc}’,iil of transformations of the conditioning variable Z, we

let ¢*(2) = (q1(2), ..., qx,(2)). We base our test statistic on the quadratic forms
= IS Z 9(55Y5) = Wia™ (Z)Hla

for some k,, X k, weighting matrix 3, and every (g,7) = 0 € ©. The statistics I,(R)
and I,(0) simply equal the minimums of /nQ,(6) over ©, N R and ©,, respectively.

The next assumptions suffice for obtaining a strong approximation. In their state-

ment, the notation sing{ A} denotes the smallest singular value of a matrix A.

Assumption A.2.7. (i) {X;, Z;}!' | isi.i.d. with (X, Z) distributed according to P € P;
(ii) For © as in (A.15) and each P € Pq there exists a unique 0y € O satisfying
Ep[p(X,00)|Z] = 0; (iii) The support of (Q,W) is bounded uniformly in P € P.

Assumption A.2.8. (i) sup(,,) [P (5,9)ll> S Vin: (id) sup(s) [ap’ (s, 9)l2 < i
for a € {s,y}; (iii) The eigenvalues of Ep[p’"(S,Y)p’(S,Y)'] are bounded away from
zero and infinity uniformly in P € P and j,; (iv) For each P € Py there is a I1,,6p =

(9:70) € O N R with suppep, [ Epl(g0(S.Y) = ga(S,Y))a" (2)]]2 = o((nlog(n))~/2).

Assumption A.2.9. (i) maxi<p<i, |qklloco S VEn; (i) Eplg* (Z)q" (Z)'] has eigenval-

ues bounded uniformly in P € P, ky; (iii) s, = inf pep sing{ Ep|¢*(Z)(p'(S,Y) W")]}

satisfies 0 < s, = O(1); (iv) j2k31log3(n) = o(n) and k2j,log®?(1 + ky)/(snv/n)(1 V
log(snv/n/kn)) = o(log(n))~/?).

Assumption A.2.10. (i) |2, —2pllo2 = 0p((kny/Gn log®?(n)) =) uniformly in P € P;
(ii) Sp is invertible and |Spllo2 and |25 |o2 are bounded in P € P and k.

Assumption A.2.7(iii) requires (Q, W) to be bounded, which enables us to apply
the recent coupling results by Zhai (2018). Alternatively, Assumption A.2.7(iii) can
be relaxed under appropriate tail conditions. Assumptions A.2.8(i)-(iii) are standard
requirements on O, that can be satisfied by, e.g., tensor product wavelets or B-splines
(Newey, 1997; Chen, 2007; Belloni et al., 2015; Chen and Christensen, 2018). Assump-
tion A.2.8(iv) pertains the approximating requirements on the sieve; see Remarks A.2.1
and A.2.2 below. In turn, Assumption A.2.9(i)(ii) imposes standard requirements on
{Qk}gil- Assumption A.2.9(iii)(iv) contains the required rate conditions, which are gov-
erned by s, — a parameter that is proportional to v, ! (as in Assumption 3.4) and is
closely linked the degree of ill-posedness; see Remark A.2.2 below. Finally, Assumption
A.2.10 states the conditions on the weighting matrix 3,,.

In this application, we may set ||0||g = suppep l|gllp2 + [|7|2 for any (g,v) € ©.
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Since in addition any 6 = (g,7) € ©, N R has the structure g = p/»'3, we have

V0,710 = {0 Bnn) g+ Z P i < Comnd [+ <Gy (Ao)
P (s0,90) Br = 0 (A.17)
P B P B P B
38( g+ 7 )+ (g+ NG )a—y(g—i— NG ) <0 (A.18)
sup [P Bullpz + 2 < v/}, (A.19)
PeP

where constraint (A.16) corresponds to (6 4+ h/y/n) € O, constraints (A.17) and (A.18)
impose 0 + h/y/n € R, and constraint (A.19) imposes ||h/y/n|g < ¢. Similarly,

n!
V6,000 = {0 50m) g+ 2P 1o < Coand |y + Lol <Gy (A20)
sup [|p7" Bl 2 + [nllz < v/} (A21)
PcP

Finally, recall that Wp(0) ~ N(0, Varp{p(X,0)¢""(Z)}) and define Dp to be given by

Dplh] = —Eplq"™ (Z)(p" (S, Y ) Bp + W'yn)]

for any h = (p’'Bp,yn). Given these definitions, note that for any ¢,, we have that

Up(R|(,) = inf Wp(IL,,0 Dplh
p(R|ln) hevn(ﬁfeo,men)” p(I1,00) + Dp[h]|lsp 2
UP(@Mn) = inf HWP(HnHO) +DP[h]”2p72-

heV,(11,00,0|4,)

Theorem 3.1(ii) immediately yields the following distributional approximations.

Theorem A.2.3. Let Assumptions A.2.7-A.2.10 hold, and a, = (log(n))~*/2. Then:

for any £, €2 1 0 satisfying kn/Gn 10g(1 + En) (€ V £2)\/10g(v/Gn/ (bn V £2)) = o(ay,) and
kn/jn log(1 + ky,) /sny/n = o(bn, A L3) it follows uniformly in P € Py that

I,(R) = Up(R|¢,) + op(an)
In(R) — In(@) = UP(an) — UP(@M;;) + Op(an).

To obtain bootstrap estimates of the distributional approximations in Theorem A.2.3
we let én and éz denote the minimizers of @), over ©,, N R and ©,, respectively. For

p(+,0) as in (A.11), we approximate the law of Wp(II,,0p) by evaluating

== sz{qkn XZ’H - qun )}’
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at § = 6,, and 6 = 9“ where {w;}?_; is an i.i.d. sample independent of the data satisfying
w; ~ N(0,1). As our estimator for Dp[h], for any h = (p’ B, y4), we let

S Z 0" (Z) (W) + 07 (S:, Vi) Br).

With regards to the local parameter space, we note that in this application Assump-
tions 3.8(i)(ii) are satisfied with Ky = 2 (see Lemma 5.4.20). Therefore, we have

B
Jn

o . . . R .
< maX{gp]"(s,y)'ﬁn +p’"(8,y)’ﬁna—yp’”(s,y)’ﬁ — 21y

LB
\/ﬁ

.00, —rn}}. (A.22)

Gu(0a) = {1+ 507 (5 (B + )+ (5,9 B+ ) S 5,0 B+ 1)

P By
Jn

Moreover, because p(X,-) and Y are linear, we may set ¢,, = 400 and obtain that

Vn(éruR’ + OO) = {h = (pjn/5h7’)/h) the Gn(én) and pjn(507y0)/5h = O}
Given the introduced notation, we define the statistics U,,(R| + o0) and U, (0] 4 c0) by

Un(Rl+00) = inf  [Wn(6a) +Dulh]lly, ,

U, (O] + 00) = inf Wnéz +Duhlle ..
©l+oc)= inf W0 + Bl

We impose one final assumption to establish the validity of the bootstrap. In the
requirements below, it is helpful to recall 6 is implicitly a function of P through (A.9).

Assumption A.2.11. (i) There is an € > 0 such that ||go|l1,00 V [0l < Co — €
for all P € Py; (i) 1,00 = (gn,7) € On N R satisfies ||gn — goll1,00 = o(1) uni-
formly in P € Py; (Z’Z’Z’) The sequence r, | 0 satisfies kpj2/log(1+ ky)/snv/n =
o(rn/+/log(n)); (iv) knjn (En V V1og(kn)) log/*(1 + k,) = o(n'/*/\/log(n)), where
&, = fooo V0og(e,Cp, || - ||2)de and C,, = {5 : Hpj”’BHLOO < Co}.

Assumptions A.2.11(i)(ii) suffice for verifying Assumption 3.12(ii). These require-
ments may be dropped at the expense of modifying Vn(én, R|+00) to reflect the possible
impact of II,,6p being “near” the boundary of ©,,. Assumption A.2.11(iii) imposes the
rate conditions on r,. Finally, Assumption A.2.11(iv) controls the “size” of the set of
coefficients 3 corresponding to elements p’/3 € ©,, and suffices for verifying the boot-
strap coupling requirement of Assumption 3.11. For instance, &, =< ]n/ for tensor prod-
uct B-splines (see Lemma S.4.23), which implies a sufficient condition for Assumption
A.2.11(iv) is that k252 log?(k,) = o(n/log?(n)). The rate requirements for a bootstrap
coupling can be weakened if the test statistic is based on the || - ||oo-norm (see Lemma

S.4.19) or under additional smoothness assumptions (see Theorem S.7.1(ii)).
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Our next result characterizes the properties of the proposed bootstrap statistics.

Theorem A.2.4. Let Assumptions A.2.7, A.2.8, A.2.9, A.2.10, A.2.11 hold, and a,, =
(log(n))~Y2. Then: there are sequences Uy, 0% | 0 satisfying knj2log(1 + ky)/snv/n =
0(ly N, Uy = 0(ry), and kyr/Gnlog(1 4 kp)(bn V £2)\/108(v/Gn/(bn V £2)) = o(ay,) for
which it follows that uniformly in P € Py we have

0n(R‘ +00) = Up(R|ty) + op(an)
Upn(R| 4 00) — U (0| 4 00) > Us(R|l,) — Up(O)02) + op(an).

Importantly, any sequences ¢,, and ¢}, satisfying the requirements of Theorem A.2.4

also satisfy the requirements of Theorem A.2.3. Hence, we may employ
d1a(O0(R| + 50)) = inf{c : P(Un(R] + 00) < cl{Vi},) > 1 - a}

as a critical value for I,(R). Similarly, for the statistic I,,(R) — I,(©) we may employ

G1-a(Un(R| 4 00) — Un (8] + 0))
= inf{c: P(Up(R| + 00) — Up(0] 4+ 00) < c{V;},) > 1 —a}.

Remark A.2.1. Suppose for notational simplicity that there are no covariates W and
let the marginal distribution of (S,Y, Z) be constant in P € P. If Z = (S,Y) (i.e. (S,Y)
is exogenous), we may set ¢"7(Z) = p*»(S,Y) for some k, > j,. The singular value
s, can then be assumed to be bounded away from zero, and a sufficient condition for
Assumption A.2.9(iv) is that k252 log®(n) = o(n). In order to appreciate the content of

Assumption A.2.8(iv), suppose {p; 521 is an orthonormal basis such that
oo
g0 =Y _ Bjp; with |8;] = O(j~7).
j=1

Setting 11 gp = Zﬁil pjBj, we obtain from a standard integral bound for a sum that

k
| | 1 1
IEP[(90(S,Y) — Mgo(S, YD (N3 < = S T T (A.23)
j=jn+1 n n

For instance, if k, — j, = O(1), then the bound in (A.23) is of order 1/j,2ﬂ‘3. Hence,
provided the approximation error by IIlgy and g, (as in Assumption A.2.8(iv)) are
of the same order when gy € R, we obtain that Assumption A.2.8(iv) is equivalent
to \/nlog(n)/jn’ = o(1) when k, — j, = O(1). This approximation requirement is
compatible with the condition k252 log®(n) = o(n) provided v5 > 3. m

Remark A.2.2. Building on Remark A.2.1, suppose again there are no covariates W
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and the marginal distribution of (S,Y, Z) is constant in P € P, but now let (S,Y) be
endogenous. A standard benchmark for nonparametric models with endogeneity is to
assume the operator g — Ep[g(S,Y)|Z] is compact, in which case there are orthonormal

sequences of functions {¢;}32; of (S,Y) and {4;}32, of Z satisfying

Ep[¢;(S,Y)|Z] = \jy;(2) Ep[;(Z)|S,Y] = Xj$;(S,Y)

where A\; > 0 tends to zero. In addition suppose go admits for an expansion satisfying

g0 =Y Bj¢; with |B;| = O(j ),

j=1

and let p’m = (¢1,...,¢5,) s ¢ = (Y1,...,¢y,) with k, > j, and k, — j, = O(1),
and set I gy = Z;’;l ¢jB;. Provided the approximation error of II} gy and g, (as in
Assumption A.2.8(iv)) are of the same order when gy € R, we then obtain

kn < )‘jn
1EP[(90(S,Y) = gn(S,Y))d™ (Z2)]ll2 S =5

n

I as in Assumption 3.4,

Moreover, direct calculation shows s,,, which is proportional to v,
satisfies s, = A;, and hence equals the reciprocal of the sieve measure of ill-posedness
(Blundell et al., 2007). It follows that if A\; < 777, and vg > 3, then Assumptions
A.2.8(iv) and A.2.9(iv) can be satisfied by setting j, =< n” with (vx +75)7! < 2k <
(3+ )"t and ky, — j, = O(1). Alternatively, if A\; = exp{—y,j}, then Assumption
A.2.8(iv) and A.2.9(iv) can be satisfied when vg > 4 by setting, for example, j, =

(log(n) — klog(log(n)))/2yx with 7 < k <2y — 1 and k,, — j, = O(1). m

A.2.3 Quantile Treatment Effects

For our next example, we study a nonparametric quantile treatment effect (QTE) model.
Specifically, for an outcome Y € R, treatment D € [0,1], instrument Z € R, and

quantile 7 € (0,1), we assume the parameter of interest 6 satisfies
P(Y <00(D)|Z) =T. (A.24)

If D is randomly assigned, then we may set D = Z and interpret V) as the 7" quantile
treatment effect (QTE). Alternatively, if D # Z, then we obtain the QTE model of
Chernozhukov and Hansen (2005). To map (A.24) into our framework, we set

p(X,0) = 1{Y < 0(D)} -, (A.25)

where X = (Y, D) € X =R x [0,1]. In order to illustrate our conditions in a number

of different settings, we focus on conducting inference on a nonlinear function of 6.

93



Specifically, we conduct inference on the variance of the quantile treatment effects:

1 1
/ (VOo(u))*du — (/ V0o (u)du)?
0 0

while imposing that the QTE be increasing in treatment intensity (i.e. d — Véy(d) is

increasing). To map this problem into our framework we define

CE([0,1]) ={6:10,1] = R s.t. [|0]m,c0 < 00} 10]lm,co = sup sup [V*(d)],
0<a<m de[0,1]

and set B = C%([0,1]) and || - ||B = || - ||2,00- We impose the restriction that the quantile
treatment effect be increasing in the intensity of treatment by letting G = C%([0, 1]),
|- llea = llo (where we write || - ||oo in place of || - ||0,~c), and defining

Ta(0) = —V26. (A.26)

As shown in Section A.2.2, G is a lattice with order unit 1¢ = c for ¢ the constant
function c(d) =1 for all d € [0, 1]. Setting F = R with || - ||[r = | - |, we test whether the

variance of the quantile treatment effects equals a hypothesized value A # 0 by setting
1 1

Tr(6) :/ (VO (u))*du — (/ VO (u)du)* — \. (A.27)
0 0

For the parameter space for 6y we employ a ball in B and we thus set © to equal

0 = {0 € C3([0,1]) s.t. [|0]2.00 < Co} (A.28)

for some Cy < co. For a sequence of approximating functions {pj};:';l defined on [0, 1]
we then let p/»(d) = (p1(d), ..., pj,(d))" and define ©,, to equal

O, = {8 € C5((0,1]) : [P Bll2,00 < Co}- (A.29)

Similarly for a sequence {Qk}:lp we set ¢ (2) = (q1(2), ..., qx,(2)) and define
N
Qn(0) = [1Zn{= > (1{Yi <0(Di)} = 7)a" (Z)}
i=1

for some 2 < p < oo and weighting matrix 3,. The statistics I,,(R) and I,,(©) then
equal the minimums of /n@,, over ©,, N R and ©,, respectively.

In what follows, we will assume for simplicity that 6y is identified. As a result, we
may think of ) as a function of P through (A.24), though we leave such dependence

implicit in the notation. We next impose the following assumptions:

Assumption A.2.12. (i) {Y;,D;, Z;}? is i.i.d. with (Y,D,Z) € R x [0,1] x R dis-
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tributed according to P € P; (ii) For © as in (A.28) and each P € Py there exists a
unique 6y € O satisfying (A.24); (iii) The distribution of Y conditional on (D, Z) is ab-
solutely continuous with density fy|pz p(:|D, Z) that is bounded and Lipschitz uniformly
in (D,Z) and P € P; (iv) Assumptions S.6.1 and S5.6.2 hold.

Assumption A.2.13. (i) sup, |[p""(d)|l2 < Vin; (ii) Ep[p’(D)p’»(D)'] has eigenval-
ues bounded away from zero and infinity uniformly in P € P and j,; (iii) For each
P € Py there is a 1,00 € ©, N R satisfying suppep, [|Ep[(1{Y < 11,00(D)} — 1{Y <
00(D)})g* (2)]ll, = O((nlog(n))~/?) and suppep, (160 — Lnboll1,00 = o(1).

Assumption A.2.14. (i) infpep, infyce.|g—g,|, ..>c EP[(P(Y < 0(D)|Z) —7)2] > 0 for
every € > 0; (i) There are € and s, > 0 satisfying for all P € Py and ||§ —1I1,,00||1,00 < €,
S < sing{Eplfy|p £ (0(D)|D, Z)¢* (Z)p (DY)} and s, = O(1).

Assumption A.2.15. (i) maxi<g<k, ||qkllco = O(1); (1) maxi<p<i, ||qkll1,00 = O(kn);
(i1i) Ep[q™ (Z2)q*(Z)'] has eigenvalues bounded away from zero and infinity uniformly
in P € P and ky; (i) For each 6 € © there is a m,(0) € RF» with Ep[(Ep[p(X,0)|Z] —
" (2)' 7 (0))%] = o(1) uniformly in P € P and § € ©; (v) k}z/pmlog3/2(n)(n1/6 v
kn) /03 = 0(1) and jn log®2(1 + kn)EZPT2 s, /0 = o((log(n))~2).

Assumption A.2.16. (i) |2, — Zpllop = OP((k‘,l@/p log(n))~') uniformly in P € P; (ii)
Sp is invertible and ||Xpllop and |5 |op are bounded in P € P and ky,.

Assumption A.2.12 imposes regularity conditions on the distribution P that enable
us to apply the empirical process coupling results of Appendix S.6. Assumption A.2.13
states the requirements on ©,,, including demanding an asymptotically negligible bias
in Assumption A.2.13(iii). Assumption A.2.14(i) holds pointwise in P € Py due to ©
being compact under || - ||1,00, and hence the uniformity in P € Py demanded by As-
sumption A.2.14(i) corresponds to imposing strong identification. Assumption A.2.14(ii)
enables us to obtain a uniform rate of convergence under || - ||g = suppcp || - ||p2. As
in Section A.2.2, s, can be shown to be related to the degree of ill-posedness. Assump-
tions A.2.15(i)-(iv) impose conditions on {qk}ill including that they be bounded — this
requirement can be relaxed at the cost of more stringent rate restrictions to ensure a
coupling of the empirical process (see Lemma S.4.28). Finally, Assumption A.2.15(v)

states our rate restrictions, which we note are easier to satisfy for higher values of p.
For any § = p/»'3 € ©,, N R, in this application the local parameter space equals

h

Va0, RBI€) = {h = pBy 0 + NG

ll2,00 < Co, sup ||h|p2 < 0\/n,
PeP

1 o V) ! o) V) e
| (9000 + T — ([ (o) + Ty <,
2
_ v20(d) - lnd) <Oforallde 0,1}, (A.30)
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where the first two constraints impose that § + h/y/n € 0, and |h/\/n|g < ¢, while
the final two constraints require that 6 + h/y/n € R. Similarly, here

. h
Val6,010) = {h =B 10+ oo

Also recall that Wp(6) ~ N(0, Varp{p(X,0)¢"(Z)}) and for any h = p/*'B, define

< Co and sup [[a]lpz < &/n}.
PeP

Dp(0)[h] = Eplq*(Z) fy|pz,p(0(D)|D, Z)p™" (D) By)- (A.31)

The random variables to which I,,(R) and I,,(©) will be coupled are then given by

Up(R|(,) = inf Wp(IL,,0 Dp(I1,,00) R
p(R|ln) hevn(ﬁfeo,men)” p(I100) + Dp(I1,00)[h]|5p 2
UP(@Mn) = inf HWP(HnHO) —i—DP(Hneo)[h]HZPQ.

heV, (11,00,0|4,)

Our next result obtains distributional approximations by applying Theorem 3.1.

Theorem A.2.5. Let Assumptions A.2.12, A.2.13, A.2.1], A.2.15, and A.2.16 hold,

an = (log(n))~Y2, and €, | 0 satisfy kn/p\/jnﬁn log(1 + ky) log(1/4,) = o((log(n))~1/?)
and 02 \/nj,log(n) = o(1). Then: (i) Uniformly in P € Py it follows that

In(R) < UP(an) + Op(an).

(ii) If in addition kylog(1 + ky)+\/jnlog(n)/s2\/n = o(1), then for any €2 | O satis-
fying kn'® /5l 10g (1 + k) log (1/03) = o((log(n))~ 1/2), (€3)?*v/njnlog(n) = o(1), and
VEnlog(l + ky)/sp/n = o(€2), it follows uniformly in P € Py that

In(R) — In(@) < UP(an) — UP(@M;;) + Op(an).

Theorem A.2.5(i) obtains an upper bound for I,,(R) by relying on Theorem 3.1(i). In
order to approximate the re-centered statistic I,,(R) — I,,(©), we cannot rely on an upper
bound for I,(0) as the resulting approximation could fail to control size. Therefore,
Theorem A.2.5(ii) instead relies on Theorem 3.1(ii). Applying Theorem 3.1(ii), however,
requires an additional rate condition in order to establish the linearization of the moment
conditions is asymptotically valid. We also note that the conclusion of Theorem A.2.5(ii)

in fact holds with equality if 4,, satisfies the same rate restrictions as £..

In order to provide bootstrap estimates for these distributional approximations, we
let 6,, and é; denote minimizers of @,, over ©,, N R and ©,, respectively. Our bootstrap
approximation estimates the law of Wp(6y) and the derivative Dp(6y) by evaluating

——sz{qkn ){Y; < (D)} — 7 ——qu" )({Y; < 0(D;)} —7)}
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| MDi)
\/ﬁ

at 0, and 6. An unappealing feature of D, () is that it is not linear in h, which

D, ( qun )(1{Y; < 0(D;) + }— 1Y <0(Dy)})

complicates computation. Alternatively, a plug-in estimator based on (A.31) could be

used, though at the expense of having to estimate the density fy|pz p-

With regards to the local parameter space, we note that in this application

/ Vzh(d) 29
Gn(0,) = {h =p™'By : O, (d) — 7n < max{—-V<0,(d)V —r,} for all d € [0,1]}.
Employing that || - ||B = || - [[2,00 and the expression for Y in (A.27), we obtain that

Vi Rltn) = {h = 9"'B1+ € Gulf), | laoe < b

L Vh(u) 2 ) Vh(u) 2
/0 (Vi) + P /0 (V8 (u) + o)) = 3},

where /), is chosen to satisfy conditions stated below. The bootstrap statistics Un(RMn)
and U, (0] + oo) for approximating the distributions in Theorem A.2.5 are then

Un(Rlta) = inf Wy (0n) + Dn(Bn)[B]]5, ,
heVn(On,R|Lr)

0u(®] +00) = _int ([ W (63) + D@l
g n h

The following final assumption will enable us to establish bootstrap validity. In the

requirements below, it is helpful to recall 6 is implicitly a function of P through (A.24).
Assumption A.2.17. (i) The functions 6(d) = 1, 6(d) = d? are in B,; (i) ||6y —
IL,60]|2,00 = 0(1) uniformly in P € Py and suppep, ||foll2,00 < Co; (i11) kn satisfies
I PTIP0 — o(n1/?0 ) log(n)); (iv) sup, |[V2p(d )H2 VIVP @l S g (0) st
satisfy k" \/jnln 10g(1 + kn) log(1/0y) = o((log(n))~1/2), 5/2\/m Jsny/n =
o(LAry), and £y (v/Jnnly, +j;’;/2\//<:n log(1 + k:n)/sn = o((log(n))~1/?).

Assumption A.2.17(i) requires that the quadratic functions belong to B,, — a con-

dition that holds if quadratic functions belong to the span of {p;}",. Assumption

1
A.2.17(ii) implies that 6y and its approximation II,60y belong to the 1Jnter10r of ©. As-
sumption A.2.17(iii) enables us to verify the bootstrap coupling requirement of Assump-
tion 3.11 by applying the results in Appendix S.7 to a Haar basis expansion. While con-
dition A.2.17(iii) suffices for verifying Assumption 3.11 in both the endogenous (Z # D)
and exogenous (Z = D) settings, we note that in both cases better rate conditions can be

obtained.! Finally, Assumption A.2.17(iv) ensures S,(B,E) < jg/ 2, while Assumption

!For instance under endogeneity, a better rate could be obtained by conducting a basis expansion
using the tensor product of a Haar Basis for (Y, D) and the functions {gx}},.
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A.2.17(v) imposes the requirements on ¢,, and .

The next theorem establishes the validity of the bootstrap procedure.

Theorem A.2.6. Let Assumptions A.2.12, A.2.13, A.2.1}, A.2.15, A.2.16, and A.2.17
hold and a, = (log(n))~Y2. Then, there is a sequence {, =< {, satisfying

Un(an) > U}S(an) + op(an)

uniformly in P € Pq. (ii) If in addition ky,log(1 + ky)+\/jnlog(n)/s2\/n = o(1), then
for any gﬁ satisfying the conditions of Theorem A.2.5(ii) we have uniformly in P e Py

ﬁn(an) - ﬁn(@’ +00) > U;(R’gn) - UIS(@’ZZ) + op(an).

Theorems A.2.5(i) and A.2.6(i) imply that as critical value for I,,(R) we may employ
‘jl—a(ﬁn(an)) = inf{ec: P(ﬁn(an) <c[{Vitis1) > 1—a}.

If in addition ky,log(1 + ky)v/jnlog(n)/s2v/n = o(1), then Theorems A.2.5(ii) and
A.2.6(ii) imply a valid test can be obtained by rejecting whenever I,,(R) — I,,(©) exceeds

‘jl—a([jn(an)_ﬁn(e"i‘oo)) = inf{e: P(ﬁn(an)_ﬁn(@H‘oo) <c[{Vi}is1) > 1-a}.

Our critical values depend on the choices of r, and ¢,. The slackness parameter
rn, again measures sampling uncertainty in whether constraints “bind.” Following the

discussion in Section 2.1, for ég* a “bootstrap” analogue to HAE, we may thus set
P(ma V03(d) = V82 (d) < ral{Vi}i) = 1=, (A.32)
€
with v, — 0. With regards to ¢,, we note that its main role in this application is to
ensure that Vn(én, R|¢,,) is well approximated by the true local parameter space despite
the nonlinearity of Tz. To this end, the requirements on ¢, imposed in Assumption
A.2.6 ensure v/nly||6,, — IT,60||B = op(a,) uniformly in P € Py. Since |- |8 = || - |[2.00

in this application, we may select £,, in a data driven way by setting it to satisfy

P 2011 d 20u*
(drg[gf]lv n(d) — ()\_fg

for some v, — 0. While we set 7, in (A.32) and (A.33) to be the same, it is worth

noting they could be different. In fact, r, and ¢,, do not “interact” in the requirements

{ViYiz) =1 —m (A.33)

of Assumption A.2.17(v) and, in this sense, can be set independently. We also note that
in settings in which the rate of convergence is sufficiently fast, (A.33) should deliver

a “large” /, in the sense that U,(R|¢,) and U,(R| + oo) are asymptotically equiva-
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lent. Moreover, in applications in which we expect the rate of convergence of 0,, to be

sufficiently fast, we may directly set £, = 400; see Lemma S.3.1.

Remark A.2.3. To illustrate the role of ¢,, it is helpful to conduct a pointwise (in
P) analysis, set p = 2, and connect our assumptions to the literature on estimation of
conditional moment restriction models (Chen and Pouzo, 2012). We follow the literature

in imposing a local curvature assumption, which in our application, corresponds to

IEP[(P(Y < W(D)|Z) = 7)¢" (2)]]2
= |Eplfy|pz,p(0(D)ID, Z)(60(D) — h(D)¢* (Z)]ll2 (A.34)

for all h € ©,, and § € © that are in a neighborhood of fy. We further suppose the
linear operator h +— Ep[fy|pz p(0o(D)|D,Z)h(D)|Z] is compact, in which case there
exist orthonormal bases {1;} and {¢1} and a sequence \; | 0 satisfying

Ep[fyipz,p(0o(D)|D, Z2)$;(D)|Z] = Ajih;(Z). (A.35)

Setting kn Z ]n with kn _jn = O(l), p]n = (¢1,...,¢jn)/, qk" = (7/}17---77/%”)/7 and

M0y = ?7;1 ¢;Bj, we also suppose y admits an expansion
o
0o = Bjb; with |8;| = O(j 7). (A.36)
j=1

Provided that the approximation error of II,,0y (as in Assumption A.2.13(iii)) and I} 6
are of the same order, it then follows from (A.34) and (A.35) that

IEP[(H{Y < a60(D)} — LY < 6o(D)}a™ (2)]]l2 S ;\%Z (A.37)

n

and s, < Aj, — ie. s, is proportional to the reciprocal of the sieve measure of ill-
posedness (Chen and Pouzo, 2012). As a result, if A\; < j77* and 73 > max{5/2,3 —
Ya}, then Theorem A.2.5 may be applied to couple I,(R) by setting j, < n" with
(2(7a +78)) 7! < k < min{(5 + 2v,) 1, 1/6}, while coupling I,,(R) — I,,(©) additionally
requires y3 > 3/2 4+ vy and £ < (3 + 4vy)~!. In contrast, in the severely ill-posed case
in which A\; < exp{—~,j}, the conditions of Theorem A.2.5 for coupling I,,(R) — I,(©)
are not satisfied. However, the conditions for coupling I,,(R) can still be met provided
vs > 4 by setting j, = (log(n) — k(log(log(n))))/2yx with 7 < k < 27y — 1. Thus, while
in the ill-posed case the rate of convergence is too slow to apply Theorem A.2.5(ii),

Theorem A.2.5(i) is still able to deliver a coupling upper bound for suitable ¢,,. m
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S.1 Rate of Convergence

This section contains consistency and rate of convergence results for (:)f1 The assump-
tions in the main text, which are designed to deliver a strong approximation, are stronger
than needed for deriving the results in this section. We therefore next introduce a weaker

set of assumptions that suffice for obtaining a rate of convergence. To this end, we set

Qp(9) = [|Ep[p(X,0) % 4" (2)]lI5p (S.1)
i.e. @p is the population analogue to the criterion function @),. In addition, we define

qu(A,B,| - &) = sup inf |a — bl|e
aeA bEB
(A, B, | - |8) = max{d g(A, B, | - [|&), d u(B, A, | - [|&)},

which constitute the directed Hausdorff and the Hausdorff distance (under ||-||g) between

two sets A and B. Given these definition, we introduce the following requirements:

Assumption S.1.1. (i) There are ky, X k, matrices Sp > 0 with ||, — Xp|lop = op(1)
uniformly in P € P; (ii) [|[Zpllop V 1S5 lop is uniformly bounded in k, and P € P.

Assumption S.1.2. Define the sequence n, = JnBrki/? log(1+ ky)/n. Then: (i)
supgeer, Qp(0) x 120 = 2pllop = Op(nn) uniformly in P € Py; (ii) suppeer, Qp(0) =
infpeo, nr Qr(0) + O(ny) uniformly in P € Py.

Assumption S.1.3. There are sets V,,(P) C O, N R and a sequence {vy}o>, with
vl = 0(1), such that ©F C V,(P) with probability tending to one uniformly in P € Pg

n

and for any 0 € V,(P) and n, = Jank,ll/p\/log(l + k) /n it follows that

v d 1 ({6}.05,. | - &) < {Qp(6) — _inf  Qp(B)} +Om).

0€O,NR

In particular, note Assumption S.1.1 is implied by Assumption 3.7. Similarly, As-
sumption S.1.2 follows from Assumptions 3.7(i) and 3.6(ii), while Assumption S.1.3 will
be verified by relying on Assumptions 3.4(i), 3.4(ii) or 3.12(iii) (depending on the choice
of 7,,), and 3.6(ii). Given these assumptions, we next establish a consistency (Lemma

S.1.1) and rate of convergence results (Theorem S.1.1) for ©%.

Lemma S.1.1. Let Assumptions 3.1(i), 3.2(i)(iii), S.1.1, S.1.2(i), || - ||a be a norm on
B,, and fore >0 let V,(P) ={0 €0, NR: 71{({9}, Obns || - 1la) < €}, and define

S,(e) = inf { inf Qp(0) — inf Qp(0)}.

PcPo 0€(0,NR)\Vn(P) 0€®,NR
(1) If nn V 7 = 0(Sn(€)) for n, = k,l/p«/log(l + kn)JnBn/\/n, then ©F C V,(P) with
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probability tending to one uniformly in P € Py. (ii) If Assumption S.1.2(ii) holds and
N = 0(Ty), then ©F, C (:);"L with probability tending to one uniformly in P € Py.

PRrROOF: For a given € > 0 first notice that by definition of (:)f1 and V,(P) we have

P(d (65,05, 1) > ) SP(_ il QuO) < nf Qu(O)+7) (S2)

for all P € Py. Setting Qp(#) = ||Ep[p(X, 6) *qk"(Z)]HZn , then note that Lemma 5.1.2
and |2, |0, = Op(1) uniformly in P € Py by Lemma S.1.4 allow us to conclude

N

sc@nimvn(r) PO S oo, B (py @ 0) + Op ) (5:3)

uniformly in P € Pg. In addition, by similar arguments we obtain uniformly in P € Py

inf < inf Q : 4
gt Qn(0) < inf  Qp(0) + Op(mm) (S4)

Next note that for any a € R* we have ||Zpall, < [Zp: lopllEnally, and therefore

inf Ip(0) > |ZpS Y inf 0
ee(enr%%)\vn(zs) Qr(6) = [1%p%0 o, Ge(enr%%)\vn(P) @r(6)

> -1 -1 ' .
> ISpS SO+, Qe0))  (55)
by definition of S, (e). Similarly, employing that ||Z,all, < ||2n2;1||0,p\|2pa\|p yields

inf Qp) — |IZpX 7L inf 9
eel@rimRQP( ) — 1Zp2;, HovpeegimQP( )

<SS o — 055123}, it Qr(6). (S6)

For I, the k,, x k, identity matrix, then note that ||I,||,, = 1 implies the bound

112355 op = 1 = IEP55 lop = i llopl < 1(SP = 50)S7 o
<35 lop12P = Sullop = OP(ISP = Ballop), (S.7)

where the final equality holds uniformly in P € Py by Lemma S.1.4. By identical
arguments it follows that [||2,%5 |, — 1| = Op(|%n — Xp|lo,) uniformly in P € Py,
and therefore (S.6), ©f,, € ©, N R, and Assumption S.1.2(i) imply that

i ) _ S < .
eegimeQP(a) 12p2  (lop ee&meQP(e) < Op(mn) (S.8)
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uniformly in P € Py. Therefore, (S.2), (S.3), (S.4), (S.5), and (S.8) yield that

limsup sup P(jH(@fN ons |- lla) > €)

n—oo PePy
< limsup limsup sup P(S,(e) < HEPHO,pHilr_llepM(nn +7,) =0,
Mtoo n—oo PePy
where the equality follows from Lemma S.1.4, Assumption S.1.1(ii), and 1, V 7, =
o(Sn(€)) by hypothesis. Part (i) of the lemma then follows by definition of V,,(P).

In order to establish part (ii) of the lemma, note that the definition of @; implies

PO, CO)>P < inf .
( on = @n) = (Gzlélgn Qn(a) > GegiﬁR Qn((g) + Tn) (S 9)

for all P € Py. Moreover, applying Lemmas S.1.2 and S.1.4 together with ||§]na||p <
12025 lopl|Epall, for any @ € R¥» implies that uniformly in P € Py

sup Qn((g) < sup QP(H) + OP(nn)
ocer,, ocor,,

< Hinzgluo,pgs%p Qp(0) +Op(n,) = inf  Qp(f) + Op(n,), (S.10)
€6q

0€©,NR

n

where the final equality follows from Assumption S.1.2(ii), identical arguments to those
in (S.7) implying |25 lop — 1| = Op(|%n — Xp|lop) uniformly in P € P, and
Assumption S.1.2(i). Similarly, Lemmas S.1.2 and S.1.4, | Zpall, < |Zp2 o plEnallp
for any a € R*», Assumption S.1.2(i), and result (S.7) imply that uniformly in P € Py

inf Q,(0)> inf Qp(0) — .
peil pOn0) 2 inf  Qp(0) = Op(mn)

> HEPi#H;})gEglfORQP(@) —Op(m) = _inf Qp(0) = Op(m). (S.11)

Part (ii) of the lemma thus follows from (S.9), (S.10), (S.11), and 1, = o(7,,). ®

Theorem S.1.1. Let Assumptions 3.1(i), 3.2(i)(iii), S.1.1, 5.1.2, S5.1.3 hold, and

L/p
Ry = v {20V Og(\/ﬁ*’“ )InBn, (5.12)
Then uniformly in P € Py: (i) jH(@;, sl - lE) = Op(Ry + vp1y); and (it)

d (65,05, || - |g) = Op(vnTa) provided Jank,l/p\/log(l + kp)/n = o(m).

PROOF: Let 0y = ki/"\/log(1 + kn)JnBn/vi, 071 = vu(nn + ™), and Qp(0) =
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|Ep[p(X,0) * ¢*"(Z)]||spp- In addition, we define A, = A,1 N Apg N A,z where

Ap = {@Z CVu(P)}
Apz = {3, exists and (|13, [lop V [Znllop V5 lop V 1Sp]lop < B}

. A 1
Ans = { sup Qp(0) x ||X, — Epllop < Bny and [, — Epllop < °B’ (S.13)
0eoy,,

Moreover, note that for any € > 0 and B sufficiently large we can conclude that

limsup sup P(A}) <e (S.14)

n—oo PePy

due to Lemma S.1.4 and Assumptions S.1.1(i), S.1.2(i), and S.1.3. Therefore, we obtain

lim sup sup P(énzH(éz, ons Il - lE) > 2M)

n—oo PePy
< limsup sup P(5n7H((:)fl, Lol ) > 2M5 Ay) 4+ e (S.15)

n—oo PePy

for any M. For each P € Py, next partition V,(P) into subsets S, j(P) defined by
Sug(P) = {0 € Val(P) : 27" < 8, d u({6}. 6%, |- 1) < 2},
Since OF C V,,(P) under A,, it follows from the definition of ©%, and (S.15) that

limsup sup P(5n7H(éfu ons ||+ 1) > 2M)
n—oo PecPy
o0

< limsup su P(  inf n(0) < inf n(0) + 10 A,) +e. (S.16
< n»oopper?o];; (aesn,j(P)Q (0) gt - Q (9) ) (S.16)

Letting Qp(0) = ||Ep[p(X,0) * qk”(Z)]HZn > we then obtain from Lemma 5.1.2 that

inf 0) < inf Qp(0) + |ZnllopZnap < inf Qp(0) + BZ S.17
peinf @n(®) < inf  Qp(O) +[|EnllopZnp < ) nf Qp(O)+BZnp  (S17)
where the final inequality holds under the event A, by (S.13). Moreover, since for any
a € RF» we have ||Zpall, < ||2n2;1||0,p\|2pa\|p, we obtain from ©f, € ©,, N R and the
inequality ||2,25 op < [{Zn — Zp}Ep lop + 1 that under the event A,, we have

. A < 3 -1 i
(oL, QP 0) < 19005 oy, int ()

< {1+ 125 loplEn — Zpllop} _Inf  Qp(6) <

inf 0) + B?n,,. 1
pent @P(O) + B7n. (S.18)

In addition, note that by similar arguments we also obtain from Lemma S.1.2 and
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1Zpall, < |Zp25 opl|Enall, that under the event A,, we must have

inf  Qn(0)> inf  Qp() — |EnllopZn
egéﬂj(P)Q()_GeS}Ej(P)QP() 1Xnllo.p2Zn, P

> [|ZpE on eesinf_(P) Qp(0) — BZ,p. (S.19)
n,J

Next, we note the triangle inequality, ||[(Xp — ﬁ]n)ﬁ]fllep < Hi];lﬂo,pHiln —Xpllop, and
||ZA];1HO7P < B under the event A, by (S.13) yield the inequality

IZpE, op — 12 (I(Ep = Za) 2 Hlop + 1) 1
> —[|(Zp ~ £0)E7 o 2 —BlEn — pllop.  (5:20)

Therefore, combining results (S.19) and (S.20), together with Assumption S.1.3 and the
definition of S, ;(P) we obtain for B sufficiently large that under the event A,, we have

inf )Qn(e) > (1= B|2n = Zpllop) ¥ s dnf . Qp(0) — BZ,p

GGSn,J’(P n,j
. 9i—1
> (1- B, - EPHO,p)(GEi@ImeQP(a) + b — Bnp) — BZ, p
2i—2
> Gei@rifﬂR Qp(e) + v, — B(Zmp + QBﬁn), (821)

where the final inequality follows from ©f,, € ©,, N R and the definition of the evnet A,
in (S.13). Hence, results (S.16), (S.17), (S.18), and (S.21) yield

lim sup lim sup sup P((SnjH(é:p ons |1 - lg) > 2M)
Mtoo n—oo PcPg

00 j—2
< limsup limsup sup Z P( <3B(Bny + Zpp) + n; An) +€
Mtoo  m—00 P€P0j>M VnOn
©° .
< limsup limsup sup Z P2Y™3(n, + 1,) < 3BZ,p) + e, (S.22)

Mtoo n—oo PePy J>M

where in the final inequality we employed that we had defined 0,' = v, (n, + 7).
Therefore, Z, p € R4, Lemma S5.1.2, 7, > 0, and Markov’s inequality yield

o

lim sup lim sup sup Z P2YU=3(n, +1,) < 3BZ, p)

M7Too n—00 PePosz
1/p
~ 1 k) "y/log(1 + ky,)J,B
< lim sup lim sup Z 277 x — & 0g(1 + kn)Jn B =0, (S.23)

where in the final result we employed that 7, = e/ 0og(1 + ky,)J, By, /«/n. The first
claim of the theorem therefore follows from (S.22), (5.23), and € being arbitrary.
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To establish the second claim of the theorem, next define the event A,4 = {©f,, C
©r}. Since jH(G

from Lemma S.1.1(ii) and part (i) of this theorem that

r Qr —
o> Ons |l - [le) = 0 whenever the event A4 occurs, we can conclude

limsup limsup sup P(6,dp (0}, 0%, | - [l&) > 2)
M7Too n—oo PePy

— limsup limsup sup P(6, d g(67, 05, || - &) > 2M) =0, (S.24)
Mtoo n—oo  PePy

and thus the theorem follows from &, = v,,(n, + 7,) and 1, = o(7,,). ®

Corollary S.1.1. If Assumptions 5.1(i), 5.2(i)(iii), 3.5(i), 3.4, 3.6(ii), and 3.7 hold,
then jH(én, O0,: || - lg) = Op(Ry,) uniformly in P € Py.

PrOOF: Follows from Theorem S.1.1(i) applied with 7,, = a,/y/n after noting that
an = o(1) (by Assumption 3.3(i)) implies vpa,/v/n = o(R,) and: (i) Assumption S.1.1
holds by Assumption 3.7; (ii) Assumption S.1.2(i) holds by Assumptions 3.6(ii) and
3.7(1); (iii) Assumption S.1.2(ii) holds by @p () > 0 and Assumption 3.6(ii); and (iv)
Assumption S.1.3 holds with 7,, = a,/+/n by Assumptions 3.4 and 3.6(ii), the triangle
inequality, and infgco,nr Qp(f) < SUPpeery Qp(0) due to ©p, CO, NR. W

Corollary S.1.2. Let Assumptions 3.1(i), 3.2(i)(iii), 3.5(i), 3.4(i), 3.6(ii), 3.7, and
3.12(iii) hold. Then uniformly in P € Pqy: (i) 71{(@;, ons - lE) = OP(Ry, + )
and (ii) dg (0%, 05,1 - |&) = Op(vam,) provided Jankrrll/p\/log(l + kpn)/n = o(m,).

PRrROOF: Follows from Theorem S.1.1 after noting that a,, = o(1) (by Assumption 3.3(i))
implies: (i) Assumption S.1.1 holds by Assumption 3.7; (ii) Assumption S.1.2(i) holds
by Assumptions 3.6(ii) and 3.7(i); (iii) Assumption S.1.2(ii) holds by Qp(6) > 0 and
Assumption 3.6(ii); and (iv) Assumption S.1.3 holds by Assumptions 3.4(i), 3.6(ii),
3.12(iii), the triangle inequality, and Of, C 6, " R. m

Lemma S.1.2. Let Qp(0) = | Ep[p(X, 0)%¢"" (2)lls,,, ,» and Assumptions 3.1(i), 3.2(i),
and 3.2(iit) hold. Then, for each P € P there are random Z, p € Ry with
1Qn(6) = QP (O)] < | Eullop X Zn,p,

for all 6 € ©, N R and in addition suppcp Ep[Z,, p] = O(kryl/p\/log(l + kp)JnBn/v/n).

PROOF: Let G, = {fqr, : f € Fn, 1 <3< Jand1l < k < ky,}. Note that by
Assumption 3.2(1), |lgkllec < By forall 1 <y < J and 1 < k < k,,. Hence, letting
F,, be the envelope for F,, as in Assumption 3.2(iii), it follows that G, = B,F, is an
envelope for G,, satisfying suppep Ep[G2 (V)] < co. Thus, we obtain

sup Ep[sup |— Z g(VIDI < sup Jj([[Gullp2: Gn, | - [p2)  (5.25)
PeP g€Gn PcP
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by Theorem 2.14.2 in van der Vaart and Wellner (1996). Moreover, also notice that
Lemma S.1.3, the change of variables u = ¢/B,,, and B,, > 1 imply

IGrllp,2
Sup Jn(IGullp2, G |l - llp2) < SHP/ \/1 + log(kn N[j(€/ Bn, F, || - || p2))de
0

< (14 +/log(ky))Bn Xsup JnUIFullp2, Fa, || - lp2) = O(\/1og(1 + kn) BnJn), (S.26)

where the final equality follows from Assumption 3.2(iii). Next define Z, p € R4 by

1/p 1 X

P = e 4 %;(Q(Vi) — Eplg(V)])]

and note (S.25) and (S.26) imply suppcp Ep[Z, p] = O(k,l/p\/log(l + kp)BpJn/y/n) as
desired. Moreover, for any § € ©,, N R, the definitions of G, (), G,, and Z, p yield

o 20 lo,
Qn(0) — Qp(0)] < 7n E X |G (0)llp
A 1p A
< Ballop x —= x sup |[—= plg(VIDI = [1Bnllop X Zn.p,
P \/_ gEQn \/_ Z b

which establishes the claim of the lemma. m

Lemma S.1.3. Let {gj}le be functions satisfying maxi<j<yj||gjllcc < C < 00 and
define G, = {fgj: f € Fn, 1 <j < J}. Then for any P it follows that

Ny (€, Gn, | - lp2) < J x Npy(e/C, Fu, |l - [l p2)-

PROOF: First define g;.L =g; V0 and 9; =95 N0, where V and A denote the pointwise

maximums and minimums. If {[f;;, fi.]}i is a collection of brackets for F,, satisfying

/(fi,u — fi)?dP < é (S.27)

for all i, then it follows that the following collection of brackets covers the class G,,:
{lg] fia+ 95 fimr 95 Fin +9f fiul}iy. (S.28)
Moreover, since |g;| = gf —g; by construction, we also obtain from result (5.27) that
/(g;‘rfi,u +g; fig— g fig — 95 fin)*dP = /(fi,u — fi1)?1g;1%dP < €C% (S.29)

Since there are J x Njj(€, Fp, || - || p2) brackets in (S.28), we conclude from (5.29) that
Nij(€,Gn, | - lp2) < J x Njj(e/C, Fu, || - [|p2), which establishes the lemma. m
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Lemma S.1.4. If Assumption S.1.1 holds, then there is a constant B < oo such that

linnlg)réf]_i%% P31 exists and max{||Xn |lop, |25, op} < B) = 1.

PROOF: Recall that in and X p are k, X k, matrices, though the dependence on k,, was
suppressed from the notation. Then note that by Assumption S.1.1(ii) there exists a
constant B < oo such that for all P € P and k,, we have that

_ B
max{[|Spllop, 5 lop} < 5 (S.30)

Next, let Iy, denote the k, X k,, identity matrix and for each P € P rewrite in as
Sp = Sp{l, — X5 (Zp — )} (S.31)

By Theorem 2.9 in Kress (1999), the matrix {I},, — X 5'(Xp —%,)} is invertible and the
operator norm of its inverse is bounded by two when |51 (Zp — S llop < 1/2. Since
Y p is invertible by Assumption S.1.1(i), result (S.31) implies that 3., is invertible if and
only if {Iy, — X3 (Zp — 3,)} is invertible, which yields that

P(3; 1 exists and [[{I, — X5 (Zp — 20)} Hlop < 2)
. 1 ) 1
> PS5 (S0~ 20y < 3) 2 PUISn — Delloy < 1), (3:32)
where we employed |25 (20 = 2p)|lop < 125 lopl|2n —Xpllop and (S.30). Hence, since

(S.31) implies 31 = {I, — YN Ep - in)}—lzlgl whenever {I},, — X5 (Zp — S !
exists, the bound ||2 5|, < B/2 and result (S.32) allow us to conclude

R N 1
—1 exists and ||E;1H07p < B)>P(|Xn, —Zp|lop <

P(3 =)-

(S.33)
Finally, since ||, ]lop < B/2 + |0 — 2pllop by (S.30), result (S.33) implies that

hnn_l>i£f;2fp P(x, 1 exists and max{||X,]|op, |25 lop} < B)

L - B 1
2 liminf inf P(|%n - Zpllop <min{Z, z}) =1,

where the equality, and hence the lemma, follows from Assumption S.1.1(i). m

Corollary S.1.3. If Assumption 3.7 holds, then for some B < oo it follows that:

linnlg)réf]_i%% P31 exists and max{||Xn |lop, |25, op} < B) = 1.

PRrROOF: Follows from Lemma S.1.4 and Assumption 3.7 together with a,, = o(1), which
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is imposed by Assumption 3.3(i) (or 3.11), implying Assumption S.1.1 holds. m

Lemma S.1.5. Ifa € RY, then ||al; < d'7 %)+||a\|p for any p,p € [2,00].

PROOF: The case p < p trivially follows from ||a||5 < ||a||, for all a € RY. For the case
p>p,let a = (a1,...,aq) and note that by Holder’s inequality we obtain

d _ _
lally = Z{razrpxl} < {Z asl?) }{le}l“ - lafyrd' =5, (3.34)

Thus, the claim of the lemma for p > p follows from taking the 1/p power in (5.34). m

S.2 Strong Approximation

This Section contains the proof of Theorem 3.1 and supporting results.

PROOF OF THEOREM 3.1: First note that by Assumption 3.7(ii) there is a constant
Cy < oo such that ||Xpl,, < Cp for all P € Py. Hence, Assumption 3.6(ii) and Lemma
S.1.5 imply that for all P € Py, 6 € ©F,,, and h € V,,(6, R|{,) we have

IWAEPIp(X,0 + ) ¢(2)] — Dp(O)[A)l12p

Vn
h
< Col[VnEp[(p(X,0 + %) — p(X,9)) x¢"(Z)] = Dp(O)[h]]|2 + o(an). (S.35)
Moreover, Lemma S.2.5 and the maps mp,, satisfying Assumption 3.5(i) imply that
J kna] h
2
Z Z Vn{mp,(0 + %) —mp,(0)} — Vmp,(0)[h], Qk,J>L§3
=1 k=1
< 3 N0+ ) — mp6) - Ty O
mp, mp,\) = Vmpy\Y)l—=Isllp2
po vn vn
< 3 CK? "2 "2 S
<D Culxn x|l < 7 (3.36)

<
I

for some constant €} < oo and all P € Py, 6 € O, and h € V,,(0, R|{;,). Therefore,
by results (S.35) and (S.36), the law of iterated expectations, the definition of S, (L, E),
and K02 x S, (L, E) = o(a,n"'/?) by hypothesis, we obtain that

h
sup sup  sup  [[VnEp[p(X,0 + —=) x ¢"(2)] — Dp(6)[h]|p
PP, 0O, he Vi (6, RI0n) Vn

< Ky % /1l x Sp(L,E) + o(ay) = oay).  (S.37)
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Next, note that since k,l/p«/log(l + k) By X suppep Jj(n” s Fu, || - Ip2) = olan), As-
sumption 3.6(i) implies there is a sequence ?,, satisfying the conditions of Lemma S.2.1

and ¢, = o(gn). Therefore, applying Lemma S.2.1 we obtain uniformly in P € Py

L(R)= inf  inf  [Wp(6)+vAEp[p(X,0+—"

—=)*q" (Z top(an). (S.38
0€0%,, heVi(0,R|in) \/ﬁ) ¢ (D)lspptor(an). ( )

Moreover, since £, = o(f,) implies that V,(8, R|¢,) C V,.(8, R|¢,) for all € ©,, N R for
n sufficiently large, we obtain uniformly in P € Py that

h
inf inf Wp(0) + /nE X, 0+ —)x% kn A
pcer, . hevn(mgn)\l p(0) + VnEp[p( \/ﬁ) " ()|lspp

h
< inf inf Wp (6 Eplp(X,0 + —) x ¢ (Z
- eérel)fm hevnl(%,R\zn) IWe(®)+ vn Plo(X. 0+ \/ﬁ) el )]Hzp,p

= ut it [W(0) + Dp)Allsp + olan) (5.39)
where the final equality following from (S.37), Assumption 3.7(ii) and Lemma S.2.6.
Thus, the first claim of the Theorem follows from (S.38) and (S.39), while the second
follows by noting that if K, R2 x S,,(L, E) = o(a,n~'/?), then we may set £, to simul-
taneously satisfy the conditions of Lemma S.2.1 and K,,¢2 x S,(L,E) = o(a,n"'/?),
which obviates the need to introduce £, in (S.38) and (S.39). m

Lemma S.2.1. Let Assumptions 3.1(i), 3.2(i), 3.2(ii), 3.3, 3.4, 3.6, and 3.7 hold.
Then, for any sequence {{,} satisfying k:rl/p log(1 + k) Bn suppep J (0’ s Fus |-l p2) =
o(an) and R,, = o(Ly), we have uniformly in P € Py that:

h
I,(R) = inf inf Wp (6 Eplp(X.,0 + —) " (Z ).
(R) eé%gnhevnl(%,m” p(0) +VnEpp( +\/ﬁ)*q (2llzpp +oprlan)

PRrROOF: First note that the required sequence {/,} exists by Assumption 3.6(i). Next,
note that by Assumption 3.4(ii) and Corollary S.1.1 there is a 0, €0,NR satisfying

Qn(0,) < inf  Qn(0) + o(an/v/n) (S.40)

T 0eO,NR

and 71{(9”,@6”, |- |lg) = Op(R,) uniformly in P € Py. Hence, defining (©},)" =
{#e0,NR: jH(G, O0,: | - [le) < €5}, which implicitly depends on P € Py, we obtain

I.(R) = ee(g%i)fn VnQn(0) + op(ay) (S.41)

uniformly in P € Py due to R,, = o((y,), 7H(én,®5n, |- &) = Op(Ry), (©5,)" C

©, N R by construction, result (S.40), and the definition of I,,(R). Next, note that by
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Assumption 3.3(i), Corollary S.1.3, and Lemma S.2.6 it follows that

inf n(0) — inf [[Wp(0 Eplp(X,0) % ¢" (2)]|
el VQu(0) = | inf [We(0) +VRER[p(X,0) x (2], ,

< Hi}nHmp X ; SUPR 1Gn(0) — WP(G)HP =op(an) (S.42)

nN

uniformly in P € Py. Similarly, employing Corollary S.1.3, Lemmas S.2.2, 5.2.6, and £,
satisfying kryl/p\/log(l + k) By, X sSuppep J[](fff,fn, |- |lp2) = o(ay) yields

2P Dl

W h
= 1 f . f 9 E 9 h
0o, hevnl(ral,mzn)” p(0) + VnEp[p(X,0 + NG

uniformly in P € Py, which together with results (S.41) and (S.42), and Lemma S.2.3

establish the claim of the lemma. m

h
inf  inf  |Wp(H+ — Eplp(X,0
Géréénhevnl(%ﬁ\ﬁn)” P( +ﬁ)+\/ﬁ Plp(X,0 +

) ¢ (Z))ls,, , + op(an)

Lemma S.2.2. Let Assumptions 3.2(i) and 5.3(ii) hold. If {6,} is a sequence satisfying
k,ll/p\/log(l + k) Bp X suppep J{)(0n”, Fu, || - | p2) = o(axn), then uniformly in P € P:

h
sup sup Wp(0+ —=)—Wp(0)|, = op(a,).
026, heVn(0.R(5,) W \/ﬁ) ()l (an)

PROOF: Since ||q ;||oc < Bp for all 1 <y < 7 and 1 <k <k, , by Assumption 3.2(i),
Assumption 3.3(ii) yields for any P € P, 0 € ©,,N R, and h € V,,(0, R|J,,) that

h K ”
Eplllp(X.0 + —=) — p(X,0)|3¢2 (2)] < K2B2|—=|a" < K2B26,.  (S.43)

wE X
NG N
Set G,, = {fq,w for some f e F,, 1 <3< J, 1 <k <ky,,} and let Gp be a Gaussian
process on G, satisfying E[Gp(g1)] = 0 and E[Gp(g1)Gp(g2)] = Covp{g1(V),g2(V)}
for any g1, g2 € G,. Since |lal|, < k,l/pHaHoo for any a € R¥» result (S.43) yields

h
Ep[sup  sup [[Wp(0+ —=)—Wp(0)],]
0€O8  heVy(6,R|5,) NG P

< k)P x B| sup |Gp(g1) — Gp(g2)l]. (S.44)
91,92€0n:]|91— g2 P2 <K Bn 63"
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Moreover, Corollary 2.2.8 in van der Vaart and Wellner (1996) additionally implies that

sup Ep| sup |Gp(g1) — Gp(g2)l]
PeP 91,92€6n:]1g1—92|| P2 <K p B 6y’

KpBndn”
< sup / V102 N(j (€, G [ - [ p2)de
PeP JO

Kp

< sup v/log(1 + ky) By, /Kp5n \/1 + log Nyj(u, P, || - || p2)du, (S.45)
PeP 0

where the second inequality follows from Lemma S.1.3 and the change of variables
u = ¢/B,. However, note that since Njj(u,Fy,| - [|p2) is decreasing in u, it follows
that Jij(Kp0n”, Fn, |- [P2) < KpJ;j(0n”, Fa, || - || p2). Therefore, the lemma follows from
results (S.44) and (S.45), the definition of Jjj(e, Fo, || - [ p2), and ka/? log(1 + k) By, X
SUPpep JH((SS”,}‘”, | -

|p2) = o(ay) by hypothesis. m

Lemma S.2.3. Let Assumptions 5.2(i), 3.2(iii), 5.6(ii), and 3.7 hold with a, = o(1).

For any positive sequence 6, it then follows that uniformly in P € Py we have

h
inf inf Wp( Eplp(X,0 + —) x ¢*(Z
o3 e B, WP (O) + VREplp(X, ) Al

=t it WR(9) + VABplp(X 0 +

h k
* g ()|« )
9€®6n hGVn(G,R‘(Sn ) q ( )] ”En,p + OP(an)

7

PROOF: First note that by Assumption 3.7(ii) there is a Cp < oo such that [|Xpl,, V
155 o < Cp for all P € P. Since ||Xpall, < 12055 lopl|Epall, for any a € RF», and
12255 oy < 125 lopl|Zn — Zpllop + 1 by the triangle inequality, we obtain

%) « (D)l

> [|[Wp(0) + vVnEp[p(X,6 +

{CollZn = Zpllop + LHWp(6) + VREp[p(X, 6 +

h

%) #d"(2)ls,, (S:46)
for any 6 € ©g,, and h € V,,(6, R|6,). Moreover, ||Xp|lo, < Co, 0 € V,,(6, R|d,,) for any
8 € ©, N R, and Assumption 3.6(ii) imply uniformly in P € P that

. . h
inf inf [Wp(0) + vVnEp[p(X,0 + ) % ¢ (Z2)]llsp.p

0COr, . heVia(0,R]5,) NG
S ) S®up " [We(0)lp + olan) = OP(krlz/p V91og(1 + kn)BnJn) + o(an) (S.47)
€6,N

where the final equality holds uniformly in P € Py by Lemma S.2.4 and Markov’s
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inequality. Therefore, results (S.46), (S.47), and Assumption 3.7(i) imply

h
inf inf 9 Ep[p(X,0 + —=) x¢"™(Z "
Oé%{)nhevnl(lﬁlﬁ\én)nwp( )+ VnEp[p(X, +\/ﬁ)*q (Z))llzp.p + or(an)

> inf inf ) HWP(H) + \/EEp[p(X,H +

h k
™ (Z2)]||¢ S.48
= 0Oy, heV,(0,R|5n Jxa(@lls,, (548)

NG
uniformly in P € Pg. Next, note that Assumption 3.7 implies Assumption S.1.1 and
therefore Lemma S.1.4 yields that |2,]lop V |25 lop = Op(1) uniformly in P € P.
The lemma then follows from (S.48) and noting that the reverse inequality also holds
by identical arguments but relying on |2, [lop V [|Z5 1 lop = Op(1) uniformly in P € P
rather than on |[Zp|lop V |5 lop < Co. ®

Lemma S.2.4. If Assumptions 3.2(i) and 5.2(iii) hold, then for some C < oo we have:

sup Ep[ sup |[Wp(8)|,] < CkYP\/log(1 + ky) By Jn.
PeP 0cO,NR

ProoF: Let G, = {fqr,: f€ Fn, 1 <3< T, and 1 <k <k, ,} and Gp be a Gaussian
process on G, satisfying E[Gp(g1)] = 0 and E[Gp(91)Gp(g2)] = Covp{g1(V),g2(V)}
for any g1, g2 € Gn. Then note ||a||, < d'/?||a|s for any a € R? implies that

Ep| sup [|[Wp(0)|,] < k}L/pEP[SUP IGp(g)]
GEGnOR gegn

< kYP{Ep(|Gp(go)] + Cl/ \/10gN[](6,gn, |- llp2)de}, (S.49)
0

where the final inequality holds for any gg € G,, and some C < oo by Corollary 2.2.8
in van der Vaart and Wellner (1996). Next, let G,, = B, F, for F, as in Assumption
3.2(iii) and note Assumption 3.2(i) implies G, is an envelope for G,. Thus, [-G,, G,,]

is a bracket of size 2||G,,||p2 covering G, and as a result we obtain

/ \/10gNu(67§n7 |- lp2)de
0
2[|Gnllp,2
< / \/1 +log N{j(€,Gn, || - | p2)de < C2n/log(1 + ky) By Jyn,  (S.50)
0

where the final inequality holds for some C < oo by result (S.26) and Njj(u, G, || - || p2)
being decreasing in u. Furthermore, since Ep[|Gp(go)|] < |lgollp2 < ||Grllp2 we have

IGnllp,2
EpllGr(on)l < [Gallra < [ [T+ 0g N Gorl| - lp2)du. (850
0

Thus, the claim of the lemma follows from (S.49), (S.50), and (S.51). m

Lemma S.2.5. Let Assumption 3.2(ii) hold. It then follows that there exists a constant
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C < oo such that for all P€ P, n>1,1<3< 7, and functions f € L% we have

kny]

> Qk,y>%§3 < CEp[(Ep[f(V)|Z)])?]. (S.52)
k=1

PROOF: Let L%(Z,) denote the subspace of L% consisting of functions depending on Z,
only, and set £2(N) = {{c;}22, : ¢ € R and [{ex ez < oo}, where H{ck}HzQ(N) =
>k ci. For any sequence {cj} € ¢*(N), then define the map .J,,, : £*(N) — L%(Z,) by

kn,;

J],n({ck}) = Z CrqE,)-

k=1

Clearly, the maps J,,, : £*(N) — L%(Z,) are linear and, moreover, by Assumption 3.2(ii)
there is a C' < oo such that the largest eigenvalue of Ep [q?"” (Z])qf”’J(Z])' ] is bounded
by C for all n > 1 and P € P. Therefore, we can conclude that

sup sup ||JJ,an = Sup sup sup HJJ,n({Ck})H?D,Z
PeP n>1 PEP n>1 {¢,}:%, c2=1

kn;

= supsup  sup EP[(Z ki (Z)))?) < sup C’Z &2 =C (S.53)
PEP n21 {¢}}:30, i =1 k=1 {a}Xpei=1 =1

which implies J; 5, is continuous. Next, define J7,, : L%4(Z,) — 2(N) to be given by

Jrn(9) = {ar(9) iz

)

ak(g) — <g7QI€,]>L?J if k < k”v]
- 0 ifk>k,

and note J3,, is the adjoint of .J; ,. Therefore, since [|.J;n[lo = || J},/lo by Theorem 6.5.1
in Luenberger (1969), we obtain for any P € P, n > 1, and g € L%(Z,) that
kn,y
(9010072, = 170Dl < 15 alllglB = 17130917 (S.54)

k=1

Therefore, since Ep[f(V)qr,(Z,)] = Ep|Ep|f(V)|Z,lqx,,(Z,)] for any f € L%, setting
9(Z,) = Ep[f(V)|Z,] in (S.54) and employing (5.53) yields the lemma. m

Lemma S.2.6. IfA is a set, A: A - RF, B: A = RF, and W is a k x k matriz, then

| inf WA, — inf [WBN)[p] < [Wop x sup [AA) = B |lp-
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PRrROOF: Fix n > 0, and let A\, € A satisfy ||[WA(X,)|p < infrep [[WAN)|p + 1. Then,

it [WB)l, = f WA, < [WBQa) = WA, + 1

< W(B(Aa) = AQa)llp + 1 < [Wop X sup [AQA) = BA)lp +n, (5.55)

where the second result follows from the triangle inequality, and the final result from

|[Woll, < |Wlopllv]l, for any v € RE. By identical manipulations we also have
inf [[WAM)[, — inf [WBM)llp < [Wllop x sup [[A(X) = Bl + 1. (S.56)
€A A€A AEA

Thus, since 7 was arbitrary, the lemma follows from results (S.55) and (S.56). m

S.3 Bootstrap Approximation

This appendix contains the proof of all results concerning the bootstrap approximation.
We first introduce two assumptions that generalize Assumption 3.13 (at the cost of

introducing additional notation) and deliver a stronger version of Theorem 3.2.

Assumption S.3.1. There is an € > 0 and scalars Dy, (L, E) and D,,(B, E) such that for
any P € P, 0§ € ©F,,, and 0; € ©,,NR satisfying |61 —0||g < €, there exists 6 c ©g,, such
that |0 —0||g =0, |0 —61||L < Du(L,E)||0 —61|g, and |0 —01||s < D,(B,E)||6 —01||g.

Assumption S.3.2. (i) Either Y and Y¢ are affine or (R, + vnmn)Dn (B, E) = o(1);
(ii) kn/? 10g(1 + kn)Bn suppep J; ) (0n"V (n 7)™, Fus || p2) = 0lan), Kml2S,(L,E) =
0(ann™2), Kpln (R +vnT0)Dn (L, E) = 0(ann™2), Ly (ba+{Rn+1nTn}Du(B, E))1{K} >
0} = o(apn™2); (iii) limsup 1{K, > 0}, /1y < 1/2 and (Ry, + vp7n)Dn(B,E) = o(ry,).

In particular, note Assumption S.3.1 holds with D, (L,E) = S, (L, E), D,,(B,E) =
S.(B,E), and 0 = 0. Hence, Assumption 3.13 implies Assumptions S.3.1 and S.3.2. In
general, however, D, (L, E) and D,,(B,E) can be smaller than S, (L,E) and S,,(B,E)

while the introduction of a 6 # 0 eases requirements in partially identified models.

Our next theorem consists of two parts. The first part, which replaces Assumption
3.13 with S.3.1 and S.3.2, can by the preceding discussion be seen as a generalization of
Theorem 3.2. The second part shows that, under additional restrictions, it is possible
to replace the norm || - || in the definition of V;,(0, R|¢) (as in (21)) with the norm ||- ||g

— an observation that is sometimes helpful in easing rate restrictions.

Theorem S.3.1. Let Assumptions 3.1, 3.2, 3.3, 3.4(i), 3.5, 3.6, 3.7, 3.8, 3.9, 3.10,
3.11, 3.12(i)(iit), S.3.1, and S.53.2 hold. Then, the following statements hold:
(i) If Assumption 3.12(ii) holds, then there is a £, < £, such that uniformly in P € Py

Un(R|ly) > Ups(R|,) + op(ay).
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h € B,,, we have that for all P € Py, {# € By, : 71{(0, Ob, I - llt) < e} €O, and

P({6 € B, : 71{(9,(:);, |- |l1) <€} € O,) tends to one uniformly in P € Py. If
Yr and Y are affine, then part (i) holds with Uy, (R|€,) as in (17) but with

(ii) In addition, suppose for some € > 0 and || - |1 satisfying ||kl < ||hlx for all

. h
Vo0, RI0) ={h € B, :heG,0), Trd+

75 =0, and |2l < 6} (857)

PRrROOF: First note Assumptions 3.6(i) and 5.3.2(ii) imply R,, V v, 7, = 0o(1). Hence, by
Assumption S.3.2(ii) we may apply Lemma S.3.2 to obtain uniformly in P € Py

Un(Rl,) = inf  inf  |[W5(0) +Dp8)[h]llzpp + or(an). (S.58)
€O, heVy (0,R|lr)

Thus, we may select 0, € (:)fl and h,, € Vn(én, R|¢,,) so that uniformly in P € P
Un(Rltn) = [W(0n) + Dp(0n)n) 2 p + 0p(an). (S.59)

Next note that by Assumptions 3.6(i), S.3.1, and S.3.2 there is a 6, so that 6, D,,(B,E) =
o(rn), 0n,Dp(B,E) = o(1) if either Yp or T are not affine, R,, + v, 7, = 0(dy), and

006, Dn (B, E)1{K; > 0} = o(a,n"?) (S.60)

K0nlnDo(L, E) = o(ayn™2) (S.61)

k‘,l@/p\/log(l + ky) By, X sup J[](ég”,fn, |- |lp2) = o(an). (S5.62)
PcP

Next, notice that Corollary S.1.2(i) implies that there exists a 6y, € ©f,, such that

uniformly in P € Py due to (R, + v, 7,) = 0(d,,). Furthermore, by Assumption S.3.1

we can assume without loss of generality that 6, in addition satisfies
10n — Oon . = 0p(Dy (L, E)Jy,) 10n — BonllB = 0p(Dy(B, E)dy) (S.64)

uniformly in P € Py. In addition note that since ||g |loc < By, for all 1 < 3 < J and
1 < k < ky, by Assumption 3.2(i), we obtain from Assumption 3.3(ii) together with
result (S.63) that with probability tending to one uniformly in P € Py we have

Ep[llp(X,0,) — p(X, 00n)|342 ,(Z,)] < B2K26,. (S.65)

Set Gp ={far,: fe€Fn,1 <3< T, 1 <k<ky,} and let Gp be a Gaussian process
on G, satisfying E[Gp(91)Gp(g2)] = Covp{gi(V),g2(V)} and E[Gp(g1)] = 0 for any
91,92 € Gp. Since (S.65) holds with probability tending to one uniformly in P € Py,
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Assumption 3.7(ii), result (5.45), and 0,, satisfying (S.62) imply for any ¢ > 0 that
timsup sup P(IW(0n) — Wh(6on)lspp > ane)
n—oo PecPy
< limsup sup ——kY/*Ep| sup Grlar) — Gp(g2)] = 0. (S.66)

n—0o PEPg An€ 91,92€Gn:[l91—92|| .2 < Bn K 585"

Similarly, result (S.63) implies jg(én, O0,.; || - [lE) < € with probability tending to one
uniformly in P € Pg for any ¢ > 0. Hence, Lemma S.3.4 yields uniformly in P € Py

1D (8o [n] = Dp (Bn) a5 S 12 Pllogp % Konllf = bonlLllfin |l + 0P (an)
S 15Pllop % K Du(Ly E)only/n + 0p(an) = op(an), (S.67)

where the second inequality follows from ||h, /v/7||B < £y due to hy/v/1 € Viy (6, R|6y),
Assumption 3.12(i), and (S.64). In turn, the final result in (S.67) follows from (S.61)
and Assumption 3.7(ii). Next, note the conditions of Theorem S.5.1(i) hold because:
Either Yp and YT are affine (implying Ky = K, = 0) or 6,D,(B,E) = o(1), and
0,Dn(B,E) = o(ry,) and limsup ¢, /r,1{K, > 0} < 1/2 by Assumption S.3.2(iii) imply

for n sufficiently large. Hence, Theorem S.5.1(i), Assumption 3.12(ii), and ||h||g < [|h]|B
for all h € B,, by Assumption 3.12(i), imply that there is a constant M < oo for which
with probability tending to one uniformly in P € Py we have that

h
—=|lB < Mty (ln + 6nDn(B, E))I{K; > 0}.
heVn(Gon,R|Mzn H\/ﬁ \/EHB = (fn + (B,E))1{K; > 0}

It follows from Assumption S.3.2(ii) and (S.60) that there is a hg, € Vi, (0on, R|MY,,)
such that ||hon — hallB = op(ay) uniformly in P € Py, and hence Assumption 3.7(ii),
Lemma S.3.4, and ||h||g < ||/l by Assumption 3.12(i) yield

1D P (80n) ] — Dp(Bon) [hon)spp S 1P 0w % 17— honlle = op(an) (S.68)

uniformly in P € Py. Therefore, combining results (S.59), (S.66), (5.67), and (S.68)
together with 6y, € ©f,, and ho, € V,,(0on, R|ML,,) yields

LAn(an) = | N}(HOVL) DP(GOn)[hOn]HEp,p op(an)
> inf inf W5 (0) + Dp(0)[h + n
- eérégn hevn(laI}R\Mﬁn) IW5(6) POl ]Ilzp,p op(an)

uniformly in P € Pg. The first part of theorem then follows by setting £, = M#,,.

In order to establish the second part of the theorem, note that the only assumptions
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that potentially require the norm | - ||g to be stronger than || - |1 are Assumptions 3.8,
3.9, 3.10 (pertaining to the differentiability of Tr and Y¢) and Assumption 3.12(ii)
(since a stronger norm || - ||g makes (OF)¢ smaller). We therefore establish part (i) of
the theorem by repeating the arguments employed in showing part (i) while carefully

re-examining the role played by the norm | - ||g. To this end, note that since

liminf inf P({ € By: d g(6,0",]-|lt) < ¢} C ©,) =1, (S.69)

n—oo PePg

we may apply Lemma S.3.2 with || - ||B set to equal || - ||1 to still obtain that

Un(R|6,) = inf  inf [WH(0) +Dp(0)[h]|s, p + or(an)- (S.70)
0€0r, heVy, (6,R|ty)

Letting 6,, and h,, be defined as in (S.59) (but with V;,(0, R|¢) as defined in (S.57)), then
observe that since results (S.66) and (S.67) do not rely on Assumptions 3.8, 3.9, 3.10 or
3.12(ii), we can conclude from result (S.70) that uniformly in P € Py

Un(R|tn) = W (8on) +Dp(Bon) hlllsp p + 0r(an) (S.71)

for some 6y, € Of,. Next, note §,D,(B,E) = o(r,) and Ky = K; = 0 due to Tr and
T being affine, together with Theorem S.5.1(ii) imply that

h

foa - - h

Va0, R|ln) = {h € Byp : h € Gy(bhn), Tr(fn + %) =0, ”%‘HI < o}
C{heBy: Tallon - =) <0, Tr(fon + =) =0, [y < 6}
= n - LG\V0n \/ﬁ_aFOn \/5_7\/51_71

g Vn(GOm an)a

with probability tending to one uniformly in P € Py, and where the final inequality
follows from ¢, | 0, {# € B, : 7H(0,®6n,|] i) <€t COpand || lg < |- It

by hypothesis. Therefore, we can conclude that h, € Vi (Oon, R|€,) with probability
tending to one uniformly in P € Py, which by (S.71) yields

U,(R|¢,) > inf inf W (Bor) + Dp(0on) [k ),
(R| )—eé%gnhevﬁ(%,zmn>” P(00n) +Dp(0on)[h][lspp + or(an)

and hence establishes the second claim of the theorem. m

PrROOF OF THEOREM 3.2: Follows from immediately from Theorem S.3.1(i) and As-
sumption 3.13 implying Assumptions S.3.1 and S.3.2 are satisfied by setting D,,(B,E) =
Sp(B,E), D,(L,E) = Sy(L,E) and § = 0. m

PrROOF OF COROLLARY 3.1: We establish the corollary by appealing to Lemmas S.3.5
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and S.3.6. To this end, we first note Theorem 3.2 allows us to conclude that
Un(R|6,) > Up(R|ln) + op(an) (S.72)

uniformly in P € Py with ¢, < £,, while Assumption 3.13(ii) implies K,,l2S,(L,E) =
o(ann_%) and k:rl/p\/log(l + kyp)By, X suppep JH(ZZ”,.EL, | - llp2) = o(an), and hence

I,(R) < Up(R|l,) + op(an) (S.73)

uniformly in P € Py by Theorem 3.1(i). Moreover, applying Lemma S.3.5 with B,, =
Un(R|ty), Dy = {Vi}?,, and Chn= U%(R|4,) yields, for some 8, = o(1), that

liminf inf P(é, + %" > q1avs, p(UB(RIE))) =1, (S.74)

n—oo PePy

where ¢, p(Up(R|(,)) denotes the 7 quantile of Us(R|/,). Since Us(R|/,,) g Up(R|0y),
results (S.73), (S.74), and Assumption 3.14 verify the conditions of Lemma S.3.6 (applied
with Ty, = I,(R) and Cp,, = Up(R|(,)) and therefore the corollary follows. m

PROOF OF COROLLARY 3.2: In what follows, we use a “u” superscript for parameters

associated with setting R = © — e.g., B denotes the vector subspace generated by
©,,. First note Theorem 3.1(i) (for R as in (13)) and Theorem 3.1(ii) (for R = O)

imply that for any ¢,,¢} | 0 satisfying kryl/p\/log(l + kyp)Bp, X {suppcp J[}(fflp,fn, | -
Ip2) + suppep J((6), Fobs || - lp2)} = ofan), Km(€h)? x SH(L,E) = o(azn~'/?),
K2 x Sp(L,E) = o(a,n~"?) and R = o(£2) it follows uniformly in P € Py that
I,(R) — I,(0) < Up(R|t,) — Up(O6}) + op(an). (S.75)
Next note that we may apply Theorem 3.2 to obtain that uniformly in P € Py we have
ﬁn(RMn) 2 U;(R’gn) + op(an) (S.76)
with £, =< £,,. Similarly, also note that Lemma S.3.7 implies uniformly in P € Py that

Un (0] 4+ 00) < Up(0]6%) + op(ay), (S.77)

for gz 1 0 satisfying Assumption 3.13(ii) and R} = 0(!7;11) In particular, it follows from
results (S.76) and (S.77) that uniformly in P € Py we have

Un(R|0y) — Un (O] + o0) > Up(R|ln) — Up(O10%) + op(ay) (S.78)

for sequences Zn,é;; 1 0 satisfying the rate requirements needed for (S.75) to hold (i.e.
with £, fn replaced by En,ig) The corollary then follows by the same arguments as in
Corollary 3.1 but employing (S.75) and (S.78) in place of (S.72) and (S.73). m
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Lemma S.3.1. Suppose there is a A,(P) C ©,, N R such that ||h||g < v,|[Dp(0)[A]|p
for all € A,(P) and h € /n{B, N R —0}. If the estimator D, () satisfies

sup sup D0 (6)[12) D (6) ]l

=op(v; 1Y) (S.79)
0 An(P) he /i{BanR-0}:|| 1 ll52tn [hlle

and (:)fl C A, (P) with probability tending to one uniformly in P € Py, Assumptions
3.2(1) (i), 3.7, 3.11 hold, and S,(B,E)R,, = o({,), then uniformly in P € Py

Un(R|6,) = inf  inf W, (8) + D (0)[]l5,, , + 0P (an). (S.80)
6€0r, he Vi, (8,R|+00) ’

PROOF: In the following arguments, we note that the only requirement on Iﬁ)n(ﬂ) is that
it satisfy condition (S.79). As a result, the lemma applies to estimators Dn(e) besides

the numerical derivative examined in the main text.

In order to establish the result, we first let 6, € ©F and hy, € V,(0,, R| + 00) satisfy

inf ~inf HW,L(H) + Dn(e)[h]”imp = ”Wn(én) + Dn(én)[ﬁn]”zmp + o(an).
0€0r, heVy(6,R|+00)

Then note that in order to establish the claim of the lemma it suffices to show that

B > 0y) = 0. (S.81)

hn
limsup sup P(||—=
n—oo PePy (H \/ﬁ‘

To this end, note 0 € V,,(6, R| + o) for all § € ©,,N R, the triangle inequality, [|%,]l0, =
Op(1) uniformly in P € P by Corollary S.1.3, and Assumption 3.11 yield

”Dn(én)[ﬁn]”zmp < ”Wn(én) + Dn(én)[ﬁnmzmp + Hwn(én)”zmp

< QHinHmp”W}(an)Hp +op(an) (5.82)

uniformly in P € P. Hence, since 0, € (:)fl C 0, N R almost surely, we obtain from
result (S.82), [Znllop = Op(1) uniformly in P € P, and Lemma S.2.4 that

[ An)[ﬁnmimp < 2“271”0,17 9656111%1% WH(O)lp + or(an) = Op(ky/P\/log(1 + k) By Jy)

' (S.83)
uniformly in P € P. Since h,, € Vy(6,, R| + c0) implies h, € /n{B, N R — 0,} and
6, € @fl C A, (P) with probability tending to one uniformly in P € Pg, we obtain
from the first hypothesis of the lemma that ||A, || < vn||Dp(0n)[ha] |, With probability

81



tending to one uniformly in P € Py. Therefore, it follows that

limsup sup P(¢, < |—=
msup sup (n_\lﬁHB

= limsup sup P({, < ||—||B and ||n & < v |Dp(0n) [fn]llp)
n—oo PePg \/_

)

~

. hy, 5 A BN

<limsup sup P({, < |—=|B and ||hs||& < 20y || Dy (0n)[n]llp), (S.84)
n—oo PecPy \/ﬁ

where the inequality follows from condition (S.79). Hence, results (S.83) and (S.84), the

definitions of S,,(B, E) and R,,, and S,,(B,E)R,, = o(¢,,) by hypothesis yield

hn,
limsup sup P(¢, < HTHB)

n—oo PcPy

< limsup sup P(¢, < 9

msp S \/ﬁSn(B,E)H]Dn(Hn)[hn]Hp):0, (S.85)

which establishes (S.81) and hence the claim of the lemma. m

Lemma S.3.2. Let Assumptions 3.1(i), 3.2, 3.3, 3.4(i), 3.5(i), 3.6(ii), 3.7, 3.11, 3.12
hold and Ry, NV vy, = o(1). If £, | O satisfies ki log(1 + ky,) By, suppcp J[](fg”, Fos |l -
|p2) = o(an) and K028, (L, E) = o(ann_%), then uniformly in P € Py we have

Un(Rlt,) = inf  inf  |[Wp(0) +Dp(0)[h]lls,p + or(an).
€O, heVy (0,R|lr)

PROOF: First note that Corollary S.1.2(i) implies 7}1(@2, ons 1 lE) = Op(Ry+vn )
uniformly in P € Py. Hence, since R, V v, 7, = o(1), for any € > 0 it follows that

I C < = .
liminf inf P(O}, C {6 €6, NR: q0.05 |- I) < e}) = 1. (S.86)
Furthermore, for any # € © and h € V,(6, R|(,) note that Yg(0 + h//n) < 0 and
Tr(0 + h//n) = 0 by definition of V,,(6, R|¢,). Thus, § + h/\/n € R for any 0 € OF,
and h € V;,(0, R|¢,,), and hence Assumption 3.12(ii) allows us to conclude

h
liminf inf P(+— € ©,NR forall § € OF and h € V,,(0, R|(y))
n—oo PePy \/_

h
= liminf inf PO+ —

ol pOB, NG € 0, forall 9 € ©), and h € V,,(0,R|¢,)) =1 (S.87)

due to ||h/y/7nllB < £, | 0 for any h € V,(0,R|¢,). In particular, note that result
(S.87) and Assumption 3.12(i) imply that for some M < oo we have V,(0,R|(,) C
Vi (0, R|€,/M) for all # € O with probability tending to one uniformly in P € Py.
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Thus, (S.86) and Lemma S.3.3 allow us to conclude that uniformly in P € Py we have

sup  sup  |[D,(6)[h] — Dp(8)[h]ll, = op(an). (S.88)
0€0r, heVy, (0,R|ty)

Moreover, since (:)fl C ©, N R almost surely, we also have from Assumption 3.11 that

sup [|W, (6) — W5 (0)|, = op(an) (S.89)
0cér,

uniformly in P € P. Therefore, since ||2,]lo,, = Op(1) uniformly in P € P by Corollary
S.1.3, we obtain from results (S.88) and (S.89) and Lemma S.2.6 that

Un(Rl6n) = inf  inf  [Wp(0) + Dp(0)[hllls,, , + or(an) (8.90)
0cOr, heVy,(0,R|lrn) ’

uniformly in P € Pjy. Next, note that by Assumption 3.7(ii) there exists a con-
stant Cp < oo such that |[Sp',, < Cp for all P € P. Thus, using that [Snall, <
12025 lopl|Epall, for any @ € R¥ and the triangle inequality we obtain

IW5(8) +Dp(9)[hllls,, ,, < {CollEn = Epllop + 1HW5H(O) +Dp(@)llsp,  (S91)

for any 6 € ©,, "R, h € B,,, and P € P. In particular, since 0 € Vn(H,RMn) for any
0 € ©, N R, Assumption 3.7, Markov’s inequality, and Lemma S.2.4 yield

10 = £pllop x inf inf  [[WH(0) +Dp(8)[hlllspp
0€0Or, heVy(0,R|ln)

< 1% — ZPllop p D We(O)llzpp = or(an) (S:92)

n

uniformly in P € P. It then follows from (S.91) and (S.92) that uniformly in P € P

inf inf  [[Wh(0) + Dp(0)[Alls, ,
9O heTn (6,R|6n) ’

< inf inf  [[W5s(8) +Dpd)[h]llsp,p + op(an). (S.93)
0€0Or, heVy(0,R|tn)

The reverse inequality to (S.93) can be obtained by identical arguments but employing
maX{HZA]nHQP, ||ZA];1H07P} = Op(1) uniformly in P € P by Corollary S.1.3 instead of
IZPllop V IZ5" lop being bouded uniformly in P € P. The claim of the Lemma then
follows from (5.90) and (S.93) (and its reverse inequality). m

Lemma S.3.3. Let Assumptions 3.2(i)(ii), 3.3, and 3.5(i) hold, and define the sets

h h
W(0,RIE) ={h€B,: 0+ €O, d|l-=e < tu}. 94
Va6, Rlt,) = {h € + o= €0uN R and |l < b0} (S.94)
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If 6, 1 0 satisfies kp/"/1og(1 + kn) By, ¥ suppep J) (0’ Fus || - | p2) = 0(an) and K, f;, x
Sn(LLE) = o(annfé), then there is an € > 0 such that uniformly in P € Py:

sup sup D (0)[h] — Dp()[Al]l, = op(an). (5.95)
0€0,NR:d 11 (6,05, ||| &) <e REVn(0,RIln)

PROOF: By definition of V,, (6, R|¢,,), we have § + h/\/n € ©, N R for any § € ©,, N R,
h € V,,(0, R|¢,,). Therefore, since ||h/v/n|g < ¢, for all h € V,,(0, R|¢,,) we obtain

sup sup [ Dn(8)[h] — VREp[(p(X,6 + i) — (X, 0)) * ¢ (2)]ll,

0€0nNR heV, (6,R|tn) Vn
< sup ”Gn(al) - Gn(02)”p
01,02€0,NR:||01—02||g<ln
< sup [Wp(01) = Wp(02)llp + op(an)  (S.96)

01,02€0,NR:(|01—02||g<ln

uniformly in P € P by Assumption 3.3(i). Next note Assumptions 3.2(i) and 3.3(ii)
imply that for any 1 <y < 7 and 1 < k < k,, , we must have

sup sup Eplllo(X,01) = p(X.62)[30} ,(Z))] < BRI 6. (S.97)
PeP 91,9269nﬁR:||91—92||E§€n
Define G, = {faqx, : f € Fn,1 <3< Jand 1 < k < ky,} and let Gp be a Gaussian
process on G, satisfying E[Gp(g1)Gp(g92)] = Covp{g1(V),92(V)} and E[Gp(g1)] = 0
for any g1,¢92 € Gn. By result (S.97) and ||all, < k /pHaHOO for any a € R*" we obtain

E] sup [Wp(61) — Wp(62)]l,]
91,92€@nﬂR2||91 *‘92”Egén

< k‘,l/p x E[ sup IGp(g1) — Gp(g2)|]. (S.98)
gl,QQEQni||91*92||P,2SBnKpZZp

Therefore, the calculations in (5.45), Markov’s inequality, and ki log(1 + ky,) By, X
suppep J[1(n”, Fn, || - | p2) = o(an) by hypothesis, yield that

sup sup [Du(6)[h] — VAEP[(p(X.6 + —% — p(X.0)) x¢"(2)]ll, = op(an)
0€0©,NR heVy (0,R|En) n
(S.99)

uniformly in P € P. Next, let € > 0 be sufficiently small for Assumption 3.5(i) to hold
and define the neighborhood N;, = {# € ©, N R : jH {0},05,, 1 - Ie) < €}. We can
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then conclude from Lemmas S.1.5 and 5.2.5, and Assumption 3.5(i) that

sup  sup [[VnEp[(p(X,0 + i) = p(X,0)) % ¢"(2)] = Dp(0)[h]||,
0N heVrn (0,R|6,) \/E

N

h h
sup sup K., x Vn||—=|gll—=|L} = o(ay,), (S.100
aeNnheVn(e,Run){ H\/ﬁ” H\/EH } (an), ( )

where the final equality follows from K,,¢2 x S,(L,E) = o(a,n"'/?) by hypothesis.
Hence, the Lemma follows from results (5.99) and (S.100). m

Lemma S.3.4. Let Assumptions 3.2(ii) and 3.5(ii)(iii) hold. Then there are constants
e > 0 and C < oo such that for all n, P € P, 6y € O, 61 € 0, N R satisfying
101,05, || - 1) < e, and ho, by € By, it follows that

PP (60)[ho] = Dp(01)[ha]ll, < C{llho = hulle + Kmllfo — 1[Llh1]le}-

PRrROOF: We first fix € > 0 such that Assumptions 3.5(ii)(iii) are satisfied. Then note
that by Lemmas S.1.5 and S.2.5 it follows that there is a constant Cy < oo with

7
IDp(60)[ho] — Dp(61) [ ]lly < > CollVmp,(80)[ho] — Vimp,(61) ][50}/

7=1
Moreover, since (hg — h1) € B,,, we can also conclude from Assumptions 3.5(ii)(iii) that
IVmp,(0o)[ho] — Vimp,(01) ]l P2
< [[Vmp,(0o)[ho — ha]llp2 + [Vmp,(0o)[ha] — Vmp,(01) ]| p2
< Ml[ho — hallg + K |0y — bol|Lllh1|[e
for some M < oo, and therefore the claim of the lemma follows. m

Lemma S.3.5. Let By, and D,, be observable random wvariables, C},n be a potentially

unobservable random variable depending on P € P, and for any o € (0,1) define
Go = inf{u : P(B, <u|D,) > «a} a,p = inf{u : P(Cp,, <u) > a}.

If B, > Cp,, +op(an) (with ap, > 0) uniformly in P € P and C},, is independent of
D,,, then there exists a 6, | 0 such that liminf, . inf pep P(o + an > qa—s, p) = 1.

Proof: In the statement of the lemma, P and a,, represent a generic set of distributions
and positive sequence — i.e. they need not be the same as in the main text. To establish

the result, note Markov’s inequality and the law of iterated expectations yield

1
lim sup sup P(P(C}p,, > By, + an|Dy,) > €) < limsup sup -P(Cp,, > B, + a,) =0,
n—oo PcP ’ n—oo PcP € ’
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where the final equality follows from B, > C%, + op(a,) uniformly in P € P by

hypothesis. Thus, we conclude there exists some sequence §, | 0 such that the event
Qu(P) = {Dn’P(CI*D,n > By + an|Dy) < 60}
satisfies P(Q,,(P)°) = o(1) uniformly in P € P. Hence, for any t € R we obtain that

P(By, <t|Dp)I{Dy, € Qu(P)} < P(B, <t and Cp,, < By, + ay|Dp) + 6n
< P(Cp,, <t+an) + dn, (S.101)

where in the final inequality we employed that C% is independent of D,,. Therefore,
setting ¢t = ¢, in (S.101) implies that, under Q,(P), we have §o + an > ga—s, p. Since
suppep P(2,(P)¢) = o(1), the claim of the lemma follows. m

Lemma S.3.6. Let T,, < Cp,, + op(ay) uniformly in P € Py with 0 < a, = o(1),
define qo.p = inf{u : P(Cpy, < u) > o}, and suppose that, for some 6, | 0, é,+an/2 >
q1—a—s,,p With probability tending to one uniformly in P € Py. If for some n, >0
limsup sup P(T,, > ¢,) = limsup sup P(T,, > ¢, V1) (S5.102)
n—oo PePy n—oo PePy
and for some sequence o satisfying onan, = o(1) we have suppep, P(|Cppn —t| <€) <
on(e A1) +o0(1) for all t € (ny, — an,+00), then it follows that

limsup sup P(T), > é,) < a.
n—oo PePy

PRroOOF: First note that by condition (5.102), T;, < Cp,, + op(a,,) uniformly in P € Py

and the maintained hypothesis on ¢, we can conclude that
limsup sup P(T,, > ¢é,) = limsup sup P(T,, > é, V n,)
n—oo PePy n—oo PePy

. a a
< limsup sup P(Cpy + 5 > (@1-a-5,.p = 5) V1)
n—oo PePy

<limsup sup P(Cpn + an > qi—a—5,.P V 1n)- (S.103)

n—oo PePy

Next observe that by direct calculation we also have the following inequalities

P(CP,n + an > q1—a—b,,P \ 77n) - P(CP,n > q17a75n,P)

0 if Np — Qp > q1—a—6,,P

< . (8.104)
P(|CP,n - q1—a—6n,P| < an) if M — Gp < qQ1—a—6,,P

Therefore, combining results (S.103) and (5.104) together with suppcp, P(|Cpn — t| <
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€) < on(e A1)+ 0(1) for all t € (1, — an, +00) implies that
limsup sup P(T, > ¢,)
n—oo PcPy

<limsup sup P(Cpn > qi—a-s,,p) +limsup sup sup P(|Cpp—t| < ay)
n—oo PePy n—oo PePgt>nn—an

< a4+, + on(an A1), (S.105)
The claim of the lemma therefore follows from §,, = o(1) and gpa, = o(1). m

Lemma S.3.7. Let the conditions of Theorems 3.1(ii) and 3.2 hold with R = © and sup-

pose that 03 satisfies kryl/p\/log(l + k) By, X suppep J[]((EEL)“P V() FL L lp2) =
o(an), Kpll(0: +RE + 271 x SYL,E) = o(a,n~?), and R = o(¢%). (i) If 7" 1 0
satisfies J;jBnk,ll/p\/log(l + kp)/n=o(r}) and vith x SE(B,E) = o(1), then

Un(©] + 00) < Up(©16) + op(an)

uniformly in P € Py. (i) If Sp(B,E) xR = o(1) and ©y,, is a singleton for all P € Py

and n sufficiently large, then part (i) of the lemma continues to hold if T = 0.

PRrROOF: First note that since we required J;;Bnk:}/ P/log(1+ ky,)/n = o(t2) and we

assumed all other conditions of Corollary S.1.2(ii) are satisfied when © = R, it follows
di (O}, 04, || - &) = Op(v7y) (5.106)
uniformly in P € Py. Therefore, Lemma S.3.3 yields, uniformly in P € Py, that

sup  sup  |[Dn(8)[h] — Dp(B)[A]|l, = op(an). (S.107)
0cby heVa(0,0]61)

We further note that since (:)3 C O, Assumption 3.11 holding with R = © implies

sup [|W,(6) — Wp(0)|, = op(an) (S.108)
9cody

uniformly in P € Pg. Hence, by results (S.107) and (S.108), ||, ]lop = Op(1) uniformly

a
in P € Py by Corollary S.1.3, and V,,(6,0|2) C V,,(6,0| + co) imply that

U, (0 < inf inf W (0) + Dp(0)[h]]« "
(8] + o0) _gle%ghevnl(r(;,@wm“ p(0) +Dp(0)[hllls, , +opr(an)

= inf inf W5(0) +Dp(0)[h n S.109
Juf W)+ De @)l +oplan) (5109

uniformly in P € Py, and where the equality can be established by employing identical
arguments to those used in Lemma S.3.2 (see, in particular, (5.91)-(5.93)). Also note
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that, by hypothesis, there is an 7, | 0 satisfying vi7" x Si (B, E) = o(n,) and define
£(0) = V(0,013 01 {h € BY : | =15 < ).
) n n \/ﬁ —
Next, select 0oy, € ©F,, and hoy, € E,(0oy) so that the following equality is satisfied

inf i [ Wp(0)+Dp(0)[hlxpp = W (0on) +Dp(0on) honlllsp p+olan). (S.110)
0€0g,, he&n(0)

Assumption 3.13 holding with R = © implies K, % (v r)SY(L, E) = o(a,n"'/?) and
fen/? log(1 + kp)Bnsuppep J)) (V7)™ Fis || - | p2) = o(an). Hence, there is 6, with

Km0 8S (L, E) = o(a,n~'/?) (S.111)
b7 log(1 4 k) B x sup Jy (007, 73, |- 1) = ofam). (8.112)
and V7% = 0(4,,). Moreover, note result (S.106) implies there is a g, in O such that

160 — fonllE = Op(vyi7y))

uniformly in P € Pg. Thus, v27% = 0(6,) and 6y, € O C O,, implies that /n(fon —
Oon) € Vin(bon,O|d,) with probability tending to one uniformly in P € Py. Hence,
applying Lemma S.2.2 with Og,, and V;,(6,©|4,,) in place of Oy, and V,,(8, R|é,,), yields

IW5(Bon) — W (8on)llp = op(an) (S.113)

uniformly in P € Py. Furthermore, Lemma S.3.4, hg, € &,(0p,) and result (S.111)
imply that with probability tending to one uniformly in P € Py we must have

1D (Bon) lhon] — Dp(Bon) lhonlly < KnS2(L,E)S,Lav/m = ofa). (S.114)

Therefore, Assumption 3.7(ii), o € (:)};, hon € En(Oon), En(Bon) C Vn(éon,@lﬁg) by
Assumption 3.12(ii), and results (S.110), (S.113), and (S.114) yield that

e e IO+ D8R
"é%b*nhelgl(e)“ P(0) +Dp(O)[A]lzpp

> inf inf Wp(0) + Dp(0)[h n) (S.115
> nf RO+ Dp@) bl +op(an) (S115)

uniformly in P € Py. To conclude, note that Assumption 3.4 holding with R = O,
Corollary S.1.1, and R} xSp (B, E) = o(n,,) due to R} = o(7v)) and vl xSh(B,E) =
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o(n,) allow us to conclude that uniformly in P € Py we have

h
1,(0) = inf inf .
7(0) eérégnhelg(o)\/ﬁQn(H—i-\/ﬁ)—i-oP(an)
= inf inf W D A1
5 W)+ B O)hllse +or(a). (S116)

where the second equality follows by identical arguments to those employed in Theorem
3.1(ii). Combining result (S.116) with Theorem 3.1(ii) and employing the fact that W7,
and Wp share the same distribution we thus obtain, uniformly in P € Py, that

inf inf  [Wp(0) +Dp(0)[h
oialy b ) TWE(0) + D)7l

—iut | int | [WH(0) + De(O) ks + oplas). (S117)
The claim of part (i) of the lemma therefore follows (S.109), (S.115), and (S.117).
To establish part (ii) note that if ©f, is a singleton, then jH(@EL,@Sn,H r) =
d (0,08 . ||-|) and therefore Corollary S.1.2(i) implies dy (OF, 0%, ||-||g) = Op(RY
uniformly in P € Py. Part (ii) of the lemma can then be established by replacing vy
with R} in the arguments employed in establishing part (i). m

Corollary S.3.1. Suppose that I,(R) < Up(R|ln)+o0p(an) and Uy (R|,) > Us(R|,) +
op(ayn) uniformly in P € Py with 0 < a,, = o(1), Up(R|ly) 4 U%(R|ly), and Us(R|0,)
independent of {V;}'_,. Then for any constant n € (0, ) it follows that

limsup sup P(I,(R) > cjlfajLn(Un(RMn)) +n) <a.

n—oo PecPy

PROOF: Since I,,(R) < Up(R|l,)+o0p(ay) uniformly in P € Py by hypothesis, we obtain

limsup sup P(I,(R) > (j1—a+n(ﬁn(R‘£n)) +1n)

n—oo PePy

< limsup sup P(UP(R‘Zn) +ay, > cjl_aH,(Un(RMn)) + 1)

n—oo PecPy

< limsup sup P(UP(R‘Zn) > QIfaJrnfén,P(U])—t’(R‘gn)) +n— 2an)

n—oo PePy

<a, (S.118)

where the second inequality holds for ql_a+n_5n,p(U}§(R|l7n)) the 1 —a+mn— 4§, quantile
of Ux(R|f,,) and some &, = o(1) by Lemma S.3.5 applied with B,, = U, (R|/,,), Cp,=
U%(R|ly,), and D, = {V;}_,. In turn, the final inequality in (S.118) follows from 7 > 0,
an = 0(1), 6, = o(1), and Up(R|l,) L UL(R|E,). m
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S.4 Illustrative Examples

In this Section, we include the proofs for all the examples discussed in the main text
and Supplemental Appendix I —i.e., the results stated in Section 4 of the main text and

in Section A.2 of Supplemental Appendix I.

S.4.1 Proofs for Section 4

PrROOF OF THEOREM 4.1: We establish the claim of the theorem by verifying the
conditions of Theorem 3.1(ii) for both R as in (29) (to couple I,,(R)) and R = ©
(to couple I,,(©)). To this end, note that Assumption 3.1(i) is imposed in Assump-
tion 4.1(i), Assumption 3.2(i) holds with B,, < v/k, by Assumption 4.2(i), Assumption
3.2(ii) is directly imposed in Assumption 4.2(ii), and Assumption 3.2(iii) is satisfied
with J, =< /jn log(1 + j,) by Lemma S.4.2 and ||f||ec < 3 for any f € F,. The cou-
pling requirement of Assumption 3.3(i) is satisfied for R = ©, and hence also for R
as in (29), with a, = (log(n))~'/? by Lemma S.4.4 and Assumption 4.2(iv). More-
over, Assumptions 3.3(ii), 3.4, and 3.5 also hold by Lemmas S.4.1 and S.4.3. To ver-
ify Assumption 3.6, we first note that Assumption 3.6(ii) is implied by Assumptions
4.1(iv) and 4.3(ii). Furthermore, as argued, B, =< Vkp, Jn < /jnlog(1+ j,), and
vp < 1 by Lemma S.4.1, which yields that R, < knv/Jn log(1 + ky)/+/n since k, > jn
by Assumption 4.2(iii). Thus, x, = 1 by Lemma S.4.3 and Lemma S.4.2 imply that
Assumption 3.6(i) holds by Assumption 4.2(iv). By similar arguments, it also fol-
lows that Assumption 3.7 is implied by Assumption 4.3, and that the requirements
ka/? log(1 + ky,) By, suppecp Jﬂ(fn Fn, || |lp2) = o(an) and R, = o(¢y,) are implied by
knv/Jnlog?(n)t, = o(1) and k,+/j, log(n)/v/n = o(£,). Since K,, = 0 in this applica-
tion, it follows all the conditions of Theorem 3.1(ii) hold for both R = © and R as in
(29), and hence the theorem follows. m

PROOF OF LEMMA 4.1: The result essentially follows from Theorem 1 in Walkup and Wets
(1969). To map our problem into their setting, note that since {ds}:", are orthogonal,
every u € M, can be identified with a unique (aq,...,as,) = a € R** through the
relation p =Y 2" | asds — e.g., by ag = p(Ss) for S the support of §5. With some abuse
of notation, for the remaining of the proof we therefore employ « and p interchangeably.
Further note that, for any 6 = ({F(c,|-)}__,, i), the restrictions T¢ () < 0, T%‘)(H) =0,
and T%) (#) = 0 depend only on p and define a closed convex polyhedron on R*", which
we denote by K,,. Next, define the map A,, : R*» — R7~ to be given by

=0 H

= {Z as( /1{9 (wi, ) < ¢;}0s(dn) h<y<g1<i<c (S.119)
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and note that for any 0 = ({F(c,|-)},, u) = 6 € ©, N R, it follows by (35) that

=0 M
To(0) = Kn N A ({F(e)lw) heyegi<i<e)- (S.120)

Let d,, denote the dimension of the null space of A,, and note that if d,, = s,, then
I, (601) = T',(02) for any 64,02 € ©, N R by result (S.120), and hence the conclusion of
the lemma is immediate. On the other hand, if 1 < d,, < s, — 1, then Theorem 1 in
Walkup and Wets (1969) implies there is a C,, such that for any 61,62 € ©,, R we have

J L
dp (T (61), T (02), || - l2) < Cu{D D (Fileylwr) — Falcylwr))®}/?
=1 1=1
J
S Cn ) I1(el) = Fa(eg]) oo, (S.121)
=1
and where the norm || - |2 on T',(6) is understood as the usual Euclidean norm on

the corresponding o € R®*. Similarly, we note that if d,, = 0, then A,, is invertible
and (S.121) holds with C,, = ||A;![|o. Also note that for any p = > i, asds and

fo= Y &0, we have ||p — fillry = |Jo — @|j1 due to the measures {ds}:"; being
orthogonal. Hence, since |all; < \/splal|2 for any a € R*", result (S.121) yields

J
dpr (T (61), T (02), || - l7v) S V5uC Y 1F1(¢)]) = Faley)lloos
7=1

which establishes the claim of the lemma by setting (, < Cj,\/s,. R

PROOF OF THEOREM 4.2: Let V,,(6, R|¢) = V,,(6, R| + 00) N {h € B, : |h/y/n|g < £},
recall 0w = Y27, suppep | F(ey]-) |2 for any 6 = ({F(e,])},, ), define

E,(R|t,) = inf inf W, ,.(6) + D, n[h]|l¢ 172,
(RI) = nf Z 1W,(6) + Byalhlll, o)
and note that for any ¢, satisfying the conditions of the theorem, Assumption 4.4(iii)
and Lemma S.4.9 imply U, (R| + c0) = E,(R|¢,) + op(ay,) uniformly in P € Py. Hence,
to establish the theorem it suffices to show there are £, = £, and £ =< % such that

Ey(R|ty) > UB(R|En) + op(ay)
Ey(R|ly) = Un(8] + 00) = Up(RIf) — Up(O|£) + op(an) (5.122)

uniformly in P € Py. To this end, we rely on Theorem S.3.1(ii) (for E,(R|(,)) and
Lemma S.3.7. Also note that in the proof of Theorem 4.1 we showed Assumptions 4.1,
4.2, and 4.3 imply Assumptions 3.1-3.7 hold with B, < vkn, Ju < \/jnlog(1 + jn),
vy <1, R, < kn\/jnlog(l—i—kn)log(l + jn)/n, an = (log(n))*l/Q, kp = 1, |0 =
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16lle = 271 suppep IF(c)l) | pe, and (68 = 3257 IF(¢)])loo + llullry for R = ©
and R as in (29).

In order to apply Theorem S.3.1(ii), we set ||0||1 = maxi<,<7 J||F(¢;|-)||oc for any
0 = ({F(c )}] 1, 11) € By, and note Assumption 4.4(i) and Lemma S.4.5 verify Assump-
tions 3.8, 3.9, and 3.10 are satisfied with K, = 0 and Ky = 0. Also note Assumption
4.4(iii) and Lemma S.4.8 verify Assumption 3.11 and Assumptions 3.12(i)(iii) are imme-
diate given the definitions of ||-||g and || || and V,,(P) = ©,,N R by Lemma S.4.1. Also
note {0 € B,, : d (0 w(0,05,,1 - |lr) <1/2} C 6, for n sufficiently large by Assumption
4.4(iv) and the definitions of ©,, and || - ||1. Moreover, Assumptions 4.1(ii)(iii) imply

h F
sup Il _ sup m;X1<]<jj” (el S Vin (5.123)
neB, [hlle heBn Y00, suppep [[F(c,l)llp2

and hence Corollary S.1.2(1), v, < 1, and Ry, < ky+/sin log(1 + k) log(1 + i) /n yield

T (500 1) V7 485,06, ) = On(PH 2 4 /7o)

uniformly in P € Py. In particular, Assumptions 4.4(iii)(v) imply jH((:)fl, ons |l

On>s
) = 0p(1) uniformly in P € Py, and therefore since, as argued, we have {# € B,
m(0,05,, - 1l1) <1/2} C 6, for n sufficiently large, we obtain

liminf inf P({0 € By, : dx({0},05,]|- 1) < 1/4} C ©,) = 1. (S.124)

n—oo PeP
Next, observe Lemma 4.1, Assumption 4.1(ii) and the definitions of || - | g, || - ||L, and
| - I imply Assumption S.3.1 holds with D, (B,E) < (,v/j, and D, (L,E) = 1. Since
K, = K; = Ky = 0 and T and T are affine, the only requirements imposed by

Assumption S.3.2 are that kn'? 10g(1 + k) By suppep J1|(n” V (vnTn)", Fus || lp2) =
o(an) and (R, + vn7)Dn(B,E) = o(ry,), which are implied by Assumption 4.4(v),
Lemma S.4.2, and k,+v/j, log?(n)¢, = o(1) by hypothesis. Hence, all the conditions of
Theorem S.3.1(ii) hold, which implies there is a £, =< ¢, such that uniformly in P € Py

E,(R|t,) > Up(R|l,) + op(ay). (S.125)

Finally, to apply Lemma S.3.7 to Un(@| + o0), note that we can set the norm
| - llB to equal ||f]|p = maxi<;<7 ||[F(¢]-)]|sc and interpret T and Yp as satisfy-
ing Tg(@) = Yr(#) = 0 for all § € B (since R = O). Hence, Assumptions 3.8,
3.9, and 3.10, 3.12(i) are immediate, while Assumption 3.11 is satisfied by Assump-
tion 4.4(iii) and Lemma S.4.8. Further note since ©p is an equivalence class under
| - llg and || - ||B, when studying the unconstrained statistic we can treat the model

as identified. As a result, we may set 7' = 0 and Assumption 3.12(ii) holds by the
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same arguments employed in (S.124), while Assumption 3.12(iii) is immediate since
Vo(P) = ©, N R. In order to apply Lemma S.3.7(ii), it therefore only remains to
verify that k,ll/p\/log(lﬁn)Bn suppep J[|(lns Fos || - [lp2) = olan), Ry = o(fy), and
SY(B,E)xRY = o(1), which are implied by ky,+/7, log?(n)£: = o(1), kn\/Jn log(n)//n =
o(£2), and Assumption 4.4(iii) respectively. Thus, (S.125) and Lemma S.3.7(ii) verify
(S.122) with /% = ¢ and ¢, < ¢,,, which in turn establishes the theorem. m

Lemma S.4.1. If Assumptions 4.1(iii), /.2(ii), and 4.3(ii) hold, then Assumption 3./
holds with R = © and R as in (29), V(P ) O,NR, ||0|g = Z _1suppep || F(¢])] P2
for any 6 = ({F(c,|- )}] L) €EB, and vt < 1.

PRrROOF: First note that since we are setting V,,(P) = 0, N R, Assumption 3.4(ii) is
immediate. To verify Assumption 3.4(i), let ||0||g = 237 1suppep |F(¢]-)||p2 for any
0 = ({F(c,|)} 5—1,1) € B. Then note that any ({F(c,| e S—1, 1) =6 € ©, must be such
that F(c,|-) = p™'B, 4 for some 8,9 € R/" and, similarly, 11,00 = ({F,(c,|- )}J 15 Hn)
must satisfy Fy(c)|-) = p»'B,,. The Cauchy Schwarz inequality, and Assumptions
4.1(iii) and 4.2(iii) then yield that uniformly in P € Py we must have

J J
16 = abolle < D 11810 = Brnllz < Z 1Eplg™ (WP (W) (B0 — Byn)]ll2
J=1 =

<{ZHEP ()W) = Fule)W)a" " (W)]IE, . 2312, (S.126)

where the final inequality holds due to || 2;113\|o,2 being uniformly bounded by Assumption
4.3(ii) and 237:1 laW| < /T |lallz for any (aV,...,al")) = a € RY. Result (S.126) and
the definition of p,(X, ) in (28) verify Assumption 3.4(i) holds with v,;! < 1. m

Lemma S.4.2. Define the class F, = {f : f(v) = (1{y < ¢;,} — p’"(w)'B) for some 1 <
7 < J and ||p"'Bllee < 2} and suppose that Assumptions J.1(ii)(iii) hold. Then, it
follows that suppep Njj(€, Fo, || - [ P2) S 1V (VinK/€)’") for some K < oo, and in
addition suppep Ji1(€, Fn, || - [|P2) S €v/in(1+ \/log(l V (Vin/€)))-

PRrOOF: First note that for any p/»/4; and p’*/ By, the Cauchy-Schwarz inequality yields
7" (w)'B1 = P (w)' B2| < sup [P (w)|2]|B1 = Balla S VinllB1 — Ballo,
w

where in the final inequality we employed Assumption 4.1(ii). Hence, Theorem 2.7.11
in van der Vaart and Wellner (1996), |82 < suppep ||p’*'B||p2 by Assumption 4.1(iii),
and suppep [l pa < [P Bl < 2 for any pin' € ©,, imply

Kijn

€

sup Njj(€, Fn, || - [lp2) S 1V ( ), (S.127)
PeP
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for some K < oo, which establishes the first claim of the lemma. For the second claim

of the lemma, we employ (S.127) and the change of variables v = u/e to obtain
€ K7 .
sup Jy (e Pl z) S e+ [ (og(1 v (YT 20
€

= 1 Vi [ Qo0 (L)) 200) £ e+ log(1 v (43 f)

where the final inequality follows from (1 V ab) < (1Va)(1Vb) for any a,bc R,. m

Lemma S.4.3. Let p,: R x W x © be as defined in (28). It then follows Assumptions
3.5(it) and 3.5 hold with k, = 1, K, =1, K, =0, M < oo, |- |l = - |&, and
161le = >=3L suppep | F(c|)llpa2 for any 6 = ({F(c)|)}L,, 1) € B.

ProoOF: First note that for any ({Fi(c,|- )}] 1L i1) =61 € B and ({Fa(c|- )}] 1o H2) =
02 € B, we obtain from (28) and the definition of | - ||g that for all P € P

g

Eplllp(X,601) — p(X, 62)]13) Z [(FL(e)|W) = Fa(c)|W))?] < 161 — a5,

which verifies Assumption 3.3(ii) holds with x, = 1 and K, = 1. Next, for any P € P
define Vimp,(0)[h| = —Fj(c,|W) for all # € B and ({Fh(cj| )}J 1, 1n) = h € B. Since
mp,(0) = P(Y < ¢)|W) — F(c,|W) for any 6 = ({F(c,|-)}~ 5_1, 1) € B, direct calculation
verifies Assumption 3.5 holds with K,,, =0, M =1, and || - ||, = - |lg. ®

Lemma S.4.4. If k3j2log?(n) = o(n), Assumptions /.1(i)-(iii) and /.2(i) hold, then
Assumption 3.3(i) holds with R = © for any a, with k3j2log?(n)/n = o(a2).

PROOF: We establish the result by applying Lemma S.4.6. To this end, we let 7, = J+jn
set {rj}iil = {l{y < c]}}f:1 U {p; gil and let rj"(x) = (r(z),...,r; (z)). Next
note that any f € JF, may be written as r/7/3 for some € R/». Moreover, since
suppep maxi<)<7 [|[F(¢)]-)|lp2 < maxi<;<7 [|[F(¢]-)lloc < 2 for any ({F(c,|- )}] LH) =
6 € ©,, Assumption 4.1(iii) implies that there exists a Cy < oo (independent of j,) such
that || ]2 < Cy whenever rin' € F,. Hence, by Assumptions 4.1(ii) and 4.2(i), we may
apply Lemma S.4.6 with by, < v/Jn, bon < kp, and C,, = O(1), from which the claim of

the present lemma immediately follows. m

Lemma S.4.5. Let B = ( ;7:1 Cg(W)) x M and ©, T, and T be as defined in
(27), (30), and (31). If ¥(g,-) is bounded on 2, then Assumptions 5.8, 3.9, and 3.10
are satisfied with Kqg =0, VYq(0)[h] = Yg(h), Ky =0, and VY (0)[h] equal to

VY p(0)[h] = (Y (h), Y () + 1, Y (h) + ). (S.128)
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PROOF: For any measure p € M let u = u™ — p~ denote its Jordan decomposition,
lul = pt 4+ ™, and recall the total variation of u equals ||u|l7y = |u|(Q). Since
T : B — (°°(B) is linear, in order to verify Assumption 3.8 we need only show that ¢
is continuous. To this end, recall that for any ({F(c,|-)} 51, 11) = 0 € B we had defined
10l = Z 1 1F(¢5])loe + |l¢ll7v - Hence, employing the definition of Y we obtain

[Tcllo= sup [[Ta()]oc = sup sup|u(B)[<  sup |u|(Q) =1,
lolls=1 illulrv =1 BEB pillpllry=1

which, by linearity of T, implies Assumption 3.8 holds with VYg = T and K, = 0.
By similar arguments, note that T;?) : B — RJ~ as defined in (31), is linear and

J L
I = s ST (Fleun) - / 1{g(wn,n) < ¢, buldn))?

1Olls=1,—1 1=1

J L
<52 s (Flol)?+2 sw (#l(@)°} =4TL. (S.129)
=1 1=1 IFl)lle=1 lellry =1

Moreover, note that for any bounded f: 2 — R and p1, uo € M it follows that
/Qf(n)(m(dn) — p2(dn)) < || flloolpr — w2l (€2) = [ flloollir — pallzv,

which implies TW and % are Fréchet differentiable with VT = 1% 11 vl —
T() + A, HVT ||o < 1, and HVT ||O < |[¥(g,)|loo- By (5.129) we may therefore
conclude Assumptions 3.9(i)(ii)(iii) are satisfied with VY as in (S.128) and Ky = 0.
Furthermore, note that (provided ©, N R # ) there is a §* € B,, such that YT p(0*) = 0,
which together with (S.128) implies the range of VY r equals F,, and hence Assumption
3.9(iv) holds. Finally, we note Assumption 3.10 is immediate due to Y being affine. m

Lemma S.4.6. Let {Tj}gil be functions of X, rin(x) = (r1(z),...,r;.(x)), define the
class G, = {rin'B for some B with |||l < Cpn}, and suppose by, = sup, ||[r"(z)||2 and
bay, = sup, ||¢* (2) |2 are finite. If {X;, Z;}1 is i.i.d. with (X,Z) ~ P € P, then there

is an isonormal Gaussian process Gp such that uniformly in P € P

s 2 Z — Eplg(X)d™(2)]) - Gr(ga™)
= op(Eny k"j”f}%b% log(m)) 5 130)

PRroo¥F: For notational simplicity, we first define a k,, X j, matrix Eg) to be given by
EY = \/— Z{qk" Drin(Xi) = Eplg™ (Z)r’(X)']}.
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For any matrix A let vec{A} denote a column vector consisting of the unique elements
of A and set E,, = vec{Eg)}, noting that E,, has dimension (at most) j,k,. Our first

step is to couple E,, to a normal vector Np. To this end, we note that

sup [vec{g" ()0 (2) = Eplq™ (Z)r* (X))

< sup trace{q"™ (2)r7" (x)'r7" (x)¢" (=)'} < 4b3,03,

z2,x

by definition of by,, and bs,. Since the dimension of E,, is at most j,k,, Theorem 1.1 in
Zhai (2018) and Markov’s inequality imply, provided the underlying probability space

is suitably rich, that there is a Gaussian vector Np such that

VEngnbinban log(n)
vn

uniformly in P € P. Next observe that for any g € G,, there exists a 3 € R/ such that

IEn — Np|l2 = Op( ) (S.131)

Vil Z - Eplg(X)d™ (2))) =E8.

(1)

Hence, letting N, denote the k, X j, matrix built from the corresponding entries of

the normal vector Np, we define the Gaussian process Gp by setting

Grlgq™) =Np'3

for any r/*'3 = g € G,,. Therefore, since ||3]|2 < C,, by definition of G,,, and the operator

norm is bounded by the Frobenius norm, we obtain from result (S.131) that

sup H\/—Z ~ Epl9(X)d"(Z)]) — Gp(gd™)|l2

gegn
CrN kngnbinban log(n)

< IED = NB02C, = Op( NG

)

uniformly in P € P, and hence the claim of the lemma follows. m

Lemma S.4.7. Let {rj};:’;l be a set of functions of X, rin(z) = (r1(x),...,r;.(2)),
and suppose sup, 19 () 2 S bin, sup, ¢ (2)a S ban, and Eplg(Z2)g™ (Z)] and
Ep[rin(X)rin(X)'] have eigenvalues bounded uniformly in P € P, j,, kn. If {X;, Z;}7
is i.1.d. with (X,Z) ~ P € P, then there is a K < oo such that for all 6 >0

supPll—qu" Zi)r7(X)' — Epld™(Z)r" (X) oz > 6)

nd’K )
b%n V b%n + 6b1,b9p, )

< (]n + kn) exp{—
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PRrROOF: We first define a k,, x j,, random matrix M; ,, satisfying Ep[M; ] = 0 by

S
3
I
S |-

{d" (Ziyr™(X:) = Eplg"™ (Z)r7"(X)']}.

Since for any random matrix A we have |E[A]|, < EI[||A|lo] by Jensen’s inequality,
I3 < trace{A’A}, sup, 17" (2)]|2 < bin, and sup, [|¢*" (2)[l2 < ban imply

IMinll5 S qk"(Zz)Tj"(X@-)'Hi+Ep[||% "(Z)ri(X)'[5]

< sup, [[¢" (2)3 x sup, [|r7"(2)[3 _ 51,3,
~ n2 ~ 2

3_»—\

(S.132)

Moreover, since the eigenvalues of Ep[q*(Z)q"(Z)'] are bounded uniformly in P € P
by assumption and sup, ||r/"(x)||2 < b1, it additionally follows that
62

2 .
sup || E Ep[M;nM; ]l < sup =[|Ep[¢™ (Z)¢* (Z)' 7" (X)|3]llo S 2. (S.133)
PeP T pPep n

Identical arguments but relying on the eigenvalues of Ep[rin(X)r/»(X)'] being bounded
uniformly in P € P and sup, ||¢""(z)|2 < ba, by hypothesis further yield that

b3

sup || ZEP Minlllo S 22, (S.134)

pPeP T

The claim of the lemma then follows from results (S.132), (S.133), and (S.134) allowing
us to apply Theorem 1.6 in Tropp (2012) with o2 < (b3, V b3,))/n and R < by, b, /n. B

Lemma S.4.8. If Assumptions /.1(i)-(iii), 4.2(i)(ii) hold, and j3k2log(1 + jnky) =
o(n), then it follows that Assumption 3.11 holds with R = © for any sequence a,, satis-
fying k™ (257 108> (14 knu) /m)!/* = o(a).

PROOF: Let G, = {g: g(z) = 1{y < ¢;} —p/(w)'B for some 1 < 3 < J and |[p'f|o0 <
2} and Fp = {9qr : g € G,, and 1 < k < k,, }. Further let G} be a Gaussian process on Fn

independent of {V;}7_,, satisfying E[G}H(f1)] = 0 and E[Gp(f1)Gp(f2)] = Covp{fi, f2}
for any f1, fo € Fp, and for any f € F,, define Gn(f) to be given by

= = > wl i) - 5 X A}

where {w;}! | are the same weights used in building W,,. Then note that when R = ©
and for W5(0) = (G5 (p1(+,0)d"), ... Go(ps(+,0)g")"), we obtain

sup [|W,,(8) — Wh(6)ll, < ko' sup |Gu(f) — GR(f)]. (5.135)
0€On feFn
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We will therefore establish the lemma by employing (S.135) and applying Theorem
S.7.1(i) to the class F,. To this end, define f% (V') to be given by

P(W)
1{Y S Cl}

fi (V) = g™(V) — Eplg™ (V)] 9" (V)=d"(2)® (S.136)

Y S cr}

and note d,, = k,(jn + J). Next observe that applying Lemma S.4.22 with D; =
(pm(W)Y, 1{Y < ec1},...,1{Y < cz}) and Dy = ¢*»(Z) allows us to conclude

s G Eplg (V)g (1)1} < sup (01D o  TE(EPD2D}) < s (5130
where the final inequality holds by Assumptions 4.1(ii) and 4.2(ii). Hence, since in addi-
tion eig{ Ep[g® (V)| E[g% (V)]} < eig{Ep[g™ (V)g% (V)']}, results (S.136) and (S.137)
imply Assumption S.7.1(i) holds with C,, < j,. Next note Assumption S.7.1(ii) is satis-
fied with K, < \/kpjn by Assumptions 4.1(ii) and 4.2(i). By Assumptions 4.1(iii) it also
follows that |82 < suppep ||P""'B]|p2 < [P B|co. Hence, by definition of JF,, there is
a Cy < oo such that any f € F satisfies f(V) — Ep[f(V)] = f®™(V)' for some 8 in

B,={B3ecR™:3=e¢,® for some v € R"" with ||y||2 < Cp},

where e, € RF has its k" coordinate equal to one and all other coordinates equal to
zero. In particular, it follows that Assumption S.7.2(i) is immediate with Gy, p equal to
the zero function and .Ji,, = 0. Moreover, setting C,, = {y € RI"*7 : ||v|2 < Co}, we
can then conclude from the definition of B, and N(¢,Cy, | - [|2) < 1V (Co/e)n that

/ " log (N B T T))de
Co
< /O V1og (k) + 10g(N (e, Cor - T2))de S v/log(hn) + v/,

which verifies Assumption S.7.2(ii) is satisfied with Ja, =< +/log(k,) + v/Jn. Thus,
applying Theorem S.7.1(1) with K, =< Vkn,Jn, Cn =< Jn, dn S knjn, Jin = 0, and
Jon =< +/log(ky) + v/Jn implies that uniformly in P € P we have

N 2.5 3 .
up (G (f) — ()] = Op(( 2t IE L H Endu) (5.138)
fe€Fn

provided that j2k2log(1 + j.kn) = o(n). Since the latter condition is satisfied by hy-
pothesis, the claim of the lemma then follows from (S.135) and (5.138). m

Lemma S.4.9. Define ||0||g = 237:1 suppep || F(c,|-)||p2 and for Vi(0, R| + 00) as in
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(34) let Vi (0, R|€y) = Vi(0, R|+00)N{h : |h//nlg < ln}. If Assumptions /.1, 4.2, and
4.3 hold, then for any a, = o(1) and £,, = o(1) satisfying k252 1og®(1 + knjn)/n = o(al)
and kp/jnlog(n)//m = o(y,) it follows uniformly in P € Pqy that

J
UnR+oo:inf inf WnH —}—Iﬁ)nh ¢ 172 4, an).
(& ) 6oy, heVn(e,R\zn){ZH o0+ Danltlls, 2} rlan)

1=1

PrOOF: We establish the claim of the lemma by verifying the conditions of Lemma
S.3.1. To this end, recall that in the proof of Theorem 4.1 we argued that Assumptions
3.2(i)(iil) and 3.7 hold with B,, < V/k,, and J,, < \/jn log(1 + j,,). Moreover, Assumption
4.1(iii) implies that for any ({pj"’ﬁ]ﬁ}}y:l,,u) = h € B,, we have

J J
Iklle S D 18)ullz S D 1Dy, plR]I3}2 = IDp[A]|l2, (5.139)
1=1 1=1
where the second inequality follows from D, p[h] = —Ep[¢" (Z)p’ (W)'B, ] and the

smallest singular values of Ep[¢F(Z)p’(W )] being bounded away from zero uniformly
in P € P by Assumption 4.2(iii). Since v, < 1 by Lemma S.4.1 and the derivative Dp(6)
does not depend on 6, we conclude ||h||g < v,||Dp[h]||2 for all h € B,, —i.e., in verifying
the conditions of Lemma S.3.1 we may set A, (P) = ©,,N R. In order to verify condition
(S.79) of Lemma S.3.1 we note that since ||h||g < ;7:1 |8;,n]l2 by Assumption 4.1(iii),

the definitions of the operator norm || - ||o2, I, », and D, p imply that

sup ||]Dn[h] - ]D)P[h]”? S ”l qun(zz)p]n(wz)/ o Ewp[qlcn(Z)pjn(v[/v)/]HO72 _ OP(1)7
T e P

where the final equality holds uniformly in P € P by applying Lemma S.4.7 with
bin = VJn, ban = kn (by Assumptions 4.1(ii) and 4.2(i)) and employing that k, > j,
and k2 log(k,)/n = o(1) by Assumptions 4.2(iii)(iv). Finally, we note that j2k2* log®(1+
Jnkn)/n = o(a}) by hypothesis, and employing Lemma S.4.8 with p = 2 yields that
Assumption 3.11 holds for R = ©, and hence also for R as in (29). The only condition
of Lemma S.3.1 that remains to be verified is that S,,(B,E)R,, = o(¢,,). To this end,
we observe that since V, (0, R|¢,,) is defined through the constraint ||h|g < ¢, (instead
of | - [[B < £y), it suffices to verify R,, = o(f,) — i.e. for the purposes of this lemma
we may set || - ||B = || - ||g. However, since as argued J,, < /jn log(1 + jn), Bn = Vkn,
and v, < 1, we have R, < kp\/jnlog(1 + k,)log(1 + j,)/+v/n, and the requirement
Ry, = o(¢y) is implied by kp\/jnlog(n)//n = o(¢,). Thus, the claim of the lemma

follow from Lemma S.3.1. m
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S.4.2 Proofs for Section A.2.1

PrOOF OF THEOREM A.2.1: We establish the theorem by simply applying Theorem
3.1(ii) to both R as in (A.5) (to couple I,(R)) and to R = © (to couple I,,(©)). To
this end, note that as discussed Assumption 3.1(ii)(iii) holds, while Assumption 3.1(i) is
directly imposed in A.2.1(i). Since ¢*(Z) equals the vector (1,...,1)" € RY, it further
follows Assumption 3.2(i) holds with B,, = 1, while Assumption 3.2(ii) is automatically
satisfied. We further note that Assumption 3.2(iii) holds for R = © (and hence also for
R as in (A.5)) with J, = Cp for some Cy < oo by Assumption A.2.2(ii) and Lemma
S.4.11. Also note Assumption 3.3(i) is satisfied for R = O, and hence also for R as in
(A.5), by Lemma S.4.12. Additionally, since © is convex by Assumption A.2.1(iii), the

mean value theorem and Assumption A.2.2(ii) imply that

Eplllp(X,01) — p(X,02)|3] < Ep[zug IVon(X, 0)II22]1101 — 62|13
S

for all 01,05 € ©, which verifies Assumption 3.3(ii) holds with x, =1 and |- [|[g = || - ||2-
Lemma S.4.10 additionally verifies that Assumption 3.4 holds with || - ||[g = || - ||2 and
vt = n for some n > 0 when R = © and hence also when R is as in (A.5). Furthermore,

we note that in this problem R,, =< n~/2 because v, < 1, J,, = OQ1), k, =J, and B, =
1. To verify Assumption 3.5, note that in this application Vmp,(8) = Ep[Vgp,(X,0)].
Hence, Assumptions 3.5(i)(ii) hold with |- ||, = ||+ [|2 due to Ep[supgee [|VZ0,(X, 0)|l0.2]
being bounded in P € P by Assumption A.2.2(ii). Similarly, Assumption 3.5(iii) is
satisfied due to Ep[supgee [|Vop(X,0)|lo,2] being bounded by Assumption A.2.2(ii). Fi-

—~1/2

nally, we note that since R, < n and k, = 1, Lemma S.4.11 verifies Assump-

tion 3.6(i). Assumption 3.6(ii) is immediate since Ep[p(X,6y)] = 0, while Assump-
tion 3.7 holds by Assumption A.2.4. To conclude, simply note that the condition

k,l/p\/log(l + kp) By, X suppcp JH(KZP,}"n, |-1p2) = o(ay) is implied by £,+/log(1/¢,) =
o(a,) by Lemma S.4.11, and K,,R2 = o(a,//n) is implied by n=%/% = o(a,). m

PROOF OF THEOREM A.2.2: We first define a variable E,(R|(,) to be given by

E,(R|t,)=  inf  ||W,(0,)+Dn(0,)[h]

115
heVi (0n,R|En) 2,2

and note Lemma S.4.15 implies Uy, (R| + 00) = Ep(R|¢,) + 0p(ay) uniformly in P € Py
for any ¢, | 0 satisfying the conditions of the theorem. Therefore, to establish the

theorem it suffices to show that uniformly in P € Py we have

En(RMn) 2 U;(R‘Zn) + op(an)
En(an) - 071(@‘ +00) > U;(R‘Zn) - UIS(@’ZZ) + op(an).

with ¢,, =< ¢,, and !7;11 satisfying the conditions of the theorem. To this end we rely on The-
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orem 3.2 (for E,(R|¢,)) and Lemma S.3.7. Next note that in the proof of Theorem A.2.1
we established that Assumptions A.2.1, A.2.2, A.2.3, and A.2.4, imply Assumptions 3.1,
3.2,3.3,3.4,3.5,3.6,and 3.7 hold with R, < n =2 v, <1, |-ls = |- le = ||l = ||||2,
kp =1, and a, = \/M/nm for R = © and R as in (A.5). We thus avoid repeat-
ing the arguments, and verify only that Assumptions 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13
hold for R = O and R as in (A.5).

Next note Lemma S.4.14 implies Assumptions 3.8, 3.9, and 3.10 are satisfied, while
Lemma S.4.13 verifies Assumption 3.11 with a, = \/M/nﬁ for R = ©, and
hence also for R as in (A.5). Assumption 3.12(i) is immediate since || - |g = || - |B =
| - ||l2, while Assumptions 3.12(ii)(iii) are implied by Assumption A.2.5(i), [0, — foll2 =
op(1) uniformly in P € Py (which we showed in establishing Theorem A.2.1), and
Va(P)={0 € © : ]|0 — 6|2 < €} for some € > 0 by Lemma S.4.10. Assumption 3.13(i)
is immediate since S,(B,E) = 1 and the choices of 0,, and éﬁ correspond to setting
Tn = o(n~/?). Similarly, Lemma S.4.11, S,(L,E) = 1, and n~'/2 = 0(¢,,) imply that
the condition ¢2+/log(1/€,) = o(ann_%) verifies Assumption 3.13(ii). Moreover, since

1/2

Ly, = o(ry) and n= " = o(r,) Assumption 3.13(iii) holds. Hence, Theorem 3.2 implies

E,n(R|ty) > Up(R|,) + op(an) (S.140)

uniformly in P € Pg for some £, =< 0. Similarly, since R < n~1/2, the conditions of
Lemma S.3.7(ii) are immediate and hence by (S.140) there are £, < /,, and £2 =< % with

Ey(R|ty) = Un(8] + 00) = Up(R|ln) — Up(O13) + op(an). (5.141)

The theorem therefore follows from (S.140), (S.141) and Lemma S.4.15. m

Lemma S.4.10. If Assumptions A.2.1, A.2.2, A.2.3, and A.2./(ii) hold, then Assump-
tion 3./ is satisfied with R = © and R as in (A5), |- |lg = || - |l2, v;;' = n for some
n >0, and V,(P)={0 € O : |0 — 0|2 < €} for some e > 0.

PRrROOF: To verify Assumption 3.4(ii), note Assumptions A.2.1(i), A.2.2(ii), A.2.4, and
A.2.3(1) and Lemma S.4.11 allow us to apply Lemma S.1.1(1) with || - ||a = || - |2,
Jp = O(1) and S,(e) > 0 to conclude 6, € V,(P) = {0 € ©,, : |0 — bp|la < €} with
probability tending to one uniformly in P € Pg for any € > 0 and for both R = © and
R as in (A.5). In order to verify Assumption 3.4(i), next note that © being convex and

Assumption A.2.2(ii) imply that for some Cy < 0o we have
IEp[p(X,6)] — Eplp(X,60)] — Ep[Vap(X,60)](6 — 60)]l2 < Coll6 — 6ol

for all # € ©. Hence, since the smallest singular value of Ep[Vgp(X, 6p)] is bounded away
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from zero uniformly in P € Py by Assumption A.2.3(ii), we obtain for some C; < oo

10 — boll2 < C1[|EP[Vap(X, 00)](0 — 6o)l|2
< C{l|Eplp(X,0)] — Eplp(X,00)]ll2 + Coll6 — 60|13} (S.142)

for all # € © and P € Py. Therefore, provided ¢ > 0 is set sufficiently small in
defining V,,(P) = {0 € ©,, : ||0 — 0||2 < €}, it follows that Assumption 3.4(i) holds with
|- lle = - |lz and v, } = n for some 1 > 0 due to (S.142) and Assumption A.2.4(ii). =

Lemma S.4.11. Let F = {p,(-,0) : for some 8 € © and 1 < 3 < J}. If Assumptions
A.2.1(ii1) and A.2.2 hold, then it follows that suppep Nj(6, F, | - [[p2) S 1V e and

suppep Jij (6, F, || - lp2) S (1 + v/log(1 Ve h)).

PROOF: Since O is convex by Assumption A.2.1(iii), the mean value theorem and As-
sumption A.2.2(i) imply for any 6;,02 € © and 1 <y < J that

|0y (,01) — py(2,602)] < Sup IVop(x,0)[lo2/[61 — b2]|2- (S.143)
€

Setting D(x) = supyce ||Vop(x, 0)||o,2, then note that Theorem 2.7.11 in van der Vaart and Wellner
(1996) and the right hand side of (S.143) not depending on j imply

Nij(e, - lp2) < T x N O ) Sived,  (S144)

€
2 Dllp2’

where we employed that N(e, O, ||-|]2) < 1Ve~% due to © being bounded by Assumption
A.2.1(iii) and suppep || D] p2 < oo by Assumption A.2.2(ii).

For the second claim of the Lemma we employ the bound in (S.144) to obtain

sup Jpj(6, F, || - lp2) S / (1 +log(1V u=%))/2dy
PeP 0
1
- 6/ (14 log(1 V (ev0) ™))" 2dv < e(1 + /log(1 Ve 1)),
0

where the first equality follows from the change of variables v = u/e and the final

inequality is implied by the inequality 1V (ab) < (1Va)(1Vb). m

Lemma S.4.12. If Assumptions A.2.1(i)(iii) and A.2.2 hold, then it follows that As-
1

sumption 3.5(i) is satisfied with R = © and a,, = \/log(n)/n %5 .

1 2
PROOF: Let ¢, = y/log(n)/n®%% and set 6, = 1 A (¢2y/n) 27  which note satisfies
1> 6, = o(1). Further define N,, = N(d,,0, | -|2) and set {Hk}ff;l to be the center of

the N, balls covering ©. For notational simplicity, we also let

rn,p(x) = ((p(x,01) = Ep[p(X,01)])',..., (p(2,0n,,) — Ep[p(X,0n,)])")
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and note r,, p(r) € R, For any P € P and n > 0 further define C,, p(1) to equal

(T N) B o (O]
Pavn

It then follows by Yurinskii’s coupling (see, e.g., Theorem 10.10 in Pollard (2002)) that

there exists a Gaussian vector N,, p € R "% and universal constant Ky such that

Cn,P(n) =

(S.145)

|log(1/Crn,p(n))|
J Ny,

1 n
P(H% Z%,P(Xi) — Ny, pll2 > 3ne,) < KoCp p(n)(1+ ). (S.146)
i—1

Next note Assumption A.2.2(ii), Jensen’s inequality, and the convexity of u — |u|% yield

Nn J
1 3
sup Ep[|rm p(X)I3] < (IN,)? x su E X,0.)3] < Nz2.
sup plllra,p(X)[2] < (TN) PengnguE:l Pl (X, 00)[°] S Nit

(S.147)

In particular, since N(e, 0, ] -[]2) <1V e %, it follows from §, < 1 that N, < 6,9, and
hence by (S.147) and the definition of C), p(n) in (S.145) we obtain

5
N2 1
sup Cy, p(n) <

< < . (.148)
PeP nevn ™ e (none )%

Moreover, since the function u +— u(1 + |log(1/u)|/A) with A > 1 is increasing in u on
the interval (0, 1] and ei(négde)% — 00, we obtain from results (S.146) and (S.148) 